xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 0f7e753fc3851aac8aeea6b551cbbcf6ca9093dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35 
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38 
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 /*
43  * Two to anticipate panels that can do cmd/vid dynamic switching
44  * plan is to create all possible physical encoder types, and switch between
45  * them at runtime
46  */
47 #define NUM_PHYS_ENCODER_TYPES 2
48 
49 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
50 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
51 
52 #define MAX_CHANNELS_PER_ENC 2
53 
54 #define IDLE_SHORT_TIMEOUT	1
55 
56 #define MAX_HDISPLAY_SPLIT 1080
57 
58 /* timeout in frames waiting for frame done */
59 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
60 
61 /**
62  * enum dpu_enc_rc_events - events for resource control state machine
63  * @DPU_ENC_RC_EVENT_KICKOFF:
64  *	This event happens at NORMAL priority.
65  *	Event that signals the start of the transfer. When this event is
66  *	received, enable MDP/DSI core clocks. Regardless of the previous
67  *	state, the resource should be in ON state at the end of this event.
68  * @DPU_ENC_RC_EVENT_FRAME_DONE:
69  *	This event happens at INTERRUPT level.
70  *	Event signals the end of the data transfer after the PP FRAME_DONE
71  *	event. At the end of this event, a delayed work is scheduled to go to
72  *	IDLE_PC state after IDLE_TIMEOUT time.
73  * @DPU_ENC_RC_EVENT_PRE_STOP:
74  *	This event happens at NORMAL priority.
75  *	This event, when received during the ON state, leave the RC STATE
76  *	in the PRE_OFF state. It should be followed by the STOP event as
77  *	part of encoder disable.
78  *	If received during IDLE or OFF states, it will do nothing.
79  * @DPU_ENC_RC_EVENT_STOP:
80  *	This event happens at NORMAL priority.
81  *	When this event is received, disable all the MDP/DSI core clocks, and
82  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
83  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
84  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
85  *	Resource state should be in OFF at the end of the event.
86  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
87  *	This event happens at NORMAL priority from a work item.
88  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
89  *	This would disable MDP/DSI core clocks and change the resource state
90  *	to IDLE.
91  */
92 enum dpu_enc_rc_events {
93 	DPU_ENC_RC_EVENT_KICKOFF = 1,
94 	DPU_ENC_RC_EVENT_FRAME_DONE,
95 	DPU_ENC_RC_EVENT_PRE_STOP,
96 	DPU_ENC_RC_EVENT_STOP,
97 	DPU_ENC_RC_EVENT_ENTER_IDLE
98 };
99 
100 /*
101  * enum dpu_enc_rc_states - states that the resource control maintains
102  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
103  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
104  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
105  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
106  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
107  */
108 enum dpu_enc_rc_states {
109 	DPU_ENC_RC_STATE_OFF,
110 	DPU_ENC_RC_STATE_PRE_OFF,
111 	DPU_ENC_RC_STATE_ON,
112 	DPU_ENC_RC_STATE_IDLE
113 };
114 
115 /**
116  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
117  *	encoders. Virtual encoder manages one "logical" display. Physical
118  *	encoders manage one intf block, tied to a specific panel/sub-panel.
119  *	Virtual encoder defers as much as possible to the physical encoders.
120  *	Virtual encoder registers itself with the DRM Framework as the encoder.
121  * @base:		drm_encoder base class for registration with DRM
122  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
123  * @enabled:		True if the encoder is active, protected by enc_lock
124  * @num_phys_encs:	Actual number of physical encoders contained.
125  * @phys_encs:		Container of physical encoders managed.
126  * @cur_master:		Pointer to the current master in this mode. Optimization
127  *			Only valid after enable. Cleared as disable.
128  * @cur_slave:		As above but for the slave encoder.
129  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
130  *			pingpong blocks can be different than num_phys_encs.
131  * @hw_dsc:		Handle to the DSC blocks used for the display.
132  * @dsc_mask:		Bitmask of used DSC blocks.
133  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
134  *			for partial update right-only cases, such as pingpong
135  *			split where virtual pingpong does not generate IRQs
136  * @crtc:		Pointer to the currently assigned crtc. Normally you
137  *			would use crtc->state->encoder_mask to determine the
138  *			link between encoder/crtc. However in this case we need
139  *			to track crtc in the disable() hook which is called
140  *			_after_ encoder_mask is cleared.
141  * @connector:		If a mode is set, cached pointer to the active connector
142  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
143  *				all CTL paths
144  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
145  * @debugfs_root:		Debug file system root file node
146  * @enc_lock:			Lock around physical encoder
147  *				create/destroy/enable/disable
148  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
149  *				busy processing current command.
150  *				Bit0 = phys_encs[0] etc.
151  * @crtc_frame_event_cb:	callback handler for frame event
152  * @crtc_frame_event_cb_data:	callback handler private data
153  * @frame_done_timeout_ms:	frame done timeout in ms
154  * @frame_done_timer:		watchdog timer for frame done event
155  * @disp_info:			local copy of msm_display_info struct
156  * @idle_pc_supported:		indicate if idle power collaps is supported
157  * @rc_lock:			resource control mutex lock to protect
158  *				virt encoder over various state changes
159  * @rc_state:			resource controller state
160  * @delayed_off_work:		delayed worker to schedule disabling of
161  *				clks and resources after IDLE_TIMEOUT time.
162  * @topology:                   topology of the display
163  * @idle_timeout:		idle timeout duration in milliseconds
164  * @wide_bus_en:		wide bus is enabled on this interface
165  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
166  */
167 struct dpu_encoder_virt {
168 	struct drm_encoder base;
169 	spinlock_t enc_spinlock;
170 
171 	bool enabled;
172 
173 	unsigned int num_phys_encs;
174 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
175 	struct dpu_encoder_phys *cur_master;
176 	struct dpu_encoder_phys *cur_slave;
177 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
178 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
179 
180 	unsigned int dsc_mask;
181 
182 	bool intfs_swapped;
183 
184 	struct drm_crtc *crtc;
185 	struct drm_connector *connector;
186 
187 	struct dentry *debugfs_root;
188 	struct mutex enc_lock;
189 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
190 	void (*crtc_frame_event_cb)(void *, u32 event);
191 	void *crtc_frame_event_cb_data;
192 
193 	atomic_t frame_done_timeout_ms;
194 	struct timer_list frame_done_timer;
195 
196 	struct msm_display_info disp_info;
197 
198 	bool idle_pc_supported;
199 	struct mutex rc_lock;
200 	enum dpu_enc_rc_states rc_state;
201 	struct delayed_work delayed_off_work;
202 	struct msm_display_topology topology;
203 
204 	u32 idle_timeout;
205 
206 	bool wide_bus_en;
207 
208 	/* DSC configuration */
209 	struct drm_dsc_config *dsc;
210 };
211 
212 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
213 
214 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
215 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
216 };
217 
218 
219 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
220 {
221 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
222 
223 	return dpu_enc->wide_bus_en;
224 }
225 
226 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
227 {
228 	struct dpu_encoder_virt *dpu_enc;
229 	int i, num_intf = 0;
230 
231 	dpu_enc = to_dpu_encoder_virt(drm_enc);
232 
233 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
234 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
235 
236 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
237 				&& phys->hw_intf->ops.collect_misr)
238 			num_intf++;
239 	}
240 
241 	return num_intf;
242 }
243 
244 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
245 {
246 	struct dpu_encoder_virt *dpu_enc;
247 
248 	int i;
249 
250 	dpu_enc = to_dpu_encoder_virt(drm_enc);
251 
252 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
253 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
254 
255 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
256 			continue;
257 
258 		phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1);
259 	}
260 }
261 
262 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
263 {
264 	struct dpu_encoder_virt *dpu_enc;
265 
266 	int i, rc = 0, entries_added = 0;
267 
268 	if (!drm_enc->crtc) {
269 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
270 		return -EINVAL;
271 	}
272 
273 	dpu_enc = to_dpu_encoder_virt(drm_enc);
274 
275 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
276 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
277 
278 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
279 			continue;
280 
281 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
282 		if (rc)
283 			return rc;
284 		entries_added++;
285 	}
286 
287 	return entries_added;
288 }
289 
290 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
291 {
292 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
293 
294 	if (!hw_pp->ops.setup_dither)
295 		return;
296 
297 	switch (bpc) {
298 	case 6:
299 		dither_cfg.c0_bitdepth = 6;
300 		dither_cfg.c1_bitdepth = 6;
301 		dither_cfg.c2_bitdepth = 6;
302 		dither_cfg.c3_bitdepth = 6;
303 		dither_cfg.temporal_en = 0;
304 		break;
305 	default:
306 		hw_pp->ops.setup_dither(hw_pp, NULL);
307 		return;
308 	}
309 
310 	memcpy(&dither_cfg.matrix, dither_matrix,
311 			sizeof(u32) * DITHER_MATRIX_SZ);
312 
313 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
314 }
315 
316 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
317 {
318 	switch (intf_mode) {
319 	case INTF_MODE_VIDEO:
320 		return "INTF_MODE_VIDEO";
321 	case INTF_MODE_CMD:
322 		return "INTF_MODE_CMD";
323 	case INTF_MODE_WB_BLOCK:
324 		return "INTF_MODE_WB_BLOCK";
325 	case INTF_MODE_WB_LINE:
326 		return "INTF_MODE_WB_LINE";
327 	default:
328 		return "INTF_MODE_UNKNOWN";
329 	}
330 }
331 
332 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
333 		enum dpu_intr_idx intr_idx)
334 {
335 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
336 			DRMID(phys_enc->parent),
337 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
338 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
339 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
340 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
341 
342 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
343 				DPU_ENCODER_FRAME_EVENT_ERROR);
344 }
345 
346 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
347 		u32 irq_idx, struct dpu_encoder_wait_info *info);
348 
349 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
350 		int irq,
351 		void (*func)(void *arg, int irq_idx),
352 		struct dpu_encoder_wait_info *wait_info)
353 {
354 	u32 irq_status;
355 	int ret;
356 
357 	if (!wait_info) {
358 		DPU_ERROR("invalid params\n");
359 		return -EINVAL;
360 	}
361 	/* note: do master / slave checking outside */
362 
363 	/* return EWOULDBLOCK since we know the wait isn't necessary */
364 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
365 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
366 			  DRMID(phys_enc->parent), func,
367 			  irq);
368 		return -EWOULDBLOCK;
369 	}
370 
371 	if (irq < 0) {
372 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
373 			      DRMID(phys_enc->parent), func);
374 		return 0;
375 	}
376 
377 	DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
378 		      DRMID(phys_enc->parent), func,
379 		      irq, phys_enc->hw_pp->idx - PINGPONG_0,
380 		      atomic_read(wait_info->atomic_cnt));
381 
382 	ret = dpu_encoder_helper_wait_event_timeout(
383 			DRMID(phys_enc->parent),
384 			irq,
385 			wait_info);
386 
387 	if (ret <= 0) {
388 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
389 		if (irq_status) {
390 			unsigned long flags;
391 
392 			DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
393 				      DRMID(phys_enc->parent), func,
394 				      irq,
395 				      phys_enc->hw_pp->idx - PINGPONG_0,
396 				      atomic_read(wait_info->atomic_cnt));
397 			local_irq_save(flags);
398 			func(phys_enc, irq);
399 			local_irq_restore(flags);
400 			ret = 0;
401 		} else {
402 			ret = -ETIMEDOUT;
403 			DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
404 				      DRMID(phys_enc->parent), func,
405 				      irq,
406 				      phys_enc->hw_pp->idx - PINGPONG_0,
407 				      atomic_read(wait_info->atomic_cnt));
408 		}
409 	} else {
410 		ret = 0;
411 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
412 			func, irq,
413 			phys_enc->hw_pp->idx - PINGPONG_0,
414 			atomic_read(wait_info->atomic_cnt));
415 	}
416 
417 	return ret;
418 }
419 
420 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
421 {
422 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
423 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
424 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
425 }
426 
427 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
428 {
429 	struct dpu_encoder_virt *dpu_enc;
430 	struct dpu_encoder_phys *phys;
431 	int linecount = 0;
432 
433 	dpu_enc = to_dpu_encoder_virt(drm_enc);
434 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
435 
436 	if (phys && phys->ops.get_line_count)
437 		linecount = phys->ops.get_line_count(phys);
438 
439 	return linecount;
440 }
441 
442 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
443 {
444 	struct dpu_encoder_virt *dpu_enc = NULL;
445 	int i = 0;
446 
447 	if (!drm_enc) {
448 		DPU_ERROR("invalid encoder\n");
449 		return;
450 	}
451 
452 	dpu_enc = to_dpu_encoder_virt(drm_enc);
453 	DPU_DEBUG_ENC(dpu_enc, "\n");
454 
455 	mutex_lock(&dpu_enc->enc_lock);
456 
457 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
458 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
459 
460 		if (phys->ops.destroy) {
461 			phys->ops.destroy(phys);
462 			--dpu_enc->num_phys_encs;
463 			dpu_enc->phys_encs[i] = NULL;
464 		}
465 	}
466 
467 	if (dpu_enc->num_phys_encs)
468 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
469 				dpu_enc->num_phys_encs);
470 	dpu_enc->num_phys_encs = 0;
471 	mutex_unlock(&dpu_enc->enc_lock);
472 
473 	drm_encoder_cleanup(drm_enc);
474 	mutex_destroy(&dpu_enc->enc_lock);
475 }
476 
477 void dpu_encoder_helper_split_config(
478 		struct dpu_encoder_phys *phys_enc,
479 		enum dpu_intf interface)
480 {
481 	struct dpu_encoder_virt *dpu_enc;
482 	struct split_pipe_cfg cfg = { 0 };
483 	struct dpu_hw_mdp *hw_mdptop;
484 	struct msm_display_info *disp_info;
485 
486 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
487 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
488 		return;
489 	}
490 
491 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
492 	hw_mdptop = phys_enc->hw_mdptop;
493 	disp_info = &dpu_enc->disp_info;
494 
495 	if (disp_info->intf_type != INTF_DSI)
496 		return;
497 
498 	/**
499 	 * disable split modes since encoder will be operating in as the only
500 	 * encoder, either for the entire use case in the case of, for example,
501 	 * single DSI, or for this frame in the case of left/right only partial
502 	 * update.
503 	 */
504 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
505 		if (hw_mdptop->ops.setup_split_pipe)
506 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
507 		return;
508 	}
509 
510 	cfg.en = true;
511 	cfg.mode = phys_enc->intf_mode;
512 	cfg.intf = interface;
513 
514 	if (cfg.en && phys_enc->ops.needs_single_flush &&
515 			phys_enc->ops.needs_single_flush(phys_enc))
516 		cfg.split_flush_en = true;
517 
518 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
519 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
520 
521 		if (hw_mdptop->ops.setup_split_pipe)
522 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
523 	}
524 }
525 
526 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
527 {
528 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
529 	int i, intf_count = 0, num_dsc = 0;
530 
531 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
532 		if (dpu_enc->phys_encs[i])
533 			intf_count++;
534 
535 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
536 	if (dpu_enc->dsc)
537 		num_dsc = 2;
538 
539 	return (num_dsc > 0) && (num_dsc > intf_count);
540 }
541 
542 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
543 {
544 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
545 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
546 	int index = dpu_enc->disp_info.h_tile_instance[0];
547 
548 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
549 		return msm_dsi_get_dsc_config(priv->dsi[index]);
550 
551 	return NULL;
552 }
553 
554 static struct msm_display_topology dpu_encoder_get_topology(
555 			struct dpu_encoder_virt *dpu_enc,
556 			struct dpu_kms *dpu_kms,
557 			struct drm_display_mode *mode,
558 			struct drm_crtc_state *crtc_state,
559 			struct drm_dsc_config *dsc)
560 {
561 	struct msm_display_topology topology = {0};
562 	int i, intf_count = 0;
563 
564 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
565 		if (dpu_enc->phys_encs[i])
566 			intf_count++;
567 
568 	/* Datapath topology selection
569 	 *
570 	 * Dual display
571 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
572 	 *
573 	 * Single display
574 	 * 1 LM, 1 INTF
575 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
576 	 *
577 	 * Add dspps to the reservation requirements if ctm is requested
578 	 */
579 	if (intf_count == 2)
580 		topology.num_lm = 2;
581 	else if (!dpu_kms->catalog->caps->has_3d_merge)
582 		topology.num_lm = 1;
583 	else
584 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
585 
586 	if (crtc_state->ctm)
587 		topology.num_dspp = topology.num_lm;
588 
589 	topology.num_intf = intf_count;
590 
591 	if (dsc) {
592 		/*
593 		 * In case of Display Stream Compression (DSC), we would use
594 		 * 2 DSC encoders, 2 layer mixers and 1 interface
595 		 * this is power optimal and can drive up to (including) 4k
596 		 * screens
597 		 */
598 		topology.num_dsc = 2;
599 		topology.num_lm = 2;
600 		topology.num_intf = 1;
601 	}
602 
603 	return topology;
604 }
605 
606 static int dpu_encoder_virt_atomic_check(
607 		struct drm_encoder *drm_enc,
608 		struct drm_crtc_state *crtc_state,
609 		struct drm_connector_state *conn_state)
610 {
611 	struct dpu_encoder_virt *dpu_enc;
612 	struct msm_drm_private *priv;
613 	struct dpu_kms *dpu_kms;
614 	struct drm_display_mode *adj_mode;
615 	struct msm_display_topology topology;
616 	struct dpu_global_state *global_state;
617 	struct drm_dsc_config *dsc;
618 	int i = 0;
619 	int ret = 0;
620 
621 	if (!drm_enc || !crtc_state || !conn_state) {
622 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
623 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
624 		return -EINVAL;
625 	}
626 
627 	dpu_enc = to_dpu_encoder_virt(drm_enc);
628 	DPU_DEBUG_ENC(dpu_enc, "\n");
629 
630 	priv = drm_enc->dev->dev_private;
631 	dpu_kms = to_dpu_kms(priv->kms);
632 	adj_mode = &crtc_state->adjusted_mode;
633 	global_state = dpu_kms_get_global_state(crtc_state->state);
634 	if (IS_ERR(global_state))
635 		return PTR_ERR(global_state);
636 
637 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
638 
639 	/* perform atomic check on the first physical encoder (master) */
640 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
641 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
642 
643 		if (phys->ops.atomic_check)
644 			ret = phys->ops.atomic_check(phys, crtc_state,
645 					conn_state);
646 		if (ret) {
647 			DPU_ERROR_ENC(dpu_enc,
648 					"mode unsupported, phys idx %d\n", i);
649 			return ret;
650 		}
651 	}
652 
653 	dsc = dpu_encoder_get_dsc_config(drm_enc);
654 
655 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
656 
657 	/*
658 	 * Release and Allocate resources on every modeset
659 	 * Dont allocate when active is false.
660 	 */
661 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
662 		dpu_rm_release(global_state, drm_enc);
663 
664 		if (!crtc_state->active_changed || crtc_state->enable)
665 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
666 					drm_enc, crtc_state, topology);
667 	}
668 
669 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
670 
671 	return ret;
672 }
673 
674 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
675 			struct msm_display_info *disp_info)
676 {
677 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
678 	struct msm_drm_private *priv;
679 	struct dpu_kms *dpu_kms;
680 	struct dpu_hw_mdp *hw_mdptop;
681 	struct drm_encoder *drm_enc;
682 	struct dpu_encoder_phys *phys_enc;
683 	int i;
684 
685 	if (!dpu_enc || !disp_info) {
686 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
687 					dpu_enc != NULL, disp_info != NULL);
688 		return;
689 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
690 		DPU_ERROR("invalid num phys enc %d/%d\n",
691 				dpu_enc->num_phys_encs,
692 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
693 		return;
694 	}
695 
696 	drm_enc = &dpu_enc->base;
697 	/* this pointers are checked in virt_enable_helper */
698 	priv = drm_enc->dev->dev_private;
699 
700 	dpu_kms = to_dpu_kms(priv->kms);
701 	hw_mdptop = dpu_kms->hw_mdp;
702 	if (!hw_mdptop) {
703 		DPU_ERROR("invalid mdptop\n");
704 		return;
705 	}
706 
707 	if (hw_mdptop->ops.setup_vsync_source &&
708 			disp_info->is_cmd_mode) {
709 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
710 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
711 
712 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
713 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
714 
715 		if (disp_info->is_te_using_watchdog_timer)
716 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
717 		else
718 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
719 
720 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
721 
722 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
723 			phys_enc = dpu_enc->phys_encs[i];
724 
725 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
726 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
727 						vsync_cfg.vsync_source);
728 		}
729 	}
730 }
731 
732 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
733 {
734 	struct dpu_encoder_virt *dpu_enc;
735 	int i;
736 
737 	if (!drm_enc) {
738 		DPU_ERROR("invalid encoder\n");
739 		return;
740 	}
741 
742 	dpu_enc = to_dpu_encoder_virt(drm_enc);
743 
744 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
745 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
746 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
747 
748 		if (phys->ops.irq_control)
749 			phys->ops.irq_control(phys, enable);
750 	}
751 
752 }
753 
754 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
755 		bool enable)
756 {
757 	struct msm_drm_private *priv;
758 	struct dpu_kms *dpu_kms;
759 	struct dpu_encoder_virt *dpu_enc;
760 
761 	dpu_enc = to_dpu_encoder_virt(drm_enc);
762 	priv = drm_enc->dev->dev_private;
763 	dpu_kms = to_dpu_kms(priv->kms);
764 
765 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
766 
767 	if (!dpu_enc->cur_master) {
768 		DPU_ERROR("encoder master not set\n");
769 		return;
770 	}
771 
772 	if (enable) {
773 		/* enable DPU core clks */
774 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
775 
776 		/* enable all the irq */
777 		_dpu_encoder_irq_control(drm_enc, true);
778 
779 	} else {
780 		/* disable all the irq */
781 		_dpu_encoder_irq_control(drm_enc, false);
782 
783 		/* disable DPU core clks */
784 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
785 	}
786 
787 }
788 
789 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
790 		u32 sw_event)
791 {
792 	struct dpu_encoder_virt *dpu_enc;
793 	struct msm_drm_private *priv;
794 	bool is_vid_mode = false;
795 
796 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
797 		DPU_ERROR("invalid parameters\n");
798 		return -EINVAL;
799 	}
800 	dpu_enc = to_dpu_encoder_virt(drm_enc);
801 	priv = drm_enc->dev->dev_private;
802 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
803 
804 	/*
805 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
806 	 * events and return early for other events (ie wb display).
807 	 */
808 	if (!dpu_enc->idle_pc_supported &&
809 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
810 			sw_event != DPU_ENC_RC_EVENT_STOP &&
811 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
812 		return 0;
813 
814 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
815 			 dpu_enc->rc_state, "begin");
816 
817 	switch (sw_event) {
818 	case DPU_ENC_RC_EVENT_KICKOFF:
819 		/* cancel delayed off work, if any */
820 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
821 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
822 					sw_event);
823 
824 		mutex_lock(&dpu_enc->rc_lock);
825 
826 		/* return if the resource control is already in ON state */
827 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
828 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
829 				      DRMID(drm_enc), sw_event);
830 			mutex_unlock(&dpu_enc->rc_lock);
831 			return 0;
832 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
833 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
834 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
835 				      DRMID(drm_enc), sw_event,
836 				      dpu_enc->rc_state);
837 			mutex_unlock(&dpu_enc->rc_lock);
838 			return -EINVAL;
839 		}
840 
841 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
842 			_dpu_encoder_irq_control(drm_enc, true);
843 		else
844 			_dpu_encoder_resource_control_helper(drm_enc, true);
845 
846 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
847 
848 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
849 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
850 				 "kickoff");
851 
852 		mutex_unlock(&dpu_enc->rc_lock);
853 		break;
854 
855 	case DPU_ENC_RC_EVENT_FRAME_DONE:
856 		/*
857 		 * mutex lock is not used as this event happens at interrupt
858 		 * context. And locking is not required as, the other events
859 		 * like KICKOFF and STOP does a wait-for-idle before executing
860 		 * the resource_control
861 		 */
862 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
863 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
864 				      DRMID(drm_enc), sw_event,
865 				      dpu_enc->rc_state);
866 			return -EINVAL;
867 		}
868 
869 		/*
870 		 * schedule off work item only when there are no
871 		 * frames pending
872 		 */
873 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
874 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
875 				      DRMID(drm_enc));
876 			return 0;
877 		}
878 
879 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
880 				   msecs_to_jiffies(dpu_enc->idle_timeout));
881 
882 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
883 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
884 				 "frame done");
885 		break;
886 
887 	case DPU_ENC_RC_EVENT_PRE_STOP:
888 		/* cancel delayed off work, if any */
889 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
890 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
891 					sw_event);
892 
893 		mutex_lock(&dpu_enc->rc_lock);
894 
895 		if (is_vid_mode &&
896 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
897 			_dpu_encoder_irq_control(drm_enc, true);
898 		}
899 		/* skip if is already OFF or IDLE, resources are off already */
900 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
901 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
902 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
903 				      DRMID(drm_enc), sw_event,
904 				      dpu_enc->rc_state);
905 			mutex_unlock(&dpu_enc->rc_lock);
906 			return 0;
907 		}
908 
909 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
910 
911 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
912 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
913 				 "pre stop");
914 
915 		mutex_unlock(&dpu_enc->rc_lock);
916 		break;
917 
918 	case DPU_ENC_RC_EVENT_STOP:
919 		mutex_lock(&dpu_enc->rc_lock);
920 
921 		/* return if the resource control is already in OFF state */
922 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
923 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
924 				      DRMID(drm_enc), sw_event);
925 			mutex_unlock(&dpu_enc->rc_lock);
926 			return 0;
927 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
928 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
929 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
930 			mutex_unlock(&dpu_enc->rc_lock);
931 			return -EINVAL;
932 		}
933 
934 		/**
935 		 * expect to arrive here only if in either idle state or pre-off
936 		 * and in IDLE state the resources are already disabled
937 		 */
938 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
939 			_dpu_encoder_resource_control_helper(drm_enc, false);
940 
941 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
942 
943 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
944 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
945 				 "stop");
946 
947 		mutex_unlock(&dpu_enc->rc_lock);
948 		break;
949 
950 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
951 		mutex_lock(&dpu_enc->rc_lock);
952 
953 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
954 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
955 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
956 			mutex_unlock(&dpu_enc->rc_lock);
957 			return 0;
958 		}
959 
960 		/*
961 		 * if we are in ON but a frame was just kicked off,
962 		 * ignore the IDLE event, it's probably a stale timer event
963 		 */
964 		if (dpu_enc->frame_busy_mask[0]) {
965 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
966 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
967 			mutex_unlock(&dpu_enc->rc_lock);
968 			return 0;
969 		}
970 
971 		if (is_vid_mode)
972 			_dpu_encoder_irq_control(drm_enc, false);
973 		else
974 			_dpu_encoder_resource_control_helper(drm_enc, false);
975 
976 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
977 
978 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
979 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
980 				 "idle");
981 
982 		mutex_unlock(&dpu_enc->rc_lock);
983 		break;
984 
985 	default:
986 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
987 			  sw_event);
988 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
989 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
990 				 "error");
991 		break;
992 	}
993 
994 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
995 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
996 			 "end");
997 	return 0;
998 }
999 
1000 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1001 		struct drm_writeback_job *job)
1002 {
1003 	struct dpu_encoder_virt *dpu_enc;
1004 	int i;
1005 
1006 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1007 
1008 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1009 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1010 
1011 		if (phys->ops.prepare_wb_job)
1012 			phys->ops.prepare_wb_job(phys, job);
1013 
1014 	}
1015 }
1016 
1017 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1018 		struct drm_writeback_job *job)
1019 {
1020 	struct dpu_encoder_virt *dpu_enc;
1021 	int i;
1022 
1023 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1024 
1025 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1026 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1027 
1028 		if (phys->ops.cleanup_wb_job)
1029 			phys->ops.cleanup_wb_job(phys, job);
1030 
1031 	}
1032 }
1033 
1034 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1035 					     struct drm_crtc_state *crtc_state,
1036 					     struct drm_connector_state *conn_state)
1037 {
1038 	struct dpu_encoder_virt *dpu_enc;
1039 	struct msm_drm_private *priv;
1040 	struct dpu_kms *dpu_kms;
1041 	struct dpu_crtc_state *cstate;
1042 	struct dpu_global_state *global_state;
1043 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1044 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1045 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1046 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1047 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1048 	int num_lm, num_ctl, num_pp, num_dsc;
1049 	unsigned int dsc_mask = 0;
1050 	int i;
1051 
1052 	if (!drm_enc) {
1053 		DPU_ERROR("invalid encoder\n");
1054 		return;
1055 	}
1056 
1057 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1058 	DPU_DEBUG_ENC(dpu_enc, "\n");
1059 
1060 	priv = drm_enc->dev->dev_private;
1061 	dpu_kms = to_dpu_kms(priv->kms);
1062 
1063 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1064 	if (IS_ERR_OR_NULL(global_state)) {
1065 		DPU_ERROR("Failed to get global state");
1066 		return;
1067 	}
1068 
1069 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1070 
1071 	/* Query resource that have been reserved in atomic check step. */
1072 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1073 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1074 		ARRAY_SIZE(hw_pp));
1075 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1076 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1077 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1078 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1079 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1080 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1081 		ARRAY_SIZE(hw_dspp));
1082 
1083 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1084 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1085 						: NULL;
1086 
1087 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1088 						drm_enc->base.id, DPU_HW_BLK_DSC,
1089 						hw_dsc, ARRAY_SIZE(hw_dsc));
1090 	for (i = 0; i < num_dsc; i++) {
1091 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1092 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1093 	}
1094 
1095 	dpu_enc->dsc_mask = dsc_mask;
1096 
1097 	cstate = to_dpu_crtc_state(crtc_state);
1098 
1099 	for (i = 0; i < num_lm; i++) {
1100 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1101 
1102 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1103 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1104 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1105 	}
1106 
1107 	cstate->num_mixers = num_lm;
1108 
1109 	dpu_enc->connector = conn_state->connector;
1110 
1111 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1112 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1113 
1114 		if (!dpu_enc->hw_pp[i]) {
1115 			DPU_ERROR_ENC(dpu_enc,
1116 				"no pp block assigned at idx: %d\n", i);
1117 			return;
1118 		}
1119 
1120 		if (!hw_ctl[i]) {
1121 			DPU_ERROR_ENC(dpu_enc,
1122 				"no ctl block assigned at idx: %d\n", i);
1123 			return;
1124 		}
1125 
1126 		phys->hw_pp = dpu_enc->hw_pp[i];
1127 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1128 
1129 		phys->cached_mode = crtc_state->adjusted_mode;
1130 		if (phys->ops.atomic_mode_set)
1131 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1132 	}
1133 }
1134 
1135 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1136 {
1137 	struct dpu_encoder_virt *dpu_enc = NULL;
1138 	int i;
1139 
1140 	if (!drm_enc || !drm_enc->dev) {
1141 		DPU_ERROR("invalid parameters\n");
1142 		return;
1143 	}
1144 
1145 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1146 	if (!dpu_enc || !dpu_enc->cur_master) {
1147 		DPU_ERROR("invalid dpu encoder/master\n");
1148 		return;
1149 	}
1150 
1151 
1152 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1153 		dpu_enc->cur_master->hw_mdptop &&
1154 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1155 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1156 			dpu_enc->cur_master->hw_mdptop);
1157 
1158 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1159 
1160 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1161 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1162 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1163 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1164 			if (!dpu_enc->hw_pp[i])
1165 				continue;
1166 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1167 		}
1168 	}
1169 }
1170 
1171 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1172 {
1173 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1174 
1175 	mutex_lock(&dpu_enc->enc_lock);
1176 
1177 	if (!dpu_enc->enabled)
1178 		goto out;
1179 
1180 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1181 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1182 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1183 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1184 
1185 	_dpu_encoder_virt_enable_helper(drm_enc);
1186 
1187 out:
1188 	mutex_unlock(&dpu_enc->enc_lock);
1189 }
1190 
1191 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1192 					struct drm_atomic_state *state)
1193 {
1194 	struct dpu_encoder_virt *dpu_enc = NULL;
1195 	int ret = 0;
1196 	struct drm_display_mode *cur_mode = NULL;
1197 
1198 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1199 
1200 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1201 
1202 	mutex_lock(&dpu_enc->enc_lock);
1203 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1204 
1205 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1206 			     cur_mode->vdisplay);
1207 
1208 	/* always enable slave encoder before master */
1209 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1210 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1211 
1212 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1213 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1214 
1215 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1216 	if (ret) {
1217 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1218 				ret);
1219 		goto out;
1220 	}
1221 
1222 	_dpu_encoder_virt_enable_helper(drm_enc);
1223 
1224 	dpu_enc->enabled = true;
1225 
1226 out:
1227 	mutex_unlock(&dpu_enc->enc_lock);
1228 }
1229 
1230 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1231 					struct drm_atomic_state *state)
1232 {
1233 	struct dpu_encoder_virt *dpu_enc = NULL;
1234 	struct drm_crtc *crtc;
1235 	struct drm_crtc_state *old_state = NULL;
1236 	int i = 0;
1237 
1238 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1239 	DPU_DEBUG_ENC(dpu_enc, "\n");
1240 
1241 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1242 	if (crtc)
1243 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1244 
1245 	/*
1246 	 * The encoder is already disabled if self refresh mode was set earlier,
1247 	 * in the old_state for the corresponding crtc.
1248 	 */
1249 	if (old_state && old_state->self_refresh_active)
1250 		return;
1251 
1252 	mutex_lock(&dpu_enc->enc_lock);
1253 	dpu_enc->enabled = false;
1254 
1255 	trace_dpu_enc_disable(DRMID(drm_enc));
1256 
1257 	/* wait for idle */
1258 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1259 
1260 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1261 
1262 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1263 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1264 
1265 		if (phys->ops.disable)
1266 			phys->ops.disable(phys);
1267 	}
1268 
1269 
1270 	/* after phys waits for frame-done, should be no more frames pending */
1271 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1272 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1273 		del_timer_sync(&dpu_enc->frame_done_timer);
1274 	}
1275 
1276 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1277 
1278 	dpu_enc->connector = NULL;
1279 
1280 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1281 
1282 	mutex_unlock(&dpu_enc->enc_lock);
1283 }
1284 
1285 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1286 		struct dpu_rm *dpu_rm,
1287 		enum dpu_intf_type type, u32 controller_id)
1288 {
1289 	int i = 0;
1290 
1291 	if (type == INTF_WB)
1292 		return NULL;
1293 
1294 	for (i = 0; i < catalog->intf_count; i++) {
1295 		if (catalog->intf[i].type == type
1296 		    && catalog->intf[i].controller_id == controller_id) {
1297 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1298 		}
1299 	}
1300 
1301 	return NULL;
1302 }
1303 
1304 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1305 		struct dpu_encoder_phys *phy_enc)
1306 {
1307 	struct dpu_encoder_virt *dpu_enc = NULL;
1308 	unsigned long lock_flags;
1309 
1310 	if (!drm_enc || !phy_enc)
1311 		return;
1312 
1313 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1314 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1315 
1316 	atomic_inc(&phy_enc->vsync_cnt);
1317 
1318 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1319 	if (dpu_enc->crtc)
1320 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1321 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1322 
1323 	DPU_ATRACE_END("encoder_vblank_callback");
1324 }
1325 
1326 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1327 		struct dpu_encoder_phys *phy_enc)
1328 {
1329 	if (!phy_enc)
1330 		return;
1331 
1332 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1333 	atomic_inc(&phy_enc->underrun_cnt);
1334 
1335 	/* trigger dump only on the first underrun */
1336 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1337 		msm_disp_snapshot_state(drm_enc->dev);
1338 
1339 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1340 				  atomic_read(&phy_enc->underrun_cnt));
1341 	DPU_ATRACE_END("encoder_underrun_callback");
1342 }
1343 
1344 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1345 {
1346 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1347 	unsigned long lock_flags;
1348 
1349 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1350 	/* crtc should always be cleared before re-assigning */
1351 	WARN_ON(crtc && dpu_enc->crtc);
1352 	dpu_enc->crtc = crtc;
1353 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1354 }
1355 
1356 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1357 					struct drm_crtc *crtc, bool enable)
1358 {
1359 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1360 	unsigned long lock_flags;
1361 	int i;
1362 
1363 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1364 
1365 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1366 	if (dpu_enc->crtc != crtc) {
1367 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1368 		return;
1369 	}
1370 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1371 
1372 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1373 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1374 
1375 		if (phys->ops.control_vblank_irq)
1376 			phys->ops.control_vblank_irq(phys, enable);
1377 	}
1378 }
1379 
1380 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1381 		void (*frame_event_cb)(void *, u32 event),
1382 		void *frame_event_cb_data)
1383 {
1384 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1385 	unsigned long lock_flags;
1386 	bool enable;
1387 
1388 	enable = frame_event_cb ? true : false;
1389 
1390 	if (!drm_enc) {
1391 		DPU_ERROR("invalid encoder\n");
1392 		return;
1393 	}
1394 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1395 
1396 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1397 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1398 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1399 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1400 }
1401 
1402 void dpu_encoder_frame_done_callback(
1403 		struct drm_encoder *drm_enc,
1404 		struct dpu_encoder_phys *ready_phys, u32 event)
1405 {
1406 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1407 	unsigned int i;
1408 
1409 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1410 			| DPU_ENCODER_FRAME_EVENT_ERROR
1411 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1412 
1413 		if (!dpu_enc->frame_busy_mask[0]) {
1414 			/**
1415 			 * suppress frame_done without waiter,
1416 			 * likely autorefresh
1417 			 */
1418 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1419 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1420 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1421 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1422 			return;
1423 		}
1424 
1425 		/* One of the physical encoders has become idle */
1426 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1427 			if (dpu_enc->phys_encs[i] == ready_phys) {
1428 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1429 						dpu_enc->frame_busy_mask[0]);
1430 				clear_bit(i, dpu_enc->frame_busy_mask);
1431 			}
1432 		}
1433 
1434 		if (!dpu_enc->frame_busy_mask[0]) {
1435 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1436 			del_timer(&dpu_enc->frame_done_timer);
1437 
1438 			dpu_encoder_resource_control(drm_enc,
1439 					DPU_ENC_RC_EVENT_FRAME_DONE);
1440 
1441 			if (dpu_enc->crtc_frame_event_cb)
1442 				dpu_enc->crtc_frame_event_cb(
1443 					dpu_enc->crtc_frame_event_cb_data,
1444 					event);
1445 		}
1446 	} else {
1447 		if (dpu_enc->crtc_frame_event_cb)
1448 			dpu_enc->crtc_frame_event_cb(
1449 				dpu_enc->crtc_frame_event_cb_data, event);
1450 	}
1451 }
1452 
1453 static void dpu_encoder_off_work(struct work_struct *work)
1454 {
1455 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1456 			struct dpu_encoder_virt, delayed_off_work.work);
1457 
1458 	dpu_encoder_resource_control(&dpu_enc->base,
1459 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1460 
1461 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1462 				DPU_ENCODER_FRAME_EVENT_IDLE);
1463 }
1464 
1465 /**
1466  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1467  * @drm_enc: Pointer to drm encoder structure
1468  * @phys: Pointer to physical encoder structure
1469  * @extra_flush_bits: Additional bit mask to include in flush trigger
1470  */
1471 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1472 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1473 {
1474 	struct dpu_hw_ctl *ctl;
1475 	int pending_kickoff_cnt;
1476 	u32 ret = UINT_MAX;
1477 
1478 	if (!phys->hw_pp) {
1479 		DPU_ERROR("invalid pingpong hw\n");
1480 		return;
1481 	}
1482 
1483 	ctl = phys->hw_ctl;
1484 	if (!ctl->ops.trigger_flush) {
1485 		DPU_ERROR("missing trigger cb\n");
1486 		return;
1487 	}
1488 
1489 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1490 
1491 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1492 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1493 
1494 	ctl->ops.trigger_flush(ctl);
1495 
1496 	if (ctl->ops.get_pending_flush)
1497 		ret = ctl->ops.get_pending_flush(ctl);
1498 
1499 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1500 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1501 			phys->hw_intf ? phys->hw_intf->idx : -1,
1502 			phys->hw_wb ? phys->hw_wb->idx : -1,
1503 			pending_kickoff_cnt, ctl->idx,
1504 			extra_flush_bits, ret);
1505 }
1506 
1507 /**
1508  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1509  * @phys: Pointer to physical encoder structure
1510  */
1511 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1512 {
1513 	if (!phys) {
1514 		DPU_ERROR("invalid argument(s)\n");
1515 		return;
1516 	}
1517 
1518 	if (!phys->hw_pp) {
1519 		DPU_ERROR("invalid pingpong hw\n");
1520 		return;
1521 	}
1522 
1523 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1524 		phys->ops.trigger_start(phys);
1525 }
1526 
1527 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1528 {
1529 	struct dpu_hw_ctl *ctl;
1530 
1531 	ctl = phys_enc->hw_ctl;
1532 	if (ctl->ops.trigger_start) {
1533 		ctl->ops.trigger_start(ctl);
1534 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1535 	}
1536 }
1537 
1538 static int dpu_encoder_helper_wait_event_timeout(
1539 		int32_t drm_id,
1540 		u32 irq_idx,
1541 		struct dpu_encoder_wait_info *info)
1542 {
1543 	int rc = 0;
1544 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1545 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1546 	s64 time;
1547 
1548 	do {
1549 		rc = wait_event_timeout(*(info->wq),
1550 				atomic_read(info->atomic_cnt) == 0, jiffies);
1551 		time = ktime_to_ms(ktime_get());
1552 
1553 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1554 						 expected_time,
1555 						 atomic_read(info->atomic_cnt));
1556 	/* If we timed out, counter is valid and time is less, wait again */
1557 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1558 			(time < expected_time));
1559 
1560 	return rc;
1561 }
1562 
1563 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1564 {
1565 	struct dpu_encoder_virt *dpu_enc;
1566 	struct dpu_hw_ctl *ctl;
1567 	int rc;
1568 	struct drm_encoder *drm_enc;
1569 
1570 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1571 	ctl = phys_enc->hw_ctl;
1572 	drm_enc = phys_enc->parent;
1573 
1574 	if (!ctl->ops.reset)
1575 		return;
1576 
1577 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1578 		      ctl->idx);
1579 
1580 	rc = ctl->ops.reset(ctl);
1581 	if (rc) {
1582 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1583 		msm_disp_snapshot_state(drm_enc->dev);
1584 	}
1585 
1586 	phys_enc->enable_state = DPU_ENC_ENABLED;
1587 }
1588 
1589 /**
1590  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1591  *	Iterate through the physical encoders and perform consolidated flush
1592  *	and/or control start triggering as needed. This is done in the virtual
1593  *	encoder rather than the individual physical ones in order to handle
1594  *	use cases that require visibility into multiple physical encoders at
1595  *	a time.
1596  * @dpu_enc: Pointer to virtual encoder structure
1597  */
1598 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1599 {
1600 	struct dpu_hw_ctl *ctl;
1601 	uint32_t i, pending_flush;
1602 	unsigned long lock_flags;
1603 
1604 	pending_flush = 0x0;
1605 
1606 	/* update pending counts and trigger kickoff ctl flush atomically */
1607 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1608 
1609 	/* don't perform flush/start operations for slave encoders */
1610 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1611 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1612 
1613 		if (phys->enable_state == DPU_ENC_DISABLED)
1614 			continue;
1615 
1616 		ctl = phys->hw_ctl;
1617 
1618 		/*
1619 		 * This is cleared in frame_done worker, which isn't invoked
1620 		 * for async commits. So don't set this for async, since it'll
1621 		 * roll over to the next commit.
1622 		 */
1623 		if (phys->split_role != ENC_ROLE_SLAVE)
1624 			set_bit(i, dpu_enc->frame_busy_mask);
1625 
1626 		if (!phys->ops.needs_single_flush ||
1627 				!phys->ops.needs_single_flush(phys))
1628 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1629 		else if (ctl->ops.get_pending_flush)
1630 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1631 	}
1632 
1633 	/* for split flush, combine pending flush masks and send to master */
1634 	if (pending_flush && dpu_enc->cur_master) {
1635 		_dpu_encoder_trigger_flush(
1636 				&dpu_enc->base,
1637 				dpu_enc->cur_master,
1638 				pending_flush);
1639 	}
1640 
1641 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1642 
1643 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1644 }
1645 
1646 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1647 {
1648 	struct dpu_encoder_virt *dpu_enc;
1649 	struct dpu_encoder_phys *phys;
1650 	unsigned int i;
1651 	struct dpu_hw_ctl *ctl;
1652 	struct msm_display_info *disp_info;
1653 
1654 	if (!drm_enc) {
1655 		DPU_ERROR("invalid encoder\n");
1656 		return;
1657 	}
1658 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1659 	disp_info = &dpu_enc->disp_info;
1660 
1661 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1662 		phys = dpu_enc->phys_encs[i];
1663 
1664 		ctl = phys->hw_ctl;
1665 		if (ctl->ops.clear_pending_flush)
1666 			ctl->ops.clear_pending_flush(ctl);
1667 
1668 		/* update only for command mode primary ctl */
1669 		if ((phys == dpu_enc->cur_master) &&
1670 		    disp_info->is_cmd_mode
1671 		    && ctl->ops.trigger_pending)
1672 			ctl->ops.trigger_pending(ctl);
1673 	}
1674 }
1675 
1676 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1677 		struct drm_display_mode *mode)
1678 {
1679 	u64 pclk_rate;
1680 	u32 pclk_period;
1681 	u32 line_time;
1682 
1683 	/*
1684 	 * For linetime calculation, only operate on master encoder.
1685 	 */
1686 	if (!dpu_enc->cur_master)
1687 		return 0;
1688 
1689 	if (!dpu_enc->cur_master->ops.get_line_count) {
1690 		DPU_ERROR("get_line_count function not defined\n");
1691 		return 0;
1692 	}
1693 
1694 	pclk_rate = mode->clock; /* pixel clock in kHz */
1695 	if (pclk_rate == 0) {
1696 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1697 		return 0;
1698 	}
1699 
1700 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1701 	if (pclk_period == 0) {
1702 		DPU_ERROR("pclk period is 0\n");
1703 		return 0;
1704 	}
1705 
1706 	/*
1707 	 * Line time calculation based on Pixel clock and HTOTAL.
1708 	 * Final unit is in ns.
1709 	 */
1710 	line_time = (pclk_period * mode->htotal) / 1000;
1711 	if (line_time == 0) {
1712 		DPU_ERROR("line time calculation is 0\n");
1713 		return 0;
1714 	}
1715 
1716 	DPU_DEBUG_ENC(dpu_enc,
1717 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1718 			pclk_rate, pclk_period, line_time);
1719 
1720 	return line_time;
1721 }
1722 
1723 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1724 {
1725 	struct drm_display_mode *mode;
1726 	struct dpu_encoder_virt *dpu_enc;
1727 	u32 cur_line;
1728 	u32 line_time;
1729 	u32 vtotal, time_to_vsync;
1730 	ktime_t cur_time;
1731 
1732 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1733 
1734 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1735 		DPU_ERROR("crtc/crtc state object is NULL\n");
1736 		return -EINVAL;
1737 	}
1738 	mode = &drm_enc->crtc->state->adjusted_mode;
1739 
1740 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1741 	if (!line_time)
1742 		return -EINVAL;
1743 
1744 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1745 
1746 	vtotal = mode->vtotal;
1747 	if (cur_line >= vtotal)
1748 		time_to_vsync = line_time * vtotal;
1749 	else
1750 		time_to_vsync = line_time * (vtotal - cur_line);
1751 
1752 	if (time_to_vsync == 0) {
1753 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1754 				vtotal);
1755 		return -EINVAL;
1756 	}
1757 
1758 	cur_time = ktime_get();
1759 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1760 
1761 	DPU_DEBUG_ENC(dpu_enc,
1762 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1763 			cur_line, vtotal, time_to_vsync,
1764 			ktime_to_ms(cur_time),
1765 			ktime_to_ms(*wakeup_time));
1766 	return 0;
1767 }
1768 
1769 static u32
1770 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1771 				  u32 enc_ip_width)
1772 {
1773 	int ssm_delay, total_pixels, soft_slice_per_enc;
1774 
1775 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1776 
1777 	/*
1778 	 * minimum number of initial line pixels is a sum of:
1779 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1780 	 *    91 for 10 bpc) * 3
1781 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1782 	 * 3. the initial xmit delay
1783 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1784 	 * 5. 6 additional pixels as the output of the rate buffer is
1785 	 *    48 bits wide
1786 	 */
1787 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1788 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1789 	if (soft_slice_per_enc > 1)
1790 		total_pixels += (ssm_delay * 3);
1791 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1792 }
1793 
1794 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1795 				     struct dpu_hw_dsc *hw_dsc,
1796 				     struct dpu_hw_pingpong *hw_pp,
1797 				     struct drm_dsc_config *dsc,
1798 				     u32 common_mode,
1799 				     u32 initial_lines)
1800 {
1801 	if (hw_dsc->ops.dsc_config)
1802 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1803 
1804 	if (hw_dsc->ops.dsc_config_thresh)
1805 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1806 
1807 	if (hw_pp->ops.setup_dsc)
1808 		hw_pp->ops.setup_dsc(hw_pp);
1809 
1810 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1811 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1812 
1813 	if (hw_pp->ops.enable_dsc)
1814 		hw_pp->ops.enable_dsc(hw_pp);
1815 
1816 	if (ctl->ops.update_pending_flush_dsc)
1817 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1818 }
1819 
1820 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1821 				 struct drm_dsc_config *dsc)
1822 {
1823 	/* coding only for 2LM, 2enc, 1 dsc config */
1824 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1825 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1826 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1827 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1828 	int this_frame_slices;
1829 	int intf_ip_w, enc_ip_w;
1830 	int dsc_common_mode;
1831 	int pic_width;
1832 	u32 initial_lines;
1833 	int i;
1834 
1835 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1836 		hw_pp[i] = dpu_enc->hw_pp[i];
1837 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1838 
1839 		if (!hw_pp[i] || !hw_dsc[i]) {
1840 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1841 			return;
1842 		}
1843 	}
1844 
1845 	dsc_common_mode = 0;
1846 	pic_width = dsc->pic_width;
1847 
1848 	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1849 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1850 		dsc_common_mode |= DSC_MODE_VIDEO;
1851 
1852 	this_frame_slices = pic_width / dsc->slice_width;
1853 	intf_ip_w = this_frame_slices * dsc->slice_width;
1854 
1855 	/*
1856 	 * dsc merge case: when using 2 encoders for the same stream,
1857 	 * no. of slices need to be same on both the encoders.
1858 	 */
1859 	enc_ip_w = intf_ip_w / 2;
1860 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1861 
1862 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1863 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1864 					 dsc, dsc_common_mode, initial_lines);
1865 }
1866 
1867 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1868 {
1869 	struct dpu_encoder_virt *dpu_enc;
1870 	struct dpu_encoder_phys *phys;
1871 	bool needs_hw_reset = false;
1872 	unsigned int i;
1873 
1874 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1875 
1876 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1877 
1878 	/* prepare for next kickoff, may include waiting on previous kickoff */
1879 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1880 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1881 		phys = dpu_enc->phys_encs[i];
1882 		if (phys->ops.prepare_for_kickoff)
1883 			phys->ops.prepare_for_kickoff(phys);
1884 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1885 			needs_hw_reset = true;
1886 	}
1887 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1888 
1889 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1890 
1891 	/* if any phys needs reset, reset all phys, in-order */
1892 	if (needs_hw_reset) {
1893 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1894 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1895 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1896 		}
1897 	}
1898 
1899 	if (dpu_enc->dsc)
1900 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1901 }
1902 
1903 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1904 {
1905 	struct dpu_encoder_virt *dpu_enc;
1906 	unsigned int i;
1907 	struct dpu_encoder_phys *phys;
1908 
1909 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1910 
1911 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1912 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1913 			phys = dpu_enc->phys_encs[i];
1914 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1915 				DPU_DEBUG("invalid FB not kicking off\n");
1916 				return false;
1917 			}
1918 		}
1919 	}
1920 
1921 	return true;
1922 }
1923 
1924 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1925 {
1926 	struct dpu_encoder_virt *dpu_enc;
1927 	struct dpu_encoder_phys *phys;
1928 	unsigned long timeout_ms;
1929 	unsigned int i;
1930 
1931 	DPU_ATRACE_BEGIN("encoder_kickoff");
1932 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1933 
1934 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1935 
1936 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1937 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1938 
1939 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1940 	mod_timer(&dpu_enc->frame_done_timer,
1941 			jiffies + msecs_to_jiffies(timeout_ms));
1942 
1943 	/* All phys encs are ready to go, trigger the kickoff */
1944 	_dpu_encoder_kickoff_phys(dpu_enc);
1945 
1946 	/* allow phys encs to handle any post-kickoff business */
1947 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1948 		phys = dpu_enc->phys_encs[i];
1949 		if (phys->ops.handle_post_kickoff)
1950 			phys->ops.handle_post_kickoff(phys);
1951 	}
1952 
1953 	DPU_ATRACE_END("encoder_kickoff");
1954 }
1955 
1956 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1957 {
1958 	struct dpu_hw_mixer_cfg mixer;
1959 	int i, num_lm;
1960 	struct dpu_global_state *global_state;
1961 	struct dpu_hw_blk *hw_lm[2];
1962 	struct dpu_hw_mixer *hw_mixer[2];
1963 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1964 
1965 	memset(&mixer, 0, sizeof(mixer));
1966 
1967 	/* reset all mixers for this encoder */
1968 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
1969 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
1970 
1971 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
1972 
1973 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
1974 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1975 
1976 	for (i = 0; i < num_lm; i++) {
1977 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
1978 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
1979 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
1980 
1981 		/* clear all blendstages */
1982 		if (phys_enc->hw_ctl->ops.setup_blendstage)
1983 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
1984 	}
1985 }
1986 
1987 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
1988 				     struct dpu_hw_dsc *hw_dsc,
1989 				     struct dpu_hw_pingpong *hw_pp)
1990 {
1991 	if (hw_dsc->ops.dsc_disable)
1992 		hw_dsc->ops.dsc_disable(hw_dsc);
1993 
1994 	if (hw_pp->ops.disable_dsc)
1995 		hw_pp->ops.disable_dsc(hw_pp);
1996 
1997 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1998 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
1999 
2000 	if (ctl->ops.update_pending_flush_dsc)
2001 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2002 }
2003 
2004 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2005 {
2006 	/* coding only for 2LM, 2enc, 1 dsc config */
2007 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2008 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2009 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2010 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2011 	int i;
2012 
2013 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2014 		hw_pp[i] = dpu_enc->hw_pp[i];
2015 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2016 
2017 		if (hw_pp[i] && hw_dsc[i])
2018 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2019 	}
2020 }
2021 
2022 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2023 {
2024 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2025 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2026 	int i;
2027 	struct dpu_encoder_virt *dpu_enc;
2028 
2029 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2030 
2031 	phys_enc->hw_ctl->ops.reset(ctl);
2032 
2033 	dpu_encoder_helper_reset_mixers(phys_enc);
2034 
2035 	/*
2036 	 * TODO: move the once-only operation like CTL flush/trigger
2037 	 * into dpu_encoder_virt_disable() and all operations which need
2038 	 * to be done per phys encoder into the phys_disable() op.
2039 	 */
2040 	if (phys_enc->hw_wb) {
2041 		/* disable the PP block */
2042 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2043 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2044 
2045 		/* mark WB flush as pending */
2046 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2047 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2048 	} else {
2049 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2050 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2051 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2052 						dpu_enc->phys_encs[i]->hw_intf,
2053 						PINGPONG_NONE);
2054 
2055 			/* mark INTF flush as pending */
2056 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2057 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2058 						dpu_enc->phys_encs[i]->hw_intf->idx);
2059 		}
2060 	}
2061 
2062 	/* reset the merge 3D HW block */
2063 	if (phys_enc->hw_pp->merge_3d) {
2064 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2065 				BLEND_3D_NONE);
2066 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2067 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2068 					phys_enc->hw_pp->merge_3d->idx);
2069 	}
2070 
2071 	if (dpu_enc->dsc) {
2072 		dpu_encoder_unprep_dsc(dpu_enc);
2073 		dpu_enc->dsc = NULL;
2074 	}
2075 
2076 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2077 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2078 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2079 
2080 	if (phys_enc->hw_intf)
2081 		intf_cfg.intf = phys_enc->hw_intf->idx;
2082 	if (phys_enc->hw_wb)
2083 		intf_cfg.wb = phys_enc->hw_wb->idx;
2084 
2085 	if (phys_enc->hw_pp->merge_3d)
2086 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2087 
2088 	if (ctl->ops.reset_intf_cfg)
2089 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2090 
2091 	ctl->ops.trigger_flush(ctl);
2092 	ctl->ops.trigger_start(ctl);
2093 	ctl->ops.clear_pending_flush(ctl);
2094 }
2095 
2096 #ifdef CONFIG_DEBUG_FS
2097 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2098 {
2099 	struct dpu_encoder_virt *dpu_enc = s->private;
2100 	int i;
2101 
2102 	mutex_lock(&dpu_enc->enc_lock);
2103 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2104 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2105 
2106 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2107 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2108 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2109 				atomic_read(&phys->vsync_cnt),
2110 				atomic_read(&phys->underrun_cnt));
2111 
2112 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2113 	}
2114 	mutex_unlock(&dpu_enc->enc_lock);
2115 
2116 	return 0;
2117 }
2118 
2119 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2120 
2121 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2122 {
2123 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2124 
2125 	char name[12];
2126 
2127 	if (!drm_enc->dev) {
2128 		DPU_ERROR("invalid encoder or kms\n");
2129 		return -EINVAL;
2130 	}
2131 
2132 	snprintf(name, sizeof(name), "encoder%u", drm_enc->base.id);
2133 
2134 	/* create overall sub-directory for the encoder */
2135 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2136 			drm_enc->dev->primary->debugfs_root);
2137 
2138 	/* don't error check these */
2139 	debugfs_create_file("status", 0600,
2140 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2141 
2142 	return 0;
2143 }
2144 #else
2145 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2146 {
2147 	return 0;
2148 }
2149 #endif
2150 
2151 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2152 {
2153 	return _dpu_encoder_init_debugfs(encoder);
2154 }
2155 
2156 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2157 {
2158 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2159 
2160 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2161 }
2162 
2163 static int dpu_encoder_virt_add_phys_encs(
2164 		struct msm_display_info *disp_info,
2165 		struct dpu_encoder_virt *dpu_enc,
2166 		struct dpu_enc_phys_init_params *params)
2167 {
2168 	struct dpu_encoder_phys *enc = NULL;
2169 
2170 	DPU_DEBUG_ENC(dpu_enc, "\n");
2171 
2172 	/*
2173 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2174 	 * in this function, check up-front.
2175 	 */
2176 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2177 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2178 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2179 			  dpu_enc->num_phys_encs);
2180 		return -EINVAL;
2181 	}
2182 
2183 
2184 	if (disp_info->intf_type == INTF_WB) {
2185 		enc = dpu_encoder_phys_wb_init(params);
2186 
2187 		if (IS_ERR(enc)) {
2188 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2189 				PTR_ERR(enc));
2190 			return PTR_ERR(enc);
2191 		}
2192 
2193 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2194 		++dpu_enc->num_phys_encs;
2195 	} else if (disp_info->is_cmd_mode) {
2196 		enc = dpu_encoder_phys_cmd_init(params);
2197 
2198 		if (IS_ERR(enc)) {
2199 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2200 				PTR_ERR(enc));
2201 			return PTR_ERR(enc);
2202 		}
2203 
2204 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2205 		++dpu_enc->num_phys_encs;
2206 	} else {
2207 		enc = dpu_encoder_phys_vid_init(params);
2208 
2209 		if (IS_ERR(enc)) {
2210 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2211 				PTR_ERR(enc));
2212 			return PTR_ERR(enc);
2213 		}
2214 
2215 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2216 		++dpu_enc->num_phys_encs;
2217 	}
2218 
2219 	if (params->split_role == ENC_ROLE_SLAVE)
2220 		dpu_enc->cur_slave = enc;
2221 	else
2222 		dpu_enc->cur_master = enc;
2223 
2224 	return 0;
2225 }
2226 
2227 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2228 				 struct dpu_kms *dpu_kms,
2229 				 struct msm_display_info *disp_info)
2230 {
2231 	int ret = 0;
2232 	int i = 0;
2233 	struct dpu_enc_phys_init_params phys_params;
2234 
2235 	if (!dpu_enc) {
2236 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2237 		return -EINVAL;
2238 	}
2239 
2240 	dpu_enc->cur_master = NULL;
2241 
2242 	memset(&phys_params, 0, sizeof(phys_params));
2243 	phys_params.dpu_kms = dpu_kms;
2244 	phys_params.parent = &dpu_enc->base;
2245 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2246 
2247 	WARN_ON(disp_info->num_of_h_tiles < 1);
2248 
2249 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2250 
2251 	if (disp_info->intf_type != INTF_WB)
2252 		dpu_enc->idle_pc_supported =
2253 				dpu_kms->catalog->caps->has_idle_pc;
2254 
2255 	mutex_lock(&dpu_enc->enc_lock);
2256 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2257 		/*
2258 		 * Left-most tile is at index 0, content is controller id
2259 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2260 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2261 		 */
2262 		u32 controller_id = disp_info->h_tile_instance[i];
2263 
2264 		if (disp_info->num_of_h_tiles > 1) {
2265 			if (i == 0)
2266 				phys_params.split_role = ENC_ROLE_MASTER;
2267 			else
2268 				phys_params.split_role = ENC_ROLE_SLAVE;
2269 		} else {
2270 			phys_params.split_role = ENC_ROLE_SOLO;
2271 		}
2272 
2273 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2274 				i, controller_id, phys_params.split_role);
2275 
2276 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2277 							   disp_info->intf_type,
2278 							   controller_id);
2279 
2280 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2281 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2282 
2283 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2284 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2285 			ret = -EINVAL;
2286 			break;
2287 		}
2288 
2289 		if (phys_params.hw_intf && phys_params.hw_wb) {
2290 			DPU_ERROR_ENC(dpu_enc,
2291 					"invalid phys both intf and wb block at idx: %d\n", i);
2292 			ret = -EINVAL;
2293 			break;
2294 		}
2295 
2296 		ret = dpu_encoder_virt_add_phys_encs(disp_info,
2297 				dpu_enc, &phys_params);
2298 		if (ret) {
2299 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2300 			break;
2301 		}
2302 	}
2303 
2304 	mutex_unlock(&dpu_enc->enc_lock);
2305 
2306 	return ret;
2307 }
2308 
2309 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2310 {
2311 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2312 			frame_done_timer);
2313 	struct drm_encoder *drm_enc = &dpu_enc->base;
2314 	u32 event;
2315 
2316 	if (!drm_enc->dev) {
2317 		DPU_ERROR("invalid parameters\n");
2318 		return;
2319 	}
2320 
2321 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2322 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2323 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2324 		return;
2325 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2326 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2327 		return;
2328 	}
2329 
2330 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2331 
2332 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2333 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2334 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2335 }
2336 
2337 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2338 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2339 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2340 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2341 	.atomic_check = dpu_encoder_virt_atomic_check,
2342 };
2343 
2344 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2345 		.destroy = dpu_encoder_destroy,
2346 		.late_register = dpu_encoder_late_register,
2347 		.early_unregister = dpu_encoder_early_unregister,
2348 };
2349 
2350 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2351 		int drm_enc_mode,
2352 		struct msm_display_info *disp_info)
2353 {
2354 	struct msm_drm_private *priv = dev->dev_private;
2355 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2356 	struct drm_encoder *drm_enc = NULL;
2357 	struct dpu_encoder_virt *dpu_enc = NULL;
2358 	int ret = 0;
2359 
2360 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2361 	if (!dpu_enc)
2362 		return ERR_PTR(-ENOMEM);
2363 
2364 	ret = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2365 			       drm_enc_mode, NULL);
2366 	if (ret) {
2367 		devm_kfree(dev->dev, dpu_enc);
2368 		return ERR_PTR(ret);
2369 	}
2370 
2371 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2372 
2373 	spin_lock_init(&dpu_enc->enc_spinlock);
2374 	dpu_enc->enabled = false;
2375 	mutex_init(&dpu_enc->enc_lock);
2376 	mutex_init(&dpu_enc->rc_lock);
2377 
2378 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2379 	if (ret)
2380 		goto fail;
2381 
2382 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2383 	timer_setup(&dpu_enc->frame_done_timer,
2384 			dpu_encoder_frame_done_timeout, 0);
2385 
2386 	if (disp_info->intf_type == INTF_DP)
2387 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2388 				priv->dp[disp_info->h_tile_instance[0]]);
2389 
2390 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2391 			dpu_encoder_off_work);
2392 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2393 
2394 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2395 
2396 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2397 
2398 	return &dpu_enc->base;
2399 
2400 fail:
2401 	DPU_ERROR("failed to create encoder\n");
2402 	if (drm_enc)
2403 		dpu_encoder_destroy(drm_enc);
2404 
2405 	return ERR_PTR(ret);
2406 }
2407 
2408 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2409 	enum msm_event_wait event)
2410 {
2411 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2412 	struct dpu_encoder_virt *dpu_enc = NULL;
2413 	int i, ret = 0;
2414 
2415 	if (!drm_enc) {
2416 		DPU_ERROR("invalid encoder\n");
2417 		return -EINVAL;
2418 	}
2419 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2420 	DPU_DEBUG_ENC(dpu_enc, "\n");
2421 
2422 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2423 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2424 
2425 		switch (event) {
2426 		case MSM_ENC_COMMIT_DONE:
2427 			fn_wait = phys->ops.wait_for_commit_done;
2428 			break;
2429 		case MSM_ENC_TX_COMPLETE:
2430 			fn_wait = phys->ops.wait_for_tx_complete;
2431 			break;
2432 		case MSM_ENC_VBLANK:
2433 			fn_wait = phys->ops.wait_for_vblank;
2434 			break;
2435 		default:
2436 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2437 					event);
2438 			return -EINVAL;
2439 		}
2440 
2441 		if (fn_wait) {
2442 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2443 			ret = fn_wait(phys);
2444 			DPU_ATRACE_END("wait_for_completion_event");
2445 			if (ret)
2446 				return ret;
2447 		}
2448 	}
2449 
2450 	return ret;
2451 }
2452 
2453 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2454 {
2455 	struct dpu_encoder_virt *dpu_enc = NULL;
2456 
2457 	if (!encoder) {
2458 		DPU_ERROR("invalid encoder\n");
2459 		return INTF_MODE_NONE;
2460 	}
2461 	dpu_enc = to_dpu_encoder_virt(encoder);
2462 
2463 	if (dpu_enc->cur_master)
2464 		return dpu_enc->cur_master->intf_mode;
2465 
2466 	if (dpu_enc->num_phys_encs)
2467 		return dpu_enc->phys_encs[0]->intf_mode;
2468 
2469 	return INTF_MODE_NONE;
2470 }
2471 
2472 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2473 {
2474 	struct drm_encoder *encoder = phys_enc->parent;
2475 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2476 
2477 	return dpu_enc->dsc_mask;
2478 }
2479 
2480 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2481 			  struct dpu_enc_phys_init_params *p)
2482 {
2483 	int i;
2484 
2485 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2486 	phys_enc->hw_intf = p->hw_intf;
2487 	phys_enc->hw_wb = p->hw_wb;
2488 	phys_enc->parent = p->parent;
2489 	phys_enc->dpu_kms = p->dpu_kms;
2490 	phys_enc->split_role = p->split_role;
2491 	phys_enc->enc_spinlock = p->enc_spinlock;
2492 	phys_enc->enable_state = DPU_ENC_DISABLED;
2493 
2494 	for (i = 0; i < ARRAY_SIZE(phys_enc->irq); i++)
2495 		phys_enc->irq[i] = -EINVAL;
2496 
2497 	atomic_set(&phys_enc->vblank_refcount, 0);
2498 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2499 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2500 
2501 	atomic_set(&phys_enc->vsync_cnt, 0);
2502 	atomic_set(&phys_enc->underrun_cnt, 0);
2503 
2504 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2505 }
2506