xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 
20 #include "msm_drv.h"
21 #include "dpu_kms.h"
22 #include "dpu_hwio.h"
23 #include "dpu_hw_catalog.h"
24 #include "dpu_hw_intf.h"
25 #include "dpu_hw_ctl.h"
26 #include "dpu_hw_dspp.h"
27 #include "dpu_hw_dsc.h"
28 #include "dpu_hw_merge3d.h"
29 #include "dpu_formats.h"
30 #include "dpu_encoder_phys.h"
31 #include "dpu_crtc.h"
32 #include "dpu_trace.h"
33 #include "dpu_core_irq.h"
34 #include "disp/msm_disp_snapshot.h"
35 
36 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
37 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
38 
39 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 /*
43  * Two to anticipate panels that can do cmd/vid dynamic switching
44  * plan is to create all possible physical encoder types, and switch between
45  * them at runtime
46  */
47 #define NUM_PHYS_ENCODER_TYPES 2
48 
49 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
50 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
51 
52 #define MAX_CHANNELS_PER_ENC 2
53 
54 #define IDLE_SHORT_TIMEOUT	1
55 
56 #define MAX_HDISPLAY_SPLIT 1080
57 
58 /* timeout in frames waiting for frame done */
59 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
60 
61 /**
62  * enum dpu_enc_rc_events - events for resource control state machine
63  * @DPU_ENC_RC_EVENT_KICKOFF:
64  *	This event happens at NORMAL priority.
65  *	Event that signals the start of the transfer. When this event is
66  *	received, enable MDP/DSI core clocks. Regardless of the previous
67  *	state, the resource should be in ON state at the end of this event.
68  * @DPU_ENC_RC_EVENT_FRAME_DONE:
69  *	This event happens at INTERRUPT level.
70  *	Event signals the end of the data transfer after the PP FRAME_DONE
71  *	event. At the end of this event, a delayed work is scheduled to go to
72  *	IDLE_PC state after IDLE_TIMEOUT time.
73  * @DPU_ENC_RC_EVENT_PRE_STOP:
74  *	This event happens at NORMAL priority.
75  *	This event, when received during the ON state, leave the RC STATE
76  *	in the PRE_OFF state. It should be followed by the STOP event as
77  *	part of encoder disable.
78  *	If received during IDLE or OFF states, it will do nothing.
79  * @DPU_ENC_RC_EVENT_STOP:
80  *	This event happens at NORMAL priority.
81  *	When this event is received, disable all the MDP/DSI core clocks, and
82  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
83  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
84  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
85  *	Resource state should be in OFF at the end of the event.
86  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
87  *	This event happens at NORMAL priority from a work item.
88  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
89  *	This would disable MDP/DSI core clocks and change the resource state
90  *	to IDLE.
91  */
92 enum dpu_enc_rc_events {
93 	DPU_ENC_RC_EVENT_KICKOFF = 1,
94 	DPU_ENC_RC_EVENT_FRAME_DONE,
95 	DPU_ENC_RC_EVENT_PRE_STOP,
96 	DPU_ENC_RC_EVENT_STOP,
97 	DPU_ENC_RC_EVENT_ENTER_IDLE
98 };
99 
100 /*
101  * enum dpu_enc_rc_states - states that the resource control maintains
102  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
103  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
104  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
105  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
106  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
107  */
108 enum dpu_enc_rc_states {
109 	DPU_ENC_RC_STATE_OFF,
110 	DPU_ENC_RC_STATE_PRE_OFF,
111 	DPU_ENC_RC_STATE_ON,
112 	DPU_ENC_RC_STATE_IDLE
113 };
114 
115 /**
116  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
117  *	encoders. Virtual encoder manages one "logical" display. Physical
118  *	encoders manage one intf block, tied to a specific panel/sub-panel.
119  *	Virtual encoder defers as much as possible to the physical encoders.
120  *	Virtual encoder registers itself with the DRM Framework as the encoder.
121  * @base:		drm_encoder base class for registration with DRM
122  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
123  * @enabled:		True if the encoder is active, protected by enc_lock
124  * @num_phys_encs:	Actual number of physical encoders contained.
125  * @phys_encs:		Container of physical encoders managed.
126  * @cur_master:		Pointer to the current master in this mode. Optimization
127  *			Only valid after enable. Cleared as disable.
128  * @cur_slave:		As above but for the slave encoder.
129  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
130  *			pingpong blocks can be different than num_phys_encs.
131  * @hw_dsc:		Handle to the DSC blocks used for the display.
132  * @dsc_mask:		Bitmask of used DSC blocks.
133  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
134  *			for partial update right-only cases, such as pingpong
135  *			split where virtual pingpong does not generate IRQs
136  * @crtc:		Pointer to the currently assigned crtc. Normally you
137  *			would use crtc->state->encoder_mask to determine the
138  *			link between encoder/crtc. However in this case we need
139  *			to track crtc in the disable() hook which is called
140  *			_after_ encoder_mask is cleared.
141  * @connector:		If a mode is set, cached pointer to the active connector
142  * @crtc_kickoff_cb:		Callback into CRTC that will flush & start
143  *				all CTL paths
144  * @crtc_kickoff_cb_data:	Opaque user data given to crtc_kickoff_cb
145  * @debugfs_root:		Debug file system root file node
146  * @enc_lock:			Lock around physical encoder
147  *				create/destroy/enable/disable
148  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
149  *				busy processing current command.
150  *				Bit0 = phys_encs[0] etc.
151  * @crtc_frame_event_cb:	callback handler for frame event
152  * @crtc_frame_event_cb_data:	callback handler private data
153  * @frame_done_timeout_ms:	frame done timeout in ms
154  * @frame_done_timer:		watchdog timer for frame done event
155  * @vsync_event_timer:		vsync timer
156  * @disp_info:			local copy of msm_display_info struct
157  * @idle_pc_supported:		indicate if idle power collaps is supported
158  * @rc_lock:			resource control mutex lock to protect
159  *				virt encoder over various state changes
160  * @rc_state:			resource controller state
161  * @delayed_off_work:		delayed worker to schedule disabling of
162  *				clks and resources after IDLE_TIMEOUT time.
163  * @vsync_event_work:		worker to handle vsync event for autorefresh
164  * @topology:                   topology of the display
165  * @idle_timeout:		idle timeout duration in milliseconds
166  * @wide_bus_en:		wide bus is enabled on this interface
167  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
168  */
169 struct dpu_encoder_virt {
170 	struct drm_encoder base;
171 	spinlock_t enc_spinlock;
172 
173 	bool enabled;
174 
175 	unsigned int num_phys_encs;
176 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
177 	struct dpu_encoder_phys *cur_master;
178 	struct dpu_encoder_phys *cur_slave;
179 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
180 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
181 
182 	unsigned int dsc_mask;
183 
184 	bool intfs_swapped;
185 
186 	struct drm_crtc *crtc;
187 	struct drm_connector *connector;
188 
189 	struct dentry *debugfs_root;
190 	struct mutex enc_lock;
191 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
192 	void (*crtc_frame_event_cb)(void *, u32 event);
193 	void *crtc_frame_event_cb_data;
194 
195 	atomic_t frame_done_timeout_ms;
196 	struct timer_list frame_done_timer;
197 	struct timer_list vsync_event_timer;
198 
199 	struct msm_display_info disp_info;
200 
201 	bool idle_pc_supported;
202 	struct mutex rc_lock;
203 	enum dpu_enc_rc_states rc_state;
204 	struct delayed_work delayed_off_work;
205 	struct kthread_work vsync_event_work;
206 	struct msm_display_topology topology;
207 
208 	u32 idle_timeout;
209 
210 	bool wide_bus_en;
211 
212 	/* DSC configuration */
213 	struct drm_dsc_config *dsc;
214 };
215 
216 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
217 
218 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
219 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
220 };
221 
222 
223 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
224 {
225 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
226 
227 	return dpu_enc->wide_bus_en;
228 }
229 
230 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
231 {
232 	struct dpu_encoder_virt *dpu_enc;
233 	int i, num_intf = 0;
234 
235 	dpu_enc = to_dpu_encoder_virt(drm_enc);
236 
237 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
238 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
239 
240 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
241 				&& phys->hw_intf->ops.collect_misr)
242 			num_intf++;
243 	}
244 
245 	return num_intf;
246 }
247 
248 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
249 {
250 	struct dpu_encoder_virt *dpu_enc;
251 
252 	int i;
253 
254 	dpu_enc = to_dpu_encoder_virt(drm_enc);
255 
256 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
257 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
258 
259 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
260 			continue;
261 
262 		phys->hw_intf->ops.setup_misr(phys->hw_intf, true, 1);
263 	}
264 }
265 
266 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
267 {
268 	struct dpu_encoder_virt *dpu_enc;
269 
270 	int i, rc = 0, entries_added = 0;
271 
272 	if (!drm_enc->crtc) {
273 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
274 		return -EINVAL;
275 	}
276 
277 	dpu_enc = to_dpu_encoder_virt(drm_enc);
278 
279 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
280 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
281 
282 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
283 			continue;
284 
285 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
286 		if (rc)
287 			return rc;
288 		entries_added++;
289 	}
290 
291 	return entries_added;
292 }
293 
294 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
295 {
296 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
297 
298 	if (!hw_pp->ops.setup_dither)
299 		return;
300 
301 	switch (bpc) {
302 	case 6:
303 		dither_cfg.c0_bitdepth = 6;
304 		dither_cfg.c1_bitdepth = 6;
305 		dither_cfg.c2_bitdepth = 6;
306 		dither_cfg.c3_bitdepth = 6;
307 		dither_cfg.temporal_en = 0;
308 		break;
309 	default:
310 		hw_pp->ops.setup_dither(hw_pp, NULL);
311 		return;
312 	}
313 
314 	memcpy(&dither_cfg.matrix, dither_matrix,
315 			sizeof(u32) * DITHER_MATRIX_SZ);
316 
317 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
318 }
319 
320 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
321 {
322 	switch (intf_mode) {
323 	case INTF_MODE_VIDEO:
324 		return "INTF_MODE_VIDEO";
325 	case INTF_MODE_CMD:
326 		return "INTF_MODE_CMD";
327 	case INTF_MODE_WB_BLOCK:
328 		return "INTF_MODE_WB_BLOCK";
329 	case INTF_MODE_WB_LINE:
330 		return "INTF_MODE_WB_LINE";
331 	default:
332 		return "INTF_MODE_UNKNOWN";
333 	}
334 }
335 
336 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
337 		enum dpu_intr_idx intr_idx)
338 {
339 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
340 			DRMID(phys_enc->parent),
341 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
342 			phys_enc->intf_idx - INTF_0, phys_enc->wb_idx - WB_0,
343 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
344 
345 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
346 				DPU_ENCODER_FRAME_EVENT_ERROR);
347 }
348 
349 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
350 		u32 irq_idx, struct dpu_encoder_wait_info *info);
351 
352 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
353 		int irq,
354 		void (*func)(void *arg, int irq_idx),
355 		struct dpu_encoder_wait_info *wait_info)
356 {
357 	u32 irq_status;
358 	int ret;
359 
360 	if (!wait_info) {
361 		DPU_ERROR("invalid params\n");
362 		return -EINVAL;
363 	}
364 	/* note: do master / slave checking outside */
365 
366 	/* return EWOULDBLOCK since we know the wait isn't necessary */
367 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
368 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, irq=%d\n",
369 			  DRMID(phys_enc->parent), func,
370 			  irq);
371 		return -EWOULDBLOCK;
372 	}
373 
374 	if (irq < 0) {
375 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
376 			      DRMID(phys_enc->parent), func);
377 		return 0;
378 	}
379 
380 	DRM_DEBUG_KMS("id=%u, callback=%ps, irq=%d, pp=%d, pending_cnt=%d\n",
381 		      DRMID(phys_enc->parent), func,
382 		      irq, phys_enc->hw_pp->idx - PINGPONG_0,
383 		      atomic_read(wait_info->atomic_cnt));
384 
385 	ret = dpu_encoder_helper_wait_event_timeout(
386 			DRMID(phys_enc->parent),
387 			irq,
388 			wait_info);
389 
390 	if (ret <= 0) {
391 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq);
392 		if (irq_status) {
393 			unsigned long flags;
394 
395 			DRM_DEBUG_KMS("irq not triggered id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
396 				      DRMID(phys_enc->parent), func,
397 				      irq,
398 				      phys_enc->hw_pp->idx - PINGPONG_0,
399 				      atomic_read(wait_info->atomic_cnt));
400 			local_irq_save(flags);
401 			func(phys_enc, irq);
402 			local_irq_restore(flags);
403 			ret = 0;
404 		} else {
405 			ret = -ETIMEDOUT;
406 			DRM_DEBUG_KMS("irq timeout id=%u, callback=%ps, irq=%d, pp=%d, atomic_cnt=%d\n",
407 				      DRMID(phys_enc->parent), func,
408 				      irq,
409 				      phys_enc->hw_pp->idx - PINGPONG_0,
410 				      atomic_read(wait_info->atomic_cnt));
411 		}
412 	} else {
413 		ret = 0;
414 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
415 			func, irq,
416 			phys_enc->hw_pp->idx - PINGPONG_0,
417 			atomic_read(wait_info->atomic_cnt));
418 	}
419 
420 	return ret;
421 }
422 
423 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
424 {
425 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
426 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
427 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
428 }
429 
430 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
431 {
432 	struct dpu_encoder_virt *dpu_enc;
433 	struct dpu_encoder_phys *phys;
434 	int linecount = 0;
435 
436 	dpu_enc = to_dpu_encoder_virt(drm_enc);
437 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
438 
439 	if (phys && phys->ops.get_line_count)
440 		linecount = phys->ops.get_line_count(phys);
441 
442 	return linecount;
443 }
444 
445 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
446 {
447 	struct dpu_encoder_virt *dpu_enc = NULL;
448 	int i = 0;
449 
450 	if (!drm_enc) {
451 		DPU_ERROR("invalid encoder\n");
452 		return;
453 	}
454 
455 	dpu_enc = to_dpu_encoder_virt(drm_enc);
456 	DPU_DEBUG_ENC(dpu_enc, "\n");
457 
458 	mutex_lock(&dpu_enc->enc_lock);
459 
460 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
461 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
462 
463 		if (phys->ops.destroy) {
464 			phys->ops.destroy(phys);
465 			--dpu_enc->num_phys_encs;
466 			dpu_enc->phys_encs[i] = NULL;
467 		}
468 	}
469 
470 	if (dpu_enc->num_phys_encs)
471 		DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
472 				dpu_enc->num_phys_encs);
473 	dpu_enc->num_phys_encs = 0;
474 	mutex_unlock(&dpu_enc->enc_lock);
475 
476 	drm_encoder_cleanup(drm_enc);
477 	mutex_destroy(&dpu_enc->enc_lock);
478 }
479 
480 void dpu_encoder_helper_split_config(
481 		struct dpu_encoder_phys *phys_enc,
482 		enum dpu_intf interface)
483 {
484 	struct dpu_encoder_virt *dpu_enc;
485 	struct split_pipe_cfg cfg = { 0 };
486 	struct dpu_hw_mdp *hw_mdptop;
487 	struct msm_display_info *disp_info;
488 
489 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
490 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
491 		return;
492 	}
493 
494 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
495 	hw_mdptop = phys_enc->hw_mdptop;
496 	disp_info = &dpu_enc->disp_info;
497 
498 	if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
499 		return;
500 
501 	/**
502 	 * disable split modes since encoder will be operating in as the only
503 	 * encoder, either for the entire use case in the case of, for example,
504 	 * single DSI, or for this frame in the case of left/right only partial
505 	 * update.
506 	 */
507 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
508 		if (hw_mdptop->ops.setup_split_pipe)
509 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
510 		return;
511 	}
512 
513 	cfg.en = true;
514 	cfg.mode = phys_enc->intf_mode;
515 	cfg.intf = interface;
516 
517 	if (cfg.en && phys_enc->ops.needs_single_flush &&
518 			phys_enc->ops.needs_single_flush(phys_enc))
519 		cfg.split_flush_en = true;
520 
521 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
522 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
523 
524 		if (hw_mdptop->ops.setup_split_pipe)
525 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
526 	}
527 }
528 
529 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
530 {
531 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
532 	int i, intf_count = 0, num_dsc = 0;
533 
534 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
535 		if (dpu_enc->phys_encs[i])
536 			intf_count++;
537 
538 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
539 	if (dpu_enc->dsc)
540 		num_dsc = 2;
541 
542 	return (num_dsc > 0) && (num_dsc > intf_count);
543 }
544 
545 static struct msm_display_topology dpu_encoder_get_topology(
546 			struct dpu_encoder_virt *dpu_enc,
547 			struct dpu_kms *dpu_kms,
548 			struct drm_display_mode *mode,
549 			struct drm_crtc_state *crtc_state)
550 {
551 	struct msm_display_topology topology = {0};
552 	int i, intf_count = 0;
553 
554 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
555 		if (dpu_enc->phys_encs[i])
556 			intf_count++;
557 
558 	/* Datapath topology selection
559 	 *
560 	 * Dual display
561 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
562 	 *
563 	 * Single display
564 	 * 1 LM, 1 INTF
565 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
566 	 *
567 	 * Add dspps to the reservation requirements if ctm is requested
568 	 */
569 	if (intf_count == 2)
570 		topology.num_lm = 2;
571 	else if (!dpu_kms->catalog->caps->has_3d_merge)
572 		topology.num_lm = 1;
573 	else
574 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
575 
576 	if (crtc_state->ctm)
577 		topology.num_dspp = topology.num_lm;
578 
579 	topology.num_intf = intf_count;
580 
581 	if (dpu_enc->dsc) {
582 		/*
583 		 * In case of Display Stream Compression (DSC), we would use
584 		 * 2 DSC encoders, 2 layer mixers and 1 interface
585 		 * this is power optimal and can drive up to (including) 4k
586 		 * screens
587 		 */
588 		topology.num_dsc = 2;
589 		topology.num_lm = 2;
590 		topology.num_intf = 1;
591 	}
592 
593 	return topology;
594 }
595 
596 static int dpu_encoder_virt_atomic_check(
597 		struct drm_encoder *drm_enc,
598 		struct drm_crtc_state *crtc_state,
599 		struct drm_connector_state *conn_state)
600 {
601 	struct dpu_encoder_virt *dpu_enc;
602 	struct msm_drm_private *priv;
603 	struct dpu_kms *dpu_kms;
604 	struct drm_display_mode *adj_mode;
605 	struct msm_display_topology topology;
606 	struct dpu_global_state *global_state;
607 	int i = 0;
608 	int ret = 0;
609 
610 	if (!drm_enc || !crtc_state || !conn_state) {
611 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
612 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
613 		return -EINVAL;
614 	}
615 
616 	dpu_enc = to_dpu_encoder_virt(drm_enc);
617 	DPU_DEBUG_ENC(dpu_enc, "\n");
618 
619 	priv = drm_enc->dev->dev_private;
620 	dpu_kms = to_dpu_kms(priv->kms);
621 	adj_mode = &crtc_state->adjusted_mode;
622 	global_state = dpu_kms_get_global_state(crtc_state->state);
623 	if (IS_ERR(global_state))
624 		return PTR_ERR(global_state);
625 
626 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
627 
628 	/* perform atomic check on the first physical encoder (master) */
629 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
630 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
631 
632 		if (phys->ops.atomic_check)
633 			ret = phys->ops.atomic_check(phys, crtc_state,
634 					conn_state);
635 		if (ret) {
636 			DPU_ERROR_ENC(dpu_enc,
637 					"mode unsupported, phys idx %d\n", i);
638 			return ret;
639 		}
640 	}
641 
642 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state);
643 
644 	/*
645 	 * Release and Allocate resources on every modeset
646 	 * Dont allocate when active is false.
647 	 */
648 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
649 		dpu_rm_release(global_state, drm_enc);
650 
651 		if (!crtc_state->active_changed || crtc_state->enable)
652 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
653 					drm_enc, crtc_state, topology);
654 	}
655 
656 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
657 
658 	return ret;
659 }
660 
661 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
662 			struct msm_display_info *disp_info)
663 {
664 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
665 	struct msm_drm_private *priv;
666 	struct dpu_kms *dpu_kms;
667 	struct dpu_hw_mdp *hw_mdptop;
668 	struct drm_encoder *drm_enc;
669 	int i;
670 
671 	if (!dpu_enc || !disp_info) {
672 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
673 					dpu_enc != NULL, disp_info != NULL);
674 		return;
675 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
676 		DPU_ERROR("invalid num phys enc %d/%d\n",
677 				dpu_enc->num_phys_encs,
678 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
679 		return;
680 	}
681 
682 	drm_enc = &dpu_enc->base;
683 	/* this pointers are checked in virt_enable_helper */
684 	priv = drm_enc->dev->dev_private;
685 
686 	dpu_kms = to_dpu_kms(priv->kms);
687 	hw_mdptop = dpu_kms->hw_mdp;
688 	if (!hw_mdptop) {
689 		DPU_ERROR("invalid mdptop\n");
690 		return;
691 	}
692 
693 	if (hw_mdptop->ops.setup_vsync_source &&
694 			disp_info->is_cmd_mode) {
695 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
696 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
697 
698 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
699 		if (disp_info->is_te_using_watchdog_timer)
700 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
701 		else
702 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
703 
704 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
705 	}
706 }
707 
708 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
709 {
710 	struct dpu_encoder_virt *dpu_enc;
711 	int i;
712 
713 	if (!drm_enc) {
714 		DPU_ERROR("invalid encoder\n");
715 		return;
716 	}
717 
718 	dpu_enc = to_dpu_encoder_virt(drm_enc);
719 
720 	DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
721 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
722 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
723 
724 		if (phys->ops.irq_control)
725 			phys->ops.irq_control(phys, enable);
726 	}
727 
728 }
729 
730 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
731 		bool enable)
732 {
733 	struct msm_drm_private *priv;
734 	struct dpu_kms *dpu_kms;
735 	struct dpu_encoder_virt *dpu_enc;
736 
737 	dpu_enc = to_dpu_encoder_virt(drm_enc);
738 	priv = drm_enc->dev->dev_private;
739 	dpu_kms = to_dpu_kms(priv->kms);
740 
741 	trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
742 
743 	if (!dpu_enc->cur_master) {
744 		DPU_ERROR("encoder master not set\n");
745 		return;
746 	}
747 
748 	if (enable) {
749 		/* enable DPU core clks */
750 		pm_runtime_get_sync(&dpu_kms->pdev->dev);
751 
752 		/* enable all the irq */
753 		_dpu_encoder_irq_control(drm_enc, true);
754 
755 	} else {
756 		/* disable all the irq */
757 		_dpu_encoder_irq_control(drm_enc, false);
758 
759 		/* disable DPU core clks */
760 		pm_runtime_put_sync(&dpu_kms->pdev->dev);
761 	}
762 
763 }
764 
765 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
766 		u32 sw_event)
767 {
768 	struct dpu_encoder_virt *dpu_enc;
769 	struct msm_drm_private *priv;
770 	bool is_vid_mode = false;
771 
772 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
773 		DPU_ERROR("invalid parameters\n");
774 		return -EINVAL;
775 	}
776 	dpu_enc = to_dpu_encoder_virt(drm_enc);
777 	priv = drm_enc->dev->dev_private;
778 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
779 
780 	/*
781 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
782 	 * events and return early for other events (ie wb display).
783 	 */
784 	if (!dpu_enc->idle_pc_supported &&
785 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
786 			sw_event != DPU_ENC_RC_EVENT_STOP &&
787 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
788 		return 0;
789 
790 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
791 			 dpu_enc->rc_state, "begin");
792 
793 	switch (sw_event) {
794 	case DPU_ENC_RC_EVENT_KICKOFF:
795 		/* cancel delayed off work, if any */
796 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
797 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
798 					sw_event);
799 
800 		mutex_lock(&dpu_enc->rc_lock);
801 
802 		/* return if the resource control is already in ON state */
803 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
804 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
805 				      DRMID(drm_enc), sw_event);
806 			mutex_unlock(&dpu_enc->rc_lock);
807 			return 0;
808 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
809 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
810 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
811 				      DRMID(drm_enc), sw_event,
812 				      dpu_enc->rc_state);
813 			mutex_unlock(&dpu_enc->rc_lock);
814 			return -EINVAL;
815 		}
816 
817 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
818 			_dpu_encoder_irq_control(drm_enc, true);
819 		else
820 			_dpu_encoder_resource_control_helper(drm_enc, true);
821 
822 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
823 
824 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
825 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
826 				 "kickoff");
827 
828 		mutex_unlock(&dpu_enc->rc_lock);
829 		break;
830 
831 	case DPU_ENC_RC_EVENT_FRAME_DONE:
832 		/*
833 		 * mutex lock is not used as this event happens at interrupt
834 		 * context. And locking is not required as, the other events
835 		 * like KICKOFF and STOP does a wait-for-idle before executing
836 		 * the resource_control
837 		 */
838 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
839 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
840 				      DRMID(drm_enc), sw_event,
841 				      dpu_enc->rc_state);
842 			return -EINVAL;
843 		}
844 
845 		/*
846 		 * schedule off work item only when there are no
847 		 * frames pending
848 		 */
849 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
850 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
851 				      DRMID(drm_enc));
852 			return 0;
853 		}
854 
855 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
856 				   msecs_to_jiffies(dpu_enc->idle_timeout));
857 
858 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
859 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
860 				 "frame done");
861 		break;
862 
863 	case DPU_ENC_RC_EVENT_PRE_STOP:
864 		/* cancel delayed off work, if any */
865 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
866 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
867 					sw_event);
868 
869 		mutex_lock(&dpu_enc->rc_lock);
870 
871 		if (is_vid_mode &&
872 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
873 			_dpu_encoder_irq_control(drm_enc, true);
874 		}
875 		/* skip if is already OFF or IDLE, resources are off already */
876 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
877 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
878 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
879 				      DRMID(drm_enc), sw_event,
880 				      dpu_enc->rc_state);
881 			mutex_unlock(&dpu_enc->rc_lock);
882 			return 0;
883 		}
884 
885 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
886 
887 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
888 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
889 				 "pre stop");
890 
891 		mutex_unlock(&dpu_enc->rc_lock);
892 		break;
893 
894 	case DPU_ENC_RC_EVENT_STOP:
895 		mutex_lock(&dpu_enc->rc_lock);
896 
897 		/* return if the resource control is already in OFF state */
898 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
899 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
900 				      DRMID(drm_enc), sw_event);
901 			mutex_unlock(&dpu_enc->rc_lock);
902 			return 0;
903 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
904 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
905 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
906 			mutex_unlock(&dpu_enc->rc_lock);
907 			return -EINVAL;
908 		}
909 
910 		/**
911 		 * expect to arrive here only if in either idle state or pre-off
912 		 * and in IDLE state the resources are already disabled
913 		 */
914 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
915 			_dpu_encoder_resource_control_helper(drm_enc, false);
916 
917 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
918 
919 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
920 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
921 				 "stop");
922 
923 		mutex_unlock(&dpu_enc->rc_lock);
924 		break;
925 
926 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
927 		mutex_lock(&dpu_enc->rc_lock);
928 
929 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
930 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
931 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
932 			mutex_unlock(&dpu_enc->rc_lock);
933 			return 0;
934 		}
935 
936 		/*
937 		 * if we are in ON but a frame was just kicked off,
938 		 * ignore the IDLE event, it's probably a stale timer event
939 		 */
940 		if (dpu_enc->frame_busy_mask[0]) {
941 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
942 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
943 			mutex_unlock(&dpu_enc->rc_lock);
944 			return 0;
945 		}
946 
947 		if (is_vid_mode)
948 			_dpu_encoder_irq_control(drm_enc, false);
949 		else
950 			_dpu_encoder_resource_control_helper(drm_enc, false);
951 
952 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
953 
954 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
955 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
956 				 "idle");
957 
958 		mutex_unlock(&dpu_enc->rc_lock);
959 		break;
960 
961 	default:
962 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
963 			  sw_event);
964 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
965 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
966 				 "error");
967 		break;
968 	}
969 
970 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
971 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
972 			 "end");
973 	return 0;
974 }
975 
976 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
977 		struct drm_writeback_job *job)
978 {
979 	struct dpu_encoder_virt *dpu_enc;
980 	int i;
981 
982 	dpu_enc = to_dpu_encoder_virt(drm_enc);
983 
984 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
985 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
986 
987 		if (phys->ops.prepare_wb_job)
988 			phys->ops.prepare_wb_job(phys, job);
989 
990 	}
991 }
992 
993 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
994 		struct drm_writeback_job *job)
995 {
996 	struct dpu_encoder_virt *dpu_enc;
997 	int i;
998 
999 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1000 
1001 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1002 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1003 
1004 		if (phys->ops.cleanup_wb_job)
1005 			phys->ops.cleanup_wb_job(phys, job);
1006 
1007 	}
1008 }
1009 
1010 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1011 					     struct drm_crtc_state *crtc_state,
1012 					     struct drm_connector_state *conn_state)
1013 {
1014 	struct dpu_encoder_virt *dpu_enc;
1015 	struct msm_drm_private *priv;
1016 	struct dpu_kms *dpu_kms;
1017 	struct dpu_crtc_state *cstate;
1018 	struct dpu_global_state *global_state;
1019 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1020 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1021 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1022 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1023 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1024 	int num_lm, num_ctl, num_pp, num_dsc;
1025 	unsigned int dsc_mask = 0;
1026 	int i;
1027 
1028 	if (!drm_enc) {
1029 		DPU_ERROR("invalid encoder\n");
1030 		return;
1031 	}
1032 
1033 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1034 	DPU_DEBUG_ENC(dpu_enc, "\n");
1035 
1036 	priv = drm_enc->dev->dev_private;
1037 	dpu_kms = to_dpu_kms(priv->kms);
1038 
1039 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1040 	if (IS_ERR_OR_NULL(global_state)) {
1041 		DPU_ERROR("Failed to get global state");
1042 		return;
1043 	}
1044 
1045 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1046 
1047 	/* Query resource that have been reserved in atomic check step. */
1048 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1049 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1050 		ARRAY_SIZE(hw_pp));
1051 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1052 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1053 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1054 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1055 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1056 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1057 		ARRAY_SIZE(hw_dspp));
1058 
1059 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1060 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1061 						: NULL;
1062 
1063 	if (dpu_enc->dsc) {
1064 		num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1065 							drm_enc->base.id, DPU_HW_BLK_DSC,
1066 							hw_dsc, ARRAY_SIZE(hw_dsc));
1067 		for (i = 0; i < num_dsc; i++) {
1068 			dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1069 			dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1070 		}
1071 	}
1072 
1073 	dpu_enc->dsc_mask = dsc_mask;
1074 
1075 	cstate = to_dpu_crtc_state(crtc_state);
1076 
1077 	for (i = 0; i < num_lm; i++) {
1078 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1079 
1080 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1081 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1082 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1083 	}
1084 
1085 	cstate->num_mixers = num_lm;
1086 
1087 	dpu_enc->connector = conn_state->connector;
1088 
1089 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1090 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1091 
1092 		if (!dpu_enc->hw_pp[i]) {
1093 			DPU_ERROR_ENC(dpu_enc,
1094 				"no pp block assigned at idx: %d\n", i);
1095 			return;
1096 		}
1097 
1098 		if (!hw_ctl[i]) {
1099 			DPU_ERROR_ENC(dpu_enc,
1100 				"no ctl block assigned at idx: %d\n", i);
1101 			return;
1102 		}
1103 
1104 		phys->hw_pp = dpu_enc->hw_pp[i];
1105 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1106 
1107 		phys->cached_mode = crtc_state->adjusted_mode;
1108 		if (phys->ops.atomic_mode_set)
1109 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1110 	}
1111 }
1112 
1113 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1114 {
1115 	struct dpu_encoder_virt *dpu_enc = NULL;
1116 	int i;
1117 
1118 	if (!drm_enc || !drm_enc->dev) {
1119 		DPU_ERROR("invalid parameters\n");
1120 		return;
1121 	}
1122 
1123 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1124 	if (!dpu_enc || !dpu_enc->cur_master) {
1125 		DPU_ERROR("invalid dpu encoder/master\n");
1126 		return;
1127 	}
1128 
1129 
1130 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_TMDS &&
1131 		dpu_enc->cur_master->hw_mdptop &&
1132 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1133 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1134 			dpu_enc->cur_master->hw_mdptop);
1135 
1136 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1137 
1138 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1139 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1140 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1141 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1142 			if (!dpu_enc->hw_pp[i])
1143 				continue;
1144 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1145 		}
1146 	}
1147 }
1148 
1149 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1150 {
1151 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1152 
1153 	mutex_lock(&dpu_enc->enc_lock);
1154 
1155 	if (!dpu_enc->enabled)
1156 		goto out;
1157 
1158 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1159 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1160 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1161 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1162 
1163 	_dpu_encoder_virt_enable_helper(drm_enc);
1164 
1165 out:
1166 	mutex_unlock(&dpu_enc->enc_lock);
1167 }
1168 
1169 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1170 					struct drm_atomic_state *state)
1171 {
1172 	struct dpu_encoder_virt *dpu_enc = NULL;
1173 	int ret = 0;
1174 	struct drm_display_mode *cur_mode = NULL;
1175 
1176 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1177 
1178 	mutex_lock(&dpu_enc->enc_lock);
1179 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1180 
1181 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1182 			     cur_mode->vdisplay);
1183 
1184 	/* always enable slave encoder before master */
1185 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1186 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1187 
1188 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1189 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1190 
1191 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1192 	if (ret) {
1193 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1194 				ret);
1195 		goto out;
1196 	}
1197 
1198 	_dpu_encoder_virt_enable_helper(drm_enc);
1199 
1200 	dpu_enc->enabled = true;
1201 
1202 out:
1203 	mutex_unlock(&dpu_enc->enc_lock);
1204 }
1205 
1206 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1207 					struct drm_atomic_state *state)
1208 {
1209 	struct dpu_encoder_virt *dpu_enc = NULL;
1210 	struct drm_crtc *crtc;
1211 	struct drm_crtc_state *old_state = NULL;
1212 	int i = 0;
1213 
1214 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1215 	DPU_DEBUG_ENC(dpu_enc, "\n");
1216 
1217 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1218 	if (crtc)
1219 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1220 
1221 	/*
1222 	 * The encoder is already disabled if self refresh mode was set earlier,
1223 	 * in the old_state for the corresponding crtc.
1224 	 */
1225 	if (old_state && old_state->self_refresh_active)
1226 		return;
1227 
1228 	mutex_lock(&dpu_enc->enc_lock);
1229 	dpu_enc->enabled = false;
1230 
1231 	trace_dpu_enc_disable(DRMID(drm_enc));
1232 
1233 	/* wait for idle */
1234 	dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1235 
1236 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1237 
1238 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1239 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1240 
1241 		if (phys->ops.disable)
1242 			phys->ops.disable(phys);
1243 	}
1244 
1245 
1246 	/* after phys waits for frame-done, should be no more frames pending */
1247 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1248 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1249 		del_timer_sync(&dpu_enc->frame_done_timer);
1250 	}
1251 
1252 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1253 
1254 	dpu_enc->connector = NULL;
1255 
1256 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1257 
1258 	mutex_unlock(&dpu_enc->enc_lock);
1259 }
1260 
1261 static enum dpu_intf dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1262 		enum dpu_intf_type type, u32 controller_id)
1263 {
1264 	int i = 0;
1265 
1266 	if (type == INTF_WB)
1267 		return INTF_MAX;
1268 
1269 	for (i = 0; i < catalog->intf_count; i++) {
1270 		if (catalog->intf[i].type == type
1271 		    && catalog->intf[i].controller_id == controller_id) {
1272 			return catalog->intf[i].id;
1273 		}
1274 	}
1275 
1276 	return INTF_MAX;
1277 }
1278 
1279 static enum dpu_wb dpu_encoder_get_wb(const struct dpu_mdss_cfg *catalog,
1280 		enum dpu_intf_type type, u32 controller_id)
1281 {
1282 	int i = 0;
1283 
1284 	if (type != INTF_WB)
1285 		return WB_MAX;
1286 
1287 	for (i = 0; i < catalog->wb_count; i++) {
1288 		if (catalog->wb[i].id == controller_id)
1289 			return catalog->wb[i].id;
1290 	}
1291 
1292 	return WB_MAX;
1293 }
1294 
1295 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1296 		struct dpu_encoder_phys *phy_enc)
1297 {
1298 	struct dpu_encoder_virt *dpu_enc = NULL;
1299 	unsigned long lock_flags;
1300 
1301 	if (!drm_enc || !phy_enc)
1302 		return;
1303 
1304 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1305 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1306 
1307 	atomic_inc(&phy_enc->vsync_cnt);
1308 
1309 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1310 	if (dpu_enc->crtc)
1311 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1312 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1313 
1314 	DPU_ATRACE_END("encoder_vblank_callback");
1315 }
1316 
1317 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1318 		struct dpu_encoder_phys *phy_enc)
1319 {
1320 	if (!phy_enc)
1321 		return;
1322 
1323 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1324 	atomic_inc(&phy_enc->underrun_cnt);
1325 
1326 	/* trigger dump only on the first underrun */
1327 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1328 		msm_disp_snapshot_state(drm_enc->dev);
1329 
1330 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1331 				  atomic_read(&phy_enc->underrun_cnt));
1332 	DPU_ATRACE_END("encoder_underrun_callback");
1333 }
1334 
1335 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1336 {
1337 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1338 	unsigned long lock_flags;
1339 
1340 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1341 	/* crtc should always be cleared before re-assigning */
1342 	WARN_ON(crtc && dpu_enc->crtc);
1343 	dpu_enc->crtc = crtc;
1344 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1345 }
1346 
1347 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1348 					struct drm_crtc *crtc, bool enable)
1349 {
1350 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1351 	unsigned long lock_flags;
1352 	int i;
1353 
1354 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1355 
1356 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1357 	if (dpu_enc->crtc != crtc) {
1358 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1359 		return;
1360 	}
1361 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1362 
1363 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1364 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1365 
1366 		if (phys->ops.control_vblank_irq)
1367 			phys->ops.control_vblank_irq(phys, enable);
1368 	}
1369 }
1370 
1371 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1372 		void (*frame_event_cb)(void *, u32 event),
1373 		void *frame_event_cb_data)
1374 {
1375 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1376 	unsigned long lock_flags;
1377 	bool enable;
1378 
1379 	enable = frame_event_cb ? true : false;
1380 
1381 	if (!drm_enc) {
1382 		DPU_ERROR("invalid encoder\n");
1383 		return;
1384 	}
1385 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1386 
1387 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1388 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1389 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1390 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1391 }
1392 
1393 void dpu_encoder_frame_done_callback(
1394 		struct drm_encoder *drm_enc,
1395 		struct dpu_encoder_phys *ready_phys, u32 event)
1396 {
1397 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1398 	unsigned int i;
1399 
1400 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1401 			| DPU_ENCODER_FRAME_EVENT_ERROR
1402 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1403 
1404 		if (!dpu_enc->frame_busy_mask[0]) {
1405 			/**
1406 			 * suppress frame_done without waiter,
1407 			 * likely autorefresh
1408 			 */
1409 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1410 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1411 					ready_phys->intf_idx, ready_phys->wb_idx);
1412 			return;
1413 		}
1414 
1415 		/* One of the physical encoders has become idle */
1416 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1417 			if (dpu_enc->phys_encs[i] == ready_phys) {
1418 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1419 						dpu_enc->frame_busy_mask[0]);
1420 				clear_bit(i, dpu_enc->frame_busy_mask);
1421 			}
1422 		}
1423 
1424 		if (!dpu_enc->frame_busy_mask[0]) {
1425 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1426 			del_timer(&dpu_enc->frame_done_timer);
1427 
1428 			dpu_encoder_resource_control(drm_enc,
1429 					DPU_ENC_RC_EVENT_FRAME_DONE);
1430 
1431 			if (dpu_enc->crtc_frame_event_cb)
1432 				dpu_enc->crtc_frame_event_cb(
1433 					dpu_enc->crtc_frame_event_cb_data,
1434 					event);
1435 		}
1436 	} else {
1437 		if (dpu_enc->crtc_frame_event_cb)
1438 			dpu_enc->crtc_frame_event_cb(
1439 				dpu_enc->crtc_frame_event_cb_data, event);
1440 	}
1441 }
1442 
1443 static void dpu_encoder_off_work(struct work_struct *work)
1444 {
1445 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1446 			struct dpu_encoder_virt, delayed_off_work.work);
1447 
1448 	dpu_encoder_resource_control(&dpu_enc->base,
1449 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1450 
1451 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1452 				DPU_ENCODER_FRAME_EVENT_IDLE);
1453 }
1454 
1455 /**
1456  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1457  * @drm_enc: Pointer to drm encoder structure
1458  * @phys: Pointer to physical encoder structure
1459  * @extra_flush_bits: Additional bit mask to include in flush trigger
1460  */
1461 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1462 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1463 {
1464 	struct dpu_hw_ctl *ctl;
1465 	int pending_kickoff_cnt;
1466 	u32 ret = UINT_MAX;
1467 
1468 	if (!phys->hw_pp) {
1469 		DPU_ERROR("invalid pingpong hw\n");
1470 		return;
1471 	}
1472 
1473 	ctl = phys->hw_ctl;
1474 	if (!ctl->ops.trigger_flush) {
1475 		DPU_ERROR("missing trigger cb\n");
1476 		return;
1477 	}
1478 
1479 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1480 
1481 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1482 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1483 
1484 	ctl->ops.trigger_flush(ctl);
1485 
1486 	if (ctl->ops.get_pending_flush)
1487 		ret = ctl->ops.get_pending_flush(ctl);
1488 
1489 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1490 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1491 			phys->intf_idx, phys->wb_idx,
1492 			pending_kickoff_cnt, ctl->idx,
1493 			extra_flush_bits, ret);
1494 }
1495 
1496 /**
1497  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1498  * @phys: Pointer to physical encoder structure
1499  */
1500 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1501 {
1502 	if (!phys) {
1503 		DPU_ERROR("invalid argument(s)\n");
1504 		return;
1505 	}
1506 
1507 	if (!phys->hw_pp) {
1508 		DPU_ERROR("invalid pingpong hw\n");
1509 		return;
1510 	}
1511 
1512 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1513 		phys->ops.trigger_start(phys);
1514 }
1515 
1516 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1517 {
1518 	struct dpu_hw_ctl *ctl;
1519 
1520 	ctl = phys_enc->hw_ctl;
1521 	if (ctl->ops.trigger_start) {
1522 		ctl->ops.trigger_start(ctl);
1523 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1524 	}
1525 }
1526 
1527 static int dpu_encoder_helper_wait_event_timeout(
1528 		int32_t drm_id,
1529 		u32 irq_idx,
1530 		struct dpu_encoder_wait_info *info)
1531 {
1532 	int rc = 0;
1533 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1534 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1535 	s64 time;
1536 
1537 	do {
1538 		rc = wait_event_timeout(*(info->wq),
1539 				atomic_read(info->atomic_cnt) == 0, jiffies);
1540 		time = ktime_to_ms(ktime_get());
1541 
1542 		trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1543 						 expected_time,
1544 						 atomic_read(info->atomic_cnt));
1545 	/* If we timed out, counter is valid and time is less, wait again */
1546 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1547 			(time < expected_time));
1548 
1549 	return rc;
1550 }
1551 
1552 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1553 {
1554 	struct dpu_encoder_virt *dpu_enc;
1555 	struct dpu_hw_ctl *ctl;
1556 	int rc;
1557 	struct drm_encoder *drm_enc;
1558 
1559 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1560 	ctl = phys_enc->hw_ctl;
1561 	drm_enc = phys_enc->parent;
1562 
1563 	if (!ctl->ops.reset)
1564 		return;
1565 
1566 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1567 		      ctl->idx);
1568 
1569 	rc = ctl->ops.reset(ctl);
1570 	if (rc) {
1571 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1572 		msm_disp_snapshot_state(drm_enc->dev);
1573 	}
1574 
1575 	phys_enc->enable_state = DPU_ENC_ENABLED;
1576 }
1577 
1578 /**
1579  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1580  *	Iterate through the physical encoders and perform consolidated flush
1581  *	and/or control start triggering as needed. This is done in the virtual
1582  *	encoder rather than the individual physical ones in order to handle
1583  *	use cases that require visibility into multiple physical encoders at
1584  *	a time.
1585  * @dpu_enc: Pointer to virtual encoder structure
1586  */
1587 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1588 {
1589 	struct dpu_hw_ctl *ctl;
1590 	uint32_t i, pending_flush;
1591 	unsigned long lock_flags;
1592 
1593 	pending_flush = 0x0;
1594 
1595 	/* update pending counts and trigger kickoff ctl flush atomically */
1596 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1597 
1598 	/* don't perform flush/start operations for slave encoders */
1599 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1600 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1601 
1602 		if (phys->enable_state == DPU_ENC_DISABLED)
1603 			continue;
1604 
1605 		ctl = phys->hw_ctl;
1606 
1607 		/*
1608 		 * This is cleared in frame_done worker, which isn't invoked
1609 		 * for async commits. So don't set this for async, since it'll
1610 		 * roll over to the next commit.
1611 		 */
1612 		if (phys->split_role != ENC_ROLE_SLAVE)
1613 			set_bit(i, dpu_enc->frame_busy_mask);
1614 
1615 		if (!phys->ops.needs_single_flush ||
1616 				!phys->ops.needs_single_flush(phys))
1617 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1618 		else if (ctl->ops.get_pending_flush)
1619 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1620 	}
1621 
1622 	/* for split flush, combine pending flush masks and send to master */
1623 	if (pending_flush && dpu_enc->cur_master) {
1624 		_dpu_encoder_trigger_flush(
1625 				&dpu_enc->base,
1626 				dpu_enc->cur_master,
1627 				pending_flush);
1628 	}
1629 
1630 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1631 
1632 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1633 }
1634 
1635 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1636 {
1637 	struct dpu_encoder_virt *dpu_enc;
1638 	struct dpu_encoder_phys *phys;
1639 	unsigned int i;
1640 	struct dpu_hw_ctl *ctl;
1641 	struct msm_display_info *disp_info;
1642 
1643 	if (!drm_enc) {
1644 		DPU_ERROR("invalid encoder\n");
1645 		return;
1646 	}
1647 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1648 	disp_info = &dpu_enc->disp_info;
1649 
1650 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1651 		phys = dpu_enc->phys_encs[i];
1652 
1653 		ctl = phys->hw_ctl;
1654 		if (ctl->ops.clear_pending_flush)
1655 			ctl->ops.clear_pending_flush(ctl);
1656 
1657 		/* update only for command mode primary ctl */
1658 		if ((phys == dpu_enc->cur_master) &&
1659 		    disp_info->is_cmd_mode
1660 		    && ctl->ops.trigger_pending)
1661 			ctl->ops.trigger_pending(ctl);
1662 	}
1663 }
1664 
1665 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1666 		struct drm_display_mode *mode)
1667 {
1668 	u64 pclk_rate;
1669 	u32 pclk_period;
1670 	u32 line_time;
1671 
1672 	/*
1673 	 * For linetime calculation, only operate on master encoder.
1674 	 */
1675 	if (!dpu_enc->cur_master)
1676 		return 0;
1677 
1678 	if (!dpu_enc->cur_master->ops.get_line_count) {
1679 		DPU_ERROR("get_line_count function not defined\n");
1680 		return 0;
1681 	}
1682 
1683 	pclk_rate = mode->clock; /* pixel clock in kHz */
1684 	if (pclk_rate == 0) {
1685 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1686 		return 0;
1687 	}
1688 
1689 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1690 	if (pclk_period == 0) {
1691 		DPU_ERROR("pclk period is 0\n");
1692 		return 0;
1693 	}
1694 
1695 	/*
1696 	 * Line time calculation based on Pixel clock and HTOTAL.
1697 	 * Final unit is in ns.
1698 	 */
1699 	line_time = (pclk_period * mode->htotal) / 1000;
1700 	if (line_time == 0) {
1701 		DPU_ERROR("line time calculation is 0\n");
1702 		return 0;
1703 	}
1704 
1705 	DPU_DEBUG_ENC(dpu_enc,
1706 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1707 			pclk_rate, pclk_period, line_time);
1708 
1709 	return line_time;
1710 }
1711 
1712 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1713 {
1714 	struct drm_display_mode *mode;
1715 	struct dpu_encoder_virt *dpu_enc;
1716 	u32 cur_line;
1717 	u32 line_time;
1718 	u32 vtotal, time_to_vsync;
1719 	ktime_t cur_time;
1720 
1721 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1722 
1723 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1724 		DPU_ERROR("crtc/crtc state object is NULL\n");
1725 		return -EINVAL;
1726 	}
1727 	mode = &drm_enc->crtc->state->adjusted_mode;
1728 
1729 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1730 	if (!line_time)
1731 		return -EINVAL;
1732 
1733 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1734 
1735 	vtotal = mode->vtotal;
1736 	if (cur_line >= vtotal)
1737 		time_to_vsync = line_time * vtotal;
1738 	else
1739 		time_to_vsync = line_time * (vtotal - cur_line);
1740 
1741 	if (time_to_vsync == 0) {
1742 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1743 				vtotal);
1744 		return -EINVAL;
1745 	}
1746 
1747 	cur_time = ktime_get();
1748 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1749 
1750 	DPU_DEBUG_ENC(dpu_enc,
1751 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1752 			cur_line, vtotal, time_to_vsync,
1753 			ktime_to_ms(cur_time),
1754 			ktime_to_ms(*wakeup_time));
1755 	return 0;
1756 }
1757 
1758 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1759 {
1760 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1761 			vsync_event_timer);
1762 	struct drm_encoder *drm_enc = &dpu_enc->base;
1763 	struct msm_drm_private *priv;
1764 	struct msm_drm_thread *event_thread;
1765 
1766 	if (!drm_enc->dev || !drm_enc->crtc) {
1767 		DPU_ERROR("invalid parameters\n");
1768 		return;
1769 	}
1770 
1771 	priv = drm_enc->dev->dev_private;
1772 
1773 	if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1774 		DPU_ERROR("invalid crtc index\n");
1775 		return;
1776 	}
1777 	event_thread = &priv->event_thread[drm_enc->crtc->index];
1778 	if (!event_thread) {
1779 		DPU_ERROR("event_thread not found for crtc:%d\n",
1780 				drm_enc->crtc->index);
1781 		return;
1782 	}
1783 
1784 	del_timer(&dpu_enc->vsync_event_timer);
1785 }
1786 
1787 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1788 {
1789 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1790 			struct dpu_encoder_virt, vsync_event_work);
1791 	ktime_t wakeup_time;
1792 
1793 	if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1794 		return;
1795 
1796 	trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1797 	mod_timer(&dpu_enc->vsync_event_timer,
1798 			nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1799 }
1800 
1801 static u32
1802 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1803 				  u32 enc_ip_width)
1804 {
1805 	int ssm_delay, total_pixels, soft_slice_per_enc;
1806 
1807 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1808 
1809 	/*
1810 	 * minimum number of initial line pixels is a sum of:
1811 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1812 	 *    91 for 10 bpc) * 3
1813 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1814 	 * 3. the initial xmit delay
1815 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1816 	 * 5. 6 additional pixels as the output of the rate buffer is
1817 	 *    48 bits wide
1818 	 */
1819 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1820 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1821 	if (soft_slice_per_enc > 1)
1822 		total_pixels += (ssm_delay * 3);
1823 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1824 }
1825 
1826 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_dsc *hw_dsc,
1827 				     struct dpu_hw_pingpong *hw_pp,
1828 				     struct drm_dsc_config *dsc,
1829 				     u32 common_mode,
1830 				     u32 initial_lines)
1831 {
1832 	if (hw_dsc->ops.dsc_config)
1833 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1834 
1835 	if (hw_dsc->ops.dsc_config_thresh)
1836 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1837 
1838 	if (hw_pp->ops.setup_dsc)
1839 		hw_pp->ops.setup_dsc(hw_pp);
1840 
1841 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1842 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, true, hw_pp->idx);
1843 
1844 	if (hw_pp->ops.enable_dsc)
1845 		hw_pp->ops.enable_dsc(hw_pp);
1846 }
1847 
1848 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1849 				 struct drm_dsc_config *dsc)
1850 {
1851 	/* coding only for 2LM, 2enc, 1 dsc config */
1852 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1853 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1854 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1855 	int this_frame_slices;
1856 	int intf_ip_w, enc_ip_w;
1857 	int dsc_common_mode;
1858 	int pic_width;
1859 	u32 initial_lines;
1860 	int i;
1861 
1862 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1863 		hw_pp[i] = dpu_enc->hw_pp[i];
1864 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1865 
1866 		if (!hw_pp[i] || !hw_dsc[i]) {
1867 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1868 			return;
1869 		}
1870 	}
1871 
1872 	dsc_common_mode = 0;
1873 	pic_width = dsc->pic_width;
1874 
1875 	dsc_common_mode = DSC_MODE_MULTIPLEX | DSC_MODE_SPLIT_PANEL;
1876 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1877 		dsc_common_mode |= DSC_MODE_VIDEO;
1878 
1879 	this_frame_slices = pic_width / dsc->slice_width;
1880 	intf_ip_w = this_frame_slices * dsc->slice_width;
1881 
1882 	/*
1883 	 * dsc merge case: when using 2 encoders for the same stream,
1884 	 * no. of slices need to be same on both the encoders.
1885 	 */
1886 	enc_ip_w = intf_ip_w / 2;
1887 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1888 
1889 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1890 		dpu_encoder_dsc_pipe_cfg(hw_dsc[i], hw_pp[i], dsc, dsc_common_mode, initial_lines);
1891 }
1892 
1893 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1894 {
1895 	struct dpu_encoder_virt *dpu_enc;
1896 	struct dpu_encoder_phys *phys;
1897 	bool needs_hw_reset = false;
1898 	unsigned int i;
1899 
1900 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1901 
1902 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1903 
1904 	/* prepare for next kickoff, may include waiting on previous kickoff */
1905 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1906 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1907 		phys = dpu_enc->phys_encs[i];
1908 		if (phys->ops.prepare_for_kickoff)
1909 			phys->ops.prepare_for_kickoff(phys);
1910 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1911 			needs_hw_reset = true;
1912 	}
1913 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1914 
1915 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1916 
1917 	/* if any phys needs reset, reset all phys, in-order */
1918 	if (needs_hw_reset) {
1919 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1920 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1921 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1922 		}
1923 	}
1924 
1925 	if (dpu_enc->dsc)
1926 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1927 }
1928 
1929 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1930 {
1931 	struct dpu_encoder_virt *dpu_enc;
1932 	unsigned int i;
1933 	struct dpu_encoder_phys *phys;
1934 
1935 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1936 
1937 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1938 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1939 			phys = dpu_enc->phys_encs[i];
1940 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1941 				DPU_DEBUG("invalid FB not kicking off\n");
1942 				return false;
1943 			}
1944 		}
1945 	}
1946 
1947 	return true;
1948 }
1949 
1950 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1951 {
1952 	struct dpu_encoder_virt *dpu_enc;
1953 	struct dpu_encoder_phys *phys;
1954 	ktime_t wakeup_time;
1955 	unsigned long timeout_ms;
1956 	unsigned int i;
1957 
1958 	DPU_ATRACE_BEGIN("encoder_kickoff");
1959 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1960 
1961 	trace_dpu_enc_kickoff(DRMID(drm_enc));
1962 
1963 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1964 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1965 
1966 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1967 	mod_timer(&dpu_enc->frame_done_timer,
1968 			jiffies + msecs_to_jiffies(timeout_ms));
1969 
1970 	/* All phys encs are ready to go, trigger the kickoff */
1971 	_dpu_encoder_kickoff_phys(dpu_enc);
1972 
1973 	/* allow phys encs to handle any post-kickoff business */
1974 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1975 		phys = dpu_enc->phys_encs[i];
1976 		if (phys->ops.handle_post_kickoff)
1977 			phys->ops.handle_post_kickoff(phys);
1978 	}
1979 
1980 	if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1981 			!dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1982 		trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1983 					    ktime_to_ms(wakeup_time));
1984 		mod_timer(&dpu_enc->vsync_event_timer,
1985 				nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1986 	}
1987 
1988 	DPU_ATRACE_END("encoder_kickoff");
1989 }
1990 
1991 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
1992 {
1993 	struct dpu_hw_mixer_cfg mixer;
1994 	int i, num_lm;
1995 	struct dpu_global_state *global_state;
1996 	struct dpu_hw_blk *hw_lm[2];
1997 	struct dpu_hw_mixer *hw_mixer[2];
1998 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
1999 
2000 	memset(&mixer, 0, sizeof(mixer));
2001 
2002 	/* reset all mixers for this encoder */
2003 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2004 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2005 
2006 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2007 
2008 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2009 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2010 
2011 	for (i = 0; i < num_lm; i++) {
2012 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2013 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2014 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2015 
2016 		/* clear all blendstages */
2017 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2018 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2019 	}
2020 }
2021 
2022 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2023 {
2024 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2025 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2026 	int i;
2027 	struct dpu_encoder_virt *dpu_enc;
2028 
2029 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2030 
2031 	phys_enc->hw_ctl->ops.reset(ctl);
2032 
2033 	dpu_encoder_helper_reset_mixers(phys_enc);
2034 
2035 	/*
2036 	 * TODO: move the once-only operation like CTL flush/trigger
2037 	 * into dpu_encoder_virt_disable() and all operations which need
2038 	 * to be done per phys encoder into the phys_disable() op.
2039 	 */
2040 	if (phys_enc->hw_wb) {
2041 		/* disable the PP block */
2042 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2043 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, false,
2044 					phys_enc->hw_pp->idx);
2045 
2046 		/* mark WB flush as pending */
2047 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2048 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2049 	} else {
2050 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2051 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2052 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2053 						dpu_enc->phys_encs[i]->hw_intf, false,
2054 						dpu_enc->phys_encs[i]->hw_pp->idx);
2055 
2056 			/* mark INTF flush as pending */
2057 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2058 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2059 						dpu_enc->phys_encs[i]->hw_intf->idx);
2060 		}
2061 	}
2062 
2063 	/* reset the merge 3D HW block */
2064 	if (phys_enc->hw_pp->merge_3d) {
2065 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2066 				BLEND_3D_NONE);
2067 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2068 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2069 					phys_enc->hw_pp->merge_3d->idx);
2070 	}
2071 
2072 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2073 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2074 
2075 	if (phys_enc->hw_intf)
2076 		intf_cfg.intf = phys_enc->hw_intf->idx;
2077 	if (phys_enc->hw_wb)
2078 		intf_cfg.wb = phys_enc->hw_wb->idx;
2079 
2080 	if (phys_enc->hw_pp->merge_3d)
2081 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2082 
2083 	if (ctl->ops.reset_intf_cfg)
2084 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2085 
2086 	ctl->ops.trigger_flush(ctl);
2087 	ctl->ops.trigger_start(ctl);
2088 	ctl->ops.clear_pending_flush(ctl);
2089 }
2090 
2091 #ifdef CONFIG_DEBUG_FS
2092 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2093 {
2094 	struct dpu_encoder_virt *dpu_enc = s->private;
2095 	int i;
2096 
2097 	mutex_lock(&dpu_enc->enc_lock);
2098 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2099 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2100 
2101 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    ",
2102 				phys->intf_idx - INTF_0, phys->wb_idx - WB_0,
2103 				atomic_read(&phys->vsync_cnt),
2104 				atomic_read(&phys->underrun_cnt));
2105 
2106 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2107 	}
2108 	mutex_unlock(&dpu_enc->enc_lock);
2109 
2110 	return 0;
2111 }
2112 
2113 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2114 
2115 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2116 {
2117 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2118 	int i;
2119 
2120 	char name[DPU_NAME_SIZE];
2121 
2122 	if (!drm_enc->dev) {
2123 		DPU_ERROR("invalid encoder or kms\n");
2124 		return -EINVAL;
2125 	}
2126 
2127 	snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
2128 
2129 	/* create overall sub-directory for the encoder */
2130 	dpu_enc->debugfs_root = debugfs_create_dir(name,
2131 			drm_enc->dev->primary->debugfs_root);
2132 
2133 	/* don't error check these */
2134 	debugfs_create_file("status", 0600,
2135 		dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
2136 
2137 	for (i = 0; i < dpu_enc->num_phys_encs; i++)
2138 		if (dpu_enc->phys_encs[i]->ops.late_register)
2139 			dpu_enc->phys_encs[i]->ops.late_register(
2140 					dpu_enc->phys_encs[i],
2141 					dpu_enc->debugfs_root);
2142 
2143 	return 0;
2144 }
2145 #else
2146 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
2147 {
2148 	return 0;
2149 }
2150 #endif
2151 
2152 static int dpu_encoder_late_register(struct drm_encoder *encoder)
2153 {
2154 	return _dpu_encoder_init_debugfs(encoder);
2155 }
2156 
2157 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
2158 {
2159 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2160 
2161 	debugfs_remove_recursive(dpu_enc->debugfs_root);
2162 }
2163 
2164 static int dpu_encoder_virt_add_phys_encs(
2165 		struct msm_display_info *disp_info,
2166 		struct dpu_encoder_virt *dpu_enc,
2167 		struct dpu_enc_phys_init_params *params)
2168 {
2169 	struct dpu_encoder_phys *enc = NULL;
2170 
2171 	DPU_DEBUG_ENC(dpu_enc, "\n");
2172 
2173 	/*
2174 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2175 	 * in this function, check up-front.
2176 	 */
2177 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2178 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2179 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2180 			  dpu_enc->num_phys_encs);
2181 		return -EINVAL;
2182 	}
2183 
2184 
2185 	if (disp_info->intf_type == DRM_MODE_ENCODER_VIRTUAL) {
2186 		enc = dpu_encoder_phys_wb_init(params);
2187 
2188 		if (IS_ERR(enc)) {
2189 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2190 				PTR_ERR(enc));
2191 			return PTR_ERR(enc);
2192 		}
2193 
2194 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2195 		++dpu_enc->num_phys_encs;
2196 	} else if (disp_info->is_cmd_mode) {
2197 		enc = dpu_encoder_phys_cmd_init(params);
2198 
2199 		if (IS_ERR(enc)) {
2200 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2201 				PTR_ERR(enc));
2202 			return PTR_ERR(enc);
2203 		}
2204 
2205 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2206 		++dpu_enc->num_phys_encs;
2207 	} else {
2208 		enc = dpu_encoder_phys_vid_init(params);
2209 
2210 		if (IS_ERR(enc)) {
2211 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2212 				PTR_ERR(enc));
2213 			return PTR_ERR(enc);
2214 		}
2215 
2216 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2217 		++dpu_enc->num_phys_encs;
2218 	}
2219 
2220 	if (params->split_role == ENC_ROLE_SLAVE)
2221 		dpu_enc->cur_slave = enc;
2222 	else
2223 		dpu_enc->cur_master = enc;
2224 
2225 	return 0;
2226 }
2227 
2228 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2229 				 struct dpu_kms *dpu_kms,
2230 				 struct msm_display_info *disp_info)
2231 {
2232 	int ret = 0;
2233 	int i = 0;
2234 	enum dpu_intf_type intf_type = INTF_NONE;
2235 	struct dpu_enc_phys_init_params phys_params;
2236 
2237 	if (!dpu_enc) {
2238 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2239 		return -EINVAL;
2240 	}
2241 
2242 	dpu_enc->cur_master = NULL;
2243 
2244 	memset(&phys_params, 0, sizeof(phys_params));
2245 	phys_params.dpu_kms = dpu_kms;
2246 	phys_params.parent = &dpu_enc->base;
2247 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2248 
2249 	switch (disp_info->intf_type) {
2250 	case DRM_MODE_ENCODER_DSI:
2251 		intf_type = INTF_DSI;
2252 		break;
2253 	case DRM_MODE_ENCODER_TMDS:
2254 		intf_type = INTF_DP;
2255 		break;
2256 	case DRM_MODE_ENCODER_VIRTUAL:
2257 		intf_type = INTF_WB;
2258 		break;
2259 	}
2260 
2261 	WARN_ON(disp_info->num_of_h_tiles < 1);
2262 
2263 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2264 
2265 	if (disp_info->intf_type != DRM_MODE_ENCODER_VIRTUAL)
2266 		dpu_enc->idle_pc_supported =
2267 				dpu_kms->catalog->caps->has_idle_pc;
2268 
2269 	dpu_enc->dsc = disp_info->dsc;
2270 
2271 	mutex_lock(&dpu_enc->enc_lock);
2272 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2273 		/*
2274 		 * Left-most tile is at index 0, content is controller id
2275 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2276 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2277 		 */
2278 		u32 controller_id = disp_info->h_tile_instance[i];
2279 
2280 		if (disp_info->num_of_h_tiles > 1) {
2281 			if (i == 0)
2282 				phys_params.split_role = ENC_ROLE_MASTER;
2283 			else
2284 				phys_params.split_role = ENC_ROLE_SLAVE;
2285 		} else {
2286 			phys_params.split_role = ENC_ROLE_SOLO;
2287 		}
2288 
2289 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2290 				i, controller_id, phys_params.split_role);
2291 
2292 		phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2293 													intf_type,
2294 													controller_id);
2295 
2296 		phys_params.wb_idx = dpu_encoder_get_wb(dpu_kms->catalog,
2297 				intf_type, controller_id);
2298 		/*
2299 		 * The phys_params might represent either an INTF or a WB unit, but not
2300 		 * both of them at the same time.
2301 		 */
2302 		if ((phys_params.intf_idx == INTF_MAX) &&
2303 				(phys_params.wb_idx == WB_MAX)) {
2304 			DPU_ERROR_ENC(dpu_enc, "could not get intf or wb: type %d, id %d\n",
2305 						  intf_type, controller_id);
2306 			ret = -EINVAL;
2307 		}
2308 
2309 		if ((phys_params.intf_idx != INTF_MAX) &&
2310 				(phys_params.wb_idx != WB_MAX)) {
2311 			DPU_ERROR_ENC(dpu_enc, "both intf and wb present: type %d, id %d\n",
2312 						  intf_type, controller_id);
2313 			ret = -EINVAL;
2314 		}
2315 
2316 		if (!ret) {
2317 			ret = dpu_encoder_virt_add_phys_encs(disp_info,
2318 					dpu_enc, &phys_params);
2319 			if (ret)
2320 				DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2321 		}
2322 	}
2323 
2324 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2325 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2326 		atomic_set(&phys->vsync_cnt, 0);
2327 		atomic_set(&phys->underrun_cnt, 0);
2328 
2329 		if (phys->intf_idx >= INTF_0 && phys->intf_idx < INTF_MAX)
2330 			phys->hw_intf = dpu_rm_get_intf(&dpu_kms->rm, phys->intf_idx);
2331 
2332 		if (phys->wb_idx >= WB_0 && phys->wb_idx < WB_MAX)
2333 			phys->hw_wb = dpu_rm_get_wb(&dpu_kms->rm, phys->wb_idx);
2334 
2335 		if (!phys->hw_intf && !phys->hw_wb) {
2336 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2337 			ret = -EINVAL;
2338 		}
2339 
2340 		if (phys->hw_intf && phys->hw_wb) {
2341 			DPU_ERROR_ENC(dpu_enc,
2342 					"invalid phys both intf and wb block at idx: %d\n", i);
2343 			ret = -EINVAL;
2344 		}
2345 	}
2346 
2347 	mutex_unlock(&dpu_enc->enc_lock);
2348 
2349 	return ret;
2350 }
2351 
2352 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2353 {
2354 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2355 			frame_done_timer);
2356 	struct drm_encoder *drm_enc = &dpu_enc->base;
2357 	u32 event;
2358 
2359 	if (!drm_enc->dev) {
2360 		DPU_ERROR("invalid parameters\n");
2361 		return;
2362 	}
2363 
2364 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2365 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2366 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2367 		return;
2368 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2369 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2370 		return;
2371 	}
2372 
2373 	DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2374 
2375 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2376 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2377 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2378 }
2379 
2380 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2381 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2382 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2383 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2384 	.atomic_check = dpu_encoder_virt_atomic_check,
2385 };
2386 
2387 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2388 		.destroy = dpu_encoder_destroy,
2389 		.late_register = dpu_encoder_late_register,
2390 		.early_unregister = dpu_encoder_early_unregister,
2391 };
2392 
2393 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2394 		struct msm_display_info *disp_info)
2395 {
2396 	struct msm_drm_private *priv = dev->dev_private;
2397 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2398 	struct drm_encoder *drm_enc = NULL;
2399 	struct dpu_encoder_virt *dpu_enc = NULL;
2400 	int ret = 0;
2401 
2402 	dpu_enc = to_dpu_encoder_virt(enc);
2403 
2404 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2405 	if (ret)
2406 		goto fail;
2407 
2408 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2409 	timer_setup(&dpu_enc->frame_done_timer,
2410 			dpu_encoder_frame_done_timeout, 0);
2411 
2412 	if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2413 		timer_setup(&dpu_enc->vsync_event_timer,
2414 				dpu_encoder_vsync_event_handler,
2415 				0);
2416 	else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS)
2417 		dpu_enc->wide_bus_en = msm_dp_wide_bus_available(
2418 				priv->dp[disp_info->h_tile_instance[0]]);
2419 
2420 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2421 			dpu_encoder_off_work);
2422 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2423 
2424 	kthread_init_work(&dpu_enc->vsync_event_work,
2425 			dpu_encoder_vsync_event_work_handler);
2426 
2427 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2428 
2429 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2430 
2431 	return ret;
2432 
2433 fail:
2434 	DPU_ERROR("failed to create encoder\n");
2435 	if (drm_enc)
2436 		dpu_encoder_destroy(drm_enc);
2437 
2438 	return ret;
2439 
2440 
2441 }
2442 
2443 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2444 		int drm_enc_mode)
2445 {
2446 	struct dpu_encoder_virt *dpu_enc = NULL;
2447 	int rc = 0;
2448 
2449 	dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2450 	if (!dpu_enc)
2451 		return ERR_PTR(-ENOMEM);
2452 
2453 
2454 	rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2455 							  drm_enc_mode, NULL);
2456 	if (rc) {
2457 		devm_kfree(dev->dev, dpu_enc);
2458 		return ERR_PTR(rc);
2459 	}
2460 
2461 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2462 
2463 	spin_lock_init(&dpu_enc->enc_spinlock);
2464 	dpu_enc->enabled = false;
2465 	mutex_init(&dpu_enc->enc_lock);
2466 	mutex_init(&dpu_enc->rc_lock);
2467 
2468 	return &dpu_enc->base;
2469 }
2470 
2471 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2472 	enum msm_event_wait event)
2473 {
2474 	int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2475 	struct dpu_encoder_virt *dpu_enc = NULL;
2476 	int i, ret = 0;
2477 
2478 	if (!drm_enc) {
2479 		DPU_ERROR("invalid encoder\n");
2480 		return -EINVAL;
2481 	}
2482 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2483 	DPU_DEBUG_ENC(dpu_enc, "\n");
2484 
2485 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2486 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2487 
2488 		switch (event) {
2489 		case MSM_ENC_COMMIT_DONE:
2490 			fn_wait = phys->ops.wait_for_commit_done;
2491 			break;
2492 		case MSM_ENC_TX_COMPLETE:
2493 			fn_wait = phys->ops.wait_for_tx_complete;
2494 			break;
2495 		case MSM_ENC_VBLANK:
2496 			fn_wait = phys->ops.wait_for_vblank;
2497 			break;
2498 		default:
2499 			DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2500 					event);
2501 			return -EINVAL;
2502 		}
2503 
2504 		if (fn_wait) {
2505 			DPU_ATRACE_BEGIN("wait_for_completion_event");
2506 			ret = fn_wait(phys);
2507 			DPU_ATRACE_END("wait_for_completion_event");
2508 			if (ret)
2509 				return ret;
2510 		}
2511 	}
2512 
2513 	return ret;
2514 }
2515 
2516 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2517 {
2518 	struct dpu_encoder_virt *dpu_enc = NULL;
2519 
2520 	if (!encoder) {
2521 		DPU_ERROR("invalid encoder\n");
2522 		return INTF_MODE_NONE;
2523 	}
2524 	dpu_enc = to_dpu_encoder_virt(encoder);
2525 
2526 	if (dpu_enc->cur_master)
2527 		return dpu_enc->cur_master->intf_mode;
2528 
2529 	if (dpu_enc->num_phys_encs)
2530 		return dpu_enc->phys_encs[0]->intf_mode;
2531 
2532 	return INTF_MODE_NONE;
2533 }
2534 
2535 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2536 {
2537 	struct drm_encoder *encoder = phys_enc->parent;
2538 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2539 
2540 	return dpu_enc->dsc_mask;
2541 }
2542