xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37 
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40 
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43 
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46 
47 /*
48  * Two to anticipate panels that can do cmd/vid dynamic switching
49  * plan is to create all possible physical encoder types, and switch between
50  * them at runtime
51  */
52 #define NUM_PHYS_ENCODER_TYPES 2
53 
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56 
57 #define MAX_CHANNELS_PER_ENC 2
58 
59 #define IDLE_SHORT_TIMEOUT	1
60 
61 #define MAX_HDISPLAY_SPLIT 1080
62 
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65 
66 /**
67  * enum dpu_enc_rc_events - events for resource control state machine
68  * @DPU_ENC_RC_EVENT_KICKOFF:
69  *	This event happens at NORMAL priority.
70  *	Event that signals the start of the transfer. When this event is
71  *	received, enable MDP/DSI core clocks. Regardless of the previous
72  *	state, the resource should be in ON state at the end of this event.
73  * @DPU_ENC_RC_EVENT_FRAME_DONE:
74  *	This event happens at INTERRUPT level.
75  *	Event signals the end of the data transfer after the PP FRAME_DONE
76  *	event. At the end of this event, a delayed work is scheduled to go to
77  *	IDLE_PC state after IDLE_TIMEOUT time.
78  * @DPU_ENC_RC_EVENT_PRE_STOP:
79  *	This event happens at NORMAL priority.
80  *	This event, when received during the ON state, leave the RC STATE
81  *	in the PRE_OFF state. It should be followed by the STOP event as
82  *	part of encoder disable.
83  *	If received during IDLE or OFF states, it will do nothing.
84  * @DPU_ENC_RC_EVENT_STOP:
85  *	This event happens at NORMAL priority.
86  *	When this event is received, disable all the MDP/DSI core clocks, and
87  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
88  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
90  *	Resource state should be in OFF at the end of the event.
91  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92  *	This event happens at NORMAL priority from a work item.
93  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
94  *	This would disable MDP/DSI core clocks and change the resource state
95  *	to IDLE.
96  */
97 enum dpu_enc_rc_events {
98 	DPU_ENC_RC_EVENT_KICKOFF = 1,
99 	DPU_ENC_RC_EVENT_FRAME_DONE,
100 	DPU_ENC_RC_EVENT_PRE_STOP,
101 	DPU_ENC_RC_EVENT_STOP,
102 	DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104 
105 /*
106  * enum dpu_enc_rc_states - states that the resource control maintains
107  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112  */
113 enum dpu_enc_rc_states {
114 	DPU_ENC_RC_STATE_OFF,
115 	DPU_ENC_RC_STATE_PRE_OFF,
116 	DPU_ENC_RC_STATE_ON,
117 	DPU_ENC_RC_STATE_IDLE
118 };
119 
120 /**
121  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122  *	encoders. Virtual encoder manages one "logical" display. Physical
123  *	encoders manage one intf block, tied to a specific panel/sub-panel.
124  *	Virtual encoder defers as much as possible to the physical encoders.
125  *	Virtual encoder registers itself with the DRM Framework as the encoder.
126  * @base:		drm_encoder base class for registration with DRM
127  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
128  * @enabled:		True if the encoder is active, protected by enc_lock
129  * @commit_done_timedout: True if there has been a timeout on commit after
130  *			enabling the encoder.
131  * @num_phys_encs:	Actual number of physical encoders contained.
132  * @phys_encs:		Container of physical encoders managed.
133  * @cur_master:		Pointer to the current master in this mode. Optimization
134  *			Only valid after enable. Cleared as disable.
135  * @cur_slave:		As above but for the slave encoder.
136  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
137  *			pingpong blocks can be different than num_phys_encs.
138  * @hw_dsc:		Handle to the DSC blocks used for the display.
139  * @dsc_mask:		Bitmask of used DSC blocks.
140  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
141  *			for partial update right-only cases, such as pingpong
142  *			split where virtual pingpong does not generate IRQs
143  * @crtc:		Pointer to the currently assigned crtc. Normally you
144  *			would use crtc->state->encoder_mask to determine the
145  *			link between encoder/crtc. However in this case we need
146  *			to track crtc in the disable() hook which is called
147  *			_after_ encoder_mask is cleared.
148  * @connector:		If a mode is set, cached pointer to the active connector
149  * @enc_lock:			Lock around physical encoder
150  *				create/destroy/enable/disable
151  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
152  *				busy processing current command.
153  *				Bit0 = phys_encs[0] etc.
154  * @crtc_frame_event_cb:	callback handler for frame event
155  * @crtc_frame_event_cb_data:	callback handler private data
156  * @frame_done_timeout_ms:	frame done timeout in ms
157  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
158  * 				done timeouts
159  * @frame_done_timer:		watchdog timer for frame done event
160  * @disp_info:			local copy of msm_display_info struct
161  * @idle_pc_supported:		indicate if idle power collaps is supported
162  * @rc_lock:			resource control mutex lock to protect
163  *				virt encoder over various state changes
164  * @rc_state:			resource controller state
165  * @delayed_off_work:		delayed worker to schedule disabling of
166  *				clks and resources after IDLE_TIMEOUT time.
167  * @topology:                   topology of the display
168  * @idle_timeout:		idle timeout duration in milliseconds
169  * @wide_bus_en:		wide bus is enabled on this interface
170  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
171  */
172 struct dpu_encoder_virt {
173 	struct drm_encoder base;
174 	spinlock_t enc_spinlock;
175 
176 	bool enabled;
177 	bool commit_done_timedout;
178 
179 	unsigned int num_phys_encs;
180 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
181 	struct dpu_encoder_phys *cur_master;
182 	struct dpu_encoder_phys *cur_slave;
183 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
184 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
185 
186 	unsigned int dsc_mask;
187 
188 	bool intfs_swapped;
189 
190 	struct drm_crtc *crtc;
191 	struct drm_connector *connector;
192 
193 	struct mutex enc_lock;
194 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
195 	void (*crtc_frame_event_cb)(void *, u32 event);
196 	void *crtc_frame_event_cb_data;
197 
198 	atomic_t frame_done_timeout_ms;
199 	atomic_t frame_done_timeout_cnt;
200 	struct timer_list frame_done_timer;
201 
202 	struct msm_display_info disp_info;
203 
204 	bool idle_pc_supported;
205 	struct mutex rc_lock;
206 	enum dpu_enc_rc_states rc_state;
207 	struct delayed_work delayed_off_work;
208 	struct msm_display_topology topology;
209 
210 	u32 idle_timeout;
211 
212 	bool wide_bus_en;
213 
214 	/* DSC configuration */
215 	struct drm_dsc_config *dsc;
216 };
217 
218 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
219 
220 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
221 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
222 };
223 
224 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
225 {
226 	struct drm_encoder *drm_enc;
227 	struct dpu_encoder_virt *dpu_enc;
228 	struct drm_display_info *info;
229 	struct drm_display_mode *mode;
230 
231 	drm_enc = phys_enc->parent;
232 	dpu_enc = to_dpu_encoder_virt(drm_enc);
233 	info = &dpu_enc->connector->display_info;
234 	mode = &phys_enc->cached_mode;
235 
236 	if (drm_mode_is_420_only(info, mode))
237 		return DRM_FORMAT_YUV420;
238 
239 	return DRM_FORMAT_RGB888;
240 }
241 
242 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
243 {
244 	struct drm_encoder *drm_enc;
245 	struct dpu_encoder_virt *dpu_enc;
246 	struct msm_display_info *disp_info;
247 	struct msm_drm_private *priv;
248 	struct drm_display_mode *mode;
249 
250 	drm_enc = phys_enc->parent;
251 	dpu_enc = to_dpu_encoder_virt(drm_enc);
252 	disp_info = &dpu_enc->disp_info;
253 	priv = drm_enc->dev->dev_private;
254 	mode = &phys_enc->cached_mode;
255 
256 	return phys_enc->hw_intf->cap->type == INTF_DP &&
257 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
258 }
259 
260 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
261 {
262 	const struct dpu_encoder_virt *dpu_enc;
263 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
264 	const struct msm_display_info *disp_info;
265 	int index;
266 
267 	dpu_enc = to_dpu_encoder_virt(drm_enc);
268 	disp_info = &dpu_enc->disp_info;
269 	index = disp_info->h_tile_instance[0];
270 
271 	if (disp_info->intf_type == INTF_DP)
272 		return msm_dp_wide_bus_available(priv->dp[index]);
273 	else if (disp_info->intf_type == INTF_DSI)
274 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
275 
276 	return false;
277 }
278 
279 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
280 {
281 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
282 
283 	return dpu_enc->dsc ? true : false;
284 }
285 
286 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
287 {
288 	struct dpu_encoder_virt *dpu_enc;
289 	int i, num_intf = 0;
290 
291 	dpu_enc = to_dpu_encoder_virt(drm_enc);
292 
293 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
294 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
295 
296 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
297 				&& phys->hw_intf->ops.collect_misr)
298 			num_intf++;
299 	}
300 
301 	return num_intf;
302 }
303 
304 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
305 {
306 	struct dpu_encoder_virt *dpu_enc;
307 
308 	int i;
309 
310 	dpu_enc = to_dpu_encoder_virt(drm_enc);
311 
312 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
313 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
314 
315 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
316 			continue;
317 
318 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
319 	}
320 }
321 
322 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
323 {
324 	struct dpu_encoder_virt *dpu_enc;
325 
326 	int i, rc = 0, entries_added = 0;
327 
328 	if (!drm_enc->crtc) {
329 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
330 		return -EINVAL;
331 	}
332 
333 	dpu_enc = to_dpu_encoder_virt(drm_enc);
334 
335 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
336 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
337 
338 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
339 			continue;
340 
341 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
342 		if (rc)
343 			return rc;
344 		entries_added++;
345 	}
346 
347 	return entries_added;
348 }
349 
350 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
351 {
352 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
353 
354 	if (!hw_pp->ops.setup_dither)
355 		return;
356 
357 	switch (bpc) {
358 	case 6:
359 		dither_cfg.c0_bitdepth = 6;
360 		dither_cfg.c1_bitdepth = 6;
361 		dither_cfg.c2_bitdepth = 6;
362 		dither_cfg.c3_bitdepth = 6;
363 		dither_cfg.temporal_en = 0;
364 		break;
365 	default:
366 		hw_pp->ops.setup_dither(hw_pp, NULL);
367 		return;
368 	}
369 
370 	memcpy(&dither_cfg.matrix, dither_matrix,
371 			sizeof(u32) * DITHER_MATRIX_SZ);
372 
373 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
374 }
375 
376 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
377 {
378 	switch (intf_mode) {
379 	case INTF_MODE_VIDEO:
380 		return "INTF_MODE_VIDEO";
381 	case INTF_MODE_CMD:
382 		return "INTF_MODE_CMD";
383 	case INTF_MODE_WB_BLOCK:
384 		return "INTF_MODE_WB_BLOCK";
385 	case INTF_MODE_WB_LINE:
386 		return "INTF_MODE_WB_LINE";
387 	default:
388 		return "INTF_MODE_UNKNOWN";
389 	}
390 }
391 
392 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
393 		enum dpu_intr_idx intr_idx)
394 {
395 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
396 			DRMID(phys_enc->parent),
397 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
398 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
399 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
400 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
401 
402 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
403 				DPU_ENCODER_FRAME_EVENT_ERROR);
404 }
405 
406 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
407 		u32 irq_idx, struct dpu_encoder_wait_info *info);
408 
409 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
410 		unsigned int irq_idx,
411 		void (*func)(void *arg),
412 		struct dpu_encoder_wait_info *wait_info)
413 {
414 	u32 irq_status;
415 	int ret;
416 
417 	if (!wait_info) {
418 		DPU_ERROR("invalid params\n");
419 		return -EINVAL;
420 	}
421 	/* note: do master / slave checking outside */
422 
423 	/* return EWOULDBLOCK since we know the wait isn't necessary */
424 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
425 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
426 			  DRMID(phys_enc->parent), func,
427 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
428 		return -EWOULDBLOCK;
429 	}
430 
431 	if (irq_idx < 0) {
432 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
433 			      DRMID(phys_enc->parent), func);
434 		return 0;
435 	}
436 
437 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
438 		      DRMID(phys_enc->parent), func,
439 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
440 		      atomic_read(wait_info->atomic_cnt));
441 
442 	ret = dpu_encoder_helper_wait_event_timeout(
443 			DRMID(phys_enc->parent),
444 			irq_idx,
445 			wait_info);
446 
447 	if (ret <= 0) {
448 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
449 		if (irq_status) {
450 			unsigned long flags;
451 
452 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
453 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
454 				      DRMID(phys_enc->parent), func,
455 				      phys_enc->hw_pp->idx - PINGPONG_0,
456 				      atomic_read(wait_info->atomic_cnt));
457 			local_irq_save(flags);
458 			func(phys_enc);
459 			local_irq_restore(flags);
460 			ret = 0;
461 		} else {
462 			ret = -ETIMEDOUT;
463 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
464 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
465 				      DRMID(phys_enc->parent), func,
466 				      phys_enc->hw_pp->idx - PINGPONG_0,
467 				      atomic_read(wait_info->atomic_cnt));
468 		}
469 	} else {
470 		ret = 0;
471 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
472 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
473 			phys_enc->hw_pp->idx - PINGPONG_0,
474 			atomic_read(wait_info->atomic_cnt));
475 	}
476 
477 	return ret;
478 }
479 
480 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
481 {
482 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
483 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
484 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
485 }
486 
487 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
488 {
489 	struct dpu_encoder_virt *dpu_enc;
490 	struct dpu_encoder_phys *phys;
491 	int linecount = 0;
492 
493 	dpu_enc = to_dpu_encoder_virt(drm_enc);
494 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
495 
496 	if (phys && phys->ops.get_line_count)
497 		linecount = phys->ops.get_line_count(phys);
498 
499 	return linecount;
500 }
501 
502 void dpu_encoder_helper_split_config(
503 		struct dpu_encoder_phys *phys_enc,
504 		enum dpu_intf interface)
505 {
506 	struct dpu_encoder_virt *dpu_enc;
507 	struct split_pipe_cfg cfg = { 0 };
508 	struct dpu_hw_mdp *hw_mdptop;
509 	struct msm_display_info *disp_info;
510 
511 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
512 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
513 		return;
514 	}
515 
516 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
517 	hw_mdptop = phys_enc->hw_mdptop;
518 	disp_info = &dpu_enc->disp_info;
519 
520 	if (disp_info->intf_type != INTF_DSI)
521 		return;
522 
523 	/**
524 	 * disable split modes since encoder will be operating in as the only
525 	 * encoder, either for the entire use case in the case of, for example,
526 	 * single DSI, or for this frame in the case of left/right only partial
527 	 * update.
528 	 */
529 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
530 		if (hw_mdptop->ops.setup_split_pipe)
531 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
532 		return;
533 	}
534 
535 	cfg.en = true;
536 	cfg.mode = phys_enc->intf_mode;
537 	cfg.intf = interface;
538 
539 	if (cfg.en && phys_enc->ops.needs_single_flush &&
540 			phys_enc->ops.needs_single_flush(phys_enc))
541 		cfg.split_flush_en = true;
542 
543 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
544 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
545 
546 		if (hw_mdptop->ops.setup_split_pipe)
547 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
548 	}
549 }
550 
551 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
552 {
553 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
554 	int i, intf_count = 0, num_dsc = 0;
555 
556 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
557 		if (dpu_enc->phys_encs[i])
558 			intf_count++;
559 
560 	/* See dpu_encoder_get_topology, we only support 2:2:1 topology */
561 	if (dpu_enc->dsc)
562 		num_dsc = 2;
563 
564 	return (num_dsc > 0) && (num_dsc > intf_count);
565 }
566 
567 static struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
568 {
569 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
570 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
571 	int index = dpu_enc->disp_info.h_tile_instance[0];
572 
573 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
574 		return msm_dsi_get_dsc_config(priv->dsi[index]);
575 
576 	return NULL;
577 }
578 
579 static struct msm_display_topology dpu_encoder_get_topology(
580 			struct dpu_encoder_virt *dpu_enc,
581 			struct dpu_kms *dpu_kms,
582 			struct drm_display_mode *mode,
583 			struct drm_crtc_state *crtc_state,
584 			struct drm_dsc_config *dsc)
585 {
586 	struct msm_display_topology topology = {0};
587 	int i, intf_count = 0;
588 
589 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
590 		if (dpu_enc->phys_encs[i])
591 			intf_count++;
592 
593 	/* Datapath topology selection
594 	 *
595 	 * Dual display
596 	 * 2 LM, 2 INTF ( Split display using 2 interfaces)
597 	 *
598 	 * Single display
599 	 * 1 LM, 1 INTF
600 	 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
601 	 *
602 	 * Add dspps to the reservation requirements if ctm is requested
603 	 */
604 	if (intf_count == 2)
605 		topology.num_lm = 2;
606 	else if (!dpu_kms->catalog->caps->has_3d_merge)
607 		topology.num_lm = 1;
608 	else
609 		topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
610 
611 	if (crtc_state->ctm)
612 		topology.num_dspp = topology.num_lm;
613 
614 	topology.num_intf = intf_count;
615 
616 	if (dsc) {
617 		/*
618 		 * In case of Display Stream Compression (DSC), we would use
619 		 * 2 DSC encoders, 2 layer mixers and 1 interface
620 		 * this is power optimal and can drive up to (including) 4k
621 		 * screens
622 		 */
623 		topology.num_dsc = 2;
624 		topology.num_lm = 2;
625 		topology.num_intf = 1;
626 	}
627 
628 	return topology;
629 }
630 
631 static int dpu_encoder_virt_atomic_check(
632 		struct drm_encoder *drm_enc,
633 		struct drm_crtc_state *crtc_state,
634 		struct drm_connector_state *conn_state)
635 {
636 	struct dpu_encoder_virt *dpu_enc;
637 	struct msm_drm_private *priv;
638 	struct dpu_kms *dpu_kms;
639 	struct drm_display_mode *adj_mode;
640 	struct msm_display_topology topology;
641 	struct msm_display_info *disp_info;
642 	struct dpu_global_state *global_state;
643 	struct drm_framebuffer *fb;
644 	struct drm_dsc_config *dsc;
645 	int ret = 0;
646 
647 	if (!drm_enc || !crtc_state || !conn_state) {
648 		DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
649 				drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
650 		return -EINVAL;
651 	}
652 
653 	dpu_enc = to_dpu_encoder_virt(drm_enc);
654 	DPU_DEBUG_ENC(dpu_enc, "\n");
655 
656 	priv = drm_enc->dev->dev_private;
657 	disp_info = &dpu_enc->disp_info;
658 	dpu_kms = to_dpu_kms(priv->kms);
659 	adj_mode = &crtc_state->adjusted_mode;
660 	global_state = dpu_kms_get_global_state(crtc_state->state);
661 	if (IS_ERR(global_state))
662 		return PTR_ERR(global_state);
663 
664 	trace_dpu_enc_atomic_check(DRMID(drm_enc));
665 
666 	dsc = dpu_encoder_get_dsc_config(drm_enc);
667 
668 	topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
669 
670 	/*
671 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
672 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
673 	 * earlier.
674 	 */
675 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
676 		fb = conn_state->writeback_job->fb;
677 
678 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
679 			topology.needs_cdm = true;
680 	} else if (disp_info->intf_type == INTF_DP) {
681 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
682 			topology.needs_cdm = true;
683 	}
684 
685 	if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
686 		crtc_state->mode_changed = true;
687 	else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
688 		crtc_state->mode_changed = true;
689 	/*
690 	 * Release and Allocate resources on every modeset
691 	 * Dont allocate when active is false.
692 	 */
693 	if (drm_atomic_crtc_needs_modeset(crtc_state)) {
694 		dpu_rm_release(global_state, drm_enc);
695 
696 		if (!crtc_state->active_changed || crtc_state->enable)
697 			ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
698 					drm_enc, crtc_state, topology);
699 	}
700 
701 	trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
702 
703 	return ret;
704 }
705 
706 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
707 			struct msm_display_info *disp_info)
708 {
709 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
710 	struct msm_drm_private *priv;
711 	struct dpu_kms *dpu_kms;
712 	struct dpu_hw_mdp *hw_mdptop;
713 	struct drm_encoder *drm_enc;
714 	struct dpu_encoder_phys *phys_enc;
715 	int i;
716 
717 	if (!dpu_enc || !disp_info) {
718 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
719 					dpu_enc != NULL, disp_info != NULL);
720 		return;
721 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
722 		DPU_ERROR("invalid num phys enc %d/%d\n",
723 				dpu_enc->num_phys_encs,
724 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
725 		return;
726 	}
727 
728 	drm_enc = &dpu_enc->base;
729 	/* this pointers are checked in virt_enable_helper */
730 	priv = drm_enc->dev->dev_private;
731 
732 	dpu_kms = to_dpu_kms(priv->kms);
733 	hw_mdptop = dpu_kms->hw_mdp;
734 	if (!hw_mdptop) {
735 		DPU_ERROR("invalid mdptop\n");
736 		return;
737 	}
738 
739 	if (hw_mdptop->ops.setup_vsync_source &&
740 			disp_info->is_cmd_mode) {
741 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
742 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
743 
744 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
745 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
746 
747 		if (disp_info->is_te_using_watchdog_timer)
748 			vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
749 		else
750 			vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
751 
752 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
753 
754 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
755 			phys_enc = dpu_enc->phys_encs[i];
756 
757 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
758 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
759 						vsync_cfg.vsync_source);
760 		}
761 	}
762 }
763 
764 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
765 {
766 	struct dpu_encoder_virt *dpu_enc;
767 	int i;
768 
769 	if (!drm_enc) {
770 		DPU_ERROR("invalid encoder\n");
771 		return;
772 	}
773 
774 	dpu_enc = to_dpu_encoder_virt(drm_enc);
775 
776 	DPU_DEBUG_ENC(dpu_enc, "\n");
777 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
778 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
779 
780 		phys->ops.irq_enable(phys);
781 	}
782 }
783 
784 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
785 {
786 	struct dpu_encoder_virt *dpu_enc;
787 	int i;
788 
789 	if (!drm_enc) {
790 		DPU_ERROR("invalid encoder\n");
791 		return;
792 	}
793 
794 	dpu_enc = to_dpu_encoder_virt(drm_enc);
795 
796 	DPU_DEBUG_ENC(dpu_enc, "\n");
797 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
798 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
799 
800 		phys->ops.irq_disable(phys);
801 	}
802 }
803 
804 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
805 {
806 	struct msm_drm_private *priv;
807 	struct dpu_kms *dpu_kms;
808 	struct dpu_encoder_virt *dpu_enc;
809 
810 	dpu_enc = to_dpu_encoder_virt(drm_enc);
811 	priv = drm_enc->dev->dev_private;
812 	dpu_kms = to_dpu_kms(priv->kms);
813 
814 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
815 
816 	if (!dpu_enc->cur_master) {
817 		DPU_ERROR("encoder master not set\n");
818 		return;
819 	}
820 
821 	/* enable DPU core clks */
822 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
823 
824 	/* enable all the irq */
825 	_dpu_encoder_irq_enable(drm_enc);
826 }
827 
828 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
829 {
830 	struct msm_drm_private *priv;
831 	struct dpu_kms *dpu_kms;
832 	struct dpu_encoder_virt *dpu_enc;
833 
834 	dpu_enc = to_dpu_encoder_virt(drm_enc);
835 	priv = drm_enc->dev->dev_private;
836 	dpu_kms = to_dpu_kms(priv->kms);
837 
838 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
839 
840 	if (!dpu_enc->cur_master) {
841 		DPU_ERROR("encoder master not set\n");
842 		return;
843 	}
844 
845 	/* disable all the irq */
846 	_dpu_encoder_irq_disable(drm_enc);
847 
848 	/* disable DPU core clks */
849 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
850 }
851 
852 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
853 		u32 sw_event)
854 {
855 	struct dpu_encoder_virt *dpu_enc;
856 	struct msm_drm_private *priv;
857 	bool is_vid_mode = false;
858 
859 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
860 		DPU_ERROR("invalid parameters\n");
861 		return -EINVAL;
862 	}
863 	dpu_enc = to_dpu_encoder_virt(drm_enc);
864 	priv = drm_enc->dev->dev_private;
865 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
866 
867 	/*
868 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
869 	 * events and return early for other events (ie wb display).
870 	 */
871 	if (!dpu_enc->idle_pc_supported &&
872 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
873 			sw_event != DPU_ENC_RC_EVENT_STOP &&
874 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
875 		return 0;
876 
877 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
878 			 dpu_enc->rc_state, "begin");
879 
880 	switch (sw_event) {
881 	case DPU_ENC_RC_EVENT_KICKOFF:
882 		/* cancel delayed off work, if any */
883 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
884 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
885 					sw_event);
886 
887 		mutex_lock(&dpu_enc->rc_lock);
888 
889 		/* return if the resource control is already in ON state */
890 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
891 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
892 				      DRMID(drm_enc), sw_event);
893 			mutex_unlock(&dpu_enc->rc_lock);
894 			return 0;
895 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
896 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
897 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
898 				      DRMID(drm_enc), sw_event,
899 				      dpu_enc->rc_state);
900 			mutex_unlock(&dpu_enc->rc_lock);
901 			return -EINVAL;
902 		}
903 
904 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
905 			_dpu_encoder_irq_enable(drm_enc);
906 		else
907 			_dpu_encoder_resource_enable(drm_enc);
908 
909 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
910 
911 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
912 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
913 				 "kickoff");
914 
915 		mutex_unlock(&dpu_enc->rc_lock);
916 		break;
917 
918 	case DPU_ENC_RC_EVENT_FRAME_DONE:
919 		/*
920 		 * mutex lock is not used as this event happens at interrupt
921 		 * context. And locking is not required as, the other events
922 		 * like KICKOFF and STOP does a wait-for-idle before executing
923 		 * the resource_control
924 		 */
925 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
926 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
927 				      DRMID(drm_enc), sw_event,
928 				      dpu_enc->rc_state);
929 			return -EINVAL;
930 		}
931 
932 		/*
933 		 * schedule off work item only when there are no
934 		 * frames pending
935 		 */
936 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
937 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
938 				      DRMID(drm_enc));
939 			return 0;
940 		}
941 
942 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
943 				   msecs_to_jiffies(dpu_enc->idle_timeout));
944 
945 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
946 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
947 				 "frame done");
948 		break;
949 
950 	case DPU_ENC_RC_EVENT_PRE_STOP:
951 		/* cancel delayed off work, if any */
952 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
953 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
954 					sw_event);
955 
956 		mutex_lock(&dpu_enc->rc_lock);
957 
958 		if (is_vid_mode &&
959 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
960 			_dpu_encoder_irq_enable(drm_enc);
961 		}
962 		/* skip if is already OFF or IDLE, resources are off already */
963 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
964 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
965 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
966 				      DRMID(drm_enc), sw_event,
967 				      dpu_enc->rc_state);
968 			mutex_unlock(&dpu_enc->rc_lock);
969 			return 0;
970 		}
971 
972 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
973 
974 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
975 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
976 				 "pre stop");
977 
978 		mutex_unlock(&dpu_enc->rc_lock);
979 		break;
980 
981 	case DPU_ENC_RC_EVENT_STOP:
982 		mutex_lock(&dpu_enc->rc_lock);
983 
984 		/* return if the resource control is already in OFF state */
985 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
986 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
987 				      DRMID(drm_enc), sw_event);
988 			mutex_unlock(&dpu_enc->rc_lock);
989 			return 0;
990 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
991 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
992 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
993 			mutex_unlock(&dpu_enc->rc_lock);
994 			return -EINVAL;
995 		}
996 
997 		/**
998 		 * expect to arrive here only if in either idle state or pre-off
999 		 * and in IDLE state the resources are already disabled
1000 		 */
1001 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1002 			_dpu_encoder_resource_disable(drm_enc);
1003 
1004 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1005 
1006 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1007 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1008 				 "stop");
1009 
1010 		mutex_unlock(&dpu_enc->rc_lock);
1011 		break;
1012 
1013 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1014 		mutex_lock(&dpu_enc->rc_lock);
1015 
1016 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1017 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1018 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1019 			mutex_unlock(&dpu_enc->rc_lock);
1020 			return 0;
1021 		}
1022 
1023 		/*
1024 		 * if we are in ON but a frame was just kicked off,
1025 		 * ignore the IDLE event, it's probably a stale timer event
1026 		 */
1027 		if (dpu_enc->frame_busy_mask[0]) {
1028 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1029 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1030 			mutex_unlock(&dpu_enc->rc_lock);
1031 			return 0;
1032 		}
1033 
1034 		if (is_vid_mode)
1035 			_dpu_encoder_irq_disable(drm_enc);
1036 		else
1037 			_dpu_encoder_resource_disable(drm_enc);
1038 
1039 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1040 
1041 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1042 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1043 				 "idle");
1044 
1045 		mutex_unlock(&dpu_enc->rc_lock);
1046 		break;
1047 
1048 	default:
1049 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1050 			  sw_event);
1051 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1052 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1053 				 "error");
1054 		break;
1055 	}
1056 
1057 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1058 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1059 			 "end");
1060 	return 0;
1061 }
1062 
1063 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1064 		struct drm_writeback_job *job)
1065 {
1066 	struct dpu_encoder_virt *dpu_enc;
1067 	int i;
1068 
1069 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1070 
1071 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1072 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1073 
1074 		if (phys->ops.prepare_wb_job)
1075 			phys->ops.prepare_wb_job(phys, job);
1076 
1077 	}
1078 }
1079 
1080 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1081 		struct drm_writeback_job *job)
1082 {
1083 	struct dpu_encoder_virt *dpu_enc;
1084 	int i;
1085 
1086 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1087 
1088 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1089 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1090 
1091 		if (phys->ops.cleanup_wb_job)
1092 			phys->ops.cleanup_wb_job(phys, job);
1093 
1094 	}
1095 }
1096 
1097 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1098 					     struct drm_crtc_state *crtc_state,
1099 					     struct drm_connector_state *conn_state)
1100 {
1101 	struct dpu_encoder_virt *dpu_enc;
1102 	struct msm_drm_private *priv;
1103 	struct dpu_kms *dpu_kms;
1104 	struct dpu_crtc_state *cstate;
1105 	struct dpu_global_state *global_state;
1106 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1107 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1108 	struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
1109 	struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
1110 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1111 	int num_lm, num_ctl, num_pp, num_dsc;
1112 	unsigned int dsc_mask = 0;
1113 	int i;
1114 
1115 	if (!drm_enc) {
1116 		DPU_ERROR("invalid encoder\n");
1117 		return;
1118 	}
1119 
1120 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1121 	DPU_DEBUG_ENC(dpu_enc, "\n");
1122 
1123 	priv = drm_enc->dev->dev_private;
1124 	dpu_kms = to_dpu_kms(priv->kms);
1125 
1126 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1127 	if (IS_ERR_OR_NULL(global_state)) {
1128 		DPU_ERROR("Failed to get global state");
1129 		return;
1130 	}
1131 
1132 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1133 
1134 	/* Query resource that have been reserved in atomic check step. */
1135 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1136 		drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1137 		ARRAY_SIZE(hw_pp));
1138 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1139 		drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1140 	num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1141 		drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1142 	dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1143 		drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1144 		ARRAY_SIZE(hw_dspp));
1145 
1146 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1147 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1148 						: NULL;
1149 
1150 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1151 						drm_enc->base.id, DPU_HW_BLK_DSC,
1152 						hw_dsc, ARRAY_SIZE(hw_dsc));
1153 	for (i = 0; i < num_dsc; i++) {
1154 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1155 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1156 	}
1157 
1158 	dpu_enc->dsc_mask = dsc_mask;
1159 
1160 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1161 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1162 		struct dpu_hw_blk *hw_cdm = NULL;
1163 
1164 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1165 					      drm_enc->base.id, DPU_HW_BLK_CDM,
1166 					      &hw_cdm, 1);
1167 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1168 	}
1169 
1170 	cstate = to_dpu_crtc_state(crtc_state);
1171 
1172 	for (i = 0; i < num_lm; i++) {
1173 		int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1174 
1175 		cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1176 		cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1177 		cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1178 	}
1179 
1180 	cstate->num_mixers = num_lm;
1181 
1182 	dpu_enc->connector = conn_state->connector;
1183 
1184 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1185 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1186 
1187 		if (!dpu_enc->hw_pp[i]) {
1188 			DPU_ERROR_ENC(dpu_enc,
1189 				"no pp block assigned at idx: %d\n", i);
1190 			return;
1191 		}
1192 
1193 		if (!hw_ctl[i]) {
1194 			DPU_ERROR_ENC(dpu_enc,
1195 				"no ctl block assigned at idx: %d\n", i);
1196 			return;
1197 		}
1198 
1199 		phys->hw_pp = dpu_enc->hw_pp[i];
1200 		phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1201 
1202 		phys->cached_mode = crtc_state->adjusted_mode;
1203 	}
1204 }
1205 
1206 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1207 {
1208 	struct dpu_encoder_virt *dpu_enc = NULL;
1209 	int i;
1210 
1211 	if (!drm_enc || !drm_enc->dev) {
1212 		DPU_ERROR("invalid parameters\n");
1213 		return;
1214 	}
1215 
1216 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1217 	if (!dpu_enc || !dpu_enc->cur_master) {
1218 		DPU_ERROR("invalid dpu encoder/master\n");
1219 		return;
1220 	}
1221 
1222 
1223 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1224 		dpu_enc->cur_master->hw_mdptop &&
1225 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1226 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1227 			dpu_enc->cur_master->hw_mdptop);
1228 
1229 	_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1230 
1231 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1232 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1233 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1234 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1235 			if (!dpu_enc->hw_pp[i])
1236 				continue;
1237 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1238 		}
1239 	}
1240 }
1241 
1242 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1243 {
1244 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1245 
1246 	mutex_lock(&dpu_enc->enc_lock);
1247 
1248 	if (!dpu_enc->enabled)
1249 		goto out;
1250 
1251 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1252 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1253 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1254 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1255 
1256 	_dpu_encoder_virt_enable_helper(drm_enc);
1257 
1258 out:
1259 	mutex_unlock(&dpu_enc->enc_lock);
1260 }
1261 
1262 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1263 					struct drm_atomic_state *state)
1264 {
1265 	struct dpu_encoder_virt *dpu_enc = NULL;
1266 	int ret = 0;
1267 	struct drm_display_mode *cur_mode = NULL;
1268 
1269 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1270 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1271 
1272 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1273 
1274 	mutex_lock(&dpu_enc->enc_lock);
1275 
1276 	dpu_enc->commit_done_timedout = false;
1277 
1278 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1279 
1280 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1281 
1282 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1283 			     cur_mode->vdisplay);
1284 
1285 	/* always enable slave encoder before master */
1286 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1287 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1288 
1289 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1290 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1291 
1292 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1293 	if (ret) {
1294 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1295 				ret);
1296 		goto out;
1297 	}
1298 
1299 	_dpu_encoder_virt_enable_helper(drm_enc);
1300 
1301 	dpu_enc->enabled = true;
1302 
1303 out:
1304 	mutex_unlock(&dpu_enc->enc_lock);
1305 }
1306 
1307 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1308 					struct drm_atomic_state *state)
1309 {
1310 	struct dpu_encoder_virt *dpu_enc = NULL;
1311 	struct drm_crtc *crtc;
1312 	struct drm_crtc_state *old_state = NULL;
1313 	int i = 0;
1314 
1315 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1316 	DPU_DEBUG_ENC(dpu_enc, "\n");
1317 
1318 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1319 	if (crtc)
1320 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1321 
1322 	/*
1323 	 * The encoder is already disabled if self refresh mode was set earlier,
1324 	 * in the old_state for the corresponding crtc.
1325 	 */
1326 	if (old_state && old_state->self_refresh_active)
1327 		return;
1328 
1329 	mutex_lock(&dpu_enc->enc_lock);
1330 	dpu_enc->enabled = false;
1331 
1332 	trace_dpu_enc_disable(DRMID(drm_enc));
1333 
1334 	/* wait for idle */
1335 	dpu_encoder_wait_for_tx_complete(drm_enc);
1336 
1337 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1338 
1339 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1340 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1341 
1342 		if (phys->ops.disable)
1343 			phys->ops.disable(phys);
1344 	}
1345 
1346 
1347 	/* after phys waits for frame-done, should be no more frames pending */
1348 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1349 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1350 		del_timer_sync(&dpu_enc->frame_done_timer);
1351 	}
1352 
1353 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1354 
1355 	dpu_enc->connector = NULL;
1356 
1357 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1358 
1359 	mutex_unlock(&dpu_enc->enc_lock);
1360 }
1361 
1362 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1363 		struct dpu_rm *dpu_rm,
1364 		enum dpu_intf_type type, u32 controller_id)
1365 {
1366 	int i = 0;
1367 
1368 	if (type == INTF_WB)
1369 		return NULL;
1370 
1371 	for (i = 0; i < catalog->intf_count; i++) {
1372 		if (catalog->intf[i].type == type
1373 		    && catalog->intf[i].controller_id == controller_id) {
1374 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1375 		}
1376 	}
1377 
1378 	return NULL;
1379 }
1380 
1381 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1382 		struct dpu_encoder_phys *phy_enc)
1383 {
1384 	struct dpu_encoder_virt *dpu_enc = NULL;
1385 	unsigned long lock_flags;
1386 
1387 	if (!drm_enc || !phy_enc)
1388 		return;
1389 
1390 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1391 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1392 
1393 	atomic_inc(&phy_enc->vsync_cnt);
1394 
1395 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1396 	if (dpu_enc->crtc)
1397 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1398 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1399 
1400 	DPU_ATRACE_END("encoder_vblank_callback");
1401 }
1402 
1403 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1404 		struct dpu_encoder_phys *phy_enc)
1405 {
1406 	if (!phy_enc)
1407 		return;
1408 
1409 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1410 	atomic_inc(&phy_enc->underrun_cnt);
1411 
1412 	/* trigger dump only on the first underrun */
1413 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1414 		msm_disp_snapshot_state(drm_enc->dev);
1415 
1416 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1417 				  atomic_read(&phy_enc->underrun_cnt));
1418 	DPU_ATRACE_END("encoder_underrun_callback");
1419 }
1420 
1421 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1422 {
1423 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1424 	unsigned long lock_flags;
1425 
1426 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1427 	/* crtc should always be cleared before re-assigning */
1428 	WARN_ON(crtc && dpu_enc->crtc);
1429 	dpu_enc->crtc = crtc;
1430 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1431 }
1432 
1433 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1434 					struct drm_crtc *crtc, bool enable)
1435 {
1436 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1437 	unsigned long lock_flags;
1438 	int i;
1439 
1440 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1441 
1442 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1443 	if (dpu_enc->crtc != crtc) {
1444 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1445 		return;
1446 	}
1447 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1448 
1449 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1450 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1451 
1452 		if (phys->ops.control_vblank_irq)
1453 			phys->ops.control_vblank_irq(phys, enable);
1454 	}
1455 }
1456 
1457 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1458 		void (*frame_event_cb)(void *, u32 event),
1459 		void *frame_event_cb_data)
1460 {
1461 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1462 	unsigned long lock_flags;
1463 	bool enable;
1464 
1465 	enable = frame_event_cb ? true : false;
1466 
1467 	if (!drm_enc) {
1468 		DPU_ERROR("invalid encoder\n");
1469 		return;
1470 	}
1471 	trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1472 
1473 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1474 	dpu_enc->crtc_frame_event_cb = frame_event_cb;
1475 	dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1476 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1477 }
1478 
1479 void dpu_encoder_frame_done_callback(
1480 		struct drm_encoder *drm_enc,
1481 		struct dpu_encoder_phys *ready_phys, u32 event)
1482 {
1483 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1484 	unsigned int i;
1485 
1486 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1487 			| DPU_ENCODER_FRAME_EVENT_ERROR
1488 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1489 
1490 		if (!dpu_enc->frame_busy_mask[0]) {
1491 			/**
1492 			 * suppress frame_done without waiter,
1493 			 * likely autorefresh
1494 			 */
1495 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1496 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1497 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1498 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1499 			return;
1500 		}
1501 
1502 		/* One of the physical encoders has become idle */
1503 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1504 			if (dpu_enc->phys_encs[i] == ready_phys) {
1505 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1506 						dpu_enc->frame_busy_mask[0]);
1507 				clear_bit(i, dpu_enc->frame_busy_mask);
1508 			}
1509 		}
1510 
1511 		if (!dpu_enc->frame_busy_mask[0]) {
1512 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1513 			del_timer(&dpu_enc->frame_done_timer);
1514 
1515 			dpu_encoder_resource_control(drm_enc,
1516 					DPU_ENC_RC_EVENT_FRAME_DONE);
1517 
1518 			if (dpu_enc->crtc_frame_event_cb)
1519 				dpu_enc->crtc_frame_event_cb(
1520 					dpu_enc->crtc_frame_event_cb_data,
1521 					event);
1522 		}
1523 	} else {
1524 		if (dpu_enc->crtc_frame_event_cb)
1525 			dpu_enc->crtc_frame_event_cb(
1526 				dpu_enc->crtc_frame_event_cb_data, event);
1527 	}
1528 }
1529 
1530 static void dpu_encoder_off_work(struct work_struct *work)
1531 {
1532 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1533 			struct dpu_encoder_virt, delayed_off_work.work);
1534 
1535 	dpu_encoder_resource_control(&dpu_enc->base,
1536 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1537 
1538 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1539 				DPU_ENCODER_FRAME_EVENT_IDLE);
1540 }
1541 
1542 /**
1543  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1544  * @drm_enc: Pointer to drm encoder structure
1545  * @phys: Pointer to physical encoder structure
1546  * @extra_flush_bits: Additional bit mask to include in flush trigger
1547  */
1548 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1549 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1550 {
1551 	struct dpu_hw_ctl *ctl;
1552 	int pending_kickoff_cnt;
1553 	u32 ret = UINT_MAX;
1554 
1555 	if (!phys->hw_pp) {
1556 		DPU_ERROR("invalid pingpong hw\n");
1557 		return;
1558 	}
1559 
1560 	ctl = phys->hw_ctl;
1561 	if (!ctl->ops.trigger_flush) {
1562 		DPU_ERROR("missing trigger cb\n");
1563 		return;
1564 	}
1565 
1566 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1567 
1568 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1569 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1570 
1571 	ctl->ops.trigger_flush(ctl);
1572 
1573 	if (ctl->ops.get_pending_flush)
1574 		ret = ctl->ops.get_pending_flush(ctl);
1575 
1576 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1577 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1578 			phys->hw_intf ? phys->hw_intf->idx : -1,
1579 			phys->hw_wb ? phys->hw_wb->idx : -1,
1580 			pending_kickoff_cnt, ctl->idx,
1581 			extra_flush_bits, ret);
1582 }
1583 
1584 /**
1585  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1586  * @phys: Pointer to physical encoder structure
1587  */
1588 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1589 {
1590 	if (!phys) {
1591 		DPU_ERROR("invalid argument(s)\n");
1592 		return;
1593 	}
1594 
1595 	if (!phys->hw_pp) {
1596 		DPU_ERROR("invalid pingpong hw\n");
1597 		return;
1598 	}
1599 
1600 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1601 		phys->ops.trigger_start(phys);
1602 }
1603 
1604 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1605 {
1606 	struct dpu_hw_ctl *ctl;
1607 
1608 	ctl = phys_enc->hw_ctl;
1609 	if (ctl->ops.trigger_start) {
1610 		ctl->ops.trigger_start(ctl);
1611 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1612 	}
1613 }
1614 
1615 static int dpu_encoder_helper_wait_event_timeout(
1616 		int32_t drm_id,
1617 		unsigned int irq_idx,
1618 		struct dpu_encoder_wait_info *info)
1619 {
1620 	int rc = 0;
1621 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1622 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1623 	s64 time;
1624 
1625 	do {
1626 		rc = wait_event_timeout(*(info->wq),
1627 				atomic_read(info->atomic_cnt) == 0, jiffies);
1628 		time = ktime_to_ms(ktime_get());
1629 
1630 		trace_dpu_enc_wait_event_timeout(drm_id,
1631 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1632 						 rc, time,
1633 						 expected_time,
1634 						 atomic_read(info->atomic_cnt));
1635 	/* If we timed out, counter is valid and time is less, wait again */
1636 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1637 			(time < expected_time));
1638 
1639 	return rc;
1640 }
1641 
1642 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1643 {
1644 	struct dpu_encoder_virt *dpu_enc;
1645 	struct dpu_hw_ctl *ctl;
1646 	int rc;
1647 	struct drm_encoder *drm_enc;
1648 
1649 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1650 	ctl = phys_enc->hw_ctl;
1651 	drm_enc = phys_enc->parent;
1652 
1653 	if (!ctl->ops.reset)
1654 		return;
1655 
1656 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1657 		      ctl->idx);
1658 
1659 	rc = ctl->ops.reset(ctl);
1660 	if (rc) {
1661 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1662 		msm_disp_snapshot_state(drm_enc->dev);
1663 	}
1664 
1665 	phys_enc->enable_state = DPU_ENC_ENABLED;
1666 }
1667 
1668 /**
1669  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1670  *	Iterate through the physical encoders and perform consolidated flush
1671  *	and/or control start triggering as needed. This is done in the virtual
1672  *	encoder rather than the individual physical ones in order to handle
1673  *	use cases that require visibility into multiple physical encoders at
1674  *	a time.
1675  * @dpu_enc: Pointer to virtual encoder structure
1676  */
1677 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1678 {
1679 	struct dpu_hw_ctl *ctl;
1680 	uint32_t i, pending_flush;
1681 	unsigned long lock_flags;
1682 
1683 	pending_flush = 0x0;
1684 
1685 	/* update pending counts and trigger kickoff ctl flush atomically */
1686 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1687 
1688 	/* don't perform flush/start operations for slave encoders */
1689 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1690 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1691 
1692 		if (phys->enable_state == DPU_ENC_DISABLED)
1693 			continue;
1694 
1695 		ctl = phys->hw_ctl;
1696 
1697 		/*
1698 		 * This is cleared in frame_done worker, which isn't invoked
1699 		 * for async commits. So don't set this for async, since it'll
1700 		 * roll over to the next commit.
1701 		 */
1702 		if (phys->split_role != ENC_ROLE_SLAVE)
1703 			set_bit(i, dpu_enc->frame_busy_mask);
1704 
1705 		if (!phys->ops.needs_single_flush ||
1706 				!phys->ops.needs_single_flush(phys))
1707 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1708 		else if (ctl->ops.get_pending_flush)
1709 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1710 	}
1711 
1712 	/* for split flush, combine pending flush masks and send to master */
1713 	if (pending_flush && dpu_enc->cur_master) {
1714 		_dpu_encoder_trigger_flush(
1715 				&dpu_enc->base,
1716 				dpu_enc->cur_master,
1717 				pending_flush);
1718 	}
1719 
1720 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1721 
1722 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1723 }
1724 
1725 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1726 {
1727 	struct dpu_encoder_virt *dpu_enc;
1728 	struct dpu_encoder_phys *phys;
1729 	unsigned int i;
1730 	struct dpu_hw_ctl *ctl;
1731 	struct msm_display_info *disp_info;
1732 
1733 	if (!drm_enc) {
1734 		DPU_ERROR("invalid encoder\n");
1735 		return;
1736 	}
1737 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1738 	disp_info = &dpu_enc->disp_info;
1739 
1740 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1741 		phys = dpu_enc->phys_encs[i];
1742 
1743 		ctl = phys->hw_ctl;
1744 		if (ctl->ops.clear_pending_flush)
1745 			ctl->ops.clear_pending_flush(ctl);
1746 
1747 		/* update only for command mode primary ctl */
1748 		if ((phys == dpu_enc->cur_master) &&
1749 		    disp_info->is_cmd_mode
1750 		    && ctl->ops.trigger_pending)
1751 			ctl->ops.trigger_pending(ctl);
1752 	}
1753 }
1754 
1755 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1756 		struct drm_display_mode *mode)
1757 {
1758 	u64 pclk_rate;
1759 	u32 pclk_period;
1760 	u32 line_time;
1761 
1762 	/*
1763 	 * For linetime calculation, only operate on master encoder.
1764 	 */
1765 	if (!dpu_enc->cur_master)
1766 		return 0;
1767 
1768 	if (!dpu_enc->cur_master->ops.get_line_count) {
1769 		DPU_ERROR("get_line_count function not defined\n");
1770 		return 0;
1771 	}
1772 
1773 	pclk_rate = mode->clock; /* pixel clock in kHz */
1774 	if (pclk_rate == 0) {
1775 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1776 		return 0;
1777 	}
1778 
1779 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1780 	if (pclk_period == 0) {
1781 		DPU_ERROR("pclk period is 0\n");
1782 		return 0;
1783 	}
1784 
1785 	/*
1786 	 * Line time calculation based on Pixel clock and HTOTAL.
1787 	 * Final unit is in ns.
1788 	 */
1789 	line_time = (pclk_period * mode->htotal) / 1000;
1790 	if (line_time == 0) {
1791 		DPU_ERROR("line time calculation is 0\n");
1792 		return 0;
1793 	}
1794 
1795 	DPU_DEBUG_ENC(dpu_enc,
1796 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1797 			pclk_rate, pclk_period, line_time);
1798 
1799 	return line_time;
1800 }
1801 
1802 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1803 {
1804 	struct drm_display_mode *mode;
1805 	struct dpu_encoder_virt *dpu_enc;
1806 	u32 cur_line;
1807 	u32 line_time;
1808 	u32 vtotal, time_to_vsync;
1809 	ktime_t cur_time;
1810 
1811 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1812 
1813 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1814 		DPU_ERROR("crtc/crtc state object is NULL\n");
1815 		return -EINVAL;
1816 	}
1817 	mode = &drm_enc->crtc->state->adjusted_mode;
1818 
1819 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1820 	if (!line_time)
1821 		return -EINVAL;
1822 
1823 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1824 
1825 	vtotal = mode->vtotal;
1826 	if (cur_line >= vtotal)
1827 		time_to_vsync = line_time * vtotal;
1828 	else
1829 		time_to_vsync = line_time * (vtotal - cur_line);
1830 
1831 	if (time_to_vsync == 0) {
1832 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1833 				vtotal);
1834 		return -EINVAL;
1835 	}
1836 
1837 	cur_time = ktime_get();
1838 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1839 
1840 	DPU_DEBUG_ENC(dpu_enc,
1841 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1842 			cur_line, vtotal, time_to_vsync,
1843 			ktime_to_ms(cur_time),
1844 			ktime_to_ms(*wakeup_time));
1845 	return 0;
1846 }
1847 
1848 static u32
1849 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1850 				  u32 enc_ip_width)
1851 {
1852 	int ssm_delay, total_pixels, soft_slice_per_enc;
1853 
1854 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1855 
1856 	/*
1857 	 * minimum number of initial line pixels is a sum of:
1858 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1859 	 *    91 for 10 bpc) * 3
1860 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1861 	 * 3. the initial xmit delay
1862 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1863 	 * 5. 6 additional pixels as the output of the rate buffer is
1864 	 *    48 bits wide
1865 	 */
1866 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1867 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1868 	if (soft_slice_per_enc > 1)
1869 		total_pixels += (ssm_delay * 3);
1870 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1871 }
1872 
1873 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1874 				     struct dpu_hw_dsc *hw_dsc,
1875 				     struct dpu_hw_pingpong *hw_pp,
1876 				     struct drm_dsc_config *dsc,
1877 				     u32 common_mode,
1878 				     u32 initial_lines)
1879 {
1880 	if (hw_dsc->ops.dsc_config)
1881 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1882 
1883 	if (hw_dsc->ops.dsc_config_thresh)
1884 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1885 
1886 	if (hw_pp->ops.setup_dsc)
1887 		hw_pp->ops.setup_dsc(hw_pp);
1888 
1889 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1890 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1891 
1892 	if (hw_pp->ops.enable_dsc)
1893 		hw_pp->ops.enable_dsc(hw_pp);
1894 
1895 	if (ctl->ops.update_pending_flush_dsc)
1896 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1897 }
1898 
1899 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1900 				 struct drm_dsc_config *dsc)
1901 {
1902 	/* coding only for 2LM, 2enc, 1 dsc config */
1903 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1904 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1905 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1906 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1907 	int this_frame_slices;
1908 	int intf_ip_w, enc_ip_w;
1909 	int dsc_common_mode;
1910 	int pic_width;
1911 	u32 initial_lines;
1912 	int i;
1913 
1914 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1915 		hw_pp[i] = dpu_enc->hw_pp[i];
1916 		hw_dsc[i] = dpu_enc->hw_dsc[i];
1917 
1918 		if (!hw_pp[i] || !hw_dsc[i]) {
1919 			DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1920 			return;
1921 		}
1922 	}
1923 
1924 	dsc_common_mode = 0;
1925 	pic_width = dsc->pic_width;
1926 
1927 	dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1928 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
1929 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
1930 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
1931 		dsc_common_mode |= DSC_MODE_VIDEO;
1932 
1933 	this_frame_slices = pic_width / dsc->slice_width;
1934 	intf_ip_w = this_frame_slices * dsc->slice_width;
1935 
1936 	/*
1937 	 * dsc merge case: when using 2 encoders for the same stream,
1938 	 * no. of slices need to be same on both the encoders.
1939 	 */
1940 	enc_ip_w = intf_ip_w / 2;
1941 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1942 
1943 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1944 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1945 					 dsc, dsc_common_mode, initial_lines);
1946 }
1947 
1948 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1949 {
1950 	struct dpu_encoder_virt *dpu_enc;
1951 	struct dpu_encoder_phys *phys;
1952 	bool needs_hw_reset = false;
1953 	unsigned int i;
1954 
1955 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1956 
1957 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1958 
1959 	/* prepare for next kickoff, may include waiting on previous kickoff */
1960 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1961 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1962 		phys = dpu_enc->phys_encs[i];
1963 		if (phys->ops.prepare_for_kickoff)
1964 			phys->ops.prepare_for_kickoff(phys);
1965 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1966 			needs_hw_reset = true;
1967 	}
1968 	DPU_ATRACE_END("enc_prepare_for_kickoff");
1969 
1970 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1971 
1972 	/* if any phys needs reset, reset all phys, in-order */
1973 	if (needs_hw_reset) {
1974 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1975 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1976 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1977 		}
1978 	}
1979 
1980 	if (dpu_enc->dsc)
1981 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1982 }
1983 
1984 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1985 {
1986 	struct dpu_encoder_virt *dpu_enc;
1987 	unsigned int i;
1988 	struct dpu_encoder_phys *phys;
1989 
1990 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1991 
1992 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1993 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1994 			phys = dpu_enc->phys_encs[i];
1995 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1996 				DPU_DEBUG("invalid FB not kicking off\n");
1997 				return false;
1998 			}
1999 		}
2000 	}
2001 
2002 	return true;
2003 }
2004 
2005 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2006 {
2007 	struct dpu_encoder_virt *dpu_enc;
2008 	struct dpu_encoder_phys *phys;
2009 	unsigned long timeout_ms;
2010 	unsigned int i;
2011 
2012 	DPU_ATRACE_BEGIN("encoder_kickoff");
2013 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2014 
2015 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2016 
2017 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2018 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2019 
2020 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2021 	mod_timer(&dpu_enc->frame_done_timer,
2022 			jiffies + msecs_to_jiffies(timeout_ms));
2023 
2024 	/* All phys encs are ready to go, trigger the kickoff */
2025 	_dpu_encoder_kickoff_phys(dpu_enc);
2026 
2027 	/* allow phys encs to handle any post-kickoff business */
2028 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2029 		phys = dpu_enc->phys_encs[i];
2030 		if (phys->ops.handle_post_kickoff)
2031 			phys->ops.handle_post_kickoff(phys);
2032 	}
2033 
2034 	DPU_ATRACE_END("encoder_kickoff");
2035 }
2036 
2037 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2038 {
2039 	struct dpu_hw_mixer_cfg mixer;
2040 	int i, num_lm;
2041 	struct dpu_global_state *global_state;
2042 	struct dpu_hw_blk *hw_lm[2];
2043 	struct dpu_hw_mixer *hw_mixer[2];
2044 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2045 
2046 	memset(&mixer, 0, sizeof(mixer));
2047 
2048 	/* reset all mixers for this encoder */
2049 	if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2050 		phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2051 
2052 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2053 
2054 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2055 		phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2056 
2057 	for (i = 0; i < num_lm; i++) {
2058 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2059 		if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2060 			phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2061 
2062 		/* clear all blendstages */
2063 		if (phys_enc->hw_ctl->ops.setup_blendstage)
2064 			phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2065 	}
2066 }
2067 
2068 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2069 				     struct dpu_hw_dsc *hw_dsc,
2070 				     struct dpu_hw_pingpong *hw_pp)
2071 {
2072 	if (hw_dsc->ops.dsc_disable)
2073 		hw_dsc->ops.dsc_disable(hw_dsc);
2074 
2075 	if (hw_pp->ops.disable_dsc)
2076 		hw_pp->ops.disable_dsc(hw_pp);
2077 
2078 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2079 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2080 
2081 	if (ctl->ops.update_pending_flush_dsc)
2082 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2083 }
2084 
2085 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2086 {
2087 	/* coding only for 2LM, 2enc, 1 dsc config */
2088 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2089 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2090 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2091 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2092 	int i;
2093 
2094 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2095 		hw_pp[i] = dpu_enc->hw_pp[i];
2096 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2097 
2098 		if (hw_pp[i] && hw_dsc[i])
2099 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2100 	}
2101 }
2102 
2103 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2104 {
2105 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2106 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2107 	int i;
2108 	struct dpu_encoder_virt *dpu_enc;
2109 
2110 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2111 
2112 	phys_enc->hw_ctl->ops.reset(ctl);
2113 
2114 	dpu_encoder_helper_reset_mixers(phys_enc);
2115 
2116 	/*
2117 	 * TODO: move the once-only operation like CTL flush/trigger
2118 	 * into dpu_encoder_virt_disable() and all operations which need
2119 	 * to be done per phys encoder into the phys_disable() op.
2120 	 */
2121 	if (phys_enc->hw_wb) {
2122 		/* disable the PP block */
2123 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2124 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2125 
2126 		/* mark WB flush as pending */
2127 		if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2128 			phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2129 	} else {
2130 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2131 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2132 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2133 						dpu_enc->phys_encs[i]->hw_intf,
2134 						PINGPONG_NONE);
2135 
2136 			/* mark INTF flush as pending */
2137 			if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2138 				phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2139 						dpu_enc->phys_encs[i]->hw_intf->idx);
2140 		}
2141 	}
2142 
2143 	/* reset the merge 3D HW block */
2144 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2145 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2146 				BLEND_3D_NONE);
2147 		if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2148 			phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2149 					phys_enc->hw_pp->merge_3d->idx);
2150 	}
2151 
2152 	if (phys_enc->hw_cdm) {
2153 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2154 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2155 								PINGPONG_NONE);
2156 		if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2157 			phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2158 								       phys_enc->hw_cdm->idx);
2159 	}
2160 
2161 	if (dpu_enc->dsc) {
2162 		dpu_encoder_unprep_dsc(dpu_enc);
2163 		dpu_enc->dsc = NULL;
2164 	}
2165 
2166 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2167 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2168 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2169 
2170 	if (phys_enc->hw_intf)
2171 		intf_cfg.intf = phys_enc->hw_intf->idx;
2172 	if (phys_enc->hw_wb)
2173 		intf_cfg.wb = phys_enc->hw_wb->idx;
2174 
2175 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2176 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2177 
2178 	if (ctl->ops.reset_intf_cfg)
2179 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2180 
2181 	ctl->ops.trigger_flush(ctl);
2182 	ctl->ops.trigger_start(ctl);
2183 	ctl->ops.clear_pending_flush(ctl);
2184 }
2185 
2186 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2187 				       const struct msm_format *dpu_fmt,
2188 				       u32 output_type)
2189 {
2190 	struct dpu_hw_cdm *hw_cdm;
2191 	struct dpu_hw_cdm_cfg *cdm_cfg;
2192 	struct dpu_hw_pingpong *hw_pp;
2193 	int ret;
2194 
2195 	if (!phys_enc)
2196 		return;
2197 
2198 	cdm_cfg = &phys_enc->cdm_cfg;
2199 	hw_pp = phys_enc->hw_pp;
2200 	hw_cdm = phys_enc->hw_cdm;
2201 
2202 	if (!hw_cdm)
2203 		return;
2204 
2205 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2206 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2207 			  &dpu_fmt->pixel_format);
2208 		if (hw_cdm->ops.bind_pingpong_blk)
2209 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2210 
2211 		return;
2212 	}
2213 
2214 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2215 
2216 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2217 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2218 	cdm_cfg->output_fmt = dpu_fmt;
2219 	cdm_cfg->output_type = output_type;
2220 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2221 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2222 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2223 
2224 	/* enable 10 bit logic */
2225 	switch (cdm_cfg->output_fmt->chroma_sample) {
2226 	case CHROMA_FULL:
2227 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2228 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2229 		break;
2230 	case CHROMA_H2V1:
2231 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2232 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2233 		break;
2234 	case CHROMA_420:
2235 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2236 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2237 		break;
2238 	case CHROMA_H1V2:
2239 	default:
2240 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2241 			  DRMID(phys_enc->parent));
2242 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2243 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2244 		break;
2245 	}
2246 
2247 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2248 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2249 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2250 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2251 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2252 
2253 	if (hw_cdm->ops.enable) {
2254 		cdm_cfg->pp_id = hw_pp->idx;
2255 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2256 		if (ret < 0) {
2257 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2258 				  DRMID(phys_enc->parent), ret);
2259 			return;
2260 		}
2261 	}
2262 }
2263 
2264 #ifdef CONFIG_DEBUG_FS
2265 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2266 {
2267 	struct drm_encoder *drm_enc = s->private;
2268 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2269 	int i;
2270 
2271 	mutex_lock(&dpu_enc->enc_lock);
2272 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2273 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2274 
2275 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2276 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2277 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2278 				atomic_read(&phys->vsync_cnt),
2279 				atomic_read(&phys->underrun_cnt),
2280 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2281 
2282 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2283 	}
2284 	mutex_unlock(&dpu_enc->enc_lock);
2285 
2286 	return 0;
2287 }
2288 
2289 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2290 
2291 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2292 {
2293 	/* don't error check these */
2294 	debugfs_create_file("status", 0600,
2295 			    root, drm_enc, &_dpu_encoder_status_fops);
2296 }
2297 #else
2298 #define dpu_encoder_debugfs_init NULL
2299 #endif
2300 
2301 static int dpu_encoder_virt_add_phys_encs(
2302 		struct drm_device *dev,
2303 		struct msm_display_info *disp_info,
2304 		struct dpu_encoder_virt *dpu_enc,
2305 		struct dpu_enc_phys_init_params *params)
2306 {
2307 	struct dpu_encoder_phys *enc = NULL;
2308 
2309 	DPU_DEBUG_ENC(dpu_enc, "\n");
2310 
2311 	/*
2312 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2313 	 * in this function, check up-front.
2314 	 */
2315 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2316 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2317 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2318 			  dpu_enc->num_phys_encs);
2319 		return -EINVAL;
2320 	}
2321 
2322 
2323 	if (disp_info->intf_type == INTF_WB) {
2324 		enc = dpu_encoder_phys_wb_init(dev, params);
2325 
2326 		if (IS_ERR(enc)) {
2327 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2328 				PTR_ERR(enc));
2329 			return PTR_ERR(enc);
2330 		}
2331 
2332 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2333 		++dpu_enc->num_phys_encs;
2334 	} else if (disp_info->is_cmd_mode) {
2335 		enc = dpu_encoder_phys_cmd_init(dev, params);
2336 
2337 		if (IS_ERR(enc)) {
2338 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2339 				PTR_ERR(enc));
2340 			return PTR_ERR(enc);
2341 		}
2342 
2343 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2344 		++dpu_enc->num_phys_encs;
2345 	} else {
2346 		enc = dpu_encoder_phys_vid_init(dev, params);
2347 
2348 		if (IS_ERR(enc)) {
2349 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2350 				PTR_ERR(enc));
2351 			return PTR_ERR(enc);
2352 		}
2353 
2354 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2355 		++dpu_enc->num_phys_encs;
2356 	}
2357 
2358 	if (params->split_role == ENC_ROLE_SLAVE)
2359 		dpu_enc->cur_slave = enc;
2360 	else
2361 		dpu_enc->cur_master = enc;
2362 
2363 	return 0;
2364 }
2365 
2366 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2367 				 struct dpu_kms *dpu_kms,
2368 				 struct msm_display_info *disp_info)
2369 {
2370 	int ret = 0;
2371 	int i = 0;
2372 	struct dpu_enc_phys_init_params phys_params;
2373 
2374 	if (!dpu_enc) {
2375 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2376 		return -EINVAL;
2377 	}
2378 
2379 	dpu_enc->cur_master = NULL;
2380 
2381 	memset(&phys_params, 0, sizeof(phys_params));
2382 	phys_params.dpu_kms = dpu_kms;
2383 	phys_params.parent = &dpu_enc->base;
2384 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2385 
2386 	WARN_ON(disp_info->num_of_h_tiles < 1);
2387 
2388 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2389 
2390 	if (disp_info->intf_type != INTF_WB)
2391 		dpu_enc->idle_pc_supported =
2392 				dpu_kms->catalog->caps->has_idle_pc;
2393 
2394 	mutex_lock(&dpu_enc->enc_lock);
2395 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2396 		/*
2397 		 * Left-most tile is at index 0, content is controller id
2398 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2399 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2400 		 */
2401 		u32 controller_id = disp_info->h_tile_instance[i];
2402 
2403 		if (disp_info->num_of_h_tiles > 1) {
2404 			if (i == 0)
2405 				phys_params.split_role = ENC_ROLE_MASTER;
2406 			else
2407 				phys_params.split_role = ENC_ROLE_SLAVE;
2408 		} else {
2409 			phys_params.split_role = ENC_ROLE_SOLO;
2410 		}
2411 
2412 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2413 				i, controller_id, phys_params.split_role);
2414 
2415 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2416 							   disp_info->intf_type,
2417 							   controller_id);
2418 
2419 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2420 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2421 
2422 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2423 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2424 			ret = -EINVAL;
2425 			break;
2426 		}
2427 
2428 		if (phys_params.hw_intf && phys_params.hw_wb) {
2429 			DPU_ERROR_ENC(dpu_enc,
2430 					"invalid phys both intf and wb block at idx: %d\n", i);
2431 			ret = -EINVAL;
2432 			break;
2433 		}
2434 
2435 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2436 				dpu_enc, &phys_params);
2437 		if (ret) {
2438 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2439 			break;
2440 		}
2441 	}
2442 
2443 	mutex_unlock(&dpu_enc->enc_lock);
2444 
2445 	return ret;
2446 }
2447 
2448 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2449 {
2450 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2451 			frame_done_timer);
2452 	struct drm_encoder *drm_enc = &dpu_enc->base;
2453 	u32 event;
2454 
2455 	if (!drm_enc->dev) {
2456 		DPU_ERROR("invalid parameters\n");
2457 		return;
2458 	}
2459 
2460 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2461 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2462 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2463 		return;
2464 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2465 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2466 		return;
2467 	}
2468 
2469 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2470 
2471 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2472 		msm_disp_snapshot_state(drm_enc->dev);
2473 
2474 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2475 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2476 	dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2477 }
2478 
2479 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2480 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2481 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2482 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2483 	.atomic_check = dpu_encoder_virt_atomic_check,
2484 };
2485 
2486 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2487 	.debugfs_init = dpu_encoder_debugfs_init,
2488 };
2489 
2490 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2491 		int drm_enc_mode,
2492 		struct msm_display_info *disp_info)
2493 {
2494 	struct msm_drm_private *priv = dev->dev_private;
2495 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2496 	struct dpu_encoder_virt *dpu_enc;
2497 	int ret;
2498 
2499 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2500 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2501 	if (IS_ERR(dpu_enc))
2502 		return ERR_CAST(dpu_enc);
2503 
2504 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2505 
2506 	spin_lock_init(&dpu_enc->enc_spinlock);
2507 	dpu_enc->enabled = false;
2508 	mutex_init(&dpu_enc->enc_lock);
2509 	mutex_init(&dpu_enc->rc_lock);
2510 
2511 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2512 	if (ret) {
2513 		DPU_ERROR("failed to setup encoder\n");
2514 		return ERR_PTR(-ENOMEM);
2515 	}
2516 
2517 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2518 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2519 	timer_setup(&dpu_enc->frame_done_timer,
2520 			dpu_encoder_frame_done_timeout, 0);
2521 
2522 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2523 			dpu_encoder_off_work);
2524 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2525 
2526 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2527 
2528 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2529 
2530 	return &dpu_enc->base;
2531 }
2532 
2533 /**
2534  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2535  * @drm_enc:	encoder pointer
2536  *
2537  * Wait for hardware to have flushed the current pending changes to hardware at
2538  * a vblank or CTL_START. Physical encoders will map this differently depending
2539  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2540  *
2541  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2542  */
2543 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2544 {
2545 	struct dpu_encoder_virt *dpu_enc = NULL;
2546 	int i, ret = 0;
2547 
2548 	if (!drm_enc) {
2549 		DPU_ERROR("invalid encoder\n");
2550 		return -EINVAL;
2551 	}
2552 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2553 	DPU_DEBUG_ENC(dpu_enc, "\n");
2554 
2555 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2556 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2557 
2558 		if (phys->ops.wait_for_commit_done) {
2559 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2560 			ret = phys->ops.wait_for_commit_done(phys);
2561 			DPU_ATRACE_END("wait_for_commit_done");
2562 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2563 				dpu_enc->commit_done_timedout = true;
2564 				msm_disp_snapshot_state(drm_enc->dev);
2565 			}
2566 			if (ret)
2567 				return ret;
2568 		}
2569 	}
2570 
2571 	return ret;
2572 }
2573 
2574 /**
2575  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2576  * @drm_enc:	encoder pointer
2577  *
2578  * Wait for the hardware to transfer all the pixels to the panel. Physical
2579  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2580  * cmd mode -> pp_done.
2581  *
2582  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2583  */
2584 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2585 {
2586 	struct dpu_encoder_virt *dpu_enc = NULL;
2587 	int i, ret = 0;
2588 
2589 	if (!drm_enc) {
2590 		DPU_ERROR("invalid encoder\n");
2591 		return -EINVAL;
2592 	}
2593 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2594 	DPU_DEBUG_ENC(dpu_enc, "\n");
2595 
2596 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2597 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2598 
2599 		if (phys->ops.wait_for_tx_complete) {
2600 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2601 			ret = phys->ops.wait_for_tx_complete(phys);
2602 			DPU_ATRACE_END("wait_for_tx_complete");
2603 			if (ret)
2604 				return ret;
2605 		}
2606 	}
2607 
2608 	return ret;
2609 }
2610 
2611 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2612 {
2613 	struct dpu_encoder_virt *dpu_enc = NULL;
2614 
2615 	if (!encoder) {
2616 		DPU_ERROR("invalid encoder\n");
2617 		return INTF_MODE_NONE;
2618 	}
2619 	dpu_enc = to_dpu_encoder_virt(encoder);
2620 
2621 	if (dpu_enc->cur_master)
2622 		return dpu_enc->cur_master->intf_mode;
2623 
2624 	if (dpu_enc->num_phys_encs)
2625 		return dpu_enc->phys_encs[0]->intf_mode;
2626 
2627 	return INTF_MODE_NONE;
2628 }
2629 
2630 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2631 {
2632 	struct drm_encoder *encoder = phys_enc->parent;
2633 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2634 
2635 	return dpu_enc->dsc_mask;
2636 }
2637 
2638 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2639 			  struct dpu_enc_phys_init_params *p)
2640 {
2641 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2642 	phys_enc->hw_intf = p->hw_intf;
2643 	phys_enc->hw_wb = p->hw_wb;
2644 	phys_enc->parent = p->parent;
2645 	phys_enc->dpu_kms = p->dpu_kms;
2646 	phys_enc->split_role = p->split_role;
2647 	phys_enc->enc_spinlock = p->enc_spinlock;
2648 	phys_enc->enable_state = DPU_ENC_DISABLED;
2649 
2650 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2651 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2652 
2653 	atomic_set(&phys_enc->vsync_cnt, 0);
2654 	atomic_set(&phys_enc->underrun_cnt, 0);
2655 
2656 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2657 }
2658