1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved. 4 * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved. 5 * Copyright (C) 2013 Red Hat 6 * Author: Rob Clark <robdclark@gmail.com> 7 */ 8 9 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 10 #include <linux/sort.h> 11 #include <linux/debugfs.h> 12 #include <linux/ktime.h> 13 #include <linux/bits.h> 14 15 #include <drm/drm_atomic.h> 16 #include <drm/drm_blend.h> 17 #include <drm/drm_crtc.h> 18 #include <drm/drm_flip_work.h> 19 #include <drm/drm_framebuffer.h> 20 #include <drm/drm_mode.h> 21 #include <drm/drm_probe_helper.h> 22 #include <drm/drm_rect.h> 23 #include <drm/drm_vblank.h> 24 #include <drm/drm_self_refresh_helper.h> 25 26 #include "dpu_kms.h" 27 #include "dpu_hw_lm.h" 28 #include "dpu_hw_ctl.h" 29 #include "dpu_hw_dspp.h" 30 #include "dpu_crtc.h" 31 #include "dpu_plane.h" 32 #include "dpu_encoder.h" 33 #include "dpu_vbif.h" 34 #include "dpu_core_perf.h" 35 #include "dpu_trace.h" 36 37 /* layer mixer index on dpu_crtc */ 38 #define LEFT_MIXER 0 39 #define RIGHT_MIXER 1 40 41 /* timeout in ms waiting for frame done */ 42 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 43 44 #define CONVERT_S3_15(val) \ 45 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 46 47 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 48 { 49 struct msm_drm_private *priv = crtc->dev->dev_private; 50 51 return to_dpu_kms(priv->kms); 52 } 53 54 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 55 { 56 struct drm_device *dev = crtc->dev; 57 struct drm_encoder *encoder; 58 59 drm_for_each_encoder(encoder, dev) 60 if (encoder->crtc == crtc) 61 return encoder; 62 63 return NULL; 64 } 65 66 static enum dpu_crtc_crc_source dpu_crtc_parse_crc_source(const char *src_name) 67 { 68 if (!src_name || 69 !strcmp(src_name, "none")) 70 return DPU_CRTC_CRC_SOURCE_NONE; 71 if (!strcmp(src_name, "auto") || 72 !strcmp(src_name, "lm")) 73 return DPU_CRTC_CRC_SOURCE_LAYER_MIXER; 74 if (!strcmp(src_name, "encoder")) 75 return DPU_CRTC_CRC_SOURCE_ENCODER; 76 77 return DPU_CRTC_CRC_SOURCE_INVALID; 78 } 79 80 static int dpu_crtc_verify_crc_source(struct drm_crtc *crtc, 81 const char *src_name, size_t *values_cnt) 82 { 83 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 84 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 85 86 if (source < 0) { 87 DRM_DEBUG_DRIVER("Invalid source %s for CRTC%d\n", src_name, crtc->index); 88 return -EINVAL; 89 } 90 91 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) { 92 *values_cnt = crtc_state->num_mixers; 93 } else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) { 94 struct drm_encoder *drm_enc; 95 96 *values_cnt = 0; 97 98 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) 99 *values_cnt += dpu_encoder_get_crc_values_cnt(drm_enc); 100 } 101 102 return 0; 103 } 104 105 static void dpu_crtc_setup_lm_misr(struct dpu_crtc_state *crtc_state) 106 { 107 struct dpu_crtc_mixer *m; 108 int i; 109 110 for (i = 0; i < crtc_state->num_mixers; ++i) { 111 m = &crtc_state->mixers[i]; 112 113 if (!m->hw_lm || !m->hw_lm->ops.setup_misr) 114 continue; 115 116 /* Calculate MISR over 1 frame */ 117 m->hw_lm->ops.setup_misr(m->hw_lm); 118 } 119 } 120 121 static void dpu_crtc_setup_encoder_misr(struct drm_crtc *crtc) 122 { 123 struct drm_encoder *drm_enc; 124 125 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) 126 dpu_encoder_setup_misr(drm_enc); 127 } 128 129 static int dpu_crtc_set_crc_source(struct drm_crtc *crtc, const char *src_name) 130 { 131 enum dpu_crtc_crc_source source = dpu_crtc_parse_crc_source(src_name); 132 enum dpu_crtc_crc_source current_source; 133 struct dpu_crtc_state *crtc_state; 134 struct drm_device *drm_dev = crtc->dev; 135 136 bool was_enabled; 137 bool enable = false; 138 int ret = 0; 139 140 if (source < 0) { 141 DRM_DEBUG_DRIVER("Invalid CRC source %s for CRTC%d\n", src_name, crtc->index); 142 return -EINVAL; 143 } 144 145 ret = drm_modeset_lock(&crtc->mutex, NULL); 146 147 if (ret) 148 return ret; 149 150 enable = (source != DPU_CRTC_CRC_SOURCE_NONE); 151 crtc_state = to_dpu_crtc_state(crtc->state); 152 153 spin_lock_irq(&drm_dev->event_lock); 154 current_source = crtc_state->crc_source; 155 spin_unlock_irq(&drm_dev->event_lock); 156 157 was_enabled = (current_source != DPU_CRTC_CRC_SOURCE_NONE); 158 159 if (!was_enabled && enable) { 160 ret = drm_crtc_vblank_get(crtc); 161 162 if (ret) 163 goto cleanup; 164 165 } else if (was_enabled && !enable) { 166 drm_crtc_vblank_put(crtc); 167 } 168 169 spin_lock_irq(&drm_dev->event_lock); 170 crtc_state->crc_source = source; 171 spin_unlock_irq(&drm_dev->event_lock); 172 173 crtc_state->crc_frame_skip_count = 0; 174 175 if (source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 176 dpu_crtc_setup_lm_misr(crtc_state); 177 else if (source == DPU_CRTC_CRC_SOURCE_ENCODER) 178 dpu_crtc_setup_encoder_misr(crtc); 179 else 180 ret = -EINVAL; 181 182 cleanup: 183 drm_modeset_unlock(&crtc->mutex); 184 185 return ret; 186 } 187 188 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 189 { 190 struct drm_encoder *encoder = get_encoder_from_crtc(crtc); 191 if (!encoder) { 192 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 193 return 0; 194 } 195 196 return dpu_encoder_get_vsync_count(encoder); 197 } 198 199 static int dpu_crtc_get_lm_crc(struct drm_crtc *crtc, 200 struct dpu_crtc_state *crtc_state) 201 { 202 struct dpu_crtc_mixer *m; 203 u32 crcs[CRTC_DUAL_MIXERS]; 204 205 int rc = 0; 206 int i; 207 208 BUILD_BUG_ON(ARRAY_SIZE(crcs) != ARRAY_SIZE(crtc_state->mixers)); 209 210 for (i = 0; i < crtc_state->num_mixers; ++i) { 211 212 m = &crtc_state->mixers[i]; 213 214 if (!m->hw_lm || !m->hw_lm->ops.collect_misr) 215 continue; 216 217 rc = m->hw_lm->ops.collect_misr(m->hw_lm, &crcs[i]); 218 219 if (rc) { 220 if (rc != -ENODATA) 221 DRM_DEBUG_DRIVER("MISR read failed\n"); 222 return rc; 223 } 224 } 225 226 return drm_crtc_add_crc_entry(crtc, true, 227 drm_crtc_accurate_vblank_count(crtc), crcs); 228 } 229 230 static int dpu_crtc_get_encoder_crc(struct drm_crtc *crtc) 231 { 232 struct drm_encoder *drm_enc; 233 int rc, pos = 0; 234 u32 crcs[INTF_MAX]; 235 236 drm_for_each_encoder_mask(drm_enc, crtc->dev, crtc->state->encoder_mask) { 237 rc = dpu_encoder_get_crc(drm_enc, crcs, pos); 238 if (rc < 0) { 239 if (rc != -ENODATA) 240 DRM_DEBUG_DRIVER("MISR read failed\n"); 241 242 return rc; 243 } 244 245 pos += rc; 246 } 247 248 return drm_crtc_add_crc_entry(crtc, true, 249 drm_crtc_accurate_vblank_count(crtc), crcs); 250 } 251 252 static int dpu_crtc_get_crc(struct drm_crtc *crtc) 253 { 254 struct dpu_crtc_state *crtc_state = to_dpu_crtc_state(crtc->state); 255 256 /* Skip first 2 frames in case of "uncooked" CRCs */ 257 if (crtc_state->crc_frame_skip_count < 2) { 258 crtc_state->crc_frame_skip_count++; 259 return 0; 260 } 261 262 if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_LAYER_MIXER) 263 return dpu_crtc_get_lm_crc(crtc, crtc_state); 264 else if (crtc_state->crc_source == DPU_CRTC_CRC_SOURCE_ENCODER) 265 return dpu_crtc_get_encoder_crc(crtc); 266 267 return -EINVAL; 268 } 269 270 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 271 bool in_vblank_irq, 272 int *vpos, int *hpos, 273 ktime_t *stime, ktime_t *etime, 274 const struct drm_display_mode *mode) 275 { 276 unsigned int pipe = crtc->index; 277 struct drm_encoder *encoder; 278 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 279 280 encoder = get_encoder_from_crtc(crtc); 281 if (!encoder) { 282 DRM_ERROR("no encoder found for crtc %d\n", pipe); 283 return false; 284 } 285 286 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 287 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 288 289 /* 290 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 291 * the end of VFP. Translate the porch values relative to the line 292 * counter positions. 293 */ 294 295 vactive_start = vsw + vbp + 1; 296 vactive_end = vactive_start + mode->crtc_vdisplay; 297 298 /* last scan line before VSYNC */ 299 vfp_end = mode->crtc_vtotal; 300 301 if (stime) 302 *stime = ktime_get(); 303 304 line = dpu_encoder_get_linecount(encoder); 305 306 if (line < vactive_start) 307 line -= vactive_start; 308 else if (line > vactive_end) 309 line = line - vfp_end - vactive_start; 310 else 311 line -= vactive_start; 312 313 *vpos = line; 314 *hpos = 0; 315 316 if (etime) 317 *etime = ktime_get(); 318 319 return true; 320 } 321 322 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 323 struct dpu_plane_state *pstate, struct dpu_format *format) 324 { 325 struct dpu_hw_mixer *lm = mixer->hw_lm; 326 uint32_t blend_op; 327 uint32_t fg_alpha, bg_alpha; 328 329 fg_alpha = pstate->base.alpha >> 8; 330 bg_alpha = 0xff - fg_alpha; 331 332 /* default to opaque blending */ 333 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE || 334 !format->alpha_enable) { 335 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 336 DPU_BLEND_BG_ALPHA_BG_CONST; 337 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { 338 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 339 DPU_BLEND_BG_ALPHA_FG_PIXEL; 340 if (fg_alpha != 0xff) { 341 bg_alpha = fg_alpha; 342 blend_op |= DPU_BLEND_BG_MOD_ALPHA | 343 DPU_BLEND_BG_INV_MOD_ALPHA; 344 } else { 345 blend_op |= DPU_BLEND_BG_INV_ALPHA; 346 } 347 } else { 348 /* coverage blending */ 349 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 350 DPU_BLEND_BG_ALPHA_FG_PIXEL; 351 if (fg_alpha != 0xff) { 352 bg_alpha = fg_alpha; 353 blend_op |= DPU_BLEND_FG_MOD_ALPHA | 354 DPU_BLEND_FG_INV_MOD_ALPHA | 355 DPU_BLEND_BG_MOD_ALPHA | 356 DPU_BLEND_BG_INV_MOD_ALPHA; 357 } else { 358 blend_op |= DPU_BLEND_BG_INV_ALPHA; 359 } 360 } 361 362 lm->ops.setup_blend_config(lm, pstate->stage, 363 fg_alpha, bg_alpha, blend_op); 364 365 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 366 &format->base.pixel_format, format->alpha_enable, blend_op); 367 } 368 369 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 370 { 371 struct dpu_crtc_state *crtc_state; 372 int lm_idx, lm_horiz_position; 373 374 crtc_state = to_dpu_crtc_state(crtc->state); 375 376 lm_horiz_position = 0; 377 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 378 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 379 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 380 struct dpu_hw_mixer_cfg cfg; 381 382 if (!lm_roi || !drm_rect_visible(lm_roi)) 383 continue; 384 385 cfg.out_width = drm_rect_width(lm_roi); 386 cfg.out_height = drm_rect_height(lm_roi); 387 cfg.right_mixer = lm_horiz_position++; 388 cfg.flags = 0; 389 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 390 } 391 } 392 393 static void _dpu_crtc_blend_setup_pipe(struct drm_crtc *crtc, 394 struct drm_plane *plane, 395 struct dpu_crtc_mixer *mixer, 396 u32 num_mixers, 397 enum dpu_stage stage, 398 struct dpu_format *format, 399 uint64_t modifier, 400 struct dpu_sw_pipe *pipe, 401 unsigned int stage_idx, 402 struct dpu_hw_stage_cfg *stage_cfg 403 ) 404 { 405 uint32_t lm_idx; 406 enum dpu_sspp sspp_idx; 407 struct drm_plane_state *state; 408 409 sspp_idx = pipe->sspp->idx; 410 411 state = plane->state; 412 413 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 414 state, to_dpu_plane_state(state), stage_idx, 415 format->base.pixel_format, 416 modifier); 417 418 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d multirect_idx %d\n", 419 crtc->base.id, 420 stage, 421 plane->base.id, 422 sspp_idx - SSPP_NONE, 423 state->fb ? state->fb->base.id : -1, 424 pipe->multirect_index); 425 426 stage_cfg->stage[stage][stage_idx] = sspp_idx; 427 stage_cfg->multirect_index[stage][stage_idx] = pipe->multirect_index; 428 429 /* blend config update */ 430 for (lm_idx = 0; lm_idx < num_mixers; lm_idx++) 431 mixer[lm_idx].lm_ctl->ops.update_pending_flush_sspp(mixer[lm_idx].lm_ctl, sspp_idx); 432 } 433 434 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 435 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer, 436 struct dpu_hw_stage_cfg *stage_cfg) 437 { 438 struct drm_plane *plane; 439 struct drm_framebuffer *fb; 440 struct drm_plane_state *state; 441 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 442 struct dpu_plane_state *pstate = NULL; 443 struct dpu_format *format; 444 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 445 446 uint32_t lm_idx; 447 bool bg_alpha_enable = false; 448 DECLARE_BITMAP(fetch_active, SSPP_MAX); 449 450 memset(fetch_active, 0, sizeof(fetch_active)); 451 drm_atomic_crtc_for_each_plane(plane, crtc) { 452 state = plane->state; 453 if (!state) 454 continue; 455 456 if (!state->visible) 457 continue; 458 459 pstate = to_dpu_plane_state(state); 460 fb = state->fb; 461 462 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 463 464 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 465 bg_alpha_enable = true; 466 467 set_bit(pstate->pipe.sspp->idx, fetch_active); 468 _dpu_crtc_blend_setup_pipe(crtc, plane, 469 mixer, cstate->num_mixers, 470 pstate->stage, 471 format, fb ? fb->modifier : 0, 472 &pstate->pipe, 0, stage_cfg); 473 474 if (pstate->r_pipe.sspp) { 475 set_bit(pstate->r_pipe.sspp->idx, fetch_active); 476 _dpu_crtc_blend_setup_pipe(crtc, plane, 477 mixer, cstate->num_mixers, 478 pstate->stage, 479 format, fb ? fb->modifier : 0, 480 &pstate->r_pipe, 1, stage_cfg); 481 } 482 483 /* blend config update */ 484 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 485 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, pstate, format); 486 487 if (bg_alpha_enable && !format->alpha_enable) 488 mixer[lm_idx].mixer_op_mode = 0; 489 else 490 mixer[lm_idx].mixer_op_mode |= 491 1 << pstate->stage; 492 } 493 } 494 495 if (ctl->ops.set_active_pipes) 496 ctl->ops.set_active_pipes(ctl, fetch_active); 497 498 _dpu_crtc_program_lm_output_roi(crtc); 499 } 500 501 /** 502 * _dpu_crtc_blend_setup - configure crtc mixers 503 * @crtc: Pointer to drm crtc structure 504 */ 505 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 506 { 507 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 508 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 509 struct dpu_crtc_mixer *mixer = cstate->mixers; 510 struct dpu_hw_ctl *ctl; 511 struct dpu_hw_mixer *lm; 512 struct dpu_hw_stage_cfg stage_cfg; 513 int i; 514 515 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); 516 517 for (i = 0; i < cstate->num_mixers; i++) { 518 mixer[i].mixer_op_mode = 0; 519 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 520 mixer[i].lm_ctl->ops.clear_all_blendstages( 521 mixer[i].lm_ctl); 522 } 523 524 /* initialize stage cfg */ 525 memset(&stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 526 527 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer, &stage_cfg); 528 529 for (i = 0; i < cstate->num_mixers; i++) { 530 ctl = mixer[i].lm_ctl; 531 lm = mixer[i].hw_lm; 532 533 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 534 535 /* stage config flush mask */ 536 ctl->ops.update_pending_flush_mixer(ctl, 537 mixer[i].hw_lm->idx); 538 539 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d\n", 540 mixer[i].hw_lm->idx - LM_0, 541 mixer[i].mixer_op_mode, 542 ctl->idx - CTL_0); 543 544 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 545 &stage_cfg); 546 } 547 } 548 549 /** 550 * _dpu_crtc_complete_flip - signal pending page_flip events 551 * Any pending vblank events are added to the vblank_event_list 552 * so that the next vblank interrupt shall signal them. 553 * However PAGE_FLIP events are not handled through the vblank_event_list. 554 * This API signals any pending PAGE_FLIP events requested through 555 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 556 * @crtc: Pointer to drm crtc structure 557 */ 558 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 559 { 560 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 561 struct drm_device *dev = crtc->dev; 562 unsigned long flags; 563 564 spin_lock_irqsave(&dev->event_lock, flags); 565 if (dpu_crtc->event) { 566 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 567 dpu_crtc->event); 568 trace_dpu_crtc_complete_flip(DRMID(crtc)); 569 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 570 dpu_crtc->event = NULL; 571 } 572 spin_unlock_irqrestore(&dev->event_lock, flags); 573 } 574 575 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 576 { 577 struct drm_encoder *encoder; 578 579 /* 580 * TODO: This function is called from dpu debugfs and as part of atomic 581 * check. When called from debugfs, the crtc->mutex must be held to 582 * read crtc->state. However reading crtc->state from atomic check isn't 583 * allowed (unless you have a good reason, a big comment, and a deep 584 * understanding of how the atomic/modeset locks work (<- and this is 585 * probably not possible)). So we'll keep the WARN_ON here for now, but 586 * really we need to figure out a better way to track our operating mode 587 */ 588 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 589 590 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 591 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 592 return dpu_encoder_get_intf_mode(encoder); 593 594 return INTF_MODE_NONE; 595 } 596 597 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 598 { 599 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 600 601 /* keep statistics on vblank callback - with auto reset via debugfs */ 602 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 603 dpu_crtc->vblank_cb_time = ktime_get(); 604 else 605 dpu_crtc->vblank_cb_count++; 606 607 dpu_crtc_get_crc(crtc); 608 609 drm_crtc_handle_vblank(crtc); 610 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 611 } 612 613 static void dpu_crtc_frame_event_work(struct kthread_work *work) 614 { 615 struct dpu_crtc_frame_event *fevent = container_of(work, 616 struct dpu_crtc_frame_event, work); 617 struct drm_crtc *crtc = fevent->crtc; 618 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 619 unsigned long flags; 620 bool frame_done = false; 621 622 DPU_ATRACE_BEGIN("crtc_frame_event"); 623 624 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 625 ktime_to_ns(fevent->ts)); 626 627 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 628 | DPU_ENCODER_FRAME_EVENT_ERROR 629 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 630 631 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 632 /* ignore vblank when not pending */ 633 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 634 /* release bandwidth and other resources */ 635 trace_dpu_crtc_frame_event_done(DRMID(crtc), 636 fevent->event); 637 dpu_core_perf_crtc_release_bw(crtc); 638 } else { 639 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 640 fevent->event); 641 } 642 643 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 644 | DPU_ENCODER_FRAME_EVENT_ERROR)) 645 frame_done = true; 646 } 647 648 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 649 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 650 crtc->base.id, ktime_to_ns(fevent->ts)); 651 652 if (frame_done) 653 complete_all(&dpu_crtc->frame_done_comp); 654 655 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 656 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 657 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 658 DPU_ATRACE_END("crtc_frame_event"); 659 } 660 661 /* 662 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 663 * registers this API to encoder for all frame event callbacks like 664 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 665 * from different context - IRQ, user thread, commit_thread, etc. Each event 666 * should be carefully reviewed and should be processed in proper task context 667 * to avoid schedulin delay or properly manage the irq context's bottom half 668 * processing. 669 */ 670 static void dpu_crtc_frame_event_cb(void *data, u32 event) 671 { 672 struct drm_crtc *crtc = (struct drm_crtc *)data; 673 struct dpu_crtc *dpu_crtc; 674 struct msm_drm_private *priv; 675 struct dpu_crtc_frame_event *fevent; 676 unsigned long flags; 677 u32 crtc_id; 678 679 /* Nothing to do on idle event */ 680 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 681 return; 682 683 dpu_crtc = to_dpu_crtc(crtc); 684 priv = crtc->dev->dev_private; 685 crtc_id = drm_crtc_index(crtc); 686 687 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 688 689 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 690 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 691 struct dpu_crtc_frame_event, list); 692 if (fevent) 693 list_del_init(&fevent->list); 694 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 695 696 if (!fevent) { 697 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 698 return; 699 } 700 701 fevent->event = event; 702 fevent->crtc = crtc; 703 fevent->ts = ktime_get(); 704 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 705 } 706 707 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 708 { 709 trace_dpu_crtc_complete_commit(DRMID(crtc)); 710 dpu_core_perf_crtc_update(crtc, 0); 711 _dpu_crtc_complete_flip(crtc); 712 } 713 714 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 715 struct drm_crtc_state *state) 716 { 717 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 718 struct drm_display_mode *adj_mode = &state->adjusted_mode; 719 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 720 int i; 721 722 for (i = 0; i < cstate->num_mixers; i++) { 723 struct drm_rect *r = &cstate->lm_bounds[i]; 724 r->x1 = crtc_split_width * i; 725 r->y1 = 0; 726 r->x2 = r->x1 + crtc_split_width; 727 r->y2 = adj_mode->vdisplay; 728 729 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 730 } 731 } 732 733 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 734 struct dpu_hw_pcc_cfg *cfg) 735 { 736 struct drm_color_ctm *ctm; 737 738 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 739 740 ctm = (struct drm_color_ctm *)state->ctm->data; 741 742 if (!ctm) 743 return; 744 745 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 746 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 747 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 748 749 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 750 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 751 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 752 753 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 754 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 755 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 756 } 757 758 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 759 { 760 struct drm_crtc_state *state = crtc->state; 761 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 762 struct dpu_crtc_mixer *mixer = cstate->mixers; 763 struct dpu_hw_pcc_cfg cfg; 764 struct dpu_hw_ctl *ctl; 765 struct dpu_hw_dspp *dspp; 766 int i; 767 768 769 if (!state->color_mgmt_changed && !drm_atomic_crtc_needs_modeset(state)) 770 return; 771 772 for (i = 0; i < cstate->num_mixers; i++) { 773 ctl = mixer[i].lm_ctl; 774 dspp = mixer[i].hw_dspp; 775 776 if (!dspp || !dspp->ops.setup_pcc) 777 continue; 778 779 if (!state->ctm) { 780 dspp->ops.setup_pcc(dspp, NULL); 781 } else { 782 _dpu_crtc_get_pcc_coeff(state, &cfg); 783 dspp->ops.setup_pcc(dspp, &cfg); 784 } 785 786 /* stage config flush mask */ 787 ctl->ops.update_pending_flush_dspp(ctl, 788 mixer[i].hw_dspp->idx, DPU_DSPP_PCC); 789 } 790 } 791 792 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 793 struct drm_atomic_state *state) 794 { 795 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 796 struct drm_encoder *encoder; 797 798 if (!crtc->state->enable) { 799 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", 800 crtc->base.id, crtc->state->enable); 801 return; 802 } 803 804 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 805 806 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 807 808 /* encoder will trigger pending mask now */ 809 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 810 dpu_encoder_trigger_kickoff_pending(encoder); 811 812 /* 813 * If no mixers have been allocated in dpu_crtc_atomic_check(), 814 * it means we are trying to flush a CRTC whose state is disabled: 815 * nothing else needs to be done. 816 */ 817 if (unlikely(!cstate->num_mixers)) 818 return; 819 820 _dpu_crtc_blend_setup(crtc); 821 822 _dpu_crtc_setup_cp_blocks(crtc); 823 824 /* 825 * PP_DONE irq is only used by command mode for now. 826 * It is better to request pending before FLUSH and START trigger 827 * to make sure no pp_done irq missed. 828 * This is safe because no pp_done will happen before SW trigger 829 * in command mode. 830 */ 831 } 832 833 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 834 struct drm_atomic_state *state) 835 { 836 struct dpu_crtc *dpu_crtc; 837 struct drm_device *dev; 838 struct drm_plane *plane; 839 struct msm_drm_private *priv; 840 unsigned long flags; 841 struct dpu_crtc_state *cstate; 842 843 if (!crtc->state->enable) { 844 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", 845 crtc->base.id, crtc->state->enable); 846 return; 847 } 848 849 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 850 851 dpu_crtc = to_dpu_crtc(crtc); 852 cstate = to_dpu_crtc_state(crtc->state); 853 dev = crtc->dev; 854 priv = dev->dev_private; 855 856 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 857 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 858 return; 859 } 860 861 WARN_ON(dpu_crtc->event); 862 spin_lock_irqsave(&dev->event_lock, flags); 863 dpu_crtc->event = crtc->state->event; 864 crtc->state->event = NULL; 865 spin_unlock_irqrestore(&dev->event_lock, flags); 866 867 /* 868 * If no mixers has been allocated in dpu_crtc_atomic_check(), 869 * it means we are trying to flush a CRTC whose state is disabled: 870 * nothing else needs to be done. 871 */ 872 if (unlikely(!cstate->num_mixers)) 873 return; 874 875 /* update performance setting before crtc kickoff */ 876 dpu_core_perf_crtc_update(crtc, 1); 877 878 /* 879 * Final plane updates: Give each plane a chance to complete all 880 * required writes/flushing before crtc's "flush 881 * everything" call below. 882 */ 883 drm_atomic_crtc_for_each_plane(plane, crtc) { 884 if (dpu_crtc->smmu_state.transition_error) 885 dpu_plane_set_error(plane, true); 886 dpu_plane_flush(plane); 887 } 888 889 /* Kickoff will be scheduled by outer layer */ 890 } 891 892 /** 893 * dpu_crtc_destroy_state - state destroy hook 894 * @crtc: drm CRTC 895 * @state: CRTC state object to release 896 */ 897 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 898 struct drm_crtc_state *state) 899 { 900 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 901 902 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 903 904 __drm_atomic_helper_crtc_destroy_state(state); 905 906 kfree(cstate); 907 } 908 909 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 910 { 911 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 912 int ret, rc = 0; 913 914 if (!atomic_read(&dpu_crtc->frame_pending)) { 915 DRM_DEBUG_ATOMIC("no frames pending\n"); 916 return 0; 917 } 918 919 DPU_ATRACE_BEGIN("frame done completion wait"); 920 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 921 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 922 if (!ret) { 923 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 924 rc = -ETIMEDOUT; 925 } 926 DPU_ATRACE_END("frame done completion wait"); 927 928 return rc; 929 } 930 931 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 932 { 933 struct drm_encoder *encoder; 934 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 935 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 936 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 937 938 /* 939 * If no mixers has been allocated in dpu_crtc_atomic_check(), 940 * it means we are trying to start a CRTC whose state is disabled: 941 * nothing else needs to be done. 942 */ 943 if (unlikely(!cstate->num_mixers)) 944 return; 945 946 DPU_ATRACE_BEGIN("crtc_commit"); 947 948 drm_for_each_encoder_mask(encoder, crtc->dev, 949 crtc->state->encoder_mask) { 950 if (!dpu_encoder_is_valid_for_commit(encoder)) { 951 DRM_DEBUG_ATOMIC("invalid FB not kicking off crtc\n"); 952 goto end; 953 } 954 } 955 /* 956 * Encoder will flush/start now, unless it has a tx pending. If so, it 957 * may delay and flush at an irq event (e.g. ppdone) 958 */ 959 drm_for_each_encoder_mask(encoder, crtc->dev, 960 crtc->state->encoder_mask) 961 dpu_encoder_prepare_for_kickoff(encoder); 962 963 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 964 /* acquire bandwidth and other resources */ 965 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); 966 } else 967 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); 968 969 dpu_crtc->play_count++; 970 971 dpu_vbif_clear_errors(dpu_kms); 972 973 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 974 dpu_encoder_kickoff(encoder); 975 976 reinit_completion(&dpu_crtc->frame_done_comp); 977 978 end: 979 DPU_ATRACE_END("crtc_commit"); 980 } 981 982 static void dpu_crtc_reset(struct drm_crtc *crtc) 983 { 984 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 985 986 if (crtc->state) 987 dpu_crtc_destroy_state(crtc, crtc->state); 988 989 if (cstate) 990 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 991 else 992 __drm_atomic_helper_crtc_reset(crtc, NULL); 993 } 994 995 /** 996 * dpu_crtc_duplicate_state - state duplicate hook 997 * @crtc: Pointer to drm crtc structure 998 */ 999 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 1000 { 1001 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 1002 1003 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 1004 if (!cstate) { 1005 DPU_ERROR("failed to allocate state\n"); 1006 return NULL; 1007 } 1008 1009 /* duplicate base helper */ 1010 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 1011 1012 return &cstate->base; 1013 } 1014 1015 static void dpu_crtc_atomic_print_state(struct drm_printer *p, 1016 const struct drm_crtc_state *state) 1017 { 1018 const struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 1019 int i; 1020 1021 for (i = 0; i < cstate->num_mixers; i++) { 1022 drm_printf(p, "\tlm[%d]=%d\n", i, cstate->mixers[i].hw_lm->idx - LM_0); 1023 drm_printf(p, "\tctl[%d]=%d\n", i, cstate->mixers[i].lm_ctl->idx - CTL_0); 1024 if (cstate->mixers[i].hw_dspp) 1025 drm_printf(p, "\tdspp[%d]=%d\n", i, cstate->mixers[i].hw_dspp->idx - DSPP_0); 1026 } 1027 } 1028 1029 static void dpu_crtc_disable(struct drm_crtc *crtc, 1030 struct drm_atomic_state *state) 1031 { 1032 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 1033 crtc); 1034 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1035 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 1036 struct drm_encoder *encoder; 1037 unsigned long flags; 1038 bool release_bandwidth = false; 1039 1040 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1041 1042 /* If disable is triggered while in self refresh mode, 1043 * reset the encoder software state so that in enable 1044 * it won't trigger a warn while assigning crtc. 1045 */ 1046 if (old_crtc_state->self_refresh_active) { 1047 drm_for_each_encoder_mask(encoder, crtc->dev, 1048 old_crtc_state->encoder_mask) { 1049 dpu_encoder_assign_crtc(encoder, NULL); 1050 } 1051 return; 1052 } 1053 1054 /* Disable/save vblank irq handling */ 1055 drm_crtc_vblank_off(crtc); 1056 1057 drm_for_each_encoder_mask(encoder, crtc->dev, 1058 old_crtc_state->encoder_mask) { 1059 /* in video mode, we hold an extra bandwidth reference 1060 * as we cannot drop bandwidth at frame-done if any 1061 * crtc is being used in video mode. 1062 */ 1063 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1064 release_bandwidth = true; 1065 1066 /* 1067 * If disable is triggered during psr active(e.g: screen dim in PSR), 1068 * we will need encoder->crtc connection to process the device sleep & 1069 * preserve it during psr sequence. 1070 */ 1071 if (!crtc->state->self_refresh_active) 1072 dpu_encoder_assign_crtc(encoder, NULL); 1073 } 1074 1075 /* wait for frame_event_done completion */ 1076 if (_dpu_crtc_wait_for_frame_done(crtc)) 1077 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 1078 crtc->base.id, 1079 atomic_read(&dpu_crtc->frame_pending)); 1080 1081 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 1082 dpu_crtc->enabled = false; 1083 1084 if (atomic_read(&dpu_crtc->frame_pending)) { 1085 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 1086 atomic_read(&dpu_crtc->frame_pending)); 1087 if (release_bandwidth) 1088 dpu_core_perf_crtc_release_bw(crtc); 1089 atomic_set(&dpu_crtc->frame_pending, 0); 1090 } 1091 1092 dpu_core_perf_crtc_update(crtc, 0); 1093 1094 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1095 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 1096 1097 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 1098 cstate->num_mixers = 0; 1099 1100 /* disable clk & bw control until clk & bw properties are set */ 1101 cstate->bw_control = false; 1102 cstate->bw_split_vote = false; 1103 1104 if (crtc->state->event && !crtc->state->active) { 1105 spin_lock_irqsave(&crtc->dev->event_lock, flags); 1106 drm_crtc_send_vblank_event(crtc, crtc->state->event); 1107 crtc->state->event = NULL; 1108 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 1109 } 1110 1111 pm_runtime_put_sync(crtc->dev->dev); 1112 } 1113 1114 static void dpu_crtc_enable(struct drm_crtc *crtc, 1115 struct drm_atomic_state *state) 1116 { 1117 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1118 struct drm_encoder *encoder; 1119 bool request_bandwidth = false; 1120 struct drm_crtc_state *old_crtc_state; 1121 1122 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc); 1123 1124 pm_runtime_get_sync(crtc->dev->dev); 1125 1126 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 1127 1128 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 1129 /* in video mode, we hold an extra bandwidth reference 1130 * as we cannot drop bandwidth at frame-done if any 1131 * crtc is being used in video mode. 1132 */ 1133 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 1134 request_bandwidth = true; 1135 dpu_encoder_register_frame_event_callback(encoder, 1136 dpu_crtc_frame_event_cb, (void *)crtc); 1137 } 1138 1139 if (request_bandwidth) 1140 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1141 1142 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 1143 dpu_crtc->enabled = true; 1144 1145 if (!old_crtc_state->self_refresh_active) { 1146 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 1147 dpu_encoder_assign_crtc(encoder, crtc); 1148 } 1149 1150 /* Enable/restore vblank irq handling */ 1151 drm_crtc_vblank_on(crtc); 1152 } 1153 1154 static bool dpu_crtc_needs_dirtyfb(struct drm_crtc_state *cstate) 1155 { 1156 struct drm_crtc *crtc = cstate->crtc; 1157 struct drm_encoder *encoder; 1158 1159 if (cstate->self_refresh_active) 1160 return true; 1161 1162 drm_for_each_encoder_mask (encoder, crtc->dev, cstate->encoder_mask) { 1163 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_CMD) { 1164 return true; 1165 } 1166 } 1167 1168 return false; 1169 } 1170 1171 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 1172 struct drm_atomic_state *state) 1173 { 1174 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 1175 crtc); 1176 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1177 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 1178 1179 const struct drm_plane_state *pstate; 1180 struct drm_plane *plane; 1181 1182 int rc = 0; 1183 1184 bool needs_dirtyfb = dpu_crtc_needs_dirtyfb(crtc_state); 1185 1186 if (!crtc_state->enable || !drm_atomic_crtc_effectively_active(crtc_state)) { 1187 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", 1188 crtc->base.id, crtc_state->enable, 1189 crtc_state->active); 1190 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 1191 return 0; 1192 } 1193 1194 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); 1195 1196 /* force a full mode set if active state changed */ 1197 if (crtc_state->active_changed) 1198 crtc_state->mode_changed = true; 1199 1200 if (cstate->num_mixers) 1201 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 1202 1203 /* FIXME: move this to dpu_plane_atomic_check? */ 1204 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 1205 struct dpu_plane_state *dpu_pstate = to_dpu_plane_state(pstate); 1206 1207 if (IS_ERR_OR_NULL(pstate)) { 1208 rc = PTR_ERR(pstate); 1209 DPU_ERROR("%s: failed to get plane%d state, %d\n", 1210 dpu_crtc->name, plane->base.id, rc); 1211 return rc; 1212 } 1213 1214 if (!pstate->visible) 1215 continue; 1216 1217 dpu_pstate->needs_dirtyfb = needs_dirtyfb; 1218 } 1219 1220 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1221 1222 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1223 if (rc) { 1224 DPU_ERROR("crtc%d failed performance check %d\n", 1225 crtc->base.id, rc); 1226 return rc; 1227 } 1228 1229 return 0; 1230 } 1231 1232 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1233 { 1234 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1235 struct drm_encoder *enc; 1236 1237 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1238 1239 /* 1240 * Normally we would iterate through encoder_mask in crtc state to find 1241 * attached encoders. In this case, we might be disabling vblank _after_ 1242 * encoder_mask has been cleared. 1243 * 1244 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1245 * disable (which is also after encoder_mask is cleared). So instead of 1246 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1247 * currently assigned to our crtc. 1248 * 1249 * Note also that this function cannot be called while crtc is disabled 1250 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1251 * about the assigned crtcs being inconsistent with the current state 1252 * (which means no need to worry about modeset locks). 1253 */ 1254 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1255 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1256 dpu_crtc); 1257 1258 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1259 } 1260 1261 return 0; 1262 } 1263 1264 #ifdef CONFIG_DEBUG_FS 1265 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1266 { 1267 struct dpu_crtc *dpu_crtc; 1268 struct dpu_plane_state *pstate = NULL; 1269 struct dpu_crtc_mixer *m; 1270 1271 struct drm_crtc *crtc; 1272 struct drm_plane *plane; 1273 struct drm_display_mode *mode; 1274 struct drm_framebuffer *fb; 1275 struct drm_plane_state *state; 1276 struct dpu_crtc_state *cstate; 1277 1278 int i, out_width; 1279 1280 dpu_crtc = s->private; 1281 crtc = &dpu_crtc->base; 1282 1283 drm_modeset_lock_all(crtc->dev); 1284 cstate = to_dpu_crtc_state(crtc->state); 1285 1286 mode = &crtc->state->adjusted_mode; 1287 out_width = mode->hdisplay / cstate->num_mixers; 1288 1289 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1290 mode->hdisplay, mode->vdisplay); 1291 1292 seq_puts(s, "\n"); 1293 1294 for (i = 0; i < cstate->num_mixers; ++i) { 1295 m = &cstate->mixers[i]; 1296 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1297 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1298 out_width, mode->vdisplay); 1299 } 1300 1301 seq_puts(s, "\n"); 1302 1303 drm_atomic_crtc_for_each_plane(plane, crtc) { 1304 pstate = to_dpu_plane_state(plane->state); 1305 state = plane->state; 1306 1307 if (!pstate || !state) 1308 continue; 1309 1310 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1311 pstate->stage); 1312 1313 if (plane->state->fb) { 1314 fb = plane->state->fb; 1315 1316 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1317 fb->base.id, (char *) &fb->format->format, 1318 fb->width, fb->height); 1319 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1320 seq_printf(s, "cpp[%d]:%u ", 1321 i, fb->format->cpp[i]); 1322 seq_puts(s, "\n\t"); 1323 1324 seq_printf(s, "modifier:%8llu ", fb->modifier); 1325 seq_puts(s, "\n"); 1326 1327 seq_puts(s, "\t"); 1328 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1329 seq_printf(s, "pitches[%d]:%8u ", i, 1330 fb->pitches[i]); 1331 seq_puts(s, "\n"); 1332 1333 seq_puts(s, "\t"); 1334 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1335 seq_printf(s, "offsets[%d]:%8u ", i, 1336 fb->offsets[i]); 1337 seq_puts(s, "\n"); 1338 } 1339 1340 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1341 state->src_x, state->src_y, state->src_w, state->src_h); 1342 1343 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1344 state->crtc_x, state->crtc_y, state->crtc_w, 1345 state->crtc_h); 1346 seq_printf(s, "\tsspp[0]:%s\n", 1347 pstate->pipe.sspp->cap->name); 1348 seq_printf(s, "\tmultirect[0]: mode: %d index: %d\n", 1349 pstate->pipe.multirect_mode, pstate->pipe.multirect_index); 1350 if (pstate->r_pipe.sspp) { 1351 seq_printf(s, "\tsspp[1]:%s\n", 1352 pstate->r_pipe.sspp->cap->name); 1353 seq_printf(s, "\tmultirect[1]: mode: %d index: %d\n", 1354 pstate->r_pipe.multirect_mode, pstate->r_pipe.multirect_index); 1355 } 1356 1357 seq_puts(s, "\n"); 1358 } 1359 if (dpu_crtc->vblank_cb_count) { 1360 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1361 s64 diff_ms = ktime_to_ms(diff); 1362 s64 fps = diff_ms ? div_s64( 1363 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1364 1365 seq_printf(s, 1366 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1367 fps, dpu_crtc->vblank_cb_count, 1368 ktime_to_ms(diff), dpu_crtc->play_count); 1369 1370 /* reset time & count for next measurement */ 1371 dpu_crtc->vblank_cb_count = 0; 1372 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1373 } 1374 1375 drm_modeset_unlock_all(crtc->dev); 1376 1377 return 0; 1378 } 1379 1380 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1381 1382 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1383 { 1384 struct drm_crtc *crtc = s->private; 1385 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1386 1387 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1388 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1389 seq_printf(s, "core_clk_rate: %llu\n", 1390 dpu_crtc->cur_perf.core_clk_rate); 1391 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1392 seq_printf(s, "max_per_pipe_ib: %llu\n", 1393 dpu_crtc->cur_perf.max_per_pipe_ib); 1394 1395 return 0; 1396 } 1397 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1398 1399 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1400 { 1401 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1402 1403 debugfs_create_file("status", 0400, 1404 crtc->debugfs_entry, 1405 dpu_crtc, &_dpu_debugfs_status_fops); 1406 debugfs_create_file("state", 0600, 1407 crtc->debugfs_entry, 1408 &dpu_crtc->base, 1409 &dpu_crtc_debugfs_state_fops); 1410 1411 return 0; 1412 } 1413 #else 1414 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1415 { 1416 return 0; 1417 } 1418 #endif /* CONFIG_DEBUG_FS */ 1419 1420 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1421 { 1422 return _dpu_crtc_init_debugfs(crtc); 1423 } 1424 1425 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1426 .set_config = drm_atomic_helper_set_config, 1427 .page_flip = drm_atomic_helper_page_flip, 1428 .reset = dpu_crtc_reset, 1429 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1430 .atomic_destroy_state = dpu_crtc_destroy_state, 1431 .atomic_print_state = dpu_crtc_atomic_print_state, 1432 .late_register = dpu_crtc_late_register, 1433 .verify_crc_source = dpu_crtc_verify_crc_source, 1434 .set_crc_source = dpu_crtc_set_crc_source, 1435 .enable_vblank = msm_crtc_enable_vblank, 1436 .disable_vblank = msm_crtc_disable_vblank, 1437 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1438 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1439 }; 1440 1441 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1442 .atomic_disable = dpu_crtc_disable, 1443 .atomic_enable = dpu_crtc_enable, 1444 .atomic_check = dpu_crtc_atomic_check, 1445 .atomic_begin = dpu_crtc_atomic_begin, 1446 .atomic_flush = dpu_crtc_atomic_flush, 1447 .get_scanout_position = dpu_crtc_get_scanout_position, 1448 }; 1449 1450 /* initialize crtc */ 1451 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1452 struct drm_plane *cursor) 1453 { 1454 struct msm_drm_private *priv = dev->dev_private; 1455 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms); 1456 struct drm_crtc *crtc = NULL; 1457 struct dpu_crtc *dpu_crtc; 1458 int i, ret; 1459 1460 dpu_crtc = drmm_crtc_alloc_with_planes(dev, struct dpu_crtc, base, 1461 plane, cursor, 1462 &dpu_crtc_funcs, 1463 NULL); 1464 1465 if (IS_ERR(dpu_crtc)) 1466 return ERR_CAST(dpu_crtc); 1467 1468 crtc = &dpu_crtc->base; 1469 crtc->dev = dev; 1470 1471 spin_lock_init(&dpu_crtc->spin_lock); 1472 atomic_set(&dpu_crtc->frame_pending, 0); 1473 1474 init_completion(&dpu_crtc->frame_done_comp); 1475 1476 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1477 1478 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1479 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1480 list_add(&dpu_crtc->frame_events[i].list, 1481 &dpu_crtc->frame_event_list); 1482 kthread_init_work(&dpu_crtc->frame_events[i].work, 1483 dpu_crtc_frame_event_work); 1484 } 1485 1486 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1487 1488 if (dpu_kms->catalog->dspp_count) 1489 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1490 1491 /* save user friendly CRTC name for later */ 1492 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1493 1494 /* initialize event handling */ 1495 spin_lock_init(&dpu_crtc->event_lock); 1496 1497 ret = drm_self_refresh_helper_init(crtc); 1498 if (ret) { 1499 DPU_ERROR("Failed to initialize %s with self-refresh helpers %d\n", 1500 crtc->name, ret); 1501 return ERR_PTR(ret); 1502 } 1503 1504 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); 1505 return crtc; 1506 } 1507