1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved. 4 * Copyright (C) 2013 Red Hat 5 * Author: Rob Clark <robdclark@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__ 9 #include <linux/sort.h> 10 #include <linux/debugfs.h> 11 #include <linux/ktime.h> 12 #include <linux/bits.h> 13 14 #include <drm/drm_atomic.h> 15 #include <drm/drm_crtc.h> 16 #include <drm/drm_flip_work.h> 17 #include <drm/drm_mode.h> 18 #include <drm/drm_probe_helper.h> 19 #include <drm/drm_rect.h> 20 #include <drm/drm_vblank.h> 21 22 #include "dpu_kms.h" 23 #include "dpu_hw_lm.h" 24 #include "dpu_hw_ctl.h" 25 #include "dpu_hw_dspp.h" 26 #include "dpu_crtc.h" 27 #include "dpu_plane.h" 28 #include "dpu_encoder.h" 29 #include "dpu_vbif.h" 30 #include "dpu_core_perf.h" 31 #include "dpu_trace.h" 32 33 /* layer mixer index on dpu_crtc */ 34 #define LEFT_MIXER 0 35 #define RIGHT_MIXER 1 36 37 /* timeout in ms waiting for frame done */ 38 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS 60 39 40 #define CONVERT_S3_15(val) \ 41 (((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0)) 42 43 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc) 44 { 45 struct msm_drm_private *priv = crtc->dev->dev_private; 46 47 return to_dpu_kms(priv->kms); 48 } 49 50 static void dpu_crtc_destroy(struct drm_crtc *crtc) 51 { 52 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 53 54 if (!crtc) 55 return; 56 57 drm_crtc_cleanup(crtc); 58 kfree(dpu_crtc); 59 } 60 61 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc) 62 { 63 struct drm_device *dev = crtc->dev; 64 struct drm_encoder *encoder; 65 66 drm_for_each_encoder(encoder, dev) 67 if (encoder->crtc == crtc) 68 return encoder; 69 70 return NULL; 71 } 72 73 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc) 74 { 75 struct drm_encoder *encoder; 76 77 encoder = get_encoder_from_crtc(crtc); 78 if (!encoder) { 79 DRM_ERROR("no encoder found for crtc %d\n", crtc->index); 80 return false; 81 } 82 83 return dpu_encoder_get_frame_count(encoder); 84 } 85 86 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc, 87 bool in_vblank_irq, 88 int *vpos, int *hpos, 89 ktime_t *stime, ktime_t *etime, 90 const struct drm_display_mode *mode) 91 { 92 unsigned int pipe = crtc->index; 93 struct drm_encoder *encoder; 94 int line, vsw, vbp, vactive_start, vactive_end, vfp_end; 95 96 encoder = get_encoder_from_crtc(crtc); 97 if (!encoder) { 98 DRM_ERROR("no encoder found for crtc %d\n", pipe); 99 return false; 100 } 101 102 vsw = mode->crtc_vsync_end - mode->crtc_vsync_start; 103 vbp = mode->crtc_vtotal - mode->crtc_vsync_end; 104 105 /* 106 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at 107 * the end of VFP. Translate the porch values relative to the line 108 * counter positions. 109 */ 110 111 vactive_start = vsw + vbp + 1; 112 vactive_end = vactive_start + mode->crtc_vdisplay; 113 114 /* last scan line before VSYNC */ 115 vfp_end = mode->crtc_vtotal; 116 117 if (stime) 118 *stime = ktime_get(); 119 120 line = dpu_encoder_get_linecount(encoder); 121 122 if (line < vactive_start) 123 line -= vactive_start; 124 else if (line > vactive_end) 125 line = line - vfp_end - vactive_start; 126 else 127 line -= vactive_start; 128 129 *vpos = line; 130 *hpos = 0; 131 132 if (etime) 133 *etime = ktime_get(); 134 135 return true; 136 } 137 138 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer, 139 struct dpu_plane_state *pstate, struct dpu_format *format) 140 { 141 struct dpu_hw_mixer *lm = mixer->hw_lm; 142 uint32_t blend_op; 143 uint32_t fg_alpha, bg_alpha; 144 145 fg_alpha = pstate->base.alpha >> 8; 146 bg_alpha = 0xff - fg_alpha; 147 148 /* default to opaque blending */ 149 if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PIXEL_NONE || 150 !format->alpha_enable) { 151 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 152 DPU_BLEND_BG_ALPHA_BG_CONST; 153 } else if (pstate->base.pixel_blend_mode == DRM_MODE_BLEND_PREMULTI) { 154 blend_op = DPU_BLEND_FG_ALPHA_FG_CONST | 155 DPU_BLEND_BG_ALPHA_FG_PIXEL; 156 if (fg_alpha != 0xff) { 157 bg_alpha = fg_alpha; 158 blend_op |= DPU_BLEND_BG_MOD_ALPHA | 159 DPU_BLEND_BG_INV_MOD_ALPHA; 160 } else { 161 blend_op |= DPU_BLEND_BG_INV_ALPHA; 162 } 163 } else { 164 /* coverage blending */ 165 blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL | 166 DPU_BLEND_BG_ALPHA_FG_PIXEL; 167 if (fg_alpha != 0xff) { 168 bg_alpha = fg_alpha; 169 blend_op |= DPU_BLEND_FG_MOD_ALPHA | 170 DPU_BLEND_FG_INV_MOD_ALPHA | 171 DPU_BLEND_BG_MOD_ALPHA | 172 DPU_BLEND_BG_INV_MOD_ALPHA; 173 } else { 174 blend_op |= DPU_BLEND_BG_INV_ALPHA; 175 } 176 } 177 178 lm->ops.setup_blend_config(lm, pstate->stage, 179 fg_alpha, bg_alpha, blend_op); 180 181 DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n", 182 &format->base.pixel_format, format->alpha_enable, blend_op); 183 } 184 185 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc) 186 { 187 struct dpu_crtc_state *crtc_state; 188 int lm_idx, lm_horiz_position; 189 190 crtc_state = to_dpu_crtc_state(crtc->state); 191 192 lm_horiz_position = 0; 193 for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) { 194 const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx]; 195 struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm; 196 struct dpu_hw_mixer_cfg cfg; 197 198 if (!lm_roi || !drm_rect_visible(lm_roi)) 199 continue; 200 201 cfg.out_width = drm_rect_width(lm_roi); 202 cfg.out_height = drm_rect_height(lm_roi); 203 cfg.right_mixer = lm_horiz_position++; 204 cfg.flags = 0; 205 hw_lm->ops.setup_mixer_out(hw_lm, &cfg); 206 } 207 } 208 209 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc, 210 struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer) 211 { 212 struct drm_plane *plane; 213 struct drm_framebuffer *fb; 214 struct drm_plane_state *state; 215 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 216 struct dpu_plane_state *pstate = NULL; 217 struct dpu_format *format; 218 struct dpu_hw_ctl *ctl = mixer->lm_ctl; 219 struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg; 220 221 u32 flush_mask; 222 uint32_t stage_idx, lm_idx; 223 int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 }; 224 bool bg_alpha_enable = false; 225 DECLARE_BITMAP(fetch_active, SSPP_MAX); 226 227 memset(fetch_active, 0, sizeof(fetch_active)); 228 drm_atomic_crtc_for_each_plane(plane, crtc) { 229 state = plane->state; 230 if (!state) 231 continue; 232 233 pstate = to_dpu_plane_state(state); 234 fb = state->fb; 235 236 dpu_plane_get_ctl_flush(plane, ctl, &flush_mask); 237 set_bit(dpu_plane_pipe(plane), fetch_active); 238 239 DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n", 240 crtc->base.id, 241 pstate->stage, 242 plane->base.id, 243 dpu_plane_pipe(plane) - SSPP_VIG0, 244 state->fb ? state->fb->base.id : -1); 245 246 format = to_dpu_format(msm_framebuffer_format(pstate->base.fb)); 247 248 if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable) 249 bg_alpha_enable = true; 250 251 stage_idx = zpos_cnt[pstate->stage]++; 252 stage_cfg->stage[pstate->stage][stage_idx] = 253 dpu_plane_pipe(plane); 254 stage_cfg->multirect_index[pstate->stage][stage_idx] = 255 pstate->multirect_index; 256 257 trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane), 258 state, pstate, stage_idx, 259 dpu_plane_pipe(plane) - SSPP_VIG0, 260 format->base.pixel_format, 261 fb ? fb->modifier : 0); 262 263 /* blend config update */ 264 for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) { 265 _dpu_crtc_setup_blend_cfg(mixer + lm_idx, 266 pstate, format); 267 268 mixer[lm_idx].flush_mask |= flush_mask; 269 270 if (bg_alpha_enable && !format->alpha_enable) 271 mixer[lm_idx].mixer_op_mode = 0; 272 else 273 mixer[lm_idx].mixer_op_mode |= 274 1 << pstate->stage; 275 } 276 } 277 278 if (ctl->ops.set_active_pipes) 279 ctl->ops.set_active_pipes(ctl, fetch_active); 280 281 _dpu_crtc_program_lm_output_roi(crtc); 282 } 283 284 /** 285 * _dpu_crtc_blend_setup - configure crtc mixers 286 * @crtc: Pointer to drm crtc structure 287 */ 288 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc) 289 { 290 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 291 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 292 struct dpu_crtc_mixer *mixer = cstate->mixers; 293 struct dpu_hw_ctl *ctl; 294 struct dpu_hw_mixer *lm; 295 int i; 296 297 DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name); 298 299 for (i = 0; i < cstate->num_mixers; i++) { 300 mixer[i].mixer_op_mode = 0; 301 mixer[i].flush_mask = 0; 302 if (mixer[i].lm_ctl->ops.clear_all_blendstages) 303 mixer[i].lm_ctl->ops.clear_all_blendstages( 304 mixer[i].lm_ctl); 305 } 306 307 /* initialize stage cfg */ 308 memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg)); 309 310 _dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer); 311 312 for (i = 0; i < cstate->num_mixers; i++) { 313 ctl = mixer[i].lm_ctl; 314 lm = mixer[i].hw_lm; 315 316 lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode); 317 318 mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl, 319 mixer[i].hw_lm->idx); 320 321 /* stage config flush mask */ 322 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 323 324 DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n", 325 mixer[i].hw_lm->idx - LM_0, 326 mixer[i].mixer_op_mode, 327 ctl->idx - CTL_0, 328 mixer[i].flush_mask); 329 330 ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx, 331 &dpu_crtc->stage_cfg); 332 } 333 } 334 335 /** 336 * _dpu_crtc_complete_flip - signal pending page_flip events 337 * Any pending vblank events are added to the vblank_event_list 338 * so that the next vblank interrupt shall signal them. 339 * However PAGE_FLIP events are not handled through the vblank_event_list. 340 * This API signals any pending PAGE_FLIP events requested through 341 * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event. 342 * @crtc: Pointer to drm crtc structure 343 */ 344 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc) 345 { 346 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 347 struct drm_device *dev = crtc->dev; 348 unsigned long flags; 349 350 spin_lock_irqsave(&dev->event_lock, flags); 351 if (dpu_crtc->event) { 352 DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name, 353 dpu_crtc->event); 354 trace_dpu_crtc_complete_flip(DRMID(crtc)); 355 drm_crtc_send_vblank_event(crtc, dpu_crtc->event); 356 dpu_crtc->event = NULL; 357 } 358 spin_unlock_irqrestore(&dev->event_lock, flags); 359 } 360 361 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc) 362 { 363 struct drm_encoder *encoder; 364 365 /* 366 * TODO: This function is called from dpu debugfs and as part of atomic 367 * check. When called from debugfs, the crtc->mutex must be held to 368 * read crtc->state. However reading crtc->state from atomic check isn't 369 * allowed (unless you have a good reason, a big comment, and a deep 370 * understanding of how the atomic/modeset locks work (<- and this is 371 * probably not possible)). So we'll keep the WARN_ON here for now, but 372 * really we need to figure out a better way to track our operating mode 373 */ 374 WARN_ON(!drm_modeset_is_locked(&crtc->mutex)); 375 376 /* TODO: Returns the first INTF_MODE, could there be multiple values? */ 377 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 378 return dpu_encoder_get_intf_mode(encoder); 379 380 return INTF_MODE_NONE; 381 } 382 383 void dpu_crtc_vblank_callback(struct drm_crtc *crtc) 384 { 385 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 386 387 /* keep statistics on vblank callback - with auto reset via debugfs */ 388 if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0) 389 dpu_crtc->vblank_cb_time = ktime_get(); 390 else 391 dpu_crtc->vblank_cb_count++; 392 drm_crtc_handle_vblank(crtc); 393 trace_dpu_crtc_vblank_cb(DRMID(crtc)); 394 } 395 396 static void dpu_crtc_frame_event_work(struct kthread_work *work) 397 { 398 struct dpu_crtc_frame_event *fevent = container_of(work, 399 struct dpu_crtc_frame_event, work); 400 struct drm_crtc *crtc = fevent->crtc; 401 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 402 unsigned long flags; 403 bool frame_done = false; 404 405 DPU_ATRACE_BEGIN("crtc_frame_event"); 406 407 DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event, 408 ktime_to_ns(fevent->ts)); 409 410 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 411 | DPU_ENCODER_FRAME_EVENT_ERROR 412 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) { 413 414 if (atomic_read(&dpu_crtc->frame_pending) < 1) { 415 /* ignore vblank when not pending */ 416 } else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) { 417 /* release bandwidth and other resources */ 418 trace_dpu_crtc_frame_event_done(DRMID(crtc), 419 fevent->event); 420 dpu_core_perf_crtc_release_bw(crtc); 421 } else { 422 trace_dpu_crtc_frame_event_more_pending(DRMID(crtc), 423 fevent->event); 424 } 425 426 if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE 427 | DPU_ENCODER_FRAME_EVENT_ERROR)) 428 frame_done = true; 429 } 430 431 if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD) 432 DPU_ERROR("crtc%d ts:%lld received panel dead event\n", 433 crtc->base.id, ktime_to_ns(fevent->ts)); 434 435 if (frame_done) 436 complete_all(&dpu_crtc->frame_done_comp); 437 438 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 439 list_add_tail(&fevent->list, &dpu_crtc->frame_event_list); 440 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 441 DPU_ATRACE_END("crtc_frame_event"); 442 } 443 444 /* 445 * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module 446 * registers this API to encoder for all frame event callbacks like 447 * frame_error, frame_done, idle_timeout, etc. Encoder may call different events 448 * from different context - IRQ, user thread, commit_thread, etc. Each event 449 * should be carefully reviewed and should be processed in proper task context 450 * to avoid schedulin delay or properly manage the irq context's bottom half 451 * processing. 452 */ 453 static void dpu_crtc_frame_event_cb(void *data, u32 event) 454 { 455 struct drm_crtc *crtc = (struct drm_crtc *)data; 456 struct dpu_crtc *dpu_crtc; 457 struct msm_drm_private *priv; 458 struct dpu_crtc_frame_event *fevent; 459 unsigned long flags; 460 u32 crtc_id; 461 462 /* Nothing to do on idle event */ 463 if (event & DPU_ENCODER_FRAME_EVENT_IDLE) 464 return; 465 466 dpu_crtc = to_dpu_crtc(crtc); 467 priv = crtc->dev->dev_private; 468 crtc_id = drm_crtc_index(crtc); 469 470 trace_dpu_crtc_frame_event_cb(DRMID(crtc), event); 471 472 spin_lock_irqsave(&dpu_crtc->spin_lock, flags); 473 fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list, 474 struct dpu_crtc_frame_event, list); 475 if (fevent) 476 list_del_init(&fevent->list); 477 spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags); 478 479 if (!fevent) { 480 DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event); 481 return; 482 } 483 484 fevent->event = event; 485 fevent->crtc = crtc; 486 fevent->ts = ktime_get(); 487 kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work); 488 } 489 490 void dpu_crtc_complete_commit(struct drm_crtc *crtc) 491 { 492 trace_dpu_crtc_complete_commit(DRMID(crtc)); 493 dpu_core_perf_crtc_update(crtc, 0, false); 494 _dpu_crtc_complete_flip(crtc); 495 } 496 497 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc, 498 struct drm_crtc_state *state) 499 { 500 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 501 struct drm_display_mode *adj_mode = &state->adjusted_mode; 502 u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers; 503 int i; 504 505 for (i = 0; i < cstate->num_mixers; i++) { 506 struct drm_rect *r = &cstate->lm_bounds[i]; 507 r->x1 = crtc_split_width * i; 508 r->y1 = 0; 509 r->x2 = r->x1 + crtc_split_width; 510 r->y2 = adj_mode->vdisplay; 511 512 trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r); 513 } 514 } 515 516 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state, 517 struct dpu_hw_pcc_cfg *cfg) 518 { 519 struct drm_color_ctm *ctm; 520 521 memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg)); 522 523 ctm = (struct drm_color_ctm *)state->ctm->data; 524 525 if (!ctm) 526 return; 527 528 cfg->r.r = CONVERT_S3_15(ctm->matrix[0]); 529 cfg->g.r = CONVERT_S3_15(ctm->matrix[1]); 530 cfg->b.r = CONVERT_S3_15(ctm->matrix[2]); 531 532 cfg->r.g = CONVERT_S3_15(ctm->matrix[3]); 533 cfg->g.g = CONVERT_S3_15(ctm->matrix[4]); 534 cfg->b.g = CONVERT_S3_15(ctm->matrix[5]); 535 536 cfg->r.b = CONVERT_S3_15(ctm->matrix[6]); 537 cfg->g.b = CONVERT_S3_15(ctm->matrix[7]); 538 cfg->b.b = CONVERT_S3_15(ctm->matrix[8]); 539 } 540 541 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc) 542 { 543 struct drm_crtc_state *state = crtc->state; 544 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 545 struct dpu_crtc_mixer *mixer = cstate->mixers; 546 struct dpu_hw_pcc_cfg cfg; 547 struct dpu_hw_ctl *ctl; 548 struct dpu_hw_dspp *dspp; 549 int i; 550 551 552 if (!state->color_mgmt_changed) 553 return; 554 555 for (i = 0; i < cstate->num_mixers; i++) { 556 ctl = mixer[i].lm_ctl; 557 dspp = mixer[i].hw_dspp; 558 559 if (!dspp || !dspp->ops.setup_pcc) 560 continue; 561 562 if (!state->ctm) { 563 dspp->ops.setup_pcc(dspp, NULL); 564 } else { 565 _dpu_crtc_get_pcc_coeff(state, &cfg); 566 dspp->ops.setup_pcc(dspp, &cfg); 567 } 568 569 mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl, 570 mixer[i].hw_dspp->idx); 571 572 /* stage config flush mask */ 573 ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask); 574 575 DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n", 576 mixer[i].hw_lm->idx - DSPP_0, 577 ctl->idx - CTL_0, 578 mixer[i].flush_mask); 579 } 580 } 581 582 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc, 583 struct drm_atomic_state *state) 584 { 585 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 586 struct drm_encoder *encoder; 587 588 if (!crtc->state->enable) { 589 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n", 590 crtc->base.id, crtc->state->enable); 591 return; 592 } 593 594 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 595 596 _dpu_crtc_setup_lm_bounds(crtc, crtc->state); 597 598 /* encoder will trigger pending mask now */ 599 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 600 dpu_encoder_trigger_kickoff_pending(encoder); 601 602 /* 603 * If no mixers have been allocated in dpu_crtc_atomic_check(), 604 * it means we are trying to flush a CRTC whose state is disabled: 605 * nothing else needs to be done. 606 */ 607 if (unlikely(!cstate->num_mixers)) 608 return; 609 610 _dpu_crtc_blend_setup(crtc); 611 612 _dpu_crtc_setup_cp_blocks(crtc); 613 614 /* 615 * PP_DONE irq is only used by command mode for now. 616 * It is better to request pending before FLUSH and START trigger 617 * to make sure no pp_done irq missed. 618 * This is safe because no pp_done will happen before SW trigger 619 * in command mode. 620 */ 621 } 622 623 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc, 624 struct drm_atomic_state *state) 625 { 626 struct dpu_crtc *dpu_crtc; 627 struct drm_device *dev; 628 struct drm_plane *plane; 629 struct msm_drm_private *priv; 630 unsigned long flags; 631 struct dpu_crtc_state *cstate; 632 633 if (!crtc->state->enable) { 634 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n", 635 crtc->base.id, crtc->state->enable); 636 return; 637 } 638 639 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 640 641 dpu_crtc = to_dpu_crtc(crtc); 642 cstate = to_dpu_crtc_state(crtc->state); 643 dev = crtc->dev; 644 priv = dev->dev_private; 645 646 if (crtc->index >= ARRAY_SIZE(priv->event_thread)) { 647 DPU_ERROR("invalid crtc index[%d]\n", crtc->index); 648 return; 649 } 650 651 WARN_ON(dpu_crtc->event); 652 spin_lock_irqsave(&dev->event_lock, flags); 653 dpu_crtc->event = crtc->state->event; 654 crtc->state->event = NULL; 655 spin_unlock_irqrestore(&dev->event_lock, flags); 656 657 /* 658 * If no mixers has been allocated in dpu_crtc_atomic_check(), 659 * it means we are trying to flush a CRTC whose state is disabled: 660 * nothing else needs to be done. 661 */ 662 if (unlikely(!cstate->num_mixers)) 663 return; 664 665 /* update performance setting before crtc kickoff */ 666 dpu_core_perf_crtc_update(crtc, 1, false); 667 668 /* 669 * Final plane updates: Give each plane a chance to complete all 670 * required writes/flushing before crtc's "flush 671 * everything" call below. 672 */ 673 drm_atomic_crtc_for_each_plane(plane, crtc) { 674 if (dpu_crtc->smmu_state.transition_error) 675 dpu_plane_set_error(plane, true); 676 dpu_plane_flush(plane); 677 } 678 679 /* Kickoff will be scheduled by outer layer */ 680 } 681 682 /** 683 * dpu_crtc_destroy_state - state destroy hook 684 * @crtc: drm CRTC 685 * @state: CRTC state object to release 686 */ 687 static void dpu_crtc_destroy_state(struct drm_crtc *crtc, 688 struct drm_crtc_state *state) 689 { 690 struct dpu_crtc_state *cstate = to_dpu_crtc_state(state); 691 692 DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id); 693 694 __drm_atomic_helper_crtc_destroy_state(state); 695 696 kfree(cstate); 697 } 698 699 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc) 700 { 701 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 702 int ret, rc = 0; 703 704 if (!atomic_read(&dpu_crtc->frame_pending)) { 705 DRM_DEBUG_ATOMIC("no frames pending\n"); 706 return 0; 707 } 708 709 DPU_ATRACE_BEGIN("frame done completion wait"); 710 ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp, 711 msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS)); 712 if (!ret) { 713 DRM_ERROR("frame done wait timed out, ret:%d\n", ret); 714 rc = -ETIMEDOUT; 715 } 716 DPU_ATRACE_END("frame done completion wait"); 717 718 return rc; 719 } 720 721 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc) 722 { 723 struct drm_encoder *encoder; 724 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 725 struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc); 726 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 727 728 /* 729 * If no mixers has been allocated in dpu_crtc_atomic_check(), 730 * it means we are trying to start a CRTC whose state is disabled: 731 * nothing else needs to be done. 732 */ 733 if (unlikely(!cstate->num_mixers)) 734 return; 735 736 DPU_ATRACE_BEGIN("crtc_commit"); 737 738 /* 739 * Encoder will flush/start now, unless it has a tx pending. If so, it 740 * may delay and flush at an irq event (e.g. ppdone) 741 */ 742 drm_for_each_encoder_mask(encoder, crtc->dev, 743 crtc->state->encoder_mask) 744 dpu_encoder_prepare_for_kickoff(encoder); 745 746 if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) { 747 /* acquire bandwidth and other resources */ 748 DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id); 749 } else 750 DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id); 751 752 dpu_crtc->play_count++; 753 754 dpu_vbif_clear_errors(dpu_kms); 755 756 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 757 dpu_encoder_kickoff(encoder); 758 759 reinit_completion(&dpu_crtc->frame_done_comp); 760 DPU_ATRACE_END("crtc_commit"); 761 } 762 763 static void dpu_crtc_reset(struct drm_crtc *crtc) 764 { 765 struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL); 766 767 if (crtc->state) 768 dpu_crtc_destroy_state(crtc, crtc->state); 769 770 __drm_atomic_helper_crtc_reset(crtc, &cstate->base); 771 } 772 773 /** 774 * dpu_crtc_duplicate_state - state duplicate hook 775 * @crtc: Pointer to drm crtc structure 776 */ 777 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc) 778 { 779 struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state); 780 781 cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL); 782 if (!cstate) { 783 DPU_ERROR("failed to allocate state\n"); 784 return NULL; 785 } 786 787 /* duplicate base helper */ 788 __drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base); 789 790 return &cstate->base; 791 } 792 793 static void dpu_crtc_disable(struct drm_crtc *crtc, 794 struct drm_atomic_state *state) 795 { 796 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state, 797 crtc); 798 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 799 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state); 800 struct drm_encoder *encoder; 801 unsigned long flags; 802 bool release_bandwidth = false; 803 804 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 805 806 /* Disable/save vblank irq handling */ 807 drm_crtc_vblank_off(crtc); 808 809 drm_for_each_encoder_mask(encoder, crtc->dev, 810 old_crtc_state->encoder_mask) { 811 /* in video mode, we hold an extra bandwidth reference 812 * as we cannot drop bandwidth at frame-done if any 813 * crtc is being used in video mode. 814 */ 815 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 816 release_bandwidth = true; 817 dpu_encoder_assign_crtc(encoder, NULL); 818 } 819 820 /* wait for frame_event_done completion */ 821 if (_dpu_crtc_wait_for_frame_done(crtc)) 822 DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n", 823 crtc->base.id, 824 atomic_read(&dpu_crtc->frame_pending)); 825 826 trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc); 827 dpu_crtc->enabled = false; 828 829 if (atomic_read(&dpu_crtc->frame_pending)) { 830 trace_dpu_crtc_disable_frame_pending(DRMID(crtc), 831 atomic_read(&dpu_crtc->frame_pending)); 832 if (release_bandwidth) 833 dpu_core_perf_crtc_release_bw(crtc); 834 atomic_set(&dpu_crtc->frame_pending, 0); 835 } 836 837 dpu_core_perf_crtc_update(crtc, 0, true); 838 839 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 840 dpu_encoder_register_frame_event_callback(encoder, NULL, NULL); 841 842 memset(cstate->mixers, 0, sizeof(cstate->mixers)); 843 cstate->num_mixers = 0; 844 845 /* disable clk & bw control until clk & bw properties are set */ 846 cstate->bw_control = false; 847 cstate->bw_split_vote = false; 848 849 if (crtc->state->event && !crtc->state->active) { 850 spin_lock_irqsave(&crtc->dev->event_lock, flags); 851 drm_crtc_send_vblank_event(crtc, crtc->state->event); 852 crtc->state->event = NULL; 853 spin_unlock_irqrestore(&crtc->dev->event_lock, flags); 854 } 855 856 pm_runtime_put_sync(crtc->dev->dev); 857 } 858 859 static void dpu_crtc_enable(struct drm_crtc *crtc, 860 struct drm_atomic_state *state) 861 { 862 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 863 struct drm_encoder *encoder; 864 bool request_bandwidth = false; 865 866 pm_runtime_get_sync(crtc->dev->dev); 867 868 DRM_DEBUG_KMS("crtc%d\n", crtc->base.id); 869 870 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) { 871 /* in video mode, we hold an extra bandwidth reference 872 * as we cannot drop bandwidth at frame-done if any 873 * crtc is being used in video mode. 874 */ 875 if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO) 876 request_bandwidth = true; 877 dpu_encoder_register_frame_event_callback(encoder, 878 dpu_crtc_frame_event_cb, (void *)crtc); 879 } 880 881 if (request_bandwidth) 882 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 883 884 trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc); 885 dpu_crtc->enabled = true; 886 887 drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) 888 dpu_encoder_assign_crtc(encoder, crtc); 889 890 /* Enable/restore vblank irq handling */ 891 drm_crtc_vblank_on(crtc); 892 } 893 894 struct plane_state { 895 struct dpu_plane_state *dpu_pstate; 896 const struct drm_plane_state *drm_pstate; 897 int stage; 898 u32 pipe_id; 899 }; 900 901 static int dpu_crtc_atomic_check(struct drm_crtc *crtc, 902 struct drm_atomic_state *state) 903 { 904 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, 905 crtc); 906 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 907 struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state); 908 struct plane_state *pstates; 909 910 const struct drm_plane_state *pstate; 911 struct drm_plane *plane; 912 struct drm_display_mode *mode; 913 914 int cnt = 0, rc = 0, mixer_width = 0, i, z_pos; 915 916 struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2]; 917 int multirect_count = 0; 918 const struct drm_plane_state *pipe_staged[SSPP_MAX]; 919 int left_zpos_cnt = 0, right_zpos_cnt = 0; 920 struct drm_rect crtc_rect = { 0 }; 921 922 pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL); 923 924 if (!crtc_state->enable || !crtc_state->active) { 925 DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n", 926 crtc->base.id, crtc_state->enable, 927 crtc_state->active); 928 memset(&cstate->new_perf, 0, sizeof(cstate->new_perf)); 929 goto end; 930 } 931 932 mode = &crtc_state->adjusted_mode; 933 DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name); 934 935 /* force a full mode set if active state changed */ 936 if (crtc_state->active_changed) 937 crtc_state->mode_changed = true; 938 939 memset(pipe_staged, 0, sizeof(pipe_staged)); 940 941 if (cstate->num_mixers) { 942 mixer_width = mode->hdisplay / cstate->num_mixers; 943 944 _dpu_crtc_setup_lm_bounds(crtc, crtc_state); 945 } 946 947 crtc_rect.x2 = mode->hdisplay; 948 crtc_rect.y2 = mode->vdisplay; 949 950 /* get plane state for all drm planes associated with crtc state */ 951 drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) { 952 struct drm_rect dst, clip = crtc_rect; 953 954 if (IS_ERR_OR_NULL(pstate)) { 955 rc = PTR_ERR(pstate); 956 DPU_ERROR("%s: failed to get plane%d state, %d\n", 957 dpu_crtc->name, plane->base.id, rc); 958 goto end; 959 } 960 if (cnt >= DPU_STAGE_MAX * 4) 961 continue; 962 963 pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate); 964 pstates[cnt].drm_pstate = pstate; 965 pstates[cnt].stage = pstate->normalized_zpos; 966 pstates[cnt].pipe_id = dpu_plane_pipe(plane); 967 968 if (pipe_staged[pstates[cnt].pipe_id]) { 969 multirect_plane[multirect_count].r0 = 970 pipe_staged[pstates[cnt].pipe_id]; 971 multirect_plane[multirect_count].r1 = pstate; 972 multirect_count++; 973 974 pipe_staged[pstates[cnt].pipe_id] = NULL; 975 } else { 976 pipe_staged[pstates[cnt].pipe_id] = pstate; 977 } 978 979 cnt++; 980 981 dst = drm_plane_state_dest(pstate); 982 if (!drm_rect_intersect(&clip, &dst)) { 983 DPU_ERROR("invalid vertical/horizontal destination\n"); 984 DPU_ERROR("display: " DRM_RECT_FMT " plane: " 985 DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect), 986 DRM_RECT_ARG(&dst)); 987 rc = -E2BIG; 988 goto end; 989 } 990 } 991 992 for (i = 1; i < SSPP_MAX; i++) { 993 if (pipe_staged[i]) { 994 dpu_plane_clear_multirect(pipe_staged[i]); 995 996 if (is_dpu_plane_virtual(pipe_staged[i]->plane)) { 997 DPU_ERROR( 998 "r1 only virt plane:%d not supported\n", 999 pipe_staged[i]->plane->base.id); 1000 rc = -EINVAL; 1001 goto end; 1002 } 1003 } 1004 } 1005 1006 z_pos = -1; 1007 for (i = 0; i < cnt; i++) { 1008 /* reset counts at every new blend stage */ 1009 if (pstates[i].stage != z_pos) { 1010 left_zpos_cnt = 0; 1011 right_zpos_cnt = 0; 1012 z_pos = pstates[i].stage; 1013 } 1014 1015 /* verify z_pos setting before using it */ 1016 if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) { 1017 DPU_ERROR("> %d plane stages assigned\n", 1018 DPU_STAGE_MAX - DPU_STAGE_0); 1019 rc = -EINVAL; 1020 goto end; 1021 } else if (pstates[i].drm_pstate->crtc_x < mixer_width) { 1022 if (left_zpos_cnt == 2) { 1023 DPU_ERROR("> 2 planes @ stage %d on left\n", 1024 z_pos); 1025 rc = -EINVAL; 1026 goto end; 1027 } 1028 left_zpos_cnt++; 1029 1030 } else { 1031 if (right_zpos_cnt == 2) { 1032 DPU_ERROR("> 2 planes @ stage %d on right\n", 1033 z_pos); 1034 rc = -EINVAL; 1035 goto end; 1036 } 1037 right_zpos_cnt++; 1038 } 1039 1040 pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0; 1041 DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos); 1042 } 1043 1044 for (i = 0; i < multirect_count; i++) { 1045 if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) { 1046 DPU_ERROR( 1047 "multirect validation failed for planes (%d - %d)\n", 1048 multirect_plane[i].r0->plane->base.id, 1049 multirect_plane[i].r1->plane->base.id); 1050 rc = -EINVAL; 1051 goto end; 1052 } 1053 } 1054 1055 atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref); 1056 1057 rc = dpu_core_perf_crtc_check(crtc, crtc_state); 1058 if (rc) { 1059 DPU_ERROR("crtc%d failed performance check %d\n", 1060 crtc->base.id, rc); 1061 goto end; 1062 } 1063 1064 /* validate source split: 1065 * use pstates sorted by stage to check planes on same stage 1066 * we assume that all pipes are in source split so its valid to compare 1067 * without taking into account left/right mixer placement 1068 */ 1069 for (i = 1; i < cnt; i++) { 1070 struct plane_state *prv_pstate, *cur_pstate; 1071 struct drm_rect left_rect, right_rect; 1072 int32_t left_pid, right_pid; 1073 int32_t stage; 1074 1075 prv_pstate = &pstates[i - 1]; 1076 cur_pstate = &pstates[i]; 1077 if (prv_pstate->stage != cur_pstate->stage) 1078 continue; 1079 1080 stage = cur_pstate->stage; 1081 1082 left_pid = prv_pstate->dpu_pstate->base.plane->base.id; 1083 left_rect = drm_plane_state_dest(prv_pstate->drm_pstate); 1084 1085 right_pid = cur_pstate->dpu_pstate->base.plane->base.id; 1086 right_rect = drm_plane_state_dest(cur_pstate->drm_pstate); 1087 1088 if (right_rect.x1 < left_rect.x1) { 1089 swap(left_pid, right_pid); 1090 swap(left_rect, right_rect); 1091 } 1092 1093 /** 1094 * - planes are enumerated in pipe-priority order such that 1095 * planes with lower drm_id must be left-most in a shared 1096 * blend-stage when using source split. 1097 * - planes in source split must be contiguous in width 1098 * - planes in source split must have same dest yoff and height 1099 */ 1100 if (right_pid < left_pid) { 1101 DPU_ERROR( 1102 "invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n", 1103 stage, left_pid, right_pid); 1104 rc = -EINVAL; 1105 goto end; 1106 } else if (right_rect.x1 != drm_rect_width(&left_rect)) { 1107 DPU_ERROR("non-contiguous coordinates for src split. " 1108 "stage: %d left: " DRM_RECT_FMT " right: " 1109 DRM_RECT_FMT "\n", stage, 1110 DRM_RECT_ARG(&left_rect), 1111 DRM_RECT_ARG(&right_rect)); 1112 rc = -EINVAL; 1113 goto end; 1114 } else if (left_rect.y1 != right_rect.y1 || 1115 drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) { 1116 DPU_ERROR("source split at stage: %d. invalid " 1117 "yoff/height: left: " DRM_RECT_FMT " right: " 1118 DRM_RECT_FMT "\n", stage, 1119 DRM_RECT_ARG(&left_rect), 1120 DRM_RECT_ARG(&right_rect)); 1121 rc = -EINVAL; 1122 goto end; 1123 } 1124 } 1125 1126 end: 1127 kfree(pstates); 1128 return rc; 1129 } 1130 1131 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en) 1132 { 1133 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1134 struct drm_encoder *enc; 1135 1136 trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc); 1137 1138 /* 1139 * Normally we would iterate through encoder_mask in crtc state to find 1140 * attached encoders. In this case, we might be disabling vblank _after_ 1141 * encoder_mask has been cleared. 1142 * 1143 * Instead, we "assign" a crtc to the encoder in enable and clear it in 1144 * disable (which is also after encoder_mask is cleared). So instead of 1145 * using encoder mask, we'll ask the encoder to toggle itself iff it's 1146 * currently assigned to our crtc. 1147 * 1148 * Note also that this function cannot be called while crtc is disabled 1149 * since we use drm_crtc_vblank_on/off. So we don't need to worry 1150 * about the assigned crtcs being inconsistent with the current state 1151 * (which means no need to worry about modeset locks). 1152 */ 1153 list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) { 1154 trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en, 1155 dpu_crtc); 1156 1157 dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en); 1158 } 1159 1160 return 0; 1161 } 1162 1163 #ifdef CONFIG_DEBUG_FS 1164 static int _dpu_debugfs_status_show(struct seq_file *s, void *data) 1165 { 1166 struct dpu_crtc *dpu_crtc; 1167 struct dpu_plane_state *pstate = NULL; 1168 struct dpu_crtc_mixer *m; 1169 1170 struct drm_crtc *crtc; 1171 struct drm_plane *plane; 1172 struct drm_display_mode *mode; 1173 struct drm_framebuffer *fb; 1174 struct drm_plane_state *state; 1175 struct dpu_crtc_state *cstate; 1176 1177 int i, out_width; 1178 1179 dpu_crtc = s->private; 1180 crtc = &dpu_crtc->base; 1181 1182 drm_modeset_lock_all(crtc->dev); 1183 cstate = to_dpu_crtc_state(crtc->state); 1184 1185 mode = &crtc->state->adjusted_mode; 1186 out_width = mode->hdisplay / cstate->num_mixers; 1187 1188 seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id, 1189 mode->hdisplay, mode->vdisplay); 1190 1191 seq_puts(s, "\n"); 1192 1193 for (i = 0; i < cstate->num_mixers; ++i) { 1194 m = &cstate->mixers[i]; 1195 seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n", 1196 m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0, 1197 out_width, mode->vdisplay); 1198 } 1199 1200 seq_puts(s, "\n"); 1201 1202 drm_atomic_crtc_for_each_plane(plane, crtc) { 1203 pstate = to_dpu_plane_state(plane->state); 1204 state = plane->state; 1205 1206 if (!pstate || !state) 1207 continue; 1208 1209 seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id, 1210 pstate->stage); 1211 1212 if (plane->state->fb) { 1213 fb = plane->state->fb; 1214 1215 seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ", 1216 fb->base.id, (char *) &fb->format->format, 1217 fb->width, fb->height); 1218 for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i) 1219 seq_printf(s, "cpp[%d]:%u ", 1220 i, fb->format->cpp[i]); 1221 seq_puts(s, "\n\t"); 1222 1223 seq_printf(s, "modifier:%8llu ", fb->modifier); 1224 seq_puts(s, "\n"); 1225 1226 seq_puts(s, "\t"); 1227 for (i = 0; i < ARRAY_SIZE(fb->pitches); i++) 1228 seq_printf(s, "pitches[%d]:%8u ", i, 1229 fb->pitches[i]); 1230 seq_puts(s, "\n"); 1231 1232 seq_puts(s, "\t"); 1233 for (i = 0; i < ARRAY_SIZE(fb->offsets); i++) 1234 seq_printf(s, "offsets[%d]:%8u ", i, 1235 fb->offsets[i]); 1236 seq_puts(s, "\n"); 1237 } 1238 1239 seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n", 1240 state->src_x, state->src_y, state->src_w, state->src_h); 1241 1242 seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n", 1243 state->crtc_x, state->crtc_y, state->crtc_w, 1244 state->crtc_h); 1245 seq_printf(s, "\tmultirect: mode: %d index: %d\n", 1246 pstate->multirect_mode, pstate->multirect_index); 1247 1248 seq_puts(s, "\n"); 1249 } 1250 if (dpu_crtc->vblank_cb_count) { 1251 ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time); 1252 s64 diff_ms = ktime_to_ms(diff); 1253 s64 fps = diff_ms ? div_s64( 1254 dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0; 1255 1256 seq_printf(s, 1257 "vblank fps:%lld count:%u total:%llums total_framecount:%llu\n", 1258 fps, dpu_crtc->vblank_cb_count, 1259 ktime_to_ms(diff), dpu_crtc->play_count); 1260 1261 /* reset time & count for next measurement */ 1262 dpu_crtc->vblank_cb_count = 0; 1263 dpu_crtc->vblank_cb_time = ktime_set(0, 0); 1264 } 1265 1266 drm_modeset_unlock_all(crtc->dev); 1267 1268 return 0; 1269 } 1270 1271 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status); 1272 1273 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v) 1274 { 1275 struct drm_crtc *crtc = (struct drm_crtc *) s->private; 1276 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1277 1278 seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc)); 1279 seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc)); 1280 seq_printf(s, "core_clk_rate: %llu\n", 1281 dpu_crtc->cur_perf.core_clk_rate); 1282 seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl); 1283 seq_printf(s, "max_per_pipe_ib: %llu\n", 1284 dpu_crtc->cur_perf.max_per_pipe_ib); 1285 1286 return 0; 1287 } 1288 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state); 1289 1290 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1291 { 1292 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1293 1294 dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name, 1295 crtc->dev->primary->debugfs_root); 1296 1297 debugfs_create_file("status", 0400, 1298 dpu_crtc->debugfs_root, 1299 dpu_crtc, &_dpu_debugfs_status_fops); 1300 debugfs_create_file("state", 0600, 1301 dpu_crtc->debugfs_root, 1302 &dpu_crtc->base, 1303 &dpu_crtc_debugfs_state_fops); 1304 1305 return 0; 1306 } 1307 #else 1308 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc) 1309 { 1310 return 0; 1311 } 1312 #endif /* CONFIG_DEBUG_FS */ 1313 1314 static int dpu_crtc_late_register(struct drm_crtc *crtc) 1315 { 1316 return _dpu_crtc_init_debugfs(crtc); 1317 } 1318 1319 static void dpu_crtc_early_unregister(struct drm_crtc *crtc) 1320 { 1321 struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc); 1322 1323 debugfs_remove_recursive(dpu_crtc->debugfs_root); 1324 } 1325 1326 static const struct drm_crtc_funcs dpu_crtc_funcs = { 1327 .set_config = drm_atomic_helper_set_config, 1328 .destroy = dpu_crtc_destroy, 1329 .page_flip = drm_atomic_helper_page_flip, 1330 .reset = dpu_crtc_reset, 1331 .atomic_duplicate_state = dpu_crtc_duplicate_state, 1332 .atomic_destroy_state = dpu_crtc_destroy_state, 1333 .late_register = dpu_crtc_late_register, 1334 .early_unregister = dpu_crtc_early_unregister, 1335 .enable_vblank = msm_crtc_enable_vblank, 1336 .disable_vblank = msm_crtc_disable_vblank, 1337 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp, 1338 .get_vblank_counter = dpu_crtc_get_vblank_counter, 1339 }; 1340 1341 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = { 1342 .atomic_disable = dpu_crtc_disable, 1343 .atomic_enable = dpu_crtc_enable, 1344 .atomic_check = dpu_crtc_atomic_check, 1345 .atomic_begin = dpu_crtc_atomic_begin, 1346 .atomic_flush = dpu_crtc_atomic_flush, 1347 .get_scanout_position = dpu_crtc_get_scanout_position, 1348 }; 1349 1350 /* initialize crtc */ 1351 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane, 1352 struct drm_plane *cursor) 1353 { 1354 struct drm_crtc *crtc = NULL; 1355 struct dpu_crtc *dpu_crtc = NULL; 1356 int i; 1357 1358 dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL); 1359 if (!dpu_crtc) 1360 return ERR_PTR(-ENOMEM); 1361 1362 crtc = &dpu_crtc->base; 1363 crtc->dev = dev; 1364 1365 spin_lock_init(&dpu_crtc->spin_lock); 1366 atomic_set(&dpu_crtc->frame_pending, 0); 1367 1368 init_completion(&dpu_crtc->frame_done_comp); 1369 1370 INIT_LIST_HEAD(&dpu_crtc->frame_event_list); 1371 1372 for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) { 1373 INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list); 1374 list_add(&dpu_crtc->frame_events[i].list, 1375 &dpu_crtc->frame_event_list); 1376 kthread_init_work(&dpu_crtc->frame_events[i].work, 1377 dpu_crtc_frame_event_work); 1378 } 1379 1380 drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs, 1381 NULL); 1382 1383 drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs); 1384 1385 drm_crtc_enable_color_mgmt(crtc, 0, true, 0); 1386 1387 /* save user friendly CRTC name for later */ 1388 snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id); 1389 1390 /* initialize event handling */ 1391 spin_lock_init(&dpu_crtc->event_lock); 1392 1393 DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name); 1394 return crtc; 1395 } 1396