xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_crtc.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014-2018 The Linux Foundation. All rights reserved.
4  * Copyright (C) 2013 Red Hat
5  * Author: Rob Clark <robdclark@gmail.com>
6  */
7 
8 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/sort.h>
10 #include <linux/debugfs.h>
11 #include <linux/ktime.h>
12 #include <linux/bits.h>
13 
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_crtc.h>
16 #include <drm/drm_flip_work.h>
17 #include <drm/drm_mode.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_rect.h>
20 #include <drm/drm_vblank.h>
21 
22 #include "dpu_kms.h"
23 #include "dpu_hw_lm.h"
24 #include "dpu_hw_ctl.h"
25 #include "dpu_hw_dspp.h"
26 #include "dpu_crtc.h"
27 #include "dpu_plane.h"
28 #include "dpu_encoder.h"
29 #include "dpu_vbif.h"
30 #include "dpu_core_perf.h"
31 #include "dpu_trace.h"
32 
33 #define DPU_DRM_BLEND_OP_NOT_DEFINED    0
34 #define DPU_DRM_BLEND_OP_OPAQUE         1
35 #define DPU_DRM_BLEND_OP_PREMULTIPLIED  2
36 #define DPU_DRM_BLEND_OP_COVERAGE       3
37 #define DPU_DRM_BLEND_OP_MAX            4
38 
39 /* layer mixer index on dpu_crtc */
40 #define LEFT_MIXER 0
41 #define RIGHT_MIXER 1
42 
43 /* timeout in ms waiting for frame done */
44 #define DPU_CRTC_FRAME_DONE_TIMEOUT_MS	60
45 
46 #define	CONVERT_S3_15(val) \
47 	(((((u64)val) & ~BIT_ULL(63)) >> 17) & GENMASK_ULL(17, 0))
48 
49 static struct dpu_kms *_dpu_crtc_get_kms(struct drm_crtc *crtc)
50 {
51 	struct msm_drm_private *priv = crtc->dev->dev_private;
52 
53 	return to_dpu_kms(priv->kms);
54 }
55 
56 static void dpu_crtc_destroy(struct drm_crtc *crtc)
57 {
58 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
59 
60 	if (!crtc)
61 		return;
62 
63 	drm_crtc_cleanup(crtc);
64 	kfree(dpu_crtc);
65 }
66 
67 static struct drm_encoder *get_encoder_from_crtc(struct drm_crtc *crtc)
68 {
69 	struct drm_device *dev = crtc->dev;
70 	struct drm_encoder *encoder;
71 
72 	drm_for_each_encoder(encoder, dev)
73 		if (encoder->crtc == crtc)
74 			return encoder;
75 
76 	return NULL;
77 }
78 
79 static u32 dpu_crtc_get_vblank_counter(struct drm_crtc *crtc)
80 {
81 	struct drm_encoder *encoder;
82 
83 	encoder = get_encoder_from_crtc(crtc);
84 	if (!encoder) {
85 		DRM_ERROR("no encoder found for crtc %d\n", crtc->index);
86 		return false;
87 	}
88 
89 	return dpu_encoder_get_frame_count(encoder);
90 }
91 
92 static bool dpu_crtc_get_scanout_position(struct drm_crtc *crtc,
93 					   bool in_vblank_irq,
94 					   int *vpos, int *hpos,
95 					   ktime_t *stime, ktime_t *etime,
96 					   const struct drm_display_mode *mode)
97 {
98 	unsigned int pipe = crtc->index;
99 	struct drm_encoder *encoder;
100 	int line, vsw, vbp, vactive_start, vactive_end, vfp_end;
101 
102 	encoder = get_encoder_from_crtc(crtc);
103 	if (!encoder) {
104 		DRM_ERROR("no encoder found for crtc %d\n", pipe);
105 		return false;
106 	}
107 
108 	vsw = mode->crtc_vsync_end - mode->crtc_vsync_start;
109 	vbp = mode->crtc_vtotal - mode->crtc_vsync_end;
110 
111 	/*
112 	 * the line counter is 1 at the start of the VSYNC pulse and VTOTAL at
113 	 * the end of VFP. Translate the porch values relative to the line
114 	 * counter positions.
115 	 */
116 
117 	vactive_start = vsw + vbp + 1;
118 	vactive_end = vactive_start + mode->crtc_vdisplay;
119 
120 	/* last scan line before VSYNC */
121 	vfp_end = mode->crtc_vtotal;
122 
123 	if (stime)
124 		*stime = ktime_get();
125 
126 	line = dpu_encoder_get_linecount(encoder);
127 
128 	if (line < vactive_start)
129 		line -= vactive_start;
130 	else if (line > vactive_end)
131 		line = line - vfp_end - vactive_start;
132 	else
133 		line -= vactive_start;
134 
135 	*vpos = line;
136 	*hpos = 0;
137 
138 	if (etime)
139 		*etime = ktime_get();
140 
141 	return true;
142 }
143 
144 static void _dpu_crtc_setup_blend_cfg(struct dpu_crtc_mixer *mixer,
145 		struct dpu_plane_state *pstate, struct dpu_format *format)
146 {
147 	struct dpu_hw_mixer *lm = mixer->hw_lm;
148 	uint32_t blend_op;
149 
150 	/* default to opaque blending */
151 	blend_op = DPU_BLEND_FG_ALPHA_FG_CONST |
152 		DPU_BLEND_BG_ALPHA_BG_CONST;
153 
154 	if (format->alpha_enable) {
155 		/* coverage blending */
156 		blend_op = DPU_BLEND_FG_ALPHA_FG_PIXEL |
157 			DPU_BLEND_BG_ALPHA_FG_PIXEL |
158 			DPU_BLEND_BG_INV_ALPHA;
159 	}
160 
161 	lm->ops.setup_blend_config(lm, pstate->stage,
162 				0xFF, 0, blend_op);
163 
164 	DRM_DEBUG_ATOMIC("format:%p4cc, alpha_en:%u blend_op:0x%x\n",
165 		  &format->base.pixel_format, format->alpha_enable, blend_op);
166 }
167 
168 static void _dpu_crtc_program_lm_output_roi(struct drm_crtc *crtc)
169 {
170 	struct dpu_crtc_state *crtc_state;
171 	int lm_idx, lm_horiz_position;
172 
173 	crtc_state = to_dpu_crtc_state(crtc->state);
174 
175 	lm_horiz_position = 0;
176 	for (lm_idx = 0; lm_idx < crtc_state->num_mixers; lm_idx++) {
177 		const struct drm_rect *lm_roi = &crtc_state->lm_bounds[lm_idx];
178 		struct dpu_hw_mixer *hw_lm = crtc_state->mixers[lm_idx].hw_lm;
179 		struct dpu_hw_mixer_cfg cfg;
180 
181 		if (!lm_roi || !drm_rect_visible(lm_roi))
182 			continue;
183 
184 		cfg.out_width = drm_rect_width(lm_roi);
185 		cfg.out_height = drm_rect_height(lm_roi);
186 		cfg.right_mixer = lm_horiz_position++;
187 		cfg.flags = 0;
188 		hw_lm->ops.setup_mixer_out(hw_lm, &cfg);
189 	}
190 }
191 
192 static void _dpu_crtc_blend_setup_mixer(struct drm_crtc *crtc,
193 	struct dpu_crtc *dpu_crtc, struct dpu_crtc_mixer *mixer)
194 {
195 	struct drm_plane *plane;
196 	struct drm_framebuffer *fb;
197 	struct drm_plane_state *state;
198 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
199 	struct dpu_plane_state *pstate = NULL;
200 	struct dpu_format *format;
201 	struct dpu_hw_ctl *ctl = mixer->lm_ctl;
202 	struct dpu_hw_stage_cfg *stage_cfg = &dpu_crtc->stage_cfg;
203 
204 	u32 flush_mask;
205 	uint32_t stage_idx, lm_idx;
206 	int zpos_cnt[DPU_STAGE_MAX + 1] = { 0 };
207 	bool bg_alpha_enable = false;
208 	DECLARE_BITMAP(fetch_active, SSPP_MAX);
209 
210 	memset(fetch_active, 0, sizeof(fetch_active));
211 	drm_atomic_crtc_for_each_plane(plane, crtc) {
212 		state = plane->state;
213 		if (!state)
214 			continue;
215 
216 		pstate = to_dpu_plane_state(state);
217 		fb = state->fb;
218 
219 		dpu_plane_get_ctl_flush(plane, ctl, &flush_mask);
220 		set_bit(dpu_plane_pipe(plane), fetch_active);
221 
222 		DRM_DEBUG_ATOMIC("crtc %d stage:%d - plane %d sspp %d fb %d\n",
223 				crtc->base.id,
224 				pstate->stage,
225 				plane->base.id,
226 				dpu_plane_pipe(plane) - SSPP_VIG0,
227 				state->fb ? state->fb->base.id : -1);
228 
229 		format = to_dpu_format(msm_framebuffer_format(pstate->base.fb));
230 
231 		if (pstate->stage == DPU_STAGE_BASE && format->alpha_enable)
232 			bg_alpha_enable = true;
233 
234 		stage_idx = zpos_cnt[pstate->stage]++;
235 		stage_cfg->stage[pstate->stage][stage_idx] =
236 					dpu_plane_pipe(plane);
237 		stage_cfg->multirect_index[pstate->stage][stage_idx] =
238 					pstate->multirect_index;
239 
240 		trace_dpu_crtc_setup_mixer(DRMID(crtc), DRMID(plane),
241 					   state, pstate, stage_idx,
242 					   dpu_plane_pipe(plane) - SSPP_VIG0,
243 					   format->base.pixel_format,
244 					   fb ? fb->modifier : 0);
245 
246 		/* blend config update */
247 		for (lm_idx = 0; lm_idx < cstate->num_mixers; lm_idx++) {
248 			_dpu_crtc_setup_blend_cfg(mixer + lm_idx,
249 						pstate, format);
250 
251 			mixer[lm_idx].flush_mask |= flush_mask;
252 
253 			if (bg_alpha_enable && !format->alpha_enable)
254 				mixer[lm_idx].mixer_op_mode = 0;
255 			else
256 				mixer[lm_idx].mixer_op_mode |=
257 						1 << pstate->stage;
258 		}
259 	}
260 
261 	if (ctl->ops.set_active_pipes)
262 		ctl->ops.set_active_pipes(ctl, fetch_active);
263 
264 	 _dpu_crtc_program_lm_output_roi(crtc);
265 }
266 
267 /**
268  * _dpu_crtc_blend_setup - configure crtc mixers
269  * @crtc: Pointer to drm crtc structure
270  */
271 static void _dpu_crtc_blend_setup(struct drm_crtc *crtc)
272 {
273 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
274 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
275 	struct dpu_crtc_mixer *mixer = cstate->mixers;
276 	struct dpu_hw_ctl *ctl;
277 	struct dpu_hw_mixer *lm;
278 	int i;
279 
280 	DRM_DEBUG_ATOMIC("%s\n", dpu_crtc->name);
281 
282 	for (i = 0; i < cstate->num_mixers; i++) {
283 		mixer[i].mixer_op_mode = 0;
284 		mixer[i].flush_mask = 0;
285 		if (mixer[i].lm_ctl->ops.clear_all_blendstages)
286 			mixer[i].lm_ctl->ops.clear_all_blendstages(
287 					mixer[i].lm_ctl);
288 	}
289 
290 	/* initialize stage cfg */
291 	memset(&dpu_crtc->stage_cfg, 0, sizeof(struct dpu_hw_stage_cfg));
292 
293 	_dpu_crtc_blend_setup_mixer(crtc, dpu_crtc, mixer);
294 
295 	for (i = 0; i < cstate->num_mixers; i++) {
296 		ctl = mixer[i].lm_ctl;
297 		lm = mixer[i].hw_lm;
298 
299 		lm->ops.setup_alpha_out(lm, mixer[i].mixer_op_mode);
300 
301 		mixer[i].flush_mask |= ctl->ops.get_bitmask_mixer(ctl,
302 			mixer[i].hw_lm->idx);
303 
304 		/* stage config flush mask */
305 		ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
306 
307 		DRM_DEBUG_ATOMIC("lm %d, op_mode 0x%X, ctl %d, flush mask 0x%x\n",
308 			mixer[i].hw_lm->idx - LM_0,
309 			mixer[i].mixer_op_mode,
310 			ctl->idx - CTL_0,
311 			mixer[i].flush_mask);
312 
313 		ctl->ops.setup_blendstage(ctl, mixer[i].hw_lm->idx,
314 			&dpu_crtc->stage_cfg);
315 	}
316 }
317 
318 /**
319  *  _dpu_crtc_complete_flip - signal pending page_flip events
320  * Any pending vblank events are added to the vblank_event_list
321  * so that the next vblank interrupt shall signal them.
322  * However PAGE_FLIP events are not handled through the vblank_event_list.
323  * This API signals any pending PAGE_FLIP events requested through
324  * DRM_IOCTL_MODE_PAGE_FLIP and are cached in the dpu_crtc->event.
325  * @crtc: Pointer to drm crtc structure
326  */
327 static void _dpu_crtc_complete_flip(struct drm_crtc *crtc)
328 {
329 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
330 	struct drm_device *dev = crtc->dev;
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(&dev->event_lock, flags);
334 	if (dpu_crtc->event) {
335 		DRM_DEBUG_VBL("%s: send event: %pK\n", dpu_crtc->name,
336 			      dpu_crtc->event);
337 		trace_dpu_crtc_complete_flip(DRMID(crtc));
338 		drm_crtc_send_vblank_event(crtc, dpu_crtc->event);
339 		dpu_crtc->event = NULL;
340 	}
341 	spin_unlock_irqrestore(&dev->event_lock, flags);
342 }
343 
344 enum dpu_intf_mode dpu_crtc_get_intf_mode(struct drm_crtc *crtc)
345 {
346 	struct drm_encoder *encoder;
347 
348 	/*
349 	 * TODO: This function is called from dpu debugfs and as part of atomic
350 	 * check. When called from debugfs, the crtc->mutex must be held to
351 	 * read crtc->state. However reading crtc->state from atomic check isn't
352 	 * allowed (unless you have a good reason, a big comment, and a deep
353 	 * understanding of how the atomic/modeset locks work (<- and this is
354 	 * probably not possible)). So we'll keep the WARN_ON here for now, but
355 	 * really we need to figure out a better way to track our operating mode
356 	 */
357 	WARN_ON(!drm_modeset_is_locked(&crtc->mutex));
358 
359 	/* TODO: Returns the first INTF_MODE, could there be multiple values? */
360 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
361 		return dpu_encoder_get_intf_mode(encoder);
362 
363 	return INTF_MODE_NONE;
364 }
365 
366 void dpu_crtc_vblank_callback(struct drm_crtc *crtc)
367 {
368 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
369 
370 	/* keep statistics on vblank callback - with auto reset via debugfs */
371 	if (ktime_compare(dpu_crtc->vblank_cb_time, ktime_set(0, 0)) == 0)
372 		dpu_crtc->vblank_cb_time = ktime_get();
373 	else
374 		dpu_crtc->vblank_cb_count++;
375 	drm_crtc_handle_vblank(crtc);
376 	trace_dpu_crtc_vblank_cb(DRMID(crtc));
377 }
378 
379 static void dpu_crtc_frame_event_work(struct kthread_work *work)
380 {
381 	struct dpu_crtc_frame_event *fevent = container_of(work,
382 			struct dpu_crtc_frame_event, work);
383 	struct drm_crtc *crtc = fevent->crtc;
384 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
385 	unsigned long flags;
386 	bool frame_done = false;
387 
388 	DPU_ATRACE_BEGIN("crtc_frame_event");
389 
390 	DRM_DEBUG_ATOMIC("crtc%d event:%u ts:%lld\n", crtc->base.id, fevent->event,
391 			ktime_to_ns(fevent->ts));
392 
393 	if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
394 				| DPU_ENCODER_FRAME_EVENT_ERROR
395 				| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
396 
397 		if (atomic_read(&dpu_crtc->frame_pending) < 1) {
398 			/* ignore vblank when not pending */
399 		} else if (atomic_dec_return(&dpu_crtc->frame_pending) == 0) {
400 			/* release bandwidth and other resources */
401 			trace_dpu_crtc_frame_event_done(DRMID(crtc),
402 							fevent->event);
403 			dpu_core_perf_crtc_release_bw(crtc);
404 		} else {
405 			trace_dpu_crtc_frame_event_more_pending(DRMID(crtc),
406 								fevent->event);
407 		}
408 
409 		if (fevent->event & (DPU_ENCODER_FRAME_EVENT_DONE
410 					| DPU_ENCODER_FRAME_EVENT_ERROR))
411 			frame_done = true;
412 	}
413 
414 	if (fevent->event & DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)
415 		DPU_ERROR("crtc%d ts:%lld received panel dead event\n",
416 				crtc->base.id, ktime_to_ns(fevent->ts));
417 
418 	if (frame_done)
419 		complete_all(&dpu_crtc->frame_done_comp);
420 
421 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
422 	list_add_tail(&fevent->list, &dpu_crtc->frame_event_list);
423 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
424 	DPU_ATRACE_END("crtc_frame_event");
425 }
426 
427 /*
428  * dpu_crtc_frame_event_cb - crtc frame event callback API. CRTC module
429  * registers this API to encoder for all frame event callbacks like
430  * frame_error, frame_done, idle_timeout, etc. Encoder may call different events
431  * from different context - IRQ, user thread, commit_thread, etc. Each event
432  * should be carefully reviewed and should be processed in proper task context
433  * to avoid schedulin delay or properly manage the irq context's bottom half
434  * processing.
435  */
436 static void dpu_crtc_frame_event_cb(void *data, u32 event)
437 {
438 	struct drm_crtc *crtc = (struct drm_crtc *)data;
439 	struct dpu_crtc *dpu_crtc;
440 	struct msm_drm_private *priv;
441 	struct dpu_crtc_frame_event *fevent;
442 	unsigned long flags;
443 	u32 crtc_id;
444 
445 	/* Nothing to do on idle event */
446 	if (event & DPU_ENCODER_FRAME_EVENT_IDLE)
447 		return;
448 
449 	dpu_crtc = to_dpu_crtc(crtc);
450 	priv = crtc->dev->dev_private;
451 	crtc_id = drm_crtc_index(crtc);
452 
453 	trace_dpu_crtc_frame_event_cb(DRMID(crtc), event);
454 
455 	spin_lock_irqsave(&dpu_crtc->spin_lock, flags);
456 	fevent = list_first_entry_or_null(&dpu_crtc->frame_event_list,
457 			struct dpu_crtc_frame_event, list);
458 	if (fevent)
459 		list_del_init(&fevent->list);
460 	spin_unlock_irqrestore(&dpu_crtc->spin_lock, flags);
461 
462 	if (!fevent) {
463 		DRM_ERROR_RATELIMITED("crtc%d event %d overflow\n", crtc->base.id, event);
464 		return;
465 	}
466 
467 	fevent->event = event;
468 	fevent->crtc = crtc;
469 	fevent->ts = ktime_get();
470 	kthread_queue_work(priv->event_thread[crtc_id].worker, &fevent->work);
471 }
472 
473 void dpu_crtc_complete_commit(struct drm_crtc *crtc)
474 {
475 	trace_dpu_crtc_complete_commit(DRMID(crtc));
476 	dpu_core_perf_crtc_update(crtc, 0, false);
477 	_dpu_crtc_complete_flip(crtc);
478 }
479 
480 static void _dpu_crtc_setup_lm_bounds(struct drm_crtc *crtc,
481 		struct drm_crtc_state *state)
482 {
483 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
484 	struct drm_display_mode *adj_mode = &state->adjusted_mode;
485 	u32 crtc_split_width = adj_mode->hdisplay / cstate->num_mixers;
486 	int i;
487 
488 	for (i = 0; i < cstate->num_mixers; i++) {
489 		struct drm_rect *r = &cstate->lm_bounds[i];
490 		r->x1 = crtc_split_width * i;
491 		r->y1 = 0;
492 		r->x2 = r->x1 + crtc_split_width;
493 		r->y2 = adj_mode->vdisplay;
494 
495 		trace_dpu_crtc_setup_lm_bounds(DRMID(crtc), i, r);
496 	}
497 }
498 
499 static void _dpu_crtc_get_pcc_coeff(struct drm_crtc_state *state,
500 		struct dpu_hw_pcc_cfg *cfg)
501 {
502 	struct drm_color_ctm *ctm;
503 
504 	memset(cfg, 0, sizeof(struct dpu_hw_pcc_cfg));
505 
506 	ctm = (struct drm_color_ctm *)state->ctm->data;
507 
508 	if (!ctm)
509 		return;
510 
511 	cfg->r.r = CONVERT_S3_15(ctm->matrix[0]);
512 	cfg->g.r = CONVERT_S3_15(ctm->matrix[1]);
513 	cfg->b.r = CONVERT_S3_15(ctm->matrix[2]);
514 
515 	cfg->r.g = CONVERT_S3_15(ctm->matrix[3]);
516 	cfg->g.g = CONVERT_S3_15(ctm->matrix[4]);
517 	cfg->b.g = CONVERT_S3_15(ctm->matrix[5]);
518 
519 	cfg->r.b = CONVERT_S3_15(ctm->matrix[6]);
520 	cfg->g.b = CONVERT_S3_15(ctm->matrix[7]);
521 	cfg->b.b = CONVERT_S3_15(ctm->matrix[8]);
522 }
523 
524 static void _dpu_crtc_setup_cp_blocks(struct drm_crtc *crtc)
525 {
526 	struct drm_crtc_state *state = crtc->state;
527 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
528 	struct dpu_crtc_mixer *mixer = cstate->mixers;
529 	struct dpu_hw_pcc_cfg cfg;
530 	struct dpu_hw_ctl *ctl;
531 	struct dpu_hw_dspp *dspp;
532 	int i;
533 
534 
535 	if (!state->color_mgmt_changed)
536 		return;
537 
538 	for (i = 0; i < cstate->num_mixers; i++) {
539 		ctl = mixer[i].lm_ctl;
540 		dspp = mixer[i].hw_dspp;
541 
542 		if (!dspp || !dspp->ops.setup_pcc)
543 			continue;
544 
545 		if (!state->ctm) {
546 			dspp->ops.setup_pcc(dspp, NULL);
547 		} else {
548 			_dpu_crtc_get_pcc_coeff(state, &cfg);
549 			dspp->ops.setup_pcc(dspp, &cfg);
550 		}
551 
552 		mixer[i].flush_mask |= ctl->ops.get_bitmask_dspp(ctl,
553 			mixer[i].hw_dspp->idx);
554 
555 		/* stage config flush mask */
556 		ctl->ops.update_pending_flush(ctl, mixer[i].flush_mask);
557 
558 		DRM_DEBUG_ATOMIC("lm %d, ctl %d, flush mask 0x%x\n",
559 			mixer[i].hw_lm->idx - DSPP_0,
560 			ctl->idx - CTL_0,
561 			mixer[i].flush_mask);
562 	}
563 }
564 
565 static void dpu_crtc_atomic_begin(struct drm_crtc *crtc,
566 		struct drm_atomic_state *state)
567 {
568 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
569 	struct drm_encoder *encoder;
570 
571 	if (!crtc->state->enable) {
572 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_begin\n",
573 				crtc->base.id, crtc->state->enable);
574 		return;
575 	}
576 
577 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
578 
579 	_dpu_crtc_setup_lm_bounds(crtc, crtc->state);
580 
581 	/* encoder will trigger pending mask now */
582 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
583 		dpu_encoder_trigger_kickoff_pending(encoder);
584 
585 	/*
586 	 * If no mixers have been allocated in dpu_crtc_atomic_check(),
587 	 * it means we are trying to flush a CRTC whose state is disabled:
588 	 * nothing else needs to be done.
589 	 */
590 	if (unlikely(!cstate->num_mixers))
591 		return;
592 
593 	_dpu_crtc_blend_setup(crtc);
594 
595 	_dpu_crtc_setup_cp_blocks(crtc);
596 
597 	/*
598 	 * PP_DONE irq is only used by command mode for now.
599 	 * It is better to request pending before FLUSH and START trigger
600 	 * to make sure no pp_done irq missed.
601 	 * This is safe because no pp_done will happen before SW trigger
602 	 * in command mode.
603 	 */
604 }
605 
606 static void dpu_crtc_atomic_flush(struct drm_crtc *crtc,
607 		struct drm_atomic_state *state)
608 {
609 	struct dpu_crtc *dpu_crtc;
610 	struct drm_device *dev;
611 	struct drm_plane *plane;
612 	struct msm_drm_private *priv;
613 	unsigned long flags;
614 	struct dpu_crtc_state *cstate;
615 
616 	if (!crtc->state->enable) {
617 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, skip atomic_flush\n",
618 				crtc->base.id, crtc->state->enable);
619 		return;
620 	}
621 
622 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
623 
624 	dpu_crtc = to_dpu_crtc(crtc);
625 	cstate = to_dpu_crtc_state(crtc->state);
626 	dev = crtc->dev;
627 	priv = dev->dev_private;
628 
629 	if (crtc->index >= ARRAY_SIZE(priv->event_thread)) {
630 		DPU_ERROR("invalid crtc index[%d]\n", crtc->index);
631 		return;
632 	}
633 
634 	WARN_ON(dpu_crtc->event);
635 	spin_lock_irqsave(&dev->event_lock, flags);
636 	dpu_crtc->event = crtc->state->event;
637 	crtc->state->event = NULL;
638 	spin_unlock_irqrestore(&dev->event_lock, flags);
639 
640 	/*
641 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
642 	 * it means we are trying to flush a CRTC whose state is disabled:
643 	 * nothing else needs to be done.
644 	 */
645 	if (unlikely(!cstate->num_mixers))
646 		return;
647 
648 	/* update performance setting before crtc kickoff */
649 	dpu_core_perf_crtc_update(crtc, 1, false);
650 
651 	/*
652 	 * Final plane updates: Give each plane a chance to complete all
653 	 *                      required writes/flushing before crtc's "flush
654 	 *                      everything" call below.
655 	 */
656 	drm_atomic_crtc_for_each_plane(plane, crtc) {
657 		if (dpu_crtc->smmu_state.transition_error)
658 			dpu_plane_set_error(plane, true);
659 		dpu_plane_flush(plane);
660 	}
661 
662 	/* Kickoff will be scheduled by outer layer */
663 }
664 
665 /**
666  * dpu_crtc_destroy_state - state destroy hook
667  * @crtc: drm CRTC
668  * @state: CRTC state object to release
669  */
670 static void dpu_crtc_destroy_state(struct drm_crtc *crtc,
671 		struct drm_crtc_state *state)
672 {
673 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(state);
674 
675 	DRM_DEBUG_ATOMIC("crtc%d\n", crtc->base.id);
676 
677 	__drm_atomic_helper_crtc_destroy_state(state);
678 
679 	kfree(cstate);
680 }
681 
682 static int _dpu_crtc_wait_for_frame_done(struct drm_crtc *crtc)
683 {
684 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
685 	int ret, rc = 0;
686 
687 	if (!atomic_read(&dpu_crtc->frame_pending)) {
688 		DRM_DEBUG_ATOMIC("no frames pending\n");
689 		return 0;
690 	}
691 
692 	DPU_ATRACE_BEGIN("frame done completion wait");
693 	ret = wait_for_completion_timeout(&dpu_crtc->frame_done_comp,
694 			msecs_to_jiffies(DPU_CRTC_FRAME_DONE_TIMEOUT_MS));
695 	if (!ret) {
696 		DRM_ERROR("frame done wait timed out, ret:%d\n", ret);
697 		rc = -ETIMEDOUT;
698 	}
699 	DPU_ATRACE_END("frame done completion wait");
700 
701 	return rc;
702 }
703 
704 void dpu_crtc_commit_kickoff(struct drm_crtc *crtc)
705 {
706 	struct drm_encoder *encoder;
707 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
708 	struct dpu_kms *dpu_kms = _dpu_crtc_get_kms(crtc);
709 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
710 
711 	/*
712 	 * If no mixers has been allocated in dpu_crtc_atomic_check(),
713 	 * it means we are trying to start a CRTC whose state is disabled:
714 	 * nothing else needs to be done.
715 	 */
716 	if (unlikely(!cstate->num_mixers))
717 		return;
718 
719 	DPU_ATRACE_BEGIN("crtc_commit");
720 
721 	/*
722 	 * Encoder will flush/start now, unless it has a tx pending. If so, it
723 	 * may delay and flush at an irq event (e.g. ppdone)
724 	 */
725 	drm_for_each_encoder_mask(encoder, crtc->dev,
726 				  crtc->state->encoder_mask)
727 		dpu_encoder_prepare_for_kickoff(encoder);
728 
729 	if (atomic_inc_return(&dpu_crtc->frame_pending) == 1) {
730 		/* acquire bandwidth and other resources */
731 		DRM_DEBUG_ATOMIC("crtc%d first commit\n", crtc->base.id);
732 	} else
733 		DRM_DEBUG_ATOMIC("crtc%d commit\n", crtc->base.id);
734 
735 	dpu_crtc->play_count++;
736 
737 	dpu_vbif_clear_errors(dpu_kms);
738 
739 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
740 		dpu_encoder_kickoff(encoder);
741 
742 	reinit_completion(&dpu_crtc->frame_done_comp);
743 	DPU_ATRACE_END("crtc_commit");
744 }
745 
746 static void dpu_crtc_reset(struct drm_crtc *crtc)
747 {
748 	struct dpu_crtc_state *cstate = kzalloc(sizeof(*cstate), GFP_KERNEL);
749 
750 	if (crtc->state)
751 		dpu_crtc_destroy_state(crtc, crtc->state);
752 
753 	__drm_atomic_helper_crtc_reset(crtc, &cstate->base);
754 }
755 
756 /**
757  * dpu_crtc_duplicate_state - state duplicate hook
758  * @crtc: Pointer to drm crtc structure
759  */
760 static struct drm_crtc_state *dpu_crtc_duplicate_state(struct drm_crtc *crtc)
761 {
762 	struct dpu_crtc_state *cstate, *old_cstate = to_dpu_crtc_state(crtc->state);
763 
764 	cstate = kmemdup(old_cstate, sizeof(*old_cstate), GFP_KERNEL);
765 	if (!cstate) {
766 		DPU_ERROR("failed to allocate state\n");
767 		return NULL;
768 	}
769 
770 	/* duplicate base helper */
771 	__drm_atomic_helper_crtc_duplicate_state(crtc, &cstate->base);
772 
773 	return &cstate->base;
774 }
775 
776 static void dpu_crtc_disable(struct drm_crtc *crtc,
777 			     struct drm_atomic_state *state)
778 {
779 	struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
780 									      crtc);
781 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
782 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc->state);
783 	struct drm_encoder *encoder;
784 	unsigned long flags;
785 	bool release_bandwidth = false;
786 
787 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
788 
789 	/* Disable/save vblank irq handling */
790 	drm_crtc_vblank_off(crtc);
791 
792 	drm_for_each_encoder_mask(encoder, crtc->dev,
793 				  old_crtc_state->encoder_mask) {
794 		/* in video mode, we hold an extra bandwidth reference
795 		 * as we cannot drop bandwidth at frame-done if any
796 		 * crtc is being used in video mode.
797 		 */
798 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
799 			release_bandwidth = true;
800 		dpu_encoder_assign_crtc(encoder, NULL);
801 	}
802 
803 	/* wait for frame_event_done completion */
804 	if (_dpu_crtc_wait_for_frame_done(crtc))
805 		DPU_ERROR("crtc%d wait for frame done failed;frame_pending%d\n",
806 				crtc->base.id,
807 				atomic_read(&dpu_crtc->frame_pending));
808 
809 	trace_dpu_crtc_disable(DRMID(crtc), false, dpu_crtc);
810 	dpu_crtc->enabled = false;
811 
812 	if (atomic_read(&dpu_crtc->frame_pending)) {
813 		trace_dpu_crtc_disable_frame_pending(DRMID(crtc),
814 				     atomic_read(&dpu_crtc->frame_pending));
815 		if (release_bandwidth)
816 			dpu_core_perf_crtc_release_bw(crtc);
817 		atomic_set(&dpu_crtc->frame_pending, 0);
818 	}
819 
820 	dpu_core_perf_crtc_update(crtc, 0, true);
821 
822 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
823 		dpu_encoder_register_frame_event_callback(encoder, NULL, NULL);
824 
825 	memset(cstate->mixers, 0, sizeof(cstate->mixers));
826 	cstate->num_mixers = 0;
827 
828 	/* disable clk & bw control until clk & bw properties are set */
829 	cstate->bw_control = false;
830 	cstate->bw_split_vote = false;
831 
832 	if (crtc->state->event && !crtc->state->active) {
833 		spin_lock_irqsave(&crtc->dev->event_lock, flags);
834 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
835 		crtc->state->event = NULL;
836 		spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
837 	}
838 
839 	pm_runtime_put_sync(crtc->dev->dev);
840 }
841 
842 static void dpu_crtc_enable(struct drm_crtc *crtc,
843 		struct drm_atomic_state *state)
844 {
845 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
846 	struct drm_encoder *encoder;
847 	bool request_bandwidth = false;
848 
849 	pm_runtime_get_sync(crtc->dev->dev);
850 
851 	DRM_DEBUG_KMS("crtc%d\n", crtc->base.id);
852 
853 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask) {
854 		/* in video mode, we hold an extra bandwidth reference
855 		 * as we cannot drop bandwidth at frame-done if any
856 		 * crtc is being used in video mode.
857 		 */
858 		if (dpu_encoder_get_intf_mode(encoder) == INTF_MODE_VIDEO)
859 			request_bandwidth = true;
860 		dpu_encoder_register_frame_event_callback(encoder,
861 				dpu_crtc_frame_event_cb, (void *)crtc);
862 	}
863 
864 	if (request_bandwidth)
865 		atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
866 
867 	trace_dpu_crtc_enable(DRMID(crtc), true, dpu_crtc);
868 	dpu_crtc->enabled = true;
869 
870 	drm_for_each_encoder_mask(encoder, crtc->dev, crtc->state->encoder_mask)
871 		dpu_encoder_assign_crtc(encoder, crtc);
872 
873 	/* Enable/restore vblank irq handling */
874 	drm_crtc_vblank_on(crtc);
875 }
876 
877 struct plane_state {
878 	struct dpu_plane_state *dpu_pstate;
879 	const struct drm_plane_state *drm_pstate;
880 	int stage;
881 	u32 pipe_id;
882 };
883 
884 static int dpu_crtc_atomic_check(struct drm_crtc *crtc,
885 		struct drm_atomic_state *state)
886 {
887 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
888 									  crtc);
889 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
890 	struct dpu_crtc_state *cstate = to_dpu_crtc_state(crtc_state);
891 	struct plane_state *pstates;
892 
893 	const struct drm_plane_state *pstate;
894 	struct drm_plane *plane;
895 	struct drm_display_mode *mode;
896 
897 	int cnt = 0, rc = 0, mixer_width = 0, i, z_pos;
898 
899 	struct dpu_multirect_plane_states multirect_plane[DPU_STAGE_MAX * 2];
900 	int multirect_count = 0;
901 	const struct drm_plane_state *pipe_staged[SSPP_MAX];
902 	int left_zpos_cnt = 0, right_zpos_cnt = 0;
903 	struct drm_rect crtc_rect = { 0 };
904 
905 	pstates = kzalloc(sizeof(*pstates) * DPU_STAGE_MAX * 4, GFP_KERNEL);
906 
907 	if (!crtc_state->enable || !crtc_state->active) {
908 		DRM_DEBUG_ATOMIC("crtc%d -> enable %d, active %d, skip atomic_check\n",
909 				crtc->base.id, crtc_state->enable,
910 				crtc_state->active);
911 		memset(&cstate->new_perf, 0, sizeof(cstate->new_perf));
912 		goto end;
913 	}
914 
915 	mode = &crtc_state->adjusted_mode;
916 	DRM_DEBUG_ATOMIC("%s: check\n", dpu_crtc->name);
917 
918 	/* force a full mode set if active state changed */
919 	if (crtc_state->active_changed)
920 		crtc_state->mode_changed = true;
921 
922 	memset(pipe_staged, 0, sizeof(pipe_staged));
923 
924 	if (cstate->num_mixers) {
925 		mixer_width = mode->hdisplay / cstate->num_mixers;
926 
927 		_dpu_crtc_setup_lm_bounds(crtc, crtc_state);
928 	}
929 
930 	crtc_rect.x2 = mode->hdisplay;
931 	crtc_rect.y2 = mode->vdisplay;
932 
933 	 /* get plane state for all drm planes associated with crtc state */
934 	drm_atomic_crtc_state_for_each_plane_state(plane, pstate, crtc_state) {
935 		struct drm_rect dst, clip = crtc_rect;
936 
937 		if (IS_ERR_OR_NULL(pstate)) {
938 			rc = PTR_ERR(pstate);
939 			DPU_ERROR("%s: failed to get plane%d state, %d\n",
940 					dpu_crtc->name, plane->base.id, rc);
941 			goto end;
942 		}
943 		if (cnt >= DPU_STAGE_MAX * 4)
944 			continue;
945 
946 		pstates[cnt].dpu_pstate = to_dpu_plane_state(pstate);
947 		pstates[cnt].drm_pstate = pstate;
948 		pstates[cnt].stage = pstate->normalized_zpos;
949 		pstates[cnt].pipe_id = dpu_plane_pipe(plane);
950 
951 		if (pipe_staged[pstates[cnt].pipe_id]) {
952 			multirect_plane[multirect_count].r0 =
953 				pipe_staged[pstates[cnt].pipe_id];
954 			multirect_plane[multirect_count].r1 = pstate;
955 			multirect_count++;
956 
957 			pipe_staged[pstates[cnt].pipe_id] = NULL;
958 		} else {
959 			pipe_staged[pstates[cnt].pipe_id] = pstate;
960 		}
961 
962 		cnt++;
963 
964 		dst = drm_plane_state_dest(pstate);
965 		if (!drm_rect_intersect(&clip, &dst)) {
966 			DPU_ERROR("invalid vertical/horizontal destination\n");
967 			DPU_ERROR("display: " DRM_RECT_FMT " plane: "
968 				  DRM_RECT_FMT "\n", DRM_RECT_ARG(&crtc_rect),
969 				  DRM_RECT_ARG(&dst));
970 			rc = -E2BIG;
971 			goto end;
972 		}
973 	}
974 
975 	for (i = 1; i < SSPP_MAX; i++) {
976 		if (pipe_staged[i]) {
977 			dpu_plane_clear_multirect(pipe_staged[i]);
978 
979 			if (is_dpu_plane_virtual(pipe_staged[i]->plane)) {
980 				DPU_ERROR(
981 					"r1 only virt plane:%d not supported\n",
982 					pipe_staged[i]->plane->base.id);
983 				rc  = -EINVAL;
984 				goto end;
985 			}
986 		}
987 	}
988 
989 	z_pos = -1;
990 	for (i = 0; i < cnt; i++) {
991 		/* reset counts at every new blend stage */
992 		if (pstates[i].stage != z_pos) {
993 			left_zpos_cnt = 0;
994 			right_zpos_cnt = 0;
995 			z_pos = pstates[i].stage;
996 		}
997 
998 		/* verify z_pos setting before using it */
999 		if (z_pos >= DPU_STAGE_MAX - DPU_STAGE_0) {
1000 			DPU_ERROR("> %d plane stages assigned\n",
1001 					DPU_STAGE_MAX - DPU_STAGE_0);
1002 			rc = -EINVAL;
1003 			goto end;
1004 		} else if (pstates[i].drm_pstate->crtc_x < mixer_width) {
1005 			if (left_zpos_cnt == 2) {
1006 				DPU_ERROR("> 2 planes @ stage %d on left\n",
1007 					z_pos);
1008 				rc = -EINVAL;
1009 				goto end;
1010 			}
1011 			left_zpos_cnt++;
1012 
1013 		} else {
1014 			if (right_zpos_cnt == 2) {
1015 				DPU_ERROR("> 2 planes @ stage %d on right\n",
1016 					z_pos);
1017 				rc = -EINVAL;
1018 				goto end;
1019 			}
1020 			right_zpos_cnt++;
1021 		}
1022 
1023 		pstates[i].dpu_pstate->stage = z_pos + DPU_STAGE_0;
1024 		DRM_DEBUG_ATOMIC("%s: zpos %d\n", dpu_crtc->name, z_pos);
1025 	}
1026 
1027 	for (i = 0; i < multirect_count; i++) {
1028 		if (dpu_plane_validate_multirect_v2(&multirect_plane[i])) {
1029 			DPU_ERROR(
1030 			"multirect validation failed for planes (%d - %d)\n",
1031 					multirect_plane[i].r0->plane->base.id,
1032 					multirect_plane[i].r1->plane->base.id);
1033 			rc = -EINVAL;
1034 			goto end;
1035 		}
1036 	}
1037 
1038 	atomic_inc(&_dpu_crtc_get_kms(crtc)->bandwidth_ref);
1039 
1040 	rc = dpu_core_perf_crtc_check(crtc, crtc_state);
1041 	if (rc) {
1042 		DPU_ERROR("crtc%d failed performance check %d\n",
1043 				crtc->base.id, rc);
1044 		goto end;
1045 	}
1046 
1047 	/* validate source split:
1048 	 * use pstates sorted by stage to check planes on same stage
1049 	 * we assume that all pipes are in source split so its valid to compare
1050 	 * without taking into account left/right mixer placement
1051 	 */
1052 	for (i = 1; i < cnt; i++) {
1053 		struct plane_state *prv_pstate, *cur_pstate;
1054 		struct drm_rect left_rect, right_rect;
1055 		int32_t left_pid, right_pid;
1056 		int32_t stage;
1057 
1058 		prv_pstate = &pstates[i - 1];
1059 		cur_pstate = &pstates[i];
1060 		if (prv_pstate->stage != cur_pstate->stage)
1061 			continue;
1062 
1063 		stage = cur_pstate->stage;
1064 
1065 		left_pid = prv_pstate->dpu_pstate->base.plane->base.id;
1066 		left_rect = drm_plane_state_dest(prv_pstate->drm_pstate);
1067 
1068 		right_pid = cur_pstate->dpu_pstate->base.plane->base.id;
1069 		right_rect = drm_plane_state_dest(cur_pstate->drm_pstate);
1070 
1071 		if (right_rect.x1 < left_rect.x1) {
1072 			swap(left_pid, right_pid);
1073 			swap(left_rect, right_rect);
1074 		}
1075 
1076 		/**
1077 		 * - planes are enumerated in pipe-priority order such that
1078 		 *   planes with lower drm_id must be left-most in a shared
1079 		 *   blend-stage when using source split.
1080 		 * - planes in source split must be contiguous in width
1081 		 * - planes in source split must have same dest yoff and height
1082 		 */
1083 		if (right_pid < left_pid) {
1084 			DPU_ERROR(
1085 				"invalid src split cfg. priority mismatch. stage: %d left: %d right: %d\n",
1086 				stage, left_pid, right_pid);
1087 			rc = -EINVAL;
1088 			goto end;
1089 		} else if (right_rect.x1 != drm_rect_width(&left_rect)) {
1090 			DPU_ERROR("non-contiguous coordinates for src split. "
1091 				  "stage: %d left: " DRM_RECT_FMT " right: "
1092 				  DRM_RECT_FMT "\n", stage,
1093 				  DRM_RECT_ARG(&left_rect),
1094 				  DRM_RECT_ARG(&right_rect));
1095 			rc = -EINVAL;
1096 			goto end;
1097 		} else if (left_rect.y1 != right_rect.y1 ||
1098 			   drm_rect_height(&left_rect) != drm_rect_height(&right_rect)) {
1099 			DPU_ERROR("source split at stage: %d. invalid "
1100 				  "yoff/height: left: " DRM_RECT_FMT " right: "
1101 				  DRM_RECT_FMT "\n", stage,
1102 				  DRM_RECT_ARG(&left_rect),
1103 				  DRM_RECT_ARG(&right_rect));
1104 			rc = -EINVAL;
1105 			goto end;
1106 		}
1107 	}
1108 
1109 end:
1110 	kfree(pstates);
1111 	return rc;
1112 }
1113 
1114 int dpu_crtc_vblank(struct drm_crtc *crtc, bool en)
1115 {
1116 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1117 	struct drm_encoder *enc;
1118 
1119 	trace_dpu_crtc_vblank(DRMID(&dpu_crtc->base), en, dpu_crtc);
1120 
1121 	/*
1122 	 * Normally we would iterate through encoder_mask in crtc state to find
1123 	 * attached encoders. In this case, we might be disabling vblank _after_
1124 	 * encoder_mask has been cleared.
1125 	 *
1126 	 * Instead, we "assign" a crtc to the encoder in enable and clear it in
1127 	 * disable (which is also after encoder_mask is cleared). So instead of
1128 	 * using encoder mask, we'll ask the encoder to toggle itself iff it's
1129 	 * currently assigned to our crtc.
1130 	 *
1131 	 * Note also that this function cannot be called while crtc is disabled
1132 	 * since we use drm_crtc_vblank_on/off. So we don't need to worry
1133 	 * about the assigned crtcs being inconsistent with the current state
1134 	 * (which means no need to worry about modeset locks).
1135 	 */
1136 	list_for_each_entry(enc, &crtc->dev->mode_config.encoder_list, head) {
1137 		trace_dpu_crtc_vblank_enable(DRMID(crtc), DRMID(enc), en,
1138 					     dpu_crtc);
1139 
1140 		dpu_encoder_toggle_vblank_for_crtc(enc, crtc, en);
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 #ifdef CONFIG_DEBUG_FS
1147 static int _dpu_debugfs_status_show(struct seq_file *s, void *data)
1148 {
1149 	struct dpu_crtc *dpu_crtc;
1150 	struct dpu_plane_state *pstate = NULL;
1151 	struct dpu_crtc_mixer *m;
1152 
1153 	struct drm_crtc *crtc;
1154 	struct drm_plane *plane;
1155 	struct drm_display_mode *mode;
1156 	struct drm_framebuffer *fb;
1157 	struct drm_plane_state *state;
1158 	struct dpu_crtc_state *cstate;
1159 
1160 	int i, out_width;
1161 
1162 	dpu_crtc = s->private;
1163 	crtc = &dpu_crtc->base;
1164 
1165 	drm_modeset_lock_all(crtc->dev);
1166 	cstate = to_dpu_crtc_state(crtc->state);
1167 
1168 	mode = &crtc->state->adjusted_mode;
1169 	out_width = mode->hdisplay / cstate->num_mixers;
1170 
1171 	seq_printf(s, "crtc:%d width:%d height:%d\n", crtc->base.id,
1172 				mode->hdisplay, mode->vdisplay);
1173 
1174 	seq_puts(s, "\n");
1175 
1176 	for (i = 0; i < cstate->num_mixers; ++i) {
1177 		m = &cstate->mixers[i];
1178 		seq_printf(s, "\tmixer:%d ctl:%d width:%d height:%d\n",
1179 			m->hw_lm->idx - LM_0, m->lm_ctl->idx - CTL_0,
1180 			out_width, mode->vdisplay);
1181 	}
1182 
1183 	seq_puts(s, "\n");
1184 
1185 	drm_atomic_crtc_for_each_plane(plane, crtc) {
1186 		pstate = to_dpu_plane_state(plane->state);
1187 		state = plane->state;
1188 
1189 		if (!pstate || !state)
1190 			continue;
1191 
1192 		seq_printf(s, "\tplane:%u stage:%d\n", plane->base.id,
1193 			pstate->stage);
1194 
1195 		if (plane->state->fb) {
1196 			fb = plane->state->fb;
1197 
1198 			seq_printf(s, "\tfb:%d image format:%4.4s wxh:%ux%u ",
1199 				fb->base.id, (char *) &fb->format->format,
1200 				fb->width, fb->height);
1201 			for (i = 0; i < ARRAY_SIZE(fb->format->cpp); ++i)
1202 				seq_printf(s, "cpp[%d]:%u ",
1203 						i, fb->format->cpp[i]);
1204 			seq_puts(s, "\n\t");
1205 
1206 			seq_printf(s, "modifier:%8llu ", fb->modifier);
1207 			seq_puts(s, "\n");
1208 
1209 			seq_puts(s, "\t");
1210 			for (i = 0; i < ARRAY_SIZE(fb->pitches); i++)
1211 				seq_printf(s, "pitches[%d]:%8u ", i,
1212 							fb->pitches[i]);
1213 			seq_puts(s, "\n");
1214 
1215 			seq_puts(s, "\t");
1216 			for (i = 0; i < ARRAY_SIZE(fb->offsets); i++)
1217 				seq_printf(s, "offsets[%d]:%8u ", i,
1218 							fb->offsets[i]);
1219 			seq_puts(s, "\n");
1220 		}
1221 
1222 		seq_printf(s, "\tsrc_x:%4d src_y:%4d src_w:%4d src_h:%4d\n",
1223 			state->src_x, state->src_y, state->src_w, state->src_h);
1224 
1225 		seq_printf(s, "\tdst x:%4d dst_y:%4d dst_w:%4d dst_h:%4d\n",
1226 			state->crtc_x, state->crtc_y, state->crtc_w,
1227 			state->crtc_h);
1228 		seq_printf(s, "\tmultirect: mode: %d index: %d\n",
1229 			pstate->multirect_mode, pstate->multirect_index);
1230 
1231 		seq_puts(s, "\n");
1232 	}
1233 	if (dpu_crtc->vblank_cb_count) {
1234 		ktime_t diff = ktime_sub(ktime_get(), dpu_crtc->vblank_cb_time);
1235 		s64 diff_ms = ktime_to_ms(diff);
1236 		s64 fps = diff_ms ? div_s64(
1237 				dpu_crtc->vblank_cb_count * 1000, diff_ms) : 0;
1238 
1239 		seq_printf(s,
1240 			"vblank fps:%lld count:%u total:%llums total_framecount:%llu\n",
1241 				fps, dpu_crtc->vblank_cb_count,
1242 				ktime_to_ms(diff), dpu_crtc->play_count);
1243 
1244 		/* reset time & count for next measurement */
1245 		dpu_crtc->vblank_cb_count = 0;
1246 		dpu_crtc->vblank_cb_time = ktime_set(0, 0);
1247 	}
1248 
1249 	drm_modeset_unlock_all(crtc->dev);
1250 
1251 	return 0;
1252 }
1253 
1254 DEFINE_SHOW_ATTRIBUTE(_dpu_debugfs_status);
1255 
1256 static int dpu_crtc_debugfs_state_show(struct seq_file *s, void *v)
1257 {
1258 	struct drm_crtc *crtc = (struct drm_crtc *) s->private;
1259 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1260 
1261 	seq_printf(s, "client type: %d\n", dpu_crtc_get_client_type(crtc));
1262 	seq_printf(s, "intf_mode: %d\n", dpu_crtc_get_intf_mode(crtc));
1263 	seq_printf(s, "core_clk_rate: %llu\n",
1264 			dpu_crtc->cur_perf.core_clk_rate);
1265 	seq_printf(s, "bw_ctl: %llu\n", dpu_crtc->cur_perf.bw_ctl);
1266 	seq_printf(s, "max_per_pipe_ib: %llu\n",
1267 				dpu_crtc->cur_perf.max_per_pipe_ib);
1268 
1269 	return 0;
1270 }
1271 DEFINE_SHOW_ATTRIBUTE(dpu_crtc_debugfs_state);
1272 
1273 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1274 {
1275 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1276 
1277 	dpu_crtc->debugfs_root = debugfs_create_dir(dpu_crtc->name,
1278 			crtc->dev->primary->debugfs_root);
1279 
1280 	debugfs_create_file("status", 0400,
1281 			dpu_crtc->debugfs_root,
1282 			dpu_crtc, &_dpu_debugfs_status_fops);
1283 	debugfs_create_file("state", 0600,
1284 			dpu_crtc->debugfs_root,
1285 			&dpu_crtc->base,
1286 			&dpu_crtc_debugfs_state_fops);
1287 
1288 	return 0;
1289 }
1290 #else
1291 static int _dpu_crtc_init_debugfs(struct drm_crtc *crtc)
1292 {
1293 	return 0;
1294 }
1295 #endif /* CONFIG_DEBUG_FS */
1296 
1297 static int dpu_crtc_late_register(struct drm_crtc *crtc)
1298 {
1299 	return _dpu_crtc_init_debugfs(crtc);
1300 }
1301 
1302 static void dpu_crtc_early_unregister(struct drm_crtc *crtc)
1303 {
1304 	struct dpu_crtc *dpu_crtc = to_dpu_crtc(crtc);
1305 
1306 	debugfs_remove_recursive(dpu_crtc->debugfs_root);
1307 }
1308 
1309 static const struct drm_crtc_funcs dpu_crtc_funcs = {
1310 	.set_config = drm_atomic_helper_set_config,
1311 	.destroy = dpu_crtc_destroy,
1312 	.page_flip = drm_atomic_helper_page_flip,
1313 	.reset = dpu_crtc_reset,
1314 	.atomic_duplicate_state = dpu_crtc_duplicate_state,
1315 	.atomic_destroy_state = dpu_crtc_destroy_state,
1316 	.late_register = dpu_crtc_late_register,
1317 	.early_unregister = dpu_crtc_early_unregister,
1318 	.enable_vblank  = msm_crtc_enable_vblank,
1319 	.disable_vblank = msm_crtc_disable_vblank,
1320 	.get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
1321 	.get_vblank_counter = dpu_crtc_get_vblank_counter,
1322 };
1323 
1324 static const struct drm_crtc_helper_funcs dpu_crtc_helper_funcs = {
1325 	.atomic_disable = dpu_crtc_disable,
1326 	.atomic_enable = dpu_crtc_enable,
1327 	.atomic_check = dpu_crtc_atomic_check,
1328 	.atomic_begin = dpu_crtc_atomic_begin,
1329 	.atomic_flush = dpu_crtc_atomic_flush,
1330 	.get_scanout_position = dpu_crtc_get_scanout_position,
1331 };
1332 
1333 /* initialize crtc */
1334 struct drm_crtc *dpu_crtc_init(struct drm_device *dev, struct drm_plane *plane,
1335 				struct drm_plane *cursor)
1336 {
1337 	struct drm_crtc *crtc = NULL;
1338 	struct dpu_crtc *dpu_crtc = NULL;
1339 	int i;
1340 
1341 	dpu_crtc = kzalloc(sizeof(*dpu_crtc), GFP_KERNEL);
1342 	if (!dpu_crtc)
1343 		return ERR_PTR(-ENOMEM);
1344 
1345 	crtc = &dpu_crtc->base;
1346 	crtc->dev = dev;
1347 
1348 	spin_lock_init(&dpu_crtc->spin_lock);
1349 	atomic_set(&dpu_crtc->frame_pending, 0);
1350 
1351 	init_completion(&dpu_crtc->frame_done_comp);
1352 
1353 	INIT_LIST_HEAD(&dpu_crtc->frame_event_list);
1354 
1355 	for (i = 0; i < ARRAY_SIZE(dpu_crtc->frame_events); i++) {
1356 		INIT_LIST_HEAD(&dpu_crtc->frame_events[i].list);
1357 		list_add(&dpu_crtc->frame_events[i].list,
1358 				&dpu_crtc->frame_event_list);
1359 		kthread_init_work(&dpu_crtc->frame_events[i].work,
1360 				dpu_crtc_frame_event_work);
1361 	}
1362 
1363 	drm_crtc_init_with_planes(dev, crtc, plane, cursor, &dpu_crtc_funcs,
1364 				NULL);
1365 
1366 	drm_crtc_helper_add(crtc, &dpu_crtc_helper_funcs);
1367 
1368 	drm_crtc_enable_color_mgmt(crtc, 0, true, 0);
1369 
1370 	/* save user friendly CRTC name for later */
1371 	snprintf(dpu_crtc->name, DPU_CRTC_NAME_SIZE, "crtc%u", crtc->base.id);
1372 
1373 	/* initialize event handling */
1374 	spin_lock_init(&dpu_crtc->event_lock);
1375 
1376 	DRM_DEBUG_KMS("%s: successfully initialized crtc\n", dpu_crtc->name);
1377 	return crtc;
1378 }
1379