xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_hfi.c (revision 96ac6d435100450f0565708d9b885ea2a7400e0a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/completion.h>
5 #include <linux/circ_buf.h>
6 #include <linux/list.h>
7 
8 #include "a6xx_gmu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #define HFI_MSG_ID(val) [val] = #val
12 
13 static const char * const a6xx_hfi_msg_id[] = {
14 	HFI_MSG_ID(HFI_H2F_MSG_INIT),
15 	HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION),
16 	HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE),
17 	HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE),
18 	HFI_MSG_ID(HFI_H2F_MSG_TEST),
19 };
20 
21 static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data,
22 		u32 dwords)
23 {
24 	struct a6xx_hfi_queue_header *header = queue->header;
25 	u32 i, hdr, index = header->read_index;
26 
27 	if (header->read_index == header->write_index) {
28 		header->rx_request = 1;
29 		return 0;
30 	}
31 
32 	hdr = queue->data[index];
33 
34 	/*
35 	 * If we are to assume that the GMU firmware is in fact a rational actor
36 	 * and is programmed to not send us a larger response than we expect
37 	 * then we can also assume that if the header size is unexpectedly large
38 	 * that it is due to memory corruption and/or hardware failure. In this
39 	 * case the only reasonable course of action is to BUG() to help harden
40 	 * the failure.
41 	 */
42 
43 	BUG_ON(HFI_HEADER_SIZE(hdr) > dwords);
44 
45 	for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) {
46 		data[i] = queue->data[index];
47 		index = (index + 1) % header->size;
48 	}
49 
50 	header->read_index = index;
51 	return HFI_HEADER_SIZE(hdr);
52 }
53 
54 static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu,
55 	struct a6xx_hfi_queue *queue, u32 *data, u32 dwords)
56 {
57 	struct a6xx_hfi_queue_header *header = queue->header;
58 	u32 i, space, index = header->write_index;
59 
60 	spin_lock(&queue->lock);
61 
62 	space = CIRC_SPACE(header->write_index, header->read_index,
63 		header->size);
64 	if (space < dwords) {
65 		header->dropped++;
66 		spin_unlock(&queue->lock);
67 		return -ENOSPC;
68 	}
69 
70 	for (i = 0; i < dwords; i++) {
71 		queue->data[index] = data[i];
72 		index = (index + 1) % header->size;
73 	}
74 
75 	header->write_index = index;
76 	spin_unlock(&queue->lock);
77 
78 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01);
79 	return 0;
80 }
81 
82 static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum,
83 		u32 *payload, u32 payload_size)
84 {
85 	struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE];
86 	u32 val;
87 	int ret;
88 
89 	/* Wait for a response */
90 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
91 		val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 5000);
92 
93 	if (ret) {
94 		DRM_DEV_ERROR(gmu->dev,
95 			"Message %s id %d timed out waiting for response\n",
96 			a6xx_hfi_msg_id[id], seqnum);
97 		return -ETIMEDOUT;
98 	}
99 
100 	/* Clear the interrupt */
101 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR,
102 		A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ);
103 
104 	for (;;) {
105 		struct a6xx_hfi_msg_response resp;
106 
107 		/* Get the next packet */
108 		ret = a6xx_hfi_queue_read(queue, (u32 *) &resp,
109 			sizeof(resp) >> 2);
110 
111 		/* If the queue is empty our response never made it */
112 		if (!ret) {
113 			DRM_DEV_ERROR(gmu->dev,
114 				"The HFI response queue is unexpectedly empty\n");
115 
116 			return -ENOENT;
117 		}
118 
119 		if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) {
120 			struct a6xx_hfi_msg_error *error =
121 				(struct a6xx_hfi_msg_error *) &resp;
122 
123 			DRM_DEV_ERROR(gmu->dev, "GMU firmware error %d\n",
124 				error->code);
125 			continue;
126 		}
127 
128 		if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) {
129 			DRM_DEV_ERROR(gmu->dev,
130 				"Unexpected message id %d on the response queue\n",
131 				HFI_HEADER_SEQNUM(resp.ret_header));
132 			continue;
133 		}
134 
135 		if (resp.error) {
136 			DRM_DEV_ERROR(gmu->dev,
137 				"Message %s id %d returned error %d\n",
138 				a6xx_hfi_msg_id[id], seqnum, resp.error);
139 			return -EINVAL;
140 		}
141 
142 		/* All is well, copy over the buffer */
143 		if (payload && payload_size)
144 			memcpy(payload, resp.payload,
145 				min_t(u32, payload_size, sizeof(resp.payload)));
146 
147 		return 0;
148 	}
149 }
150 
151 static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id,
152 		void *data, u32 size, u32 *payload, u32 payload_size)
153 {
154 	struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE];
155 	int ret, dwords = size >> 2;
156 	u32 seqnum;
157 
158 	seqnum = atomic_inc_return(&queue->seqnum) % 0xfff;
159 
160 	/* First dword of the message is the message header - fill it in */
161 	*((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) |
162 		(dwords << 8) | id;
163 
164 	ret = a6xx_hfi_queue_write(gmu, queue, data, dwords);
165 	if (ret) {
166 		DRM_DEV_ERROR(gmu->dev, "Unable to send message %s id %d\n",
167 			a6xx_hfi_msg_id[id], seqnum);
168 		return ret;
169 	}
170 
171 	return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size);
172 }
173 
174 static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state)
175 {
176 	struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 };
177 
178 	msg.dbg_buffer_addr = (u32) gmu->debug->iova;
179 	msg.dbg_buffer_size = (u32) gmu->debug->size;
180 	msg.boot_state = boot_state;
181 
182 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg),
183 		NULL, 0);
184 }
185 
186 static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version)
187 {
188 	struct a6xx_hfi_msg_fw_version msg = { 0 };
189 
190 	/* Currently supporting version 1.1 */
191 	msg.supported_version = (1 << 28) | (1 << 16);
192 
193 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg),
194 		version, sizeof(*version));
195 }
196 
197 static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu)
198 {
199 	struct a6xx_hfi_msg_perf_table msg = { 0 };
200 	int i;
201 
202 	msg.num_gpu_levels = gmu->nr_gpu_freqs;
203 	msg.num_gmu_levels = gmu->nr_gmu_freqs;
204 
205 	for (i = 0; i < gmu->nr_gpu_freqs; i++) {
206 		msg.gx_votes[i].vote = gmu->gx_arc_votes[i];
207 		msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000;
208 	}
209 
210 	for (i = 0; i < gmu->nr_gmu_freqs; i++) {
211 		msg.cx_votes[i].vote = gmu->cx_arc_votes[i];
212 		msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000;
213 	}
214 
215 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg),
216 		NULL, 0);
217 }
218 
219 static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu)
220 {
221 	struct a6xx_hfi_msg_bw_table msg = { 0 };
222 
223 	/*
224 	 * The sdm845 GMU doesn't do bus frequency scaling on its own but it
225 	 * does need at least one entry in the list because it might be accessed
226 	 * when the GMU is shutting down. Send a single "off" entry.
227 	 */
228 
229 	msg.bw_level_num = 1;
230 
231 	msg.ddr_cmds_num = 3;
232 	msg.ddr_wait_bitmask = 0x07;
233 
234 	msg.ddr_cmds_addrs[0] = 0x50000;
235 	msg.ddr_cmds_addrs[1] = 0x5005c;
236 	msg.ddr_cmds_addrs[2] = 0x5000c;
237 
238 	msg.ddr_cmds_data[0][0] =  0x40000000;
239 	msg.ddr_cmds_data[0][1] =  0x40000000;
240 	msg.ddr_cmds_data[0][2] =  0x40000000;
241 
242 	/*
243 	 * These are the CX (CNOC) votes.  This is used but the values for the
244 	 * sdm845 GMU are known and fixed so we can hard code them.
245 	 */
246 
247 	msg.cnoc_cmds_num = 3;
248 	msg.cnoc_wait_bitmask = 0x05;
249 
250 	msg.cnoc_cmds_addrs[0] = 0x50034;
251 	msg.cnoc_cmds_addrs[1] = 0x5007c;
252 	msg.cnoc_cmds_addrs[2] = 0x5004c;
253 
254 	msg.cnoc_cmds_data[0][0] =  0x40000000;
255 	msg.cnoc_cmds_data[0][1] =  0x00000000;
256 	msg.cnoc_cmds_data[0][2] =  0x40000000;
257 
258 	msg.cnoc_cmds_data[1][0] =  0x60000001;
259 	msg.cnoc_cmds_data[1][1] =  0x20000001;
260 	msg.cnoc_cmds_data[1][2] =  0x60000001;
261 
262 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg),
263 		NULL, 0);
264 }
265 
266 static int a6xx_hfi_send_test(struct a6xx_gmu *gmu)
267 {
268 	struct a6xx_hfi_msg_test msg = { 0 };
269 
270 	return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg),
271 		NULL, 0);
272 }
273 
274 int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state)
275 {
276 	int ret;
277 
278 	ret = a6xx_hfi_send_gmu_init(gmu, boot_state);
279 	if (ret)
280 		return ret;
281 
282 	ret = a6xx_hfi_get_fw_version(gmu, NULL);
283 	if (ret)
284 		return ret;
285 
286 	/*
287 	 * We have to get exchange version numbers per the sequence but at this
288 	 * point th kernel driver doesn't need to know the exact version of
289 	 * the GMU firmware
290 	 */
291 
292 	ret = a6xx_hfi_send_perf_table(gmu);
293 	if (ret)
294 		return ret;
295 
296 	ret = a6xx_hfi_send_bw_table(gmu);
297 	if (ret)
298 		return ret;
299 
300 	/*
301 	 * Let the GMU know that there won't be any more HFI messages until next
302 	 * boot
303 	 */
304 	a6xx_hfi_send_test(gmu);
305 
306 	return 0;
307 }
308 
309 void a6xx_hfi_stop(struct a6xx_gmu *gmu)
310 {
311 	int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) {
314 		struct a6xx_hfi_queue *queue = &gmu->queues[i];
315 
316 		if (!queue->header)
317 			continue;
318 
319 		if (queue->header->read_index != queue->header->write_index)
320 			DRM_DEV_ERROR(gmu->dev, "HFI queue %d is not empty\n", i);
321 
322 		queue->header->read_index = 0;
323 		queue->header->write_index = 0;
324 	}
325 }
326 
327 static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue,
328 		struct a6xx_hfi_queue_header *header, void *virt, u64 iova,
329 		u32 id)
330 {
331 	spin_lock_init(&queue->lock);
332 	queue->header = header;
333 	queue->data = virt;
334 	atomic_set(&queue->seqnum, 0);
335 
336 	/* Set up the shared memory header */
337 	header->iova = iova;
338 	header->type =  10 << 8 | id;
339 	header->status = 1;
340 	header->size = SZ_4K >> 2;
341 	header->msg_size = 0;
342 	header->dropped = 0;
343 	header->rx_watermark = 1;
344 	header->tx_watermark = 1;
345 	header->rx_request = 1;
346 	header->tx_request = 0;
347 	header->read_index = 0;
348 	header->write_index = 0;
349 }
350 
351 void a6xx_hfi_init(struct a6xx_gmu *gmu)
352 {
353 	struct a6xx_gmu_bo *hfi = gmu->hfi;
354 	struct a6xx_hfi_queue_table_header *table = hfi->virt;
355 	struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table);
356 	u64 offset;
357 	int table_size;
358 
359 	/*
360 	 * The table size is the size of the table header plus all of the queue
361 	 * headers
362 	 */
363 	table_size = sizeof(*table);
364 	table_size += (ARRAY_SIZE(gmu->queues) *
365 		sizeof(struct a6xx_hfi_queue_header));
366 
367 	table->version = 0;
368 	table->size = table_size;
369 	/* First queue header is located immediately after the table header */
370 	table->qhdr0_offset = sizeof(*table) >> 2;
371 	table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2;
372 	table->num_queues = ARRAY_SIZE(gmu->queues);
373 	table->active_queues = ARRAY_SIZE(gmu->queues);
374 
375 	/* Command queue */
376 	offset = SZ_4K;
377 	a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset,
378 		hfi->iova + offset, 0);
379 
380 	/* GMU response queue */
381 	offset += SZ_4K;
382 	a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset,
383 		hfi->iova + offset, 4);
384 }
385