1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/devfreq.h> 12 13 #define GPU_PAS_ID 13 14 15 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 16 { 17 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 18 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 19 20 /* Check that the GMU is idle */ 21 if (!a6xx_gmu_isidle(&a6xx_gpu->gmu)) 22 return false; 23 24 /* Check tha the CX master is idle */ 25 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 26 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 27 return false; 28 29 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 30 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 31 } 32 33 bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 34 { 35 /* wait for CP to drain ringbuffer: */ 36 if (!adreno_idle(gpu, ring)) 37 return false; 38 39 if (spin_until(_a6xx_check_idle(gpu))) { 40 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 41 gpu->name, __builtin_return_address(0), 42 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 43 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 44 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 45 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 46 return false; 47 } 48 49 return true; 50 } 51 52 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 53 { 54 uint32_t wptr; 55 unsigned long flags; 56 57 spin_lock_irqsave(&ring->lock, flags); 58 59 /* Copy the shadow to the actual register */ 60 ring->cur = ring->next; 61 62 /* Make sure to wrap wptr if we need to */ 63 wptr = get_wptr(ring); 64 65 spin_unlock_irqrestore(&ring->lock, flags); 66 67 /* Make sure everything is posted before making a decision */ 68 mb(); 69 70 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 71 } 72 73 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 74 u64 iova) 75 { 76 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 77 OUT_RING(ring, counter | (1 << 30) | (2 << 18)); 78 OUT_RING(ring, lower_32_bits(iova)); 79 OUT_RING(ring, upper_32_bits(iova)); 80 } 81 82 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit, 83 struct msm_file_private *ctx) 84 { 85 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 86 struct msm_drm_private *priv = gpu->dev->dev_private; 87 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 88 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 89 struct msm_ringbuffer *ring = submit->ring; 90 unsigned int i; 91 92 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 93 rbmemptr_stats(ring, index, cpcycles_start)); 94 95 /* 96 * For PM4 the GMU register offsets are calculated from the base of the 97 * GPU registers so we need to add 0x1a800 to the register value on A630 98 * to get the right value from PM4. 99 */ 100 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800, 101 rbmemptr_stats(ring, index, alwayson_start)); 102 103 /* Invalidate CCU depth and color */ 104 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 105 OUT_RING(ring, PC_CCU_INVALIDATE_DEPTH); 106 107 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 108 OUT_RING(ring, PC_CCU_INVALIDATE_COLOR); 109 110 /* Submit the commands */ 111 for (i = 0; i < submit->nr_cmds; i++) { 112 switch (submit->cmd[i].type) { 113 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 114 break; 115 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 116 if (priv->lastctx == ctx) 117 break; 118 /* fall-thru */ 119 case MSM_SUBMIT_CMD_BUF: 120 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 121 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 122 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 123 OUT_RING(ring, submit->cmd[i].size); 124 break; 125 } 126 } 127 128 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 129 rbmemptr_stats(ring, index, cpcycles_end)); 130 get_stats_counter(ring, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L + 0x1a800, 131 rbmemptr_stats(ring, index, alwayson_end)); 132 133 /* Write the fence to the scratch register */ 134 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 135 OUT_RING(ring, submit->seqno); 136 137 /* 138 * Execute a CACHE_FLUSH_TS event. This will ensure that the 139 * timestamp is written to the memory and then triggers the interrupt 140 */ 141 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 142 OUT_RING(ring, CACHE_FLUSH_TS | (1 << 31)); 143 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 144 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 145 OUT_RING(ring, submit->seqno); 146 147 trace_msm_gpu_submit_flush(submit, 148 gmu_read64(&a6xx_gpu->gmu, REG_A6XX_GMU_ALWAYS_ON_COUNTER_L, 149 REG_A6XX_GMU_ALWAYS_ON_COUNTER_H)); 150 151 a6xx_flush(gpu, ring); 152 } 153 154 static const struct { 155 u32 offset; 156 u32 value; 157 } a6xx_hwcg[] = { 158 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 159 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 160 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 161 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 162 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 163 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 164 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 165 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 166 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 167 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 168 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 169 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 170 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 171 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 172 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 173 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 174 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 175 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 176 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 177 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 178 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 179 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 180 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 181 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 182 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 183 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 184 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 185 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 186 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 187 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 188 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 189 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 190 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 191 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 192 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 193 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 194 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 195 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 196 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 197 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 198 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 199 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 200 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 201 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 202 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 203 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 204 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 205 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 206 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 207 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 208 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 209 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 210 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 211 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 212 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 213 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 214 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 215 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 216 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 217 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 218 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 219 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 220 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 221 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 222 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 223 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 224 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 225 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 226 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 227 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 228 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 229 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 230 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 231 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 232 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 233 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 234 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 235 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 236 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 237 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 238 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 239 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 240 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 241 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 242 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 243 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 244 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 245 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 246 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 247 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 248 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 249 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 250 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 251 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 252 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 253 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 254 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 255 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 256 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 257 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 258 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 259 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 260 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 261 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 262 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555} 263 }; 264 265 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 266 { 267 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 268 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 269 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 270 unsigned int i; 271 u32 val; 272 273 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 274 275 /* Don't re-program the registers if they are already correct */ 276 if ((!state && !val) || (state && (val == 0x8aa8aa02))) 277 return; 278 279 /* Disable SP clock before programming HWCG registers */ 280 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 281 282 for (i = 0; i < ARRAY_SIZE(a6xx_hwcg); i++) 283 gpu_write(gpu, a6xx_hwcg[i].offset, 284 state ? a6xx_hwcg[i].value : 0); 285 286 /* Enable SP clock */ 287 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 288 289 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? 0x8aa8aa02 : 0); 290 } 291 292 static int a6xx_cp_init(struct msm_gpu *gpu) 293 { 294 struct msm_ringbuffer *ring = gpu->rb[0]; 295 296 OUT_PKT7(ring, CP_ME_INIT, 8); 297 298 OUT_RING(ring, 0x0000002f); 299 300 /* Enable multiple hardware contexts */ 301 OUT_RING(ring, 0x00000003); 302 303 /* Enable error detection */ 304 OUT_RING(ring, 0x20000000); 305 306 /* Don't enable header dump */ 307 OUT_RING(ring, 0x00000000); 308 OUT_RING(ring, 0x00000000); 309 310 /* No workarounds enabled */ 311 OUT_RING(ring, 0x00000000); 312 313 /* Pad rest of the cmds with 0's */ 314 OUT_RING(ring, 0x00000000); 315 OUT_RING(ring, 0x00000000); 316 317 a6xx_flush(gpu, ring); 318 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 319 } 320 321 static int a6xx_ucode_init(struct msm_gpu *gpu) 322 { 323 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 324 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 325 326 if (!a6xx_gpu->sqe_bo) { 327 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 328 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 329 330 if (IS_ERR(a6xx_gpu->sqe_bo)) { 331 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 332 333 a6xx_gpu->sqe_bo = NULL; 334 DRM_DEV_ERROR(&gpu->pdev->dev, 335 "Could not allocate SQE ucode: %d\n", ret); 336 337 return ret; 338 } 339 340 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 341 } 342 343 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE_LO, 344 REG_A6XX_CP_SQE_INSTR_BASE_HI, a6xx_gpu->sqe_iova); 345 346 return 0; 347 } 348 349 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 350 { 351 static bool loaded; 352 int ret; 353 354 if (loaded) 355 return 0; 356 357 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 358 359 loaded = !ret; 360 return ret; 361 } 362 363 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 364 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 365 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 366 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 367 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 368 A6XX_RBBM_INT_0_MASK_CP_RB | \ 369 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 370 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 371 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 372 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 373 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 374 375 static int a6xx_hw_init(struct msm_gpu *gpu) 376 { 377 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 378 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 379 int ret; 380 381 /* Make sure the GMU keeps the GPU on while we set it up */ 382 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 383 384 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 385 386 /* 387 * Disable the trusted memory range - we don't actually supported secure 388 * memory rendering at this point in time and we don't want to block off 389 * part of the virtual memory space. 390 */ 391 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 392 REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000); 393 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 394 395 /* Turn on 64 bit addressing for all blocks */ 396 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 397 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 398 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 399 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 400 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 401 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 402 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 403 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 404 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 405 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 406 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 407 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 408 409 /* 410 * enable hardware clockgating 411 * For now enable clock gating only for a630 412 */ 413 if (adreno_is_a630(adreno_gpu)) 414 a6xx_set_hwcg(gpu, true); 415 416 /* VBIF/GBIF start*/ 417 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) { 418 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 419 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 420 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 421 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 422 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 423 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3); 424 } else { 425 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 426 } 427 428 if (adreno_is_a630(adreno_gpu)) 429 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 430 431 /* Make all blocks contribute to the GPU BUSY perf counter */ 432 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 433 434 /* Disable L2 bypass in the UCHE */ 435 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0); 436 gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff); 437 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000); 438 gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff); 439 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000); 440 gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff); 441 442 if (!adreno_is_a650(adreno_gpu)) { 443 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 444 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO, 445 REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000); 446 447 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO, 448 REG_A6XX_UCHE_GMEM_RANGE_MAX_HI, 449 0x00100000 + adreno_gpu->gmem - 1); 450 } 451 452 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 453 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 454 455 if (adreno_is_a640(adreno_gpu) || adreno_is_a650(adreno_gpu)) 456 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 457 else 458 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 459 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 460 461 /* Setting the mem pool size */ 462 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 463 464 /* Setting the primFifo thresholds default values */ 465 if (adreno_is_a650(adreno_gpu)) 466 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300000); 467 else if (adreno_is_a640(adreno_gpu)) 468 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200000); 469 else 470 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, (0x300 << 11)); 471 472 /* Set the AHB default slave response to "ERROR" */ 473 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 474 475 /* Turn on performance counters */ 476 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 477 478 /* Select CP0 to always count cycles */ 479 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT); 480 481 if (adreno_is_a630(adreno_gpu)) { 482 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 2 << 1); 483 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, 2 << 1); 484 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, 2 << 1); 485 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 2 << 21); 486 } 487 488 /* Enable fault detection */ 489 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, 490 (1 << 30) | 0x1fffff); 491 492 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1); 493 494 /* Set weights for bicubic filtering */ 495 if (adreno_is_a650(adreno_gpu)) { 496 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 497 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 498 0x3fe05ff4); 499 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 500 0x3fa0ebee); 501 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 502 0x3f5193ed); 503 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 504 0x3f0243f0); 505 } 506 507 /* Protect registers from the CP */ 508 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 0x00000003); 509 510 gpu_write(gpu, REG_A6XX_CP_PROTECT(0), 511 A6XX_PROTECT_RDONLY(0x600, 0x51)); 512 gpu_write(gpu, REG_A6XX_CP_PROTECT(1), A6XX_PROTECT_RW(0xae50, 0x2)); 513 gpu_write(gpu, REG_A6XX_CP_PROTECT(2), A6XX_PROTECT_RW(0x9624, 0x13)); 514 gpu_write(gpu, REG_A6XX_CP_PROTECT(3), A6XX_PROTECT_RW(0x8630, 0x8)); 515 gpu_write(gpu, REG_A6XX_CP_PROTECT(4), A6XX_PROTECT_RW(0x9e70, 0x1)); 516 gpu_write(gpu, REG_A6XX_CP_PROTECT(5), A6XX_PROTECT_RW(0x9e78, 0x187)); 517 gpu_write(gpu, REG_A6XX_CP_PROTECT(6), A6XX_PROTECT_RW(0xf000, 0x810)); 518 gpu_write(gpu, REG_A6XX_CP_PROTECT(7), 519 A6XX_PROTECT_RDONLY(0xfc00, 0x3)); 520 gpu_write(gpu, REG_A6XX_CP_PROTECT(8), A6XX_PROTECT_RW(0x50e, 0x0)); 521 gpu_write(gpu, REG_A6XX_CP_PROTECT(9), A6XX_PROTECT_RDONLY(0x50f, 0x0)); 522 gpu_write(gpu, REG_A6XX_CP_PROTECT(10), A6XX_PROTECT_RW(0x510, 0x0)); 523 gpu_write(gpu, REG_A6XX_CP_PROTECT(11), 524 A6XX_PROTECT_RDONLY(0x0, 0x4f9)); 525 gpu_write(gpu, REG_A6XX_CP_PROTECT(12), 526 A6XX_PROTECT_RDONLY(0x501, 0xa)); 527 gpu_write(gpu, REG_A6XX_CP_PROTECT(13), 528 A6XX_PROTECT_RDONLY(0x511, 0x44)); 529 gpu_write(gpu, REG_A6XX_CP_PROTECT(14), A6XX_PROTECT_RW(0xe00, 0xe)); 530 gpu_write(gpu, REG_A6XX_CP_PROTECT(15), A6XX_PROTECT_RW(0x8e00, 0x0)); 531 gpu_write(gpu, REG_A6XX_CP_PROTECT(16), A6XX_PROTECT_RW(0x8e50, 0xf)); 532 gpu_write(gpu, REG_A6XX_CP_PROTECT(17), A6XX_PROTECT_RW(0xbe02, 0x0)); 533 gpu_write(gpu, REG_A6XX_CP_PROTECT(18), 534 A6XX_PROTECT_RW(0xbe20, 0x11f3)); 535 gpu_write(gpu, REG_A6XX_CP_PROTECT(19), A6XX_PROTECT_RW(0x800, 0x82)); 536 gpu_write(gpu, REG_A6XX_CP_PROTECT(20), A6XX_PROTECT_RW(0x8a0, 0x8)); 537 gpu_write(gpu, REG_A6XX_CP_PROTECT(21), A6XX_PROTECT_RW(0x8ab, 0x19)); 538 gpu_write(gpu, REG_A6XX_CP_PROTECT(22), A6XX_PROTECT_RW(0x900, 0x4d)); 539 gpu_write(gpu, REG_A6XX_CP_PROTECT(23), A6XX_PROTECT_RW(0x98d, 0x76)); 540 gpu_write(gpu, REG_A6XX_CP_PROTECT(24), 541 A6XX_PROTECT_RDONLY(0x980, 0x4)); 542 gpu_write(gpu, REG_A6XX_CP_PROTECT(25), A6XX_PROTECT_RW(0xa630, 0x0)); 543 544 if (adreno_is_a650(adreno_gpu)) { 545 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 546 (1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1)); 547 } 548 549 /* Enable interrupts */ 550 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK); 551 552 ret = adreno_hw_init(gpu); 553 if (ret) 554 goto out; 555 556 ret = a6xx_ucode_init(gpu); 557 if (ret) 558 goto out; 559 560 /* Always come up on rb 0 */ 561 a6xx_gpu->cur_ring = gpu->rb[0]; 562 563 /* Enable the SQE_to start the CP engine */ 564 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 565 566 ret = a6xx_cp_init(gpu); 567 if (ret) 568 goto out; 569 570 /* 571 * Try to load a zap shader into the secure world. If successful 572 * we can use the CP to switch out of secure mode. If not then we 573 * have no resource but to try to switch ourselves out manually. If we 574 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 575 * be blocked and a permissions violation will soon follow. 576 */ 577 ret = a6xx_zap_shader_init(gpu); 578 if (!ret) { 579 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 580 OUT_RING(gpu->rb[0], 0x00000000); 581 582 a6xx_flush(gpu, gpu->rb[0]); 583 if (!a6xx_idle(gpu, gpu->rb[0])) 584 return -EINVAL; 585 } else if (ret == -ENODEV) { 586 /* 587 * This device does not use zap shader (but print a warning 588 * just in case someone got their dt wrong.. hopefully they 589 * have a debug UART to realize the error of their ways... 590 * if you mess this up you are about to crash horribly) 591 */ 592 dev_warn_once(gpu->dev->dev, 593 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 594 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 595 ret = 0; 596 } else { 597 return ret; 598 } 599 600 out: 601 /* 602 * Tell the GMU that we are done touching the GPU and it can start power 603 * management 604 */ 605 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 606 607 if (a6xx_gpu->gmu.legacy) { 608 /* Take the GMU out of its special boot mode */ 609 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 610 } 611 612 return ret; 613 } 614 615 static void a6xx_dump(struct msm_gpu *gpu) 616 { 617 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 618 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 619 adreno_dump(gpu); 620 } 621 622 #define VBIF_RESET_ACK_TIMEOUT 100 623 #define VBIF_RESET_ACK_MASK 0x00f0 624 625 static void a6xx_recover(struct msm_gpu *gpu) 626 { 627 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 628 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 629 int i; 630 631 adreno_dump_info(gpu); 632 633 for (i = 0; i < 8; i++) 634 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 635 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 636 637 if (hang_debug) 638 a6xx_dump(gpu); 639 640 /* 641 * Turn off keep alive that might have been enabled by the hang 642 * interrupt 643 */ 644 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 645 646 gpu->funcs->pm_suspend(gpu); 647 gpu->funcs->pm_resume(gpu); 648 649 msm_gpu_hw_init(gpu); 650 } 651 652 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags) 653 { 654 struct msm_gpu *gpu = arg; 655 656 pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n", 657 iova, flags, 658 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 659 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 660 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 661 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7))); 662 663 return -EFAULT; 664 } 665 666 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 667 { 668 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 669 670 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 671 u32 val; 672 673 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 674 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 675 dev_err_ratelimited(&gpu->pdev->dev, 676 "CP | opcode error | possible opcode=0x%8.8X\n", 677 val); 678 } 679 680 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 681 dev_err_ratelimited(&gpu->pdev->dev, 682 "CP ucode error interrupt\n"); 683 684 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 685 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 686 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 687 688 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 689 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 690 691 dev_err_ratelimited(&gpu->pdev->dev, 692 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 693 val & (1 << 20) ? "READ" : "WRITE", 694 (val & 0x3ffff), val); 695 } 696 697 if (status & A6XX_CP_INT_CP_AHB_ERROR) 698 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 699 700 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 701 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 702 703 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 704 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 705 706 } 707 708 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 709 { 710 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 711 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 712 struct drm_device *dev = gpu->dev; 713 struct msm_drm_private *priv = dev->dev_private; 714 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 715 716 /* 717 * Force the GPU to stay on until after we finish 718 * collecting information 719 */ 720 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 721 722 DRM_DEV_ERROR(&gpu->pdev->dev, 723 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 724 ring ? ring->id : -1, ring ? ring->seqno : 0, 725 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 726 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 727 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 728 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI), 729 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 730 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI), 731 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 732 733 /* Turn off the hangcheck timer to keep it from bothering us */ 734 del_timer(&gpu->hangcheck_timer); 735 736 queue_work(priv->wq, &gpu->recover_work); 737 } 738 739 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 740 { 741 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 742 743 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 744 745 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 746 a6xx_fault_detect_irq(gpu); 747 748 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 749 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 750 751 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 752 a6xx_cp_hw_err_irq(gpu); 753 754 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 755 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 756 757 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 758 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 759 760 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 761 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 762 763 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 764 msm_gpu_retire(gpu); 765 766 return IRQ_HANDLED; 767 } 768 769 static const u32 a6xx_register_offsets[REG_ADRENO_REGISTER_MAX] = { 770 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE, REG_A6XX_CP_RB_BASE), 771 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_BASE_HI, REG_A6XX_CP_RB_BASE_HI), 772 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR, 773 REG_A6XX_CP_RB_RPTR_ADDR_LO), 774 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR_ADDR_HI, 775 REG_A6XX_CP_RB_RPTR_ADDR_HI), 776 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_RPTR, REG_A6XX_CP_RB_RPTR), 777 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_WPTR, REG_A6XX_CP_RB_WPTR), 778 REG_ADRENO_DEFINE(REG_ADRENO_CP_RB_CNTL, REG_A6XX_CP_RB_CNTL), 779 }; 780 781 static int a6xx_pm_resume(struct msm_gpu *gpu) 782 { 783 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 784 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 785 int ret; 786 787 gpu->needs_hw_init = true; 788 789 ret = a6xx_gmu_resume(a6xx_gpu); 790 if (ret) 791 return ret; 792 793 msm_gpu_resume_devfreq(gpu); 794 795 return 0; 796 } 797 798 static int a6xx_pm_suspend(struct msm_gpu *gpu) 799 { 800 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 801 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 802 803 devfreq_suspend_device(gpu->devfreq.devfreq); 804 805 return a6xx_gmu_stop(a6xx_gpu); 806 } 807 808 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 809 { 810 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 811 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 812 813 /* Force the GPU power on so we can read this register */ 814 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 815 816 *value = gpu_read64(gpu, REG_A6XX_RBBM_PERFCTR_CP_0_LO, 817 REG_A6XX_RBBM_PERFCTR_CP_0_HI); 818 819 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 820 return 0; 821 } 822 823 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 824 { 825 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 826 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 827 828 return a6xx_gpu->cur_ring; 829 } 830 831 static void a6xx_destroy(struct msm_gpu *gpu) 832 { 833 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 834 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 835 836 if (a6xx_gpu->sqe_bo) { 837 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 838 drm_gem_object_put_unlocked(a6xx_gpu->sqe_bo); 839 } 840 841 a6xx_gmu_remove(a6xx_gpu); 842 843 adreno_gpu_cleanup(adreno_gpu); 844 kfree(a6xx_gpu); 845 } 846 847 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu) 848 { 849 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 850 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 851 u64 busy_cycles, busy_time; 852 853 854 /* Only read the gpu busy if the hardware is already active */ 855 if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0) 856 return 0; 857 858 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 859 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 860 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 861 862 busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10; 863 do_div(busy_time, 192); 864 865 gpu->devfreq.busy_cycles = busy_cycles; 866 867 pm_runtime_put(a6xx_gpu->gmu.dev); 868 869 if (WARN_ON(busy_time > ~0LU)) 870 return ~0LU; 871 872 return (unsigned long)busy_time; 873 } 874 875 static const struct adreno_gpu_funcs funcs = { 876 .base = { 877 .get_param = adreno_get_param, 878 .hw_init = a6xx_hw_init, 879 .pm_suspend = a6xx_pm_suspend, 880 .pm_resume = a6xx_pm_resume, 881 .recover = a6xx_recover, 882 .submit = a6xx_submit, 883 .flush = a6xx_flush, 884 .active_ring = a6xx_active_ring, 885 .irq = a6xx_irq, 886 .destroy = a6xx_destroy, 887 #if defined(CONFIG_DRM_MSM_GPU_STATE) 888 .show = a6xx_show, 889 #endif 890 .gpu_busy = a6xx_gpu_busy, 891 .gpu_get_freq = a6xx_gmu_get_freq, 892 .gpu_set_freq = a6xx_gmu_set_freq, 893 #if defined(CONFIG_DRM_MSM_GPU_STATE) 894 .gpu_state_get = a6xx_gpu_state_get, 895 .gpu_state_put = a6xx_gpu_state_put, 896 #endif 897 .create_address_space = adreno_iommu_create_address_space, 898 }, 899 .get_timestamp = a6xx_get_timestamp, 900 }; 901 902 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 903 { 904 struct msm_drm_private *priv = dev->dev_private; 905 struct platform_device *pdev = priv->gpu_pdev; 906 struct device_node *node; 907 struct a6xx_gpu *a6xx_gpu; 908 struct adreno_gpu *adreno_gpu; 909 struct msm_gpu *gpu; 910 int ret; 911 912 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 913 if (!a6xx_gpu) 914 return ERR_PTR(-ENOMEM); 915 916 adreno_gpu = &a6xx_gpu->base; 917 gpu = &adreno_gpu->base; 918 919 adreno_gpu->registers = NULL; 920 adreno_gpu->reg_offsets = a6xx_register_offsets; 921 922 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 923 if (ret) { 924 a6xx_destroy(&(a6xx_gpu->base.base)); 925 return ERR_PTR(ret); 926 } 927 928 /* Check if there is a GMU phandle and set it up */ 929 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 930 931 /* FIXME: How do we gracefully handle this? */ 932 BUG_ON(!node); 933 934 ret = a6xx_gmu_init(a6xx_gpu, node); 935 if (ret) { 936 a6xx_destroy(&(a6xx_gpu->base.base)); 937 return ERR_PTR(ret); 938 } 939 940 if (gpu->aspace) 941 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 942 a6xx_fault_handler); 943 944 return gpu; 945 } 946