xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/nvmem-consumer.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
55 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 	uint32_t wptr;
60 	unsigned long flags;
61 
62 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
63 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
64 		struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
65 
66 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
67 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
68 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
69 	}
70 
71 	spin_lock_irqsave(&ring->preempt_lock, flags);
72 
73 	/* Copy the shadow to the actual register */
74 	ring->cur = ring->next;
75 
76 	/* Make sure to wrap wptr if we need to */
77 	wptr = get_wptr(ring);
78 
79 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
80 
81 	/* Make sure everything is posted before making a decision */
82 	mb();
83 
84 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
85 }
86 
87 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
88 		u64 iova)
89 {
90 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
91 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
92 		CP_REG_TO_MEM_0_CNT(2) |
93 		CP_REG_TO_MEM_0_64B);
94 	OUT_RING(ring, lower_32_bits(iova));
95 	OUT_RING(ring, upper_32_bits(iova));
96 }
97 
98 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
99 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
100 {
101 	phys_addr_t ttbr;
102 	u32 asid;
103 	u64 memptr = rbmemptr(ring, ttbr0);
104 
105 	if (ctx == a6xx_gpu->cur_ctx)
106 		return;
107 
108 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
109 		return;
110 
111 	/* Execute the table update */
112 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
113 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
114 
115 	OUT_RING(ring,
116 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
117 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
118 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
119 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
120 
121 	/*
122 	 * Write the new TTBR0 to the memstore. This is good for debugging.
123 	 */
124 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
125 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
126 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
127 	OUT_RING(ring, lower_32_bits(ttbr));
128 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
129 
130 	/*
131 	 * And finally, trigger a uche flush to be sure there isn't anything
132 	 * lingering in that part of the GPU
133 	 */
134 
135 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
136 	OUT_RING(ring, 0x31);
137 
138 	a6xx_gpu->cur_ctx = ctx;
139 }
140 
141 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
142 {
143 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
144 	struct msm_drm_private *priv = gpu->dev->dev_private;
145 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
146 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
147 	struct msm_ringbuffer *ring = submit->ring;
148 	unsigned int i;
149 
150 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
151 
152 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
153 		rbmemptr_stats(ring, index, cpcycles_start));
154 
155 	/*
156 	 * For PM4 the GMU register offsets are calculated from the base of the
157 	 * GPU registers so we need to add 0x1a800 to the register value on A630
158 	 * to get the right value from PM4.
159 	 */
160 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
161 		rbmemptr_stats(ring, index, alwayson_start));
162 
163 	/* Invalidate CCU depth and color */
164 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
165 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
166 
167 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
168 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
169 
170 	/* Submit the commands */
171 	for (i = 0; i < submit->nr_cmds; i++) {
172 		switch (submit->cmd[i].type) {
173 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
174 			break;
175 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
176 			if (priv->lastctx == submit->queue->ctx)
177 				break;
178 			fallthrough;
179 		case MSM_SUBMIT_CMD_BUF:
180 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
181 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
182 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
183 			OUT_RING(ring, submit->cmd[i].size);
184 			break;
185 		}
186 	}
187 
188 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
189 		rbmemptr_stats(ring, index, cpcycles_end));
190 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
191 		rbmemptr_stats(ring, index, alwayson_end));
192 
193 	/* Write the fence to the scratch register */
194 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
195 	OUT_RING(ring, submit->seqno);
196 
197 	/*
198 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
199 	 * timestamp is written to the memory and then triggers the interrupt
200 	 */
201 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
202 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
203 		CP_EVENT_WRITE_0_IRQ);
204 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
205 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
206 	OUT_RING(ring, submit->seqno);
207 
208 	trace_msm_gpu_submit_flush(submit,
209 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
210 			REG_A6XX_CP_ALWAYS_ON_COUNTER_HI));
211 
212 	a6xx_flush(gpu, ring);
213 }
214 
215 const struct adreno_reglist a630_hwcg[] = {
216 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
217 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
218 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
219 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
220 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
221 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
222 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
223 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
224 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
225 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
226 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
227 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
228 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
229 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
230 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
231 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
232 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
233 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
234 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
235 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
236 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
237 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
238 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
239 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
240 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
241 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
242 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
243 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
244 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
245 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
246 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
247 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
248 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
249 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
250 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
251 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
252 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
253 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
254 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
255 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
256 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
257 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
258 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
259 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
260 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
261 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
262 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
263 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
264 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
265 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
266 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
267 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
268 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
269 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
270 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
271 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
272 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
273 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
274 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
275 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
276 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
277 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
278 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
279 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
280 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
281 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
282 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
283 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
284 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
285 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
286 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
287 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
288 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
289 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
290 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
291 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
292 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
293 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
294 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
295 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
296 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
297 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
298 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
299 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
300 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
301 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
302 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
303 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
304 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
305 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
306 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
307 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
308 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
309 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
310 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
311 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
312 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
313 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
314 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
315 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
316 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
317 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
318 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
319 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
320 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
321 	{},
322 };
323 
324 const struct adreno_reglist a640_hwcg[] = {
325 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
326 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
327 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
328 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
329 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
330 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
331 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
332 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
333 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
334 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
335 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
336 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
337 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
338 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
339 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
340 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
341 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
342 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
343 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
344 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
345 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
346 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
347 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
348 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
349 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
350 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
351 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
352 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
353 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
354 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
355 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
356 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
357 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
358 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
359 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
360 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
361 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
362 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
363 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
364 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
365 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
366 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
367 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
368 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
369 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
370 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
371 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
372 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
373 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
374 	{},
375 };
376 
377 const struct adreno_reglist a650_hwcg[] = {
378 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
379 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
380 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
381 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
382 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
383 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
384 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
385 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
386 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
387 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
388 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
389 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
390 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
391 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
392 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
393 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
394 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
395 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
396 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
397 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
398 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
399 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
400 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
401 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
402 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
403 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
404 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
405 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
406 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
407 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
408 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
409 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
410 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
411 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
412 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
413 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
414 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
415 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
416 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
417 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
418 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
419 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
420 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
421 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
422 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
423 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
424 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
425 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
426 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
427 	{},
428 };
429 
430 const struct adreno_reglist a660_hwcg[] = {
431 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
432 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
433 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
434 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
435 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
436 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
437 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
438 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
439 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
440 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
441 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
442 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
443 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
444 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
445 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
446 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
447 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
448 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
449 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
450 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
451 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
452 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
453 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
454 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
455 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
456 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
457 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
458 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
459 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
460 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
461 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
462 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
463 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
464 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
465 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
466 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
467 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
468 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
469 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
470 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
471 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
472 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
473 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
474 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
475 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
476 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
477 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
478 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
479 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
480 	{},
481 };
482 
483 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
484 {
485 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
486 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
487 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
488 	const struct adreno_reglist *reg;
489 	unsigned int i;
490 	u32 val, clock_cntl_on;
491 
492 	if (!adreno_gpu->info->hwcg)
493 		return;
494 
495 	if (adreno_is_a630(adreno_gpu))
496 		clock_cntl_on = 0x8aa8aa02;
497 	else
498 		clock_cntl_on = 0x8aa8aa82;
499 
500 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
501 
502 	/* Don't re-program the registers if they are already correct */
503 	if ((!state && !val) || (state && (val == clock_cntl_on)))
504 		return;
505 
506 	/* Disable SP clock before programming HWCG registers */
507 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
508 
509 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
510 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
511 
512 	/* Enable SP clock */
513 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
514 
515 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
516 }
517 
518 /* For a615, a616, a618, A619, a630, a640 and a680 */
519 static const u32 a6xx_protect[] = {
520 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
521 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
522 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
523 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
524 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
525 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
526 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
527 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
528 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
529 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
530 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
531 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
532 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
533 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
534 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
535 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
536 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
537 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
538 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
539 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
540 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
541 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
542 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
543 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
544 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
545 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
546 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
547 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
548 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
549 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
550 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
551 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
552 };
553 
554 /* These are for a620 and a650 */
555 static const u32 a650_protect[] = {
556 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
557 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
558 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
559 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
560 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
561 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
562 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
563 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
564 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
565 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
566 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
567 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
568 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
569 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
570 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
571 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
572 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
573 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
574 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
575 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
576 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
577 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
578 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
579 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
580 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
581 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
582 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
583 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
584 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
585 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
586 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
587 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
588 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
589 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
590 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
591 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
592 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
593 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
594 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
595 };
596 
597 /* These are for a635 and a660 */
598 static const u32 a660_protect[] = {
599 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
600 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
601 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
602 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
603 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
604 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
605 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
606 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
607 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
608 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
609 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
610 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
611 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
612 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
613 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
614 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
615 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
616 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
617 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
618 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
619 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
620 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
621 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
622 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
623 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
624 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
625 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
626 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
627 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
628 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
629 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
630 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
631 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
632 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
633 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
634 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
635 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
636 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
637 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
638 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
639 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
640 };
641 
642 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
643 {
644 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
645 	const u32 *regs = a6xx_protect;
646 	unsigned i, count = ARRAY_SIZE(a6xx_protect), count_max = 32;
647 
648 	BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
649 	BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
650 
651 	if (adreno_is_a650(adreno_gpu)) {
652 		regs = a650_protect;
653 		count = ARRAY_SIZE(a650_protect);
654 		count_max = 48;
655 	} else if (adreno_is_a660(adreno_gpu)) {
656 		regs = a660_protect;
657 		count = ARRAY_SIZE(a660_protect);
658 		count_max = 48;
659 	}
660 
661 	/*
662 	 * Enable access protection to privileged registers, fault on an access
663 	 * protect violation and select the last span to protect from the start
664 	 * address all the way to the end of the register address space
665 	 */
666 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
667 
668 	for (i = 0; i < count - 1; i++)
669 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
670 	/* last CP_PROTECT to have "infinite" length on the last entry */
671 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
672 }
673 
674 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
675 {
676 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
677 	u32 lower_bit = 2;
678 	u32 amsbc = 0;
679 	u32 rgb565_predicator = 0;
680 	u32 uavflagprd_inv = 0;
681 
682 	/* a618 is using the hw default values */
683 	if (adreno_is_a618(adreno_gpu))
684 		return;
685 
686 	if (adreno_is_a640(adreno_gpu))
687 		amsbc = 1;
688 
689 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
690 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
691 		lower_bit = 3;
692 		amsbc = 1;
693 		rgb565_predicator = 1;
694 		uavflagprd_inv = 2;
695 	}
696 
697 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
698 		rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
699 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
700 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
701 		uavflagprd_inv << 4 | lower_bit << 1);
702 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
703 }
704 
705 static int a6xx_cp_init(struct msm_gpu *gpu)
706 {
707 	struct msm_ringbuffer *ring = gpu->rb[0];
708 
709 	OUT_PKT7(ring, CP_ME_INIT, 8);
710 
711 	OUT_RING(ring, 0x0000002f);
712 
713 	/* Enable multiple hardware contexts */
714 	OUT_RING(ring, 0x00000003);
715 
716 	/* Enable error detection */
717 	OUT_RING(ring, 0x20000000);
718 
719 	/* Don't enable header dump */
720 	OUT_RING(ring, 0x00000000);
721 	OUT_RING(ring, 0x00000000);
722 
723 	/* No workarounds enabled */
724 	OUT_RING(ring, 0x00000000);
725 
726 	/* Pad rest of the cmds with 0's */
727 	OUT_RING(ring, 0x00000000);
728 	OUT_RING(ring, 0x00000000);
729 
730 	a6xx_flush(gpu, ring);
731 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
732 }
733 
734 /*
735  * Check that the microcode version is new enough to include several key
736  * security fixes. Return true if the ucode is safe.
737  */
738 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
739 		struct drm_gem_object *obj)
740 {
741 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
742 	struct msm_gpu *gpu = &adreno_gpu->base;
743 	u32 *buf = msm_gem_get_vaddr(obj);
744 	bool ret = false;
745 
746 	if (IS_ERR(buf))
747 		return false;
748 
749 	/*
750 	 * Targets up to a640 (a618, a630 and a640) need to check for a
751 	 * microcode version that is patched to support the whereami opcode or
752 	 * one that is new enough to include it by default.
753 	 *
754 	 * a650 tier targets don't need whereami but still need to be
755 	 * equal to or newer than 0.95 for other security fixes
756 	 *
757 	 * a660 targets have all the critical security fixes from the start
758 	 */
759 	if (adreno_is_a618(adreno_gpu) || adreno_is_a630(adreno_gpu) ||
760 		adreno_is_a640(adreno_gpu)) {
761 		/*
762 		 * If the lowest nibble is 0xa that is an indication that this
763 		 * microcode has been patched. The actual version is in dword
764 		 * [3] but we only care about the patchlevel which is the lowest
765 		 * nibble of dword [3]
766 		 *
767 		 * Otherwise check that the firmware is greater than or equal
768 		 * to 1.90 which was the first version that had this fix built
769 		 * in
770 		 */
771 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
772 			(buf[0] & 0xfff) >= 0x190) {
773 			a6xx_gpu->has_whereami = true;
774 			ret = true;
775 			goto out;
776 		}
777 
778 		DRM_DEV_ERROR(&gpu->pdev->dev,
779 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
780 			buf[0] & 0xfff, 0x190);
781 	} else if (adreno_is_a650(adreno_gpu)) {
782 		if ((buf[0] & 0xfff) >= 0x095) {
783 			ret = true;
784 			goto out;
785 		}
786 
787 		DRM_DEV_ERROR(&gpu->pdev->dev,
788 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
789 			buf[0] & 0xfff, 0x095);
790 	} else if (adreno_is_a660(adreno_gpu)) {
791 		ret = true;
792 	} else {
793 		DRM_DEV_ERROR(&gpu->pdev->dev,
794 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
795 	}
796 out:
797 	msm_gem_put_vaddr(obj);
798 	return ret;
799 }
800 
801 static int a6xx_ucode_init(struct msm_gpu *gpu)
802 {
803 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
804 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
805 
806 	if (!a6xx_gpu->sqe_bo) {
807 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
808 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
809 
810 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
811 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
812 
813 			a6xx_gpu->sqe_bo = NULL;
814 			DRM_DEV_ERROR(&gpu->pdev->dev,
815 				"Could not allocate SQE ucode: %d\n", ret);
816 
817 			return ret;
818 		}
819 
820 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
821 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
822 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
823 			drm_gem_object_put(a6xx_gpu->sqe_bo);
824 
825 			a6xx_gpu->sqe_bo = NULL;
826 			return -EPERM;
827 		}
828 	}
829 
830 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE,
831 		REG_A6XX_CP_SQE_INSTR_BASE+1, a6xx_gpu->sqe_iova);
832 
833 	return 0;
834 }
835 
836 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
837 {
838 	static bool loaded;
839 	int ret;
840 
841 	if (loaded)
842 		return 0;
843 
844 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
845 
846 	loaded = !ret;
847 	return ret;
848 }
849 
850 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
851 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
852 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
853 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
854 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
855 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
856 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
857 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
858 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
859 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
860 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
861 
862 static int a6xx_hw_init(struct msm_gpu *gpu)
863 {
864 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
865 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
866 	int ret;
867 
868 	/* Make sure the GMU keeps the GPU on while we set it up */
869 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
870 
871 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
872 
873 	/*
874 	 * Disable the trusted memory range - we don't actually supported secure
875 	 * memory rendering at this point in time and we don't want to block off
876 	 * part of the virtual memory space.
877 	 */
878 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
879 		REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
880 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
881 
882 	/* Turn on 64 bit addressing for all blocks */
883 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
884 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
885 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
886 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
887 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
888 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
889 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
890 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
891 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
892 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
893 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
894 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
895 
896 	/* enable hardware clockgating */
897 	a6xx_set_hwcg(gpu, true);
898 
899 	/* VBIF/GBIF start*/
900 	if (adreno_is_a640(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) {
901 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
902 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
903 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
904 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
905 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
906 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
907 	} else {
908 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
909 	}
910 
911 	if (adreno_is_a630(adreno_gpu))
912 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
913 
914 	/* Make all blocks contribute to the GPU BUSY perf counter */
915 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
916 
917 	/* Disable L2 bypass in the UCHE */
918 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_LO, 0xffffffc0);
919 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX_HI, 0x0001ffff);
920 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_LO, 0xfffff000);
921 	gpu_write(gpu, REG_A6XX_UCHE_TRAP_BASE_HI, 0x0001ffff);
922 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_LO, 0xfffff000);
923 	gpu_write(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE_HI, 0x0001ffff);
924 
925 	if (!adreno_is_a650_family(adreno_gpu)) {
926 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
927 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN_LO,
928 			REG_A6XX_UCHE_GMEM_RANGE_MIN_HI, 0x00100000);
929 
930 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX_LO,
931 			REG_A6XX_UCHE_GMEM_RANGE_MAX_HI,
932 			0x00100000 + adreno_gpu->gmem - 1);
933 	}
934 
935 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
936 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
937 
938 	if (adreno_is_a640(adreno_gpu) || adreno_is_a650_family(adreno_gpu))
939 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
940 	else
941 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
942 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
943 
944 	if (adreno_is_a660(adreno_gpu))
945 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
946 
947 	/* Setting the mem pool size */
948 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
949 
950 	/* Setting the primFifo thresholds default values,
951 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
952 	*/
953 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
954 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
955 	else if (adreno_is_a640(adreno_gpu))
956 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
957 	else
958 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
959 
960 	/* Set the AHB default slave response to "ERROR" */
961 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
962 
963 	/* Turn on performance counters */
964 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
965 
966 	/* Select CP0 to always count cycles */
967 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
968 
969 	a6xx_set_ubwc_config(gpu);
970 
971 	/* Enable fault detection */
972 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
973 		(1 << 30) | 0x1fffff);
974 
975 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
976 
977 	/* Set weights for bicubic filtering */
978 	if (adreno_is_a650_family(adreno_gpu)) {
979 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
980 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
981 			0x3fe05ff4);
982 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
983 			0x3fa0ebee);
984 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
985 			0x3f5193ed);
986 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
987 			0x3f0243f0);
988 	}
989 
990 	/* Protect registers from the CP */
991 	a6xx_set_cp_protect(gpu);
992 
993 	if (adreno_is_a660(adreno_gpu)) {
994 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
995 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
996 		/* Set dualQ + disable afull for A660 GPU but not for A635 */
997 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
998 	}
999 
1000 	/* Enable expanded apriv for targets that support it */
1001 	if (gpu->hw_apriv) {
1002 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1003 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1004 	}
1005 
1006 	/* Enable interrupts */
1007 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1008 
1009 	ret = adreno_hw_init(gpu);
1010 	if (ret)
1011 		goto out;
1012 
1013 	ret = a6xx_ucode_init(gpu);
1014 	if (ret)
1015 		goto out;
1016 
1017 	/* Set the ringbuffer address */
1018 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, REG_A6XX_CP_RB_BASE_HI,
1019 		gpu->rb[0]->iova);
1020 
1021 	/* Targets that support extended APRIV can use the RPTR shadow from
1022 	 * hardware but all the other ones need to disable the feature. Targets
1023 	 * that support the WHERE_AM_I opcode can use that instead
1024 	 */
1025 	if (adreno_gpu->base.hw_apriv)
1026 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1027 	else
1028 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1029 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1030 
1031 	/*
1032 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1033 	 * privileged buffer to store the RPTR shadow
1034 	 */
1035 
1036 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) {
1037 		if (!a6xx_gpu->shadow_bo) {
1038 			a6xx_gpu->shadow = msm_gem_kernel_new_locked(gpu->dev,
1039 				sizeof(u32) * gpu->nr_rings,
1040 				MSM_BO_WC | MSM_BO_MAP_PRIV,
1041 				gpu->aspace, &a6xx_gpu->shadow_bo,
1042 				&a6xx_gpu->shadow_iova);
1043 
1044 			if (IS_ERR(a6xx_gpu->shadow))
1045 				return PTR_ERR(a6xx_gpu->shadow);
1046 		}
1047 
1048 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR_LO,
1049 			REG_A6XX_CP_RB_RPTR_ADDR_HI,
1050 			shadowptr(a6xx_gpu, gpu->rb[0]));
1051 	}
1052 
1053 	/* Always come up on rb 0 */
1054 	a6xx_gpu->cur_ring = gpu->rb[0];
1055 
1056 	a6xx_gpu->cur_ctx = NULL;
1057 
1058 	/* Enable the SQE_to start the CP engine */
1059 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1060 
1061 	ret = a6xx_cp_init(gpu);
1062 	if (ret)
1063 		goto out;
1064 
1065 	/*
1066 	 * Try to load a zap shader into the secure world. If successful
1067 	 * we can use the CP to switch out of secure mode. If not then we
1068 	 * have no resource but to try to switch ourselves out manually. If we
1069 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1070 	 * be blocked and a permissions violation will soon follow.
1071 	 */
1072 	ret = a6xx_zap_shader_init(gpu);
1073 	if (!ret) {
1074 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1075 		OUT_RING(gpu->rb[0], 0x00000000);
1076 
1077 		a6xx_flush(gpu, gpu->rb[0]);
1078 		if (!a6xx_idle(gpu, gpu->rb[0]))
1079 			return -EINVAL;
1080 	} else if (ret == -ENODEV) {
1081 		/*
1082 		 * This device does not use zap shader (but print a warning
1083 		 * just in case someone got their dt wrong.. hopefully they
1084 		 * have a debug UART to realize the error of their ways...
1085 		 * if you mess this up you are about to crash horribly)
1086 		 */
1087 		dev_warn_once(gpu->dev->dev,
1088 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1089 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1090 		ret = 0;
1091 	} else {
1092 		return ret;
1093 	}
1094 
1095 out:
1096 	/*
1097 	 * Tell the GMU that we are done touching the GPU and it can start power
1098 	 * management
1099 	 */
1100 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1101 
1102 	if (a6xx_gpu->gmu.legacy) {
1103 		/* Take the GMU out of its special boot mode */
1104 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1105 	}
1106 
1107 	return ret;
1108 }
1109 
1110 static void a6xx_dump(struct msm_gpu *gpu)
1111 {
1112 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1113 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1114 	adreno_dump(gpu);
1115 }
1116 
1117 #define VBIF_RESET_ACK_TIMEOUT	100
1118 #define VBIF_RESET_ACK_MASK	0x00f0
1119 
1120 static void a6xx_recover(struct msm_gpu *gpu)
1121 {
1122 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1123 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1124 	int i;
1125 
1126 	adreno_dump_info(gpu);
1127 
1128 	for (i = 0; i < 8; i++)
1129 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1130 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1131 
1132 	if (hang_debug)
1133 		a6xx_dump(gpu);
1134 
1135 	/*
1136 	 * Turn off keep alive that might have been enabled by the hang
1137 	 * interrupt
1138 	 */
1139 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1140 
1141 	gpu->funcs->pm_suspend(gpu);
1142 	gpu->funcs->pm_resume(gpu);
1143 
1144 	msm_gpu_hw_init(gpu);
1145 }
1146 
1147 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1148 {
1149 	static const char *uche_clients[7] = {
1150 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1151 	};
1152 	u32 val;
1153 
1154 	if (mid < 1 || mid > 3)
1155 		return "UNKNOWN";
1156 
1157 	/*
1158 	 * The source of the data depends on the mid ID read from FSYNR1.
1159 	 * and the client ID read from the UCHE block
1160 	 */
1161 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1162 
1163 	/* mid = 3 is most precise and refers to only one block per client */
1164 	if (mid == 3)
1165 		return uche_clients[val & 7];
1166 
1167 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1168 	if (mid == 2)
1169 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1170 
1171 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1172 	return "UCHE";
1173 }
1174 
1175 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1176 {
1177 	if (id == 0)
1178 		return "CP";
1179 	else if (id == 4)
1180 		return "CCU";
1181 	else if (id == 6)
1182 		return "CDP Prefetch";
1183 
1184 	return a6xx_uche_fault_block(gpu, id);
1185 }
1186 
1187 #define ARM_SMMU_FSR_TF                 BIT(1)
1188 #define ARM_SMMU_FSR_PF			BIT(3)
1189 #define ARM_SMMU_FSR_EF			BIT(4)
1190 
1191 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1192 {
1193 	struct msm_gpu *gpu = arg;
1194 	struct adreno_smmu_fault_info *info = data;
1195 	const char *type = "UNKNOWN";
1196 	const char *block;
1197 	bool do_devcoredump = info && !READ_ONCE(gpu->crashstate);
1198 
1199 	/*
1200 	 * If we aren't going to be resuming later from fault_worker, then do
1201 	 * it now.
1202 	 */
1203 	if (!do_devcoredump) {
1204 		gpu->aspace->mmu->funcs->resume_translation(gpu->aspace->mmu);
1205 	}
1206 
1207 	/*
1208 	 * Print a default message if we couldn't get the data from the
1209 	 * adreno-smmu-priv
1210 	 */
1211 	if (!info) {
1212 		pr_warn_ratelimited("*** gpu fault: iova=%.16lx flags=%d (%u,%u,%u,%u)\n",
1213 			iova, flags,
1214 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1215 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1216 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1217 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1218 
1219 		return 0;
1220 	}
1221 
1222 	if (info->fsr & ARM_SMMU_FSR_TF)
1223 		type = "TRANSLATION";
1224 	else if (info->fsr & ARM_SMMU_FSR_PF)
1225 		type = "PERMISSION";
1226 	else if (info->fsr & ARM_SMMU_FSR_EF)
1227 		type = "EXTERNAL";
1228 
1229 	block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1230 
1231 	pr_warn_ratelimited("*** gpu fault: ttbr0=%.16llx iova=%.16lx dir=%s type=%s source=%s (%u,%u,%u,%u)\n",
1232 			info->ttbr0, iova,
1233 			flags & IOMMU_FAULT_WRITE ? "WRITE" : "READ",
1234 			type, block,
1235 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1236 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1237 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1238 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)));
1239 
1240 	if (do_devcoredump) {
1241 		/* Turn off the hangcheck timer to keep it from bothering us */
1242 		del_timer(&gpu->hangcheck_timer);
1243 
1244 		gpu->fault_info.ttbr0 = info->ttbr0;
1245 		gpu->fault_info.iova  = iova;
1246 		gpu->fault_info.flags = flags;
1247 		gpu->fault_info.type  = type;
1248 		gpu->fault_info.block = block;
1249 
1250 		kthread_queue_work(gpu->worker, &gpu->fault_work);
1251 	}
1252 
1253 	return 0;
1254 }
1255 
1256 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1257 {
1258 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1259 
1260 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1261 		u32 val;
1262 
1263 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1264 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1265 		dev_err_ratelimited(&gpu->pdev->dev,
1266 			"CP | opcode error | possible opcode=0x%8.8X\n",
1267 			val);
1268 	}
1269 
1270 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1271 		dev_err_ratelimited(&gpu->pdev->dev,
1272 			"CP ucode error interrupt\n");
1273 
1274 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1275 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1276 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1277 
1278 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1279 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1280 
1281 		dev_err_ratelimited(&gpu->pdev->dev,
1282 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1283 			val & (1 << 20) ? "READ" : "WRITE",
1284 			(val & 0x3ffff), val);
1285 	}
1286 
1287 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1288 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1289 
1290 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1291 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1292 
1293 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1294 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1295 
1296 }
1297 
1298 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1299 {
1300 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1301 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1302 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1303 
1304 	/*
1305 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1306 	 * but the fault handler will trigger the devcore dump, and we want
1307 	 * to otherwise resume normally rather than killing the submit, so
1308 	 * just bail.
1309 	 */
1310 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1311 		return;
1312 
1313 	/*
1314 	 * Force the GPU to stay on until after we finish
1315 	 * collecting information
1316 	 */
1317 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1318 
1319 	DRM_DEV_ERROR(&gpu->pdev->dev,
1320 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1321 		ring ? ring->id : -1, ring ? ring->seqno : 0,
1322 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1323 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1324 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1325 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE, REG_A6XX_CP_IB1_BASE_HI),
1326 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1327 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE, REG_A6XX_CP_IB2_BASE_HI),
1328 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1329 
1330 	/* Turn off the hangcheck timer to keep it from bothering us */
1331 	del_timer(&gpu->hangcheck_timer);
1332 
1333 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1334 }
1335 
1336 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1337 {
1338 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1339 
1340 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1341 
1342 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1343 		a6xx_fault_detect_irq(gpu);
1344 
1345 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1346 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1347 
1348 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1349 		a6xx_cp_hw_err_irq(gpu);
1350 
1351 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1352 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1353 
1354 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1355 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1356 
1357 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1358 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1359 
1360 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1361 		msm_gpu_retire(gpu);
1362 
1363 	return IRQ_HANDLED;
1364 }
1365 
1366 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1367 {
1368 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1369 }
1370 
1371 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1372 {
1373 	return msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1374 }
1375 
1376 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1377 {
1378 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1379 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1380 }
1381 
1382 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1383 {
1384 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1385 	struct msm_gpu *gpu = &adreno_gpu->base;
1386 	u32 cntl1_regval = 0;
1387 
1388 	if (IS_ERR(a6xx_gpu->llc_mmio))
1389 		return;
1390 
1391 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1392 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1393 
1394 		gpu_scid &= 0x1f;
1395 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1396 			       (gpu_scid << 15) | (gpu_scid << 20);
1397 	}
1398 
1399 	/*
1400 	 * For targets with a MMU500, activate the slice but don't program the
1401 	 * register.  The XBL will take care of that.
1402 	 */
1403 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1404 		if (!a6xx_gpu->have_mmu500) {
1405 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1406 
1407 			gpuhtw_scid &= 0x1f;
1408 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1409 		}
1410 	}
1411 
1412 	if (cntl1_regval) {
1413 		/*
1414 		 * Program the slice IDs for the various GPU blocks and GPU MMU
1415 		 * pagetables
1416 		 */
1417 		if (a6xx_gpu->have_mmu500)
1418 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0),
1419 				cntl1_regval);
1420 		else {
1421 			a6xx_llc_write(a6xx_gpu,
1422 				REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1423 
1424 			/*
1425 			 * Program cacheability overrides to not allocate cache
1426 			 * lines on a write miss
1427 			 */
1428 			a6xx_llc_rmw(a6xx_gpu,
1429 				REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1430 		}
1431 	}
1432 }
1433 
1434 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1435 {
1436 	llcc_slice_putd(a6xx_gpu->llc_slice);
1437 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1438 }
1439 
1440 static void a6xx_llc_slices_init(struct platform_device *pdev,
1441 		struct a6xx_gpu *a6xx_gpu)
1442 {
1443 	struct device_node *phandle;
1444 
1445 	/*
1446 	 * There is a different programming path for targets with an mmu500
1447 	 * attached, so detect if that is the case
1448 	 */
1449 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1450 	a6xx_gpu->have_mmu500 = (phandle &&
1451 		of_device_is_compatible(phandle, "arm,mmu-500"));
1452 	of_node_put(phandle);
1453 
1454 	if (a6xx_gpu->have_mmu500)
1455 		a6xx_gpu->llc_mmio = NULL;
1456 	else
1457 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem", "gpu_cx");
1458 
1459 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1460 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1461 
1462 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1463 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1464 }
1465 
1466 static int a6xx_pm_resume(struct msm_gpu *gpu)
1467 {
1468 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1469 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1470 	int ret;
1471 
1472 	gpu->needs_hw_init = true;
1473 
1474 	trace_msm_gpu_resume(0);
1475 
1476 	ret = a6xx_gmu_resume(a6xx_gpu);
1477 	if (ret)
1478 		return ret;
1479 
1480 	msm_gpu_resume_devfreq(gpu);
1481 
1482 	a6xx_llc_activate(a6xx_gpu);
1483 
1484 	return 0;
1485 }
1486 
1487 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1488 {
1489 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1490 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1491 	int i, ret;
1492 
1493 	trace_msm_gpu_suspend(0);
1494 
1495 	a6xx_llc_deactivate(a6xx_gpu);
1496 
1497 	devfreq_suspend_device(gpu->devfreq.devfreq);
1498 
1499 	ret = a6xx_gmu_stop(a6xx_gpu);
1500 	if (ret)
1501 		return ret;
1502 
1503 	if (a6xx_gpu->shadow_bo)
1504 		for (i = 0; i < gpu->nr_rings; i++)
1505 			a6xx_gpu->shadow[i] = 0;
1506 
1507 	return 0;
1508 }
1509 
1510 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1511 {
1512 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1513 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1514 	static DEFINE_MUTEX(perfcounter_oob);
1515 
1516 	mutex_lock(&perfcounter_oob);
1517 
1518 	/* Force the GPU power on so we can read this register */
1519 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1520 
1521 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER_LO,
1522 		REG_A6XX_CP_ALWAYS_ON_COUNTER_HI);
1523 
1524 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1525 	mutex_unlock(&perfcounter_oob);
1526 	return 0;
1527 }
1528 
1529 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1530 {
1531 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1532 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1533 
1534 	return a6xx_gpu->cur_ring;
1535 }
1536 
1537 static void a6xx_destroy(struct msm_gpu *gpu)
1538 {
1539 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1540 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1541 
1542 	if (a6xx_gpu->sqe_bo) {
1543 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1544 		drm_gem_object_put(a6xx_gpu->sqe_bo);
1545 	}
1546 
1547 	if (a6xx_gpu->shadow_bo) {
1548 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1549 		drm_gem_object_put(a6xx_gpu->shadow_bo);
1550 	}
1551 
1552 	a6xx_llc_slices_destroy(a6xx_gpu);
1553 
1554 	a6xx_gmu_remove(a6xx_gpu);
1555 
1556 	adreno_gpu_cleanup(adreno_gpu);
1557 
1558 	kfree(a6xx_gpu);
1559 }
1560 
1561 static unsigned long a6xx_gpu_busy(struct msm_gpu *gpu)
1562 {
1563 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1564 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1565 	u64 busy_cycles, busy_time;
1566 
1567 
1568 	/* Only read the gpu busy if the hardware is already active */
1569 	if (pm_runtime_get_if_in_use(a6xx_gpu->gmu.dev) == 0)
1570 		return 0;
1571 
1572 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1573 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1574 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1575 
1576 	busy_time = (busy_cycles - gpu->devfreq.busy_cycles) * 10;
1577 	do_div(busy_time, 192);
1578 
1579 	gpu->devfreq.busy_cycles = busy_cycles;
1580 
1581 	pm_runtime_put(a6xx_gpu->gmu.dev);
1582 
1583 	if (WARN_ON(busy_time > ~0LU))
1584 		return ~0LU;
1585 
1586 	return (unsigned long)busy_time;
1587 }
1588 
1589 static struct msm_gem_address_space *
1590 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1591 {
1592 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1593 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1594 	struct iommu_domain *iommu;
1595 	struct msm_mmu *mmu;
1596 	struct msm_gem_address_space *aspace;
1597 	u64 start, size;
1598 
1599 	iommu = iommu_domain_alloc(&platform_bus_type);
1600 	if (!iommu)
1601 		return NULL;
1602 
1603 	/*
1604 	 * This allows GPU to set the bus attributes required to use system
1605 	 * cache on behalf of the iommu page table walker.
1606 	 */
1607 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1608 		adreno_set_llc_attributes(iommu);
1609 
1610 	mmu = msm_iommu_new(&pdev->dev, iommu);
1611 	if (IS_ERR(mmu)) {
1612 		iommu_domain_free(iommu);
1613 		return ERR_CAST(mmu);
1614 	}
1615 
1616 	/*
1617 	 * Use the aperture start or SZ_16M, whichever is greater. This will
1618 	 * ensure that we align with the allocated pagetable range while still
1619 	 * allowing room in the lower 32 bits for GMEM and whatnot
1620 	 */
1621 	start = max_t(u64, SZ_16M, iommu->geometry.aperture_start);
1622 	size = iommu->geometry.aperture_end - start + 1;
1623 
1624 	aspace = msm_gem_address_space_create(mmu, "gpu",
1625 		start & GENMASK_ULL(48, 0), size);
1626 
1627 	if (IS_ERR(aspace) && !IS_ERR(mmu))
1628 		mmu->funcs->destroy(mmu);
1629 
1630 	return aspace;
1631 }
1632 
1633 static struct msm_gem_address_space *
1634 a6xx_create_private_address_space(struct msm_gpu *gpu)
1635 {
1636 	struct msm_mmu *mmu;
1637 
1638 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1639 
1640 	if (IS_ERR(mmu))
1641 		return ERR_CAST(mmu);
1642 
1643 	return msm_gem_address_space_create(mmu,
1644 		"gpu", 0x100000000ULL, 0x1ffffffffULL);
1645 }
1646 
1647 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1648 {
1649 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1650 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1651 
1652 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1653 		return a6xx_gpu->shadow[ring->id];
1654 
1655 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1656 }
1657 
1658 static u32 a618_get_speed_bin(u32 fuse)
1659 {
1660 	if (fuse == 0)
1661 		return 0;
1662 	else if (fuse == 169)
1663 		return 1;
1664 	else if (fuse == 174)
1665 		return 2;
1666 
1667 	return UINT_MAX;
1668 }
1669 
1670 static u32 fuse_to_supp_hw(struct device *dev, u32 revn, u32 fuse)
1671 {
1672 	u32 val = UINT_MAX;
1673 
1674 	if (revn == 618)
1675 		val = a618_get_speed_bin(fuse);
1676 
1677 	if (val == UINT_MAX) {
1678 		DRM_DEV_ERROR(dev,
1679 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware",
1680 			fuse);
1681 		return UINT_MAX;
1682 	}
1683 
1684 	return (1 << val);
1685 }
1686 
1687 static int a6xx_set_supported_hw(struct device *dev, struct a6xx_gpu *a6xx_gpu,
1688 		u32 revn)
1689 {
1690 	u32 supp_hw = UINT_MAX;
1691 	u16 speedbin;
1692 	int ret;
1693 
1694 	ret = nvmem_cell_read_u16(dev, "speed_bin", &speedbin);
1695 	/*
1696 	 * -ENOENT means that the platform doesn't support speedbin which is
1697 	 * fine
1698 	 */
1699 	if (ret == -ENOENT) {
1700 		return 0;
1701 	} else if (ret) {
1702 		DRM_DEV_ERROR(dev,
1703 			      "failed to read speed-bin (%d). Some OPPs may not be supported by hardware",
1704 			      ret);
1705 		goto done;
1706 	}
1707 	speedbin = le16_to_cpu(speedbin);
1708 
1709 	supp_hw = fuse_to_supp_hw(dev, revn, speedbin);
1710 
1711 done:
1712 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1713 	if (ret)
1714 		return ret;
1715 
1716 	return 0;
1717 }
1718 
1719 static const struct adreno_gpu_funcs funcs = {
1720 	.base = {
1721 		.get_param = adreno_get_param,
1722 		.hw_init = a6xx_hw_init,
1723 		.pm_suspend = a6xx_pm_suspend,
1724 		.pm_resume = a6xx_pm_resume,
1725 		.recover = a6xx_recover,
1726 		.submit = a6xx_submit,
1727 		.active_ring = a6xx_active_ring,
1728 		.irq = a6xx_irq,
1729 		.destroy = a6xx_destroy,
1730 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1731 		.show = a6xx_show,
1732 #endif
1733 		.gpu_busy = a6xx_gpu_busy,
1734 		.gpu_get_freq = a6xx_gmu_get_freq,
1735 		.gpu_set_freq = a6xx_gmu_set_freq,
1736 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1737 		.gpu_state_get = a6xx_gpu_state_get,
1738 		.gpu_state_put = a6xx_gpu_state_put,
1739 #endif
1740 		.create_address_space = a6xx_create_address_space,
1741 		.create_private_address_space = a6xx_create_private_address_space,
1742 		.get_rptr = a6xx_get_rptr,
1743 	},
1744 	.get_timestamp = a6xx_get_timestamp,
1745 };
1746 
1747 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1748 {
1749 	struct msm_drm_private *priv = dev->dev_private;
1750 	struct platform_device *pdev = priv->gpu_pdev;
1751 	struct adreno_platform_config *config = pdev->dev.platform_data;
1752 	const struct adreno_info *info;
1753 	struct device_node *node;
1754 	struct a6xx_gpu *a6xx_gpu;
1755 	struct adreno_gpu *adreno_gpu;
1756 	struct msm_gpu *gpu;
1757 	int ret;
1758 
1759 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1760 	if (!a6xx_gpu)
1761 		return ERR_PTR(-ENOMEM);
1762 
1763 	adreno_gpu = &a6xx_gpu->base;
1764 	gpu = &adreno_gpu->base;
1765 
1766 	adreno_gpu->registers = NULL;
1767 
1768 	/*
1769 	 * We need to know the platform type before calling into adreno_gpu_init
1770 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
1771 	 * and grab the revision number
1772 	 */
1773 	info = adreno_info(config->rev);
1774 
1775 	if (info && (info->revn == 650 || info->revn == 660))
1776 		adreno_gpu->base.hw_apriv = true;
1777 
1778 	a6xx_llc_slices_init(pdev, a6xx_gpu);
1779 
1780 	ret = a6xx_set_supported_hw(&pdev->dev, a6xx_gpu, info->revn);
1781 	if (ret) {
1782 		a6xx_destroy(&(a6xx_gpu->base.base));
1783 		return ERR_PTR(ret);
1784 	}
1785 
1786 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
1787 	if (ret) {
1788 		a6xx_destroy(&(a6xx_gpu->base.base));
1789 		return ERR_PTR(ret);
1790 	}
1791 
1792 	/* Check if there is a GMU phandle and set it up */
1793 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
1794 
1795 	/* FIXME: How do we gracefully handle this? */
1796 	BUG_ON(!node);
1797 
1798 	ret = a6xx_gmu_init(a6xx_gpu, node);
1799 	if (ret) {
1800 		a6xx_destroy(&(a6xx_gpu->base.base));
1801 		return ERR_PTR(ret);
1802 	}
1803 
1804 	if (gpu->aspace)
1805 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
1806 				a6xx_fault_handler);
1807 
1808 	return gpu;
1809 }
1810