xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision 702648721db590b3425c31ade294000e18808345)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/pm_domain.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 
60 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 	}
66 }
67 
68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 	uint32_t wptr;
71 	unsigned long flags;
72 
73 	update_shadow_rptr(gpu, ring);
74 
75 	spin_lock_irqsave(&ring->preempt_lock, flags);
76 
77 	/* Copy the shadow to the actual register */
78 	ring->cur = ring->next;
79 
80 	/* Make sure to wrap wptr if we need to */
81 	wptr = get_wptr(ring);
82 
83 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
84 
85 	/* Make sure everything is posted before making a decision */
86 	mb();
87 
88 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90 
91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 		u64 iova)
93 {
94 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 		CP_REG_TO_MEM_0_CNT(2) |
97 		CP_REG_TO_MEM_0_64B);
98 	OUT_RING(ring, lower_32_bits(iova));
99 	OUT_RING(ring, upper_32_bits(iova));
100 }
101 
102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 	bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
106 	phys_addr_t ttbr;
107 	u32 asid;
108 	u64 memptr = rbmemptr(ring, ttbr0);
109 
110 	if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
111 		return;
112 
113 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
114 		return;
115 
116 	if (!sysprof) {
117 		/* Turn off protected mode to write to special registers */
118 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
119 		OUT_RING(ring, 0);
120 
121 		OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
122 		OUT_RING(ring, 1);
123 	}
124 
125 	/* Execute the table update */
126 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
127 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
128 
129 	OUT_RING(ring,
130 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
131 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
132 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
133 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
134 
135 	/*
136 	 * Write the new TTBR0 to the memstore. This is good for debugging.
137 	 */
138 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
139 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
140 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
141 	OUT_RING(ring, lower_32_bits(ttbr));
142 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
143 
144 	/*
145 	 * And finally, trigger a uche flush to be sure there isn't anything
146 	 * lingering in that part of the GPU
147 	 */
148 
149 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
150 	OUT_RING(ring, CACHE_INVALIDATE);
151 
152 	if (!sysprof) {
153 		/*
154 		 * Wait for SRAM clear after the pgtable update, so the
155 		 * two can happen in parallel:
156 		 */
157 		OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
158 		OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
159 		OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
160 				REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
161 		OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
162 		OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
163 		OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
164 		OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
165 
166 		/* Re-enable protected mode: */
167 		OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
168 		OUT_RING(ring, 1);
169 	}
170 }
171 
172 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
173 {
174 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
175 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
176 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
177 	struct msm_ringbuffer *ring = submit->ring;
178 	unsigned int i, ibs = 0;
179 
180 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
181 
182 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
183 		rbmemptr_stats(ring, index, cpcycles_start));
184 
185 	/*
186 	 * For PM4 the GMU register offsets are calculated from the base of the
187 	 * GPU registers so we need to add 0x1a800 to the register value on A630
188 	 * to get the right value from PM4.
189 	 */
190 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
191 		rbmemptr_stats(ring, index, alwayson_start));
192 
193 	/* Invalidate CCU depth and color */
194 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
195 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
196 
197 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
198 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
199 
200 	/* Submit the commands */
201 	for (i = 0; i < submit->nr_cmds; i++) {
202 		switch (submit->cmd[i].type) {
203 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
204 			break;
205 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
206 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
207 				break;
208 			fallthrough;
209 		case MSM_SUBMIT_CMD_BUF:
210 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
211 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
212 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
213 			OUT_RING(ring, submit->cmd[i].size);
214 			ibs++;
215 			break;
216 		}
217 
218 		/*
219 		 * Periodically update shadow-wptr if needed, so that we
220 		 * can see partial progress of submits with large # of
221 		 * cmds.. otherwise we could needlessly stall waiting for
222 		 * ringbuffer state, simply due to looking at a shadow
223 		 * rptr value that has not been updated
224 		 */
225 		if ((ibs % 32) == 0)
226 			update_shadow_rptr(gpu, ring);
227 	}
228 
229 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
230 		rbmemptr_stats(ring, index, cpcycles_end));
231 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
232 		rbmemptr_stats(ring, index, alwayson_end));
233 
234 	/* Write the fence to the scratch register */
235 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
236 	OUT_RING(ring, submit->seqno);
237 
238 	/*
239 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
240 	 * timestamp is written to the memory and then triggers the interrupt
241 	 */
242 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
243 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
244 		CP_EVENT_WRITE_0_IRQ);
245 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
246 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
247 	OUT_RING(ring, submit->seqno);
248 
249 	trace_msm_gpu_submit_flush(submit,
250 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER));
251 
252 	a6xx_flush(gpu, ring);
253 }
254 
255 /* For a615 family (a615, a616, a618 and a619) */
256 const struct adreno_reglist a615_hwcg[] = {
257 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0,  0x02222222},
258 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
259 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
260 	{REG_A6XX_RBBM_CLOCK_HYST_SP0,  0x0000F3CF},
261 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0,  0x02222222},
262 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1,  0x02222222},
263 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
264 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
265 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
266 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
267 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
268 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
269 	{REG_A6XX_RBBM_CLOCK_HYST_TP0,  0x77777777},
270 	{REG_A6XX_RBBM_CLOCK_HYST_TP1,  0x77777777},
271 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
272 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
273 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
274 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
275 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
276 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
277 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
278 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
279 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
280 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
281 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
282 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
283 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
284 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
285 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE,  0x22222222},
286 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
287 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
288 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
289 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE,  0x00000004},
290 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
291 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
292 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
293 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
294 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
295 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
296 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
297 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
298 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
299 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
300 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
301 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
302 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
303 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
304 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
305 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
306 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
307 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
308 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
309 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
310 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
311 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
312 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
313 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
314 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
315 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
316 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
317 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
318 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
319 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
320 	{},
321 };
322 
323 const struct adreno_reglist a630_hwcg[] = {
324 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
325 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
326 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
327 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
328 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
329 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
330 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
331 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
332 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
333 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
334 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
335 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
336 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
337 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
338 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
339 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
340 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
341 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
342 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
343 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
344 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
345 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
346 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
347 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
348 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
349 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
350 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
351 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
352 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
353 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
354 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
355 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
356 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
357 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
358 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
359 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
360 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
361 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
362 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
363 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
364 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
365 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
366 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
367 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
368 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
369 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
370 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
371 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
372 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
373 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
374 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
375 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
376 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
377 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
378 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
379 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
380 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
381 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
382 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
383 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
384 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
385 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
386 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
387 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
388 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
389 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
390 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
391 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
392 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
393 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
394 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
395 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
396 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
397 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
398 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
399 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
400 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
401 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
402 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
403 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
404 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
405 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
406 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
407 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
408 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
409 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
410 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
411 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
412 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
413 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
414 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
415 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
416 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
417 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
418 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
419 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
420 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
421 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
422 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
423 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
424 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
425 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
426 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
427 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
428 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
429 	{},
430 };
431 
432 const struct adreno_reglist a640_hwcg[] = {
433 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
434 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
435 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
436 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
437 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
438 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
439 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
440 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
441 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
442 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
443 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
444 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
445 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
446 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
447 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
448 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
449 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
450 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
451 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
452 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
453 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
454 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
455 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
456 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
457 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
458 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
459 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
460 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
461 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
462 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
463 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
464 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
465 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
466 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
467 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
468 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
469 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
470 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
471 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
472 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
473 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
474 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
475 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
476 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
477 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
478 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
479 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
480 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
481 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
482 	{},
483 };
484 
485 const struct adreno_reglist a650_hwcg[] = {
486 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
487 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
488 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
489 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
490 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
491 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
492 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
493 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
494 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
495 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
496 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
497 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
498 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
499 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
500 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
501 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
502 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
503 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
504 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
505 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
506 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
507 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
508 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
509 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
510 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
511 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
512 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
513 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
514 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
515 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
516 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
517 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
518 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
519 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
520 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
521 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
522 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
523 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
524 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
525 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
526 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
527 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
528 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
529 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
530 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
531 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
532 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
533 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
534 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
535 	{},
536 };
537 
538 const struct adreno_reglist a660_hwcg[] = {
539 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
540 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
541 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
542 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
543 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
544 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
545 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
546 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
547 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
548 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
549 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
550 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
551 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
552 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
553 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
554 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
555 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
556 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
557 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
558 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
559 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
560 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
561 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
562 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
563 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
564 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
565 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
566 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
567 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
568 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
569 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
570 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
571 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
572 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
573 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
574 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
575 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
576 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
577 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
578 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
579 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
580 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
581 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
582 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
583 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
584 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
585 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
586 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
587 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
588 	{},
589 };
590 
591 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
592 {
593 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
594 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
595 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
596 	const struct adreno_reglist *reg;
597 	unsigned int i;
598 	u32 val, clock_cntl_on;
599 
600 	if (!adreno_gpu->info->hwcg)
601 		return;
602 
603 	if (adreno_is_a630(adreno_gpu))
604 		clock_cntl_on = 0x8aa8aa02;
605 	else
606 		clock_cntl_on = 0x8aa8aa82;
607 
608 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
609 
610 	/* Don't re-program the registers if they are already correct */
611 	if ((!state && !val) || (state && (val == clock_cntl_on)))
612 		return;
613 
614 	/* Disable SP clock before programming HWCG registers */
615 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
616 
617 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
618 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
619 
620 	/* Enable SP clock */
621 	gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
622 
623 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
624 }
625 
626 /* For a615, a616, a618, a619, a630, a640 and a680 */
627 static const u32 a6xx_protect[] = {
628 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
629 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
630 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
631 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
632 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
633 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
634 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
635 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
636 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
637 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
638 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
639 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
640 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
641 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
642 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
643 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
644 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
645 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
646 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
647 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
648 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
649 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
650 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
651 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
652 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
653 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
654 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
655 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
656 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
657 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
658 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
659 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
660 };
661 
662 /* These are for a620 and a650 */
663 static const u32 a650_protect[] = {
664 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
665 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
666 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
667 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
668 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
669 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
670 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
671 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
672 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
673 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
674 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
675 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
676 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
677 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
678 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
679 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
680 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
681 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
682 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
683 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
684 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
685 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
686 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
687 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
688 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
689 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
690 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
691 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
692 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
693 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
694 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
695 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
696 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
697 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
698 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
699 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
700 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
701 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
702 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
703 };
704 
705 /* These are for a635 and a660 */
706 static const u32 a660_protect[] = {
707 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
708 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
709 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
710 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
711 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
712 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
713 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
714 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
715 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
716 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
717 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
718 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
719 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
720 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
721 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
722 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
723 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
724 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
725 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
726 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
727 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
728 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
729 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
730 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
731 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
732 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
733 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
734 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
735 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
736 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
737 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
738 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
739 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
740 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
741 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
742 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
743 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
744 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
745 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
746 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
747 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
748 };
749 
750 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
751 {
752 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
753 	const u32 *regs = a6xx_protect;
754 	unsigned i, count, count_max;
755 
756 	if (adreno_is_a650(adreno_gpu)) {
757 		regs = a650_protect;
758 		count = ARRAY_SIZE(a650_protect);
759 		count_max = 48;
760 		BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
761 	} else if (adreno_is_a660_family(adreno_gpu)) {
762 		regs = a660_protect;
763 		count = ARRAY_SIZE(a660_protect);
764 		count_max = 48;
765 		BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
766 	} else {
767 		regs = a6xx_protect;
768 		count = ARRAY_SIZE(a6xx_protect);
769 		count_max = 32;
770 		BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
771 	}
772 
773 	/*
774 	 * Enable access protection to privileged registers, fault on an access
775 	 * protect violation and select the last span to protect from the start
776 	 * address all the way to the end of the register address space
777 	 */
778 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, BIT(0) | BIT(1) | BIT(3));
779 
780 	for (i = 0; i < count - 1; i++)
781 		gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
782 	/* last CP_PROTECT to have "infinite" length on the last entry */
783 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
784 }
785 
786 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
787 {
788 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
789 	u32 lower_bit = 2;
790 	u32 amsbc = 0;
791 	u32 rgb565_predicator = 0;
792 	u32 uavflagprd_inv = 0;
793 
794 	/* a618 is using the hw default values */
795 	if (adreno_is_a618(adreno_gpu))
796 		return;
797 
798 	if (adreno_is_a640_family(adreno_gpu))
799 		amsbc = 1;
800 
801 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) {
802 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
803 		lower_bit = 3;
804 		amsbc = 1;
805 		rgb565_predicator = 1;
806 		uavflagprd_inv = 2;
807 	}
808 
809 	if (adreno_is_7c3(adreno_gpu)) {
810 		lower_bit = 1;
811 		amsbc = 1;
812 		rgb565_predicator = 1;
813 		uavflagprd_inv = 2;
814 	}
815 
816 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
817 		rgb565_predicator << 11 | amsbc << 4 | lower_bit << 1);
818 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, lower_bit << 1);
819 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL,
820 		uavflagprd_inv << 4 | lower_bit << 1);
821 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, lower_bit << 21);
822 }
823 
824 static int a6xx_cp_init(struct msm_gpu *gpu)
825 {
826 	struct msm_ringbuffer *ring = gpu->rb[0];
827 
828 	OUT_PKT7(ring, CP_ME_INIT, 8);
829 
830 	OUT_RING(ring, 0x0000002f);
831 
832 	/* Enable multiple hardware contexts */
833 	OUT_RING(ring, 0x00000003);
834 
835 	/* Enable error detection */
836 	OUT_RING(ring, 0x20000000);
837 
838 	/* Don't enable header dump */
839 	OUT_RING(ring, 0x00000000);
840 	OUT_RING(ring, 0x00000000);
841 
842 	/* No workarounds enabled */
843 	OUT_RING(ring, 0x00000000);
844 
845 	/* Pad rest of the cmds with 0's */
846 	OUT_RING(ring, 0x00000000);
847 	OUT_RING(ring, 0x00000000);
848 
849 	a6xx_flush(gpu, ring);
850 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
851 }
852 
853 /*
854  * Check that the microcode version is new enough to include several key
855  * security fixes. Return true if the ucode is safe.
856  */
857 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
858 		struct drm_gem_object *obj)
859 {
860 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
861 	struct msm_gpu *gpu = &adreno_gpu->base;
862 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
863 	u32 *buf = msm_gem_get_vaddr(obj);
864 	bool ret = false;
865 
866 	if (IS_ERR(buf))
867 		return false;
868 
869 	/*
870 	 * Targets up to a640 (a618, a630 and a640) need to check for a
871 	 * microcode version that is patched to support the whereami opcode or
872 	 * one that is new enough to include it by default.
873 	 *
874 	 * a650 tier targets don't need whereami but still need to be
875 	 * equal to or newer than 0.95 for other security fixes
876 	 *
877 	 * a660 targets have all the critical security fixes from the start
878 	 */
879 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
880 		/*
881 		 * If the lowest nibble is 0xa that is an indication that this
882 		 * microcode has been patched. The actual version is in dword
883 		 * [3] but we only care about the patchlevel which is the lowest
884 		 * nibble of dword [3]
885 		 *
886 		 * Otherwise check that the firmware is greater than or equal
887 		 * to 1.90 which was the first version that had this fix built
888 		 * in
889 		 */
890 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
891 			(buf[0] & 0xfff) >= 0x190) {
892 			a6xx_gpu->has_whereami = true;
893 			ret = true;
894 			goto out;
895 		}
896 
897 		DRM_DEV_ERROR(&gpu->pdev->dev,
898 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
899 			buf[0] & 0xfff, 0x190);
900 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
901 		if ((buf[0] & 0xfff) >= 0x095) {
902 			ret = true;
903 			goto out;
904 		}
905 
906 		DRM_DEV_ERROR(&gpu->pdev->dev,
907 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
908 			buf[0] & 0xfff, 0x095);
909 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
910 		ret = true;
911 	} else {
912 		DRM_DEV_ERROR(&gpu->pdev->dev,
913 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
914 	}
915 out:
916 	msm_gem_put_vaddr(obj);
917 	return ret;
918 }
919 
920 static int a6xx_ucode_load(struct msm_gpu *gpu)
921 {
922 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
923 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
924 
925 	if (!a6xx_gpu->sqe_bo) {
926 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
927 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
928 
929 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
930 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
931 
932 			a6xx_gpu->sqe_bo = NULL;
933 			DRM_DEV_ERROR(&gpu->pdev->dev,
934 				"Could not allocate SQE ucode: %d\n", ret);
935 
936 			return ret;
937 		}
938 
939 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
940 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
941 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
942 			drm_gem_object_put(a6xx_gpu->sqe_bo);
943 
944 			a6xx_gpu->sqe_bo = NULL;
945 			return -EPERM;
946 		}
947 	}
948 
949 	/*
950 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
951 	 * privileged buffer to store the RPTR shadow
952 	 */
953 	if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) &&
954 	    !a6xx_gpu->shadow_bo) {
955 		a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
956 						      sizeof(u32) * gpu->nr_rings,
957 						      MSM_BO_WC | MSM_BO_MAP_PRIV,
958 						      gpu->aspace, &a6xx_gpu->shadow_bo,
959 						      &a6xx_gpu->shadow_iova);
960 
961 		if (IS_ERR(a6xx_gpu->shadow))
962 			return PTR_ERR(a6xx_gpu->shadow);
963 
964 		msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
965 	}
966 
967 	return 0;
968 }
969 
970 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
971 {
972 	static bool loaded;
973 	int ret;
974 
975 	if (loaded)
976 		return 0;
977 
978 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
979 
980 	loaded = !ret;
981 	return ret;
982 }
983 
984 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
985 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
986 	  A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
987 	  A6XX_RBBM_INT_0_MASK_CP_IB2 | \
988 	  A6XX_RBBM_INT_0_MASK_CP_IB1 | \
989 	  A6XX_RBBM_INT_0_MASK_CP_RB | \
990 	  A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
991 	  A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
992 	  A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
993 	  A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
994 	  A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
995 
996 static int hw_init(struct msm_gpu *gpu)
997 {
998 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
999 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1000 	int ret;
1001 
1002 	/* Make sure the GMU keeps the GPU on while we set it up */
1003 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1004 
1005 	/* Clear GBIF halt in case GX domain was not collapsed */
1006 	if (a6xx_has_gbif(adreno_gpu))
1007 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0);
1008 
1009 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
1010 
1011 	/*
1012 	 * Disable the trusted memory range - we don't actually supported secure
1013 	 * memory rendering at this point in time and we don't want to block off
1014 	 * part of the virtual memory space.
1015 	 */
1016 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000);
1017 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
1018 
1019 	/* Turn on 64 bit addressing for all blocks */
1020 	gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
1021 	gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
1022 	gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
1023 	gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
1024 	gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
1025 	gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
1026 	gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
1027 	gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
1028 	gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
1029 	gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
1030 	gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
1031 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
1032 
1033 	/* enable hardware clockgating */
1034 	a6xx_set_hwcg(gpu, true);
1035 
1036 	/* VBIF/GBIF start*/
1037 	if (adreno_is_a640_family(adreno_gpu) ||
1038 	    adreno_is_a650_family(adreno_gpu)) {
1039 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
1040 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
1041 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
1042 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1043 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1044 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x3);
1045 	} else {
1046 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
1047 	}
1048 
1049 	if (adreno_is_a630(adreno_gpu))
1050 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
1051 
1052 	/* Make all blocks contribute to the GPU BUSY perf counter */
1053 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
1054 
1055 	/* Disable L2 bypass in the UCHE */
1056 	gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu);
1057 	gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu);
1058 	gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu);
1059 
1060 	if (!adreno_is_a650_family(adreno_gpu)) {
1061 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
1062 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, 0x00100000);
1063 
1064 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX,
1065 			0x00100000 + adreno_gpu->gmem - 1);
1066 	}
1067 
1068 	gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
1069 	gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
1070 
1071 	if (adreno_is_a640_family(adreno_gpu) ||
1072 	    adreno_is_a650_family(adreno_gpu))
1073 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
1074 	else
1075 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
1076 	gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1077 
1078 	if (adreno_is_a660_family(adreno_gpu))
1079 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
1080 
1081 	/* Setting the mem pool size */
1082 	gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1083 
1084 	/* Setting the primFifo thresholds default values,
1085 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1086 	*/
1087 	if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1088 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1089 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1090 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1091 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1092 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1093 	else
1094 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1095 
1096 	/* Set the AHB default slave response to "ERROR" */
1097 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1098 
1099 	/* Turn on performance counters */
1100 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1101 
1102 	/* Select CP0 to always count cycles */
1103 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1104 
1105 	a6xx_set_ubwc_config(gpu);
1106 
1107 	/* Enable fault detection */
1108 	gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL,
1109 		(1 << 30) | 0x1fffff);
1110 
1111 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, 1);
1112 
1113 	/* Set weights for bicubic filtering */
1114 	if (adreno_is_a650_family(adreno_gpu)) {
1115 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1116 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1117 			0x3fe05ff4);
1118 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1119 			0x3fa0ebee);
1120 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1121 			0x3f5193ed);
1122 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1123 			0x3f0243f0);
1124 	}
1125 
1126 	/* Protect registers from the CP */
1127 	a6xx_set_cp_protect(gpu);
1128 
1129 	if (adreno_is_a660_family(adreno_gpu)) {
1130 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1131 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1132 	}
1133 
1134 	/* Set dualQ + disable afull for A660 GPU */
1135 	if (adreno_is_a660(adreno_gpu))
1136 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1137 
1138 	/* Enable expanded apriv for targets that support it */
1139 	if (gpu->hw_apriv) {
1140 		gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1141 			(1 << 6) | (1 << 5) | (1 << 3) | (1 << 2) | (1 << 1));
1142 	}
1143 
1144 	/* Enable interrupts */
1145 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, A6XX_INT_MASK);
1146 
1147 	ret = adreno_hw_init(gpu);
1148 	if (ret)
1149 		goto out;
1150 
1151 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova);
1152 
1153 	/* Set the ringbuffer address */
1154 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova);
1155 
1156 	/* Targets that support extended APRIV can use the RPTR shadow from
1157 	 * hardware but all the other ones need to disable the feature. Targets
1158 	 * that support the WHERE_AM_I opcode can use that instead
1159 	 */
1160 	if (adreno_gpu->base.hw_apriv)
1161 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1162 	else
1163 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1164 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1165 
1166 	/* Configure the RPTR shadow if needed: */
1167 	if (a6xx_gpu->shadow_bo) {
1168 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR,
1169 			shadowptr(a6xx_gpu, gpu->rb[0]));
1170 	}
1171 
1172 	/* Always come up on rb 0 */
1173 	a6xx_gpu->cur_ring = gpu->rb[0];
1174 
1175 	gpu->cur_ctx_seqno = 0;
1176 
1177 	/* Enable the SQE_to start the CP engine */
1178 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1179 
1180 	ret = a6xx_cp_init(gpu);
1181 	if (ret)
1182 		goto out;
1183 
1184 	/*
1185 	 * Try to load a zap shader into the secure world. If successful
1186 	 * we can use the CP to switch out of secure mode. If not then we
1187 	 * have no resource but to try to switch ourselves out manually. If we
1188 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
1189 	 * be blocked and a permissions violation will soon follow.
1190 	 */
1191 	ret = a6xx_zap_shader_init(gpu);
1192 	if (!ret) {
1193 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
1194 		OUT_RING(gpu->rb[0], 0x00000000);
1195 
1196 		a6xx_flush(gpu, gpu->rb[0]);
1197 		if (!a6xx_idle(gpu, gpu->rb[0]))
1198 			return -EINVAL;
1199 	} else if (ret == -ENODEV) {
1200 		/*
1201 		 * This device does not use zap shader (but print a warning
1202 		 * just in case someone got their dt wrong.. hopefully they
1203 		 * have a debug UART to realize the error of their ways...
1204 		 * if you mess this up you are about to crash horribly)
1205 		 */
1206 		dev_warn_once(gpu->dev->dev,
1207 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
1208 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1209 		ret = 0;
1210 	} else {
1211 		return ret;
1212 	}
1213 
1214 out:
1215 	/*
1216 	 * Tell the GMU that we are done touching the GPU and it can start power
1217 	 * management
1218 	 */
1219 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1220 
1221 	if (a6xx_gpu->gmu.legacy) {
1222 		/* Take the GMU out of its special boot mode */
1223 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
1224 	}
1225 
1226 	return ret;
1227 }
1228 
1229 static int a6xx_hw_init(struct msm_gpu *gpu)
1230 {
1231 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1232 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1233 	int ret;
1234 
1235 	mutex_lock(&a6xx_gpu->gmu.lock);
1236 	ret = hw_init(gpu);
1237 	mutex_unlock(&a6xx_gpu->gmu.lock);
1238 
1239 	return ret;
1240 }
1241 
1242 static void a6xx_dump(struct msm_gpu *gpu)
1243 {
1244 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
1245 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
1246 	adreno_dump(gpu);
1247 }
1248 
1249 #define VBIF_RESET_ACK_TIMEOUT	100
1250 #define VBIF_RESET_ACK_MASK	0x00f0
1251 
1252 static void a6xx_recover(struct msm_gpu *gpu)
1253 {
1254 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1255 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1256 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1257 	int i, active_submits;
1258 
1259 	adreno_dump_info(gpu);
1260 
1261 	for (i = 0; i < 8; i++)
1262 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
1263 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
1264 
1265 	if (hang_debug)
1266 		a6xx_dump(gpu);
1267 
1268 	/*
1269 	 * To handle recovery specific sequences during the rpm suspend we are
1270 	 * about to trigger
1271 	 */
1272 	a6xx_gpu->hung = true;
1273 
1274 	/* Halt SQE first */
1275 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3);
1276 
1277 	/*
1278 	 * Turn off keep alive that might have been enabled by the hang
1279 	 * interrupt
1280 	 */
1281 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0);
1282 
1283 	pm_runtime_dont_use_autosuspend(&gpu->pdev->dev);
1284 
1285 	/* active_submit won't change until we make a submission */
1286 	mutex_lock(&gpu->active_lock);
1287 	active_submits = gpu->active_submits;
1288 
1289 	/*
1290 	 * Temporarily clear active_submits count to silence a WARN() in the
1291 	 * runtime suspend cb
1292 	 */
1293 	gpu->active_submits = 0;
1294 
1295 	reinit_completion(&gmu->pd_gate);
1296 	dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb);
1297 	dev_pm_genpd_synced_poweroff(gmu->cxpd);
1298 
1299 	/* Drop the rpm refcount from active submits */
1300 	if (active_submits)
1301 		pm_runtime_put(&gpu->pdev->dev);
1302 
1303 	/* And the final one from recover worker */
1304 	pm_runtime_put_sync(&gpu->pdev->dev);
1305 
1306 	if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000)))
1307 		DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n");
1308 
1309 	dev_pm_genpd_remove_notifier(gmu->cxpd);
1310 
1311 	pm_runtime_use_autosuspend(&gpu->pdev->dev);
1312 
1313 	if (active_submits)
1314 		pm_runtime_get(&gpu->pdev->dev);
1315 
1316 	pm_runtime_get_sync(&gpu->pdev->dev);
1317 
1318 	gpu->active_submits = active_submits;
1319 	mutex_unlock(&gpu->active_lock);
1320 
1321 	msm_gpu_hw_init(gpu);
1322 	a6xx_gpu->hung = false;
1323 }
1324 
1325 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
1326 {
1327 	static const char *uche_clients[7] = {
1328 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
1329 	};
1330 	u32 val;
1331 
1332 	if (mid < 1 || mid > 3)
1333 		return "UNKNOWN";
1334 
1335 	/*
1336 	 * The source of the data depends on the mid ID read from FSYNR1.
1337 	 * and the client ID read from the UCHE block
1338 	 */
1339 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
1340 
1341 	/* mid = 3 is most precise and refers to only one block per client */
1342 	if (mid == 3)
1343 		return uche_clients[val & 7];
1344 
1345 	/* For mid=2 the source is TP or VFD except when the client id is 0 */
1346 	if (mid == 2)
1347 		return ((val & 7) == 0) ? "TP" : "TP|VFD";
1348 
1349 	/* For mid=1 just return "UCHE" as a catchall for everything else */
1350 	return "UCHE";
1351 }
1352 
1353 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
1354 {
1355 	if (id == 0)
1356 		return "CP";
1357 	else if (id == 4)
1358 		return "CCU";
1359 	else if (id == 6)
1360 		return "CDP Prefetch";
1361 
1362 	return a6xx_uche_fault_block(gpu, id);
1363 }
1364 
1365 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1366 {
1367 	struct msm_gpu *gpu = arg;
1368 	struct adreno_smmu_fault_info *info = data;
1369 	const char *block = "unknown";
1370 
1371 	u32 scratch[] = {
1372 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
1373 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
1374 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
1375 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)),
1376 	};
1377 
1378 	if (info)
1379 		block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
1380 
1381 	return adreno_fault_handler(gpu, iova, flags, info, block, scratch);
1382 }
1383 
1384 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
1385 {
1386 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
1387 
1388 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
1389 		u32 val;
1390 
1391 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
1392 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
1393 		dev_err_ratelimited(&gpu->pdev->dev,
1394 			"CP | opcode error | possible opcode=0x%8.8X\n",
1395 			val);
1396 	}
1397 
1398 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
1399 		dev_err_ratelimited(&gpu->pdev->dev,
1400 			"CP ucode error interrupt\n");
1401 
1402 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
1403 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
1404 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
1405 
1406 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1407 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
1408 
1409 		dev_err_ratelimited(&gpu->pdev->dev,
1410 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1411 			val & (1 << 20) ? "READ" : "WRITE",
1412 			(val & 0x3ffff), val);
1413 	}
1414 
1415 	if (status & A6XX_CP_INT_CP_AHB_ERROR)
1416 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
1417 
1418 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
1419 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
1420 
1421 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
1422 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
1423 
1424 }
1425 
1426 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
1427 {
1428 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1429 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1430 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1431 
1432 	/*
1433 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1434 	 * but the fault handler will trigger the devcore dump, and we want
1435 	 * to otherwise resume normally rather than killing the submit, so
1436 	 * just bail.
1437 	 */
1438 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
1439 		return;
1440 
1441 	/*
1442 	 * Force the GPU to stay on until after we finish
1443 	 * collecting information
1444 	 */
1445 	gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
1446 
1447 	DRM_DEV_ERROR(&gpu->pdev->dev,
1448 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1449 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1450 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
1451 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
1452 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
1453 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
1454 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1455 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
1456 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
1457 
1458 	/* Turn off the hangcheck timer to keep it from bothering us */
1459 	del_timer(&gpu->hangcheck_timer);
1460 
1461 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1462 }
1463 
1464 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
1465 {
1466 	struct msm_drm_private *priv = gpu->dev->dev_private;
1467 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
1468 
1469 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
1470 
1471 	if (priv->disable_err_irq)
1472 		status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
1473 
1474 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
1475 		a6xx_fault_detect_irq(gpu);
1476 
1477 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
1478 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
1479 
1480 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1481 		a6xx_cp_hw_err_irq(gpu);
1482 
1483 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
1484 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
1485 
1486 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1487 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
1488 
1489 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1490 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
1491 
1492 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
1493 		msm_gpu_retire(gpu);
1494 
1495 	return IRQ_HANDLED;
1496 }
1497 
1498 static void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
1499 {
1500 	return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
1501 }
1502 
1503 static void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
1504 {
1505 	msm_writel(value, a6xx_gpu->llc_mmio + (reg << 2));
1506 }
1507 
1508 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
1509 {
1510 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
1511 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
1512 }
1513 
1514 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
1515 {
1516 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1517 	struct msm_gpu *gpu = &adreno_gpu->base;
1518 	u32 cntl1_regval = 0;
1519 
1520 	if (IS_ERR(a6xx_gpu->llc_mmio))
1521 		return;
1522 
1523 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
1524 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
1525 
1526 		gpu_scid &= 0x1f;
1527 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
1528 			       (gpu_scid << 15) | (gpu_scid << 20);
1529 
1530 		/* On A660, the SCID programming for UCHE traffic is done in
1531 		 * A6XX_GBIF_SCACHE_CNTL0[14:10]
1532 		 */
1533 		if (adreno_is_a660_family(adreno_gpu))
1534 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
1535 				(1 << 8), (gpu_scid << 10) | (1 << 8));
1536 	}
1537 
1538 	/*
1539 	 * For targets with a MMU500, activate the slice but don't program the
1540 	 * register.  The XBL will take care of that.
1541 	 */
1542 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
1543 		if (!a6xx_gpu->have_mmu500) {
1544 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
1545 
1546 			gpuhtw_scid &= 0x1f;
1547 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
1548 		}
1549 	}
1550 
1551 	if (!cntl1_regval)
1552 		return;
1553 
1554 	/*
1555 	 * Program the slice IDs for the various GPU blocks and GPU MMU
1556 	 * pagetables
1557 	 */
1558 	if (!a6xx_gpu->have_mmu500) {
1559 		a6xx_llc_write(a6xx_gpu,
1560 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
1561 
1562 		/*
1563 		 * Program cacheability overrides to not allocate cache
1564 		 * lines on a write miss
1565 		 */
1566 		a6xx_llc_rmw(a6xx_gpu,
1567 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
1568 		return;
1569 	}
1570 
1571 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
1572 }
1573 
1574 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
1575 {
1576 	llcc_slice_putd(a6xx_gpu->llc_slice);
1577 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
1578 }
1579 
1580 static void a6xx_llc_slices_init(struct platform_device *pdev,
1581 		struct a6xx_gpu *a6xx_gpu)
1582 {
1583 	struct device_node *phandle;
1584 
1585 	/*
1586 	 * There is a different programming path for targets with an mmu500
1587 	 * attached, so detect if that is the case
1588 	 */
1589 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
1590 	a6xx_gpu->have_mmu500 = (phandle &&
1591 		of_device_is_compatible(phandle, "arm,mmu-500"));
1592 	of_node_put(phandle);
1593 
1594 	if (a6xx_gpu->have_mmu500)
1595 		a6xx_gpu->llc_mmio = NULL;
1596 	else
1597 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
1598 
1599 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
1600 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
1601 
1602 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1603 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
1604 }
1605 
1606 static int a6xx_pm_resume(struct msm_gpu *gpu)
1607 {
1608 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1609 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1610 	int ret;
1611 
1612 	gpu->needs_hw_init = true;
1613 
1614 	trace_msm_gpu_resume(0);
1615 
1616 	mutex_lock(&a6xx_gpu->gmu.lock);
1617 	ret = a6xx_gmu_resume(a6xx_gpu);
1618 	mutex_unlock(&a6xx_gpu->gmu.lock);
1619 	if (ret)
1620 		return ret;
1621 
1622 	msm_devfreq_resume(gpu);
1623 
1624 	a6xx_llc_activate(a6xx_gpu);
1625 
1626 	return 0;
1627 }
1628 
1629 static int a6xx_pm_suspend(struct msm_gpu *gpu)
1630 {
1631 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1632 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1633 	int i, ret;
1634 
1635 	trace_msm_gpu_suspend(0);
1636 
1637 	a6xx_llc_deactivate(a6xx_gpu);
1638 
1639 	msm_devfreq_suspend(gpu);
1640 
1641 	mutex_lock(&a6xx_gpu->gmu.lock);
1642 	ret = a6xx_gmu_stop(a6xx_gpu);
1643 	mutex_unlock(&a6xx_gpu->gmu.lock);
1644 	if (ret)
1645 		return ret;
1646 
1647 	if (a6xx_gpu->shadow_bo)
1648 		for (i = 0; i < gpu->nr_rings; i++)
1649 			a6xx_gpu->shadow[i] = 0;
1650 
1651 	gpu->suspend_count++;
1652 
1653 	return 0;
1654 }
1655 
1656 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1657 {
1658 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1659 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1660 
1661 	mutex_lock(&a6xx_gpu->gmu.lock);
1662 
1663 	/* Force the GPU power on so we can read this register */
1664 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1665 
1666 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
1667 
1668 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
1669 
1670 	mutex_unlock(&a6xx_gpu->gmu.lock);
1671 
1672 	return 0;
1673 }
1674 
1675 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
1676 {
1677 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1678 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1679 
1680 	return a6xx_gpu->cur_ring;
1681 }
1682 
1683 static void a6xx_destroy(struct msm_gpu *gpu)
1684 {
1685 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1686 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1687 
1688 	if (a6xx_gpu->sqe_bo) {
1689 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1690 		drm_gem_object_put(a6xx_gpu->sqe_bo);
1691 	}
1692 
1693 	if (a6xx_gpu->shadow_bo) {
1694 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
1695 		drm_gem_object_put(a6xx_gpu->shadow_bo);
1696 	}
1697 
1698 	a6xx_llc_slices_destroy(a6xx_gpu);
1699 
1700 	mutex_lock(&a6xx_gpu->gmu.lock);
1701 	a6xx_gmu_remove(a6xx_gpu);
1702 	mutex_unlock(&a6xx_gpu->gmu.lock);
1703 
1704 	adreno_gpu_cleanup(adreno_gpu);
1705 
1706 	kfree(a6xx_gpu);
1707 }
1708 
1709 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
1710 {
1711 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1712 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1713 	u64 busy_cycles;
1714 
1715 	/* 19.2MHz */
1716 	*out_sample_rate = 19200000;
1717 
1718 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
1719 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
1720 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
1721 
1722 	return busy_cycles;
1723 }
1724 
1725 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
1726 			      bool suspended)
1727 {
1728 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1729 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1730 
1731 	mutex_lock(&a6xx_gpu->gmu.lock);
1732 	a6xx_gmu_set_freq(gpu, opp, suspended);
1733 	mutex_unlock(&a6xx_gpu->gmu.lock);
1734 }
1735 
1736 static struct msm_gem_address_space *
1737 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
1738 {
1739 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1740 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1741 	unsigned long quirks = 0;
1742 
1743 	/*
1744 	 * This allows GPU to set the bus attributes required to use system
1745 	 * cache on behalf of the iommu page table walker.
1746 	 */
1747 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
1748 		quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA;
1749 
1750 	return adreno_iommu_create_address_space(gpu, pdev, quirks);
1751 }
1752 
1753 static struct msm_gem_address_space *
1754 a6xx_create_private_address_space(struct msm_gpu *gpu)
1755 {
1756 	struct msm_mmu *mmu;
1757 
1758 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
1759 
1760 	if (IS_ERR(mmu))
1761 		return ERR_CAST(mmu);
1762 
1763 	return msm_gem_address_space_create(mmu,
1764 		"gpu", 0x100000000ULL,
1765 		adreno_private_address_space_size(gpu));
1766 }
1767 
1768 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1769 {
1770 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1771 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1772 
1773 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
1774 		return a6xx_gpu->shadow[ring->id];
1775 
1776 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
1777 }
1778 
1779 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1780 {
1781 	struct msm_cp_state cp_state = {
1782 		.ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
1783 		.ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
1784 		.ib1_rem  = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
1785 		.ib2_rem  = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE),
1786 	};
1787 	bool progress;
1788 
1789 	/*
1790 	 * Adjust the remaining data to account for what has already been
1791 	 * fetched from memory, but not yet consumed by the SQE.
1792 	 *
1793 	 * This is not *technically* correct, the amount buffered could
1794 	 * exceed the IB size due to hw prefetching ahead, but:
1795 	 *
1796 	 * (1) We aren't trying to find the exact position, just whether
1797 	 *     progress has been made
1798 	 * (2) The CP_REG_TO_MEM at the end of a submit should be enough
1799 	 *     to prevent prefetching into an unrelated submit.  (And
1800 	 *     either way, at some point the ROQ will be full.)
1801 	 */
1802 	cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16;
1803 	cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16;
1804 
1805 	progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state));
1806 
1807 	ring->last_cp_state = cp_state;
1808 
1809 	return progress;
1810 }
1811 
1812 static u32 a618_get_speed_bin(u32 fuse)
1813 {
1814 	if (fuse == 0)
1815 		return 0;
1816 	else if (fuse == 169)
1817 		return 1;
1818 	else if (fuse == 174)
1819 		return 2;
1820 
1821 	return UINT_MAX;
1822 }
1823 
1824 static u32 a619_get_speed_bin(u32 fuse)
1825 {
1826 	if (fuse == 0)
1827 		return 0;
1828 	else if (fuse == 120)
1829 		return 4;
1830 	else if (fuse == 138)
1831 		return 3;
1832 	else if (fuse == 169)
1833 		return 2;
1834 	else if (fuse == 180)
1835 		return 1;
1836 
1837 	return UINT_MAX;
1838 }
1839 
1840 static u32 a640_get_speed_bin(u32 fuse)
1841 {
1842 	if (fuse == 0)
1843 		return 0;
1844 	else if (fuse == 1)
1845 		return 1;
1846 
1847 	return UINT_MAX;
1848 }
1849 
1850 static u32 a650_get_speed_bin(u32 fuse)
1851 {
1852 	if (fuse == 0)
1853 		return 0;
1854 	else if (fuse == 1)
1855 		return 1;
1856 	/* Yep, 2 and 3 are swapped! :/ */
1857 	else if (fuse == 2)
1858 		return 3;
1859 	else if (fuse == 3)
1860 		return 2;
1861 
1862 	return UINT_MAX;
1863 }
1864 
1865 static u32 adreno_7c3_get_speed_bin(u32 fuse)
1866 {
1867 	if (fuse == 0)
1868 		return 0;
1869 	else if (fuse == 117)
1870 		return 0;
1871 	else if (fuse == 190)
1872 		return 1;
1873 
1874 	return UINT_MAX;
1875 }
1876 
1877 static u32 fuse_to_supp_hw(struct device *dev, struct adreno_rev rev, u32 fuse)
1878 {
1879 	u32 val = UINT_MAX;
1880 
1881 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 8, ANY_ID), rev))
1882 		val = a618_get_speed_bin(fuse);
1883 
1884 	if (adreno_cmp_rev(ADRENO_REV(6, 1, 9, ANY_ID), rev))
1885 		val = a619_get_speed_bin(fuse);
1886 
1887 	if (adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), rev))
1888 		val = adreno_7c3_get_speed_bin(fuse);
1889 
1890 	if (adreno_cmp_rev(ADRENO_REV(6, 4, 0, ANY_ID), rev))
1891 		val = a640_get_speed_bin(fuse);
1892 
1893 	if (adreno_cmp_rev(ADRENO_REV(6, 5, 0, ANY_ID), rev))
1894 		val = a650_get_speed_bin(fuse);
1895 
1896 	if (val == UINT_MAX) {
1897 		DRM_DEV_ERROR(dev,
1898 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n",
1899 			fuse);
1900 		return UINT_MAX;
1901 	}
1902 
1903 	return (1 << val);
1904 }
1905 
1906 static int a6xx_set_supported_hw(struct device *dev, struct adreno_rev rev)
1907 {
1908 	u32 supp_hw;
1909 	u32 speedbin;
1910 	int ret;
1911 
1912 	ret = adreno_read_speedbin(dev, &speedbin);
1913 	/*
1914 	 * -ENOENT means that the platform doesn't support speedbin which is
1915 	 * fine
1916 	 */
1917 	if (ret == -ENOENT) {
1918 		return 0;
1919 	} else if (ret) {
1920 		dev_err_probe(dev, ret,
1921 			      "failed to read speed-bin. Some OPPs may not be supported by hardware\n");
1922 		return ret;
1923 	}
1924 
1925 	supp_hw = fuse_to_supp_hw(dev, rev, speedbin);
1926 
1927 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
1928 	if (ret)
1929 		return ret;
1930 
1931 	return 0;
1932 }
1933 
1934 static const struct adreno_gpu_funcs funcs = {
1935 	.base = {
1936 		.get_param = adreno_get_param,
1937 		.set_param = adreno_set_param,
1938 		.hw_init = a6xx_hw_init,
1939 		.ucode_load = a6xx_ucode_load,
1940 		.pm_suspend = a6xx_pm_suspend,
1941 		.pm_resume = a6xx_pm_resume,
1942 		.recover = a6xx_recover,
1943 		.submit = a6xx_submit,
1944 		.active_ring = a6xx_active_ring,
1945 		.irq = a6xx_irq,
1946 		.destroy = a6xx_destroy,
1947 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1948 		.show = a6xx_show,
1949 #endif
1950 		.gpu_busy = a6xx_gpu_busy,
1951 		.gpu_get_freq = a6xx_gmu_get_freq,
1952 		.gpu_set_freq = a6xx_gpu_set_freq,
1953 #if defined(CONFIG_DRM_MSM_GPU_STATE)
1954 		.gpu_state_get = a6xx_gpu_state_get,
1955 		.gpu_state_put = a6xx_gpu_state_put,
1956 #endif
1957 		.create_address_space = a6xx_create_address_space,
1958 		.create_private_address_space = a6xx_create_private_address_space,
1959 		.get_rptr = a6xx_get_rptr,
1960 		.progress = a6xx_progress,
1961 	},
1962 	.get_timestamp = a6xx_get_timestamp,
1963 };
1964 
1965 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
1966 {
1967 	struct msm_drm_private *priv = dev->dev_private;
1968 	struct platform_device *pdev = priv->gpu_pdev;
1969 	struct adreno_platform_config *config = pdev->dev.platform_data;
1970 	const struct adreno_info *info;
1971 	struct device_node *node;
1972 	struct a6xx_gpu *a6xx_gpu;
1973 	struct adreno_gpu *adreno_gpu;
1974 	struct msm_gpu *gpu;
1975 	int ret;
1976 
1977 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
1978 	if (!a6xx_gpu)
1979 		return ERR_PTR(-ENOMEM);
1980 
1981 	adreno_gpu = &a6xx_gpu->base;
1982 	gpu = &adreno_gpu->base;
1983 
1984 	adreno_gpu->registers = NULL;
1985 
1986 	/*
1987 	 * We need to know the platform type before calling into adreno_gpu_init
1988 	 * so that the hw_apriv flag can be correctly set. Snoop into the info
1989 	 * and grab the revision number
1990 	 */
1991 	info = adreno_info(config->rev);
1992 
1993 	if (info && (info->revn == 650 || info->revn == 660 ||
1994 			adreno_cmp_rev(ADRENO_REV(6, 3, 5, ANY_ID), info->rev)))
1995 		adreno_gpu->base.hw_apriv = true;
1996 
1997 	a6xx_llc_slices_init(pdev, a6xx_gpu);
1998 
1999 	ret = a6xx_set_supported_hw(&pdev->dev, config->rev);
2000 	if (ret) {
2001 		a6xx_destroy(&(a6xx_gpu->base.base));
2002 		return ERR_PTR(ret);
2003 	}
2004 
2005 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
2006 	if (ret) {
2007 		a6xx_destroy(&(a6xx_gpu->base.base));
2008 		return ERR_PTR(ret);
2009 	}
2010 
2011 	/*
2012 	 * For now only clamp to idle freq for devices where this is known not
2013 	 * to cause power supply issues:
2014 	 */
2015 	if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu))
2016 		priv->gpu_clamp_to_idle = true;
2017 
2018 	/* Check if there is a GMU phandle and set it up */
2019 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
2020 
2021 	/* FIXME: How do we gracefully handle this? */
2022 	BUG_ON(!node);
2023 
2024 	ret = a6xx_gmu_init(a6xx_gpu, node);
2025 	of_node_put(node);
2026 	if (ret) {
2027 		a6xx_destroy(&(a6xx_gpu->base.base));
2028 		return ERR_PTR(ret);
2029 	}
2030 
2031 	if (gpu->aspace)
2032 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
2033 				a6xx_fault_handler);
2034 
2035 	return gpu;
2036 }
2037