xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_gpu.c (revision 5832c4a77d6931cebf9ba737129ae8f14b66ee1d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 
5 #include "msm_gem.h"
6 #include "msm_mmu.h"
7 #include "msm_gpu_trace.h"
8 #include "a6xx_gpu.h"
9 #include "a6xx_gmu.xml.h"
10 
11 #include <linux/bitfield.h>
12 #include <linux/devfreq.h>
13 #include <linux/pm_domain.h>
14 #include <linux/soc/qcom/llcc-qcom.h>
15 
16 #define GPU_PAS_ID 13
17 
18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu)
19 {
20 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
21 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
22 
23 	/* Check that the GMU is idle */
24 	if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu))
25 		return false;
26 
27 	/* Check tha the CX master is idle */
28 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) &
29 			~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER)
30 		return false;
31 
32 	return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) &
33 		A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT);
34 }
35 
36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
37 {
38 	/* wait for CP to drain ringbuffer: */
39 	if (!adreno_idle(gpu, ring))
40 		return false;
41 
42 	if (spin_until(_a6xx_check_idle(gpu))) {
43 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
44 			gpu->name, __builtin_return_address(0),
45 			gpu_read(gpu, REG_A6XX_RBBM_STATUS),
46 			gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS),
47 			gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
48 			gpu_read(gpu, REG_A6XX_CP_RB_WPTR));
49 		return false;
50 	}
51 
52 	return true;
53 }
54 
55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
56 {
57 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
58 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
59 
60 	/* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */
61 	if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) {
62 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
63 		OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring)));
64 		OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring)));
65 	}
66 }
67 
68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
69 {
70 	uint32_t wptr;
71 	unsigned long flags;
72 
73 	update_shadow_rptr(gpu, ring);
74 
75 	spin_lock_irqsave(&ring->preempt_lock, flags);
76 
77 	/* Copy the shadow to the actual register */
78 	ring->cur = ring->next;
79 
80 	/* Make sure to wrap wptr if we need to */
81 	wptr = get_wptr(ring);
82 
83 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
84 
85 	/* Make sure everything is posted before making a decision */
86 	mb();
87 
88 	gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr);
89 }
90 
91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter,
92 		u64 iova)
93 {
94 	OUT_PKT7(ring, CP_REG_TO_MEM, 3);
95 	OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) |
96 		CP_REG_TO_MEM_0_CNT(2) |
97 		CP_REG_TO_MEM_0_64B);
98 	OUT_RING(ring, lower_32_bits(iova));
99 	OUT_RING(ring, upper_32_bits(iova));
100 }
101 
102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu,
103 		struct msm_ringbuffer *ring, struct msm_file_private *ctx)
104 {
105 	bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1;
106 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
107 	phys_addr_t ttbr;
108 	u32 asid;
109 	u64 memptr = rbmemptr(ring, ttbr0);
110 
111 	if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno)
112 		return;
113 
114 	if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid))
115 		return;
116 
117 	if (!sysprof) {
118 		if (!adreno_is_a7xx(adreno_gpu)) {
119 			/* Turn off protected mode to write to special registers */
120 			OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
121 			OUT_RING(ring, 0);
122 		}
123 
124 		OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1);
125 		OUT_RING(ring, 1);
126 	}
127 
128 	/* Execute the table update */
129 	OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4);
130 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr)));
131 
132 	OUT_RING(ring,
133 		CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) |
134 		CP_SMMU_TABLE_UPDATE_1_ASID(asid));
135 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0));
136 	OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0));
137 
138 	/*
139 	 * Write the new TTBR0 to the memstore. This is good for debugging.
140 	 */
141 	OUT_PKT7(ring, CP_MEM_WRITE, 4);
142 	OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr)));
143 	OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr)));
144 	OUT_RING(ring, lower_32_bits(ttbr));
145 	OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr));
146 
147 	/*
148 	 * Sync both threads after switching pagetables and enable BR only
149 	 * to make sure BV doesn't race ahead while BR is still switching
150 	 * pagetables.
151 	 */
152 	if (adreno_is_a7xx(&a6xx_gpu->base)) {
153 		OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
154 		OUT_RING(ring, CP_THREAD_CONTROL_0_SYNC_THREADS | CP_SET_THREAD_BR);
155 	}
156 
157 	/*
158 	 * And finally, trigger a uche flush to be sure there isn't anything
159 	 * lingering in that part of the GPU
160 	 */
161 
162 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
163 	OUT_RING(ring, CACHE_INVALIDATE);
164 
165 	if (!sysprof) {
166 		/*
167 		 * Wait for SRAM clear after the pgtable update, so the
168 		 * two can happen in parallel:
169 		 */
170 		OUT_PKT7(ring, CP_WAIT_REG_MEM, 6);
171 		OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ));
172 		OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO(
173 				REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS));
174 		OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0));
175 		OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1));
176 		OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1));
177 		OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0));
178 
179 		if (!adreno_is_a7xx(adreno_gpu)) {
180 			/* Re-enable protected mode: */
181 			OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
182 			OUT_RING(ring, 1);
183 		}
184 	}
185 }
186 
187 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
188 {
189 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
190 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
191 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
192 	struct msm_ringbuffer *ring = submit->ring;
193 	unsigned int i, ibs = 0;
194 
195 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
196 
197 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
198 		rbmemptr_stats(ring, index, cpcycles_start));
199 
200 	/*
201 	 * For PM4 the GMU register offsets are calculated from the base of the
202 	 * GPU registers so we need to add 0x1a800 to the register value on A630
203 	 * to get the right value from PM4.
204 	 */
205 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
206 		rbmemptr_stats(ring, index, alwayson_start));
207 
208 	/* Invalidate CCU depth and color */
209 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
210 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH));
211 
212 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
213 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR));
214 
215 	/* Submit the commands */
216 	for (i = 0; i < submit->nr_cmds; i++) {
217 		switch (submit->cmd[i].type) {
218 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
219 			break;
220 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
221 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
222 				break;
223 			fallthrough;
224 		case MSM_SUBMIT_CMD_BUF:
225 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
226 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
227 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
228 			OUT_RING(ring, submit->cmd[i].size);
229 			ibs++;
230 			break;
231 		}
232 
233 		/*
234 		 * Periodically update shadow-wptr if needed, so that we
235 		 * can see partial progress of submits with large # of
236 		 * cmds.. otherwise we could needlessly stall waiting for
237 		 * ringbuffer state, simply due to looking at a shadow
238 		 * rptr value that has not been updated
239 		 */
240 		if ((ibs % 32) == 0)
241 			update_shadow_rptr(gpu, ring);
242 	}
243 
244 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
245 		rbmemptr_stats(ring, index, cpcycles_end));
246 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
247 		rbmemptr_stats(ring, index, alwayson_end));
248 
249 	/* Write the fence to the scratch register */
250 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
251 	OUT_RING(ring, submit->seqno);
252 
253 	/*
254 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
255 	 * timestamp is written to the memory and then triggers the interrupt
256 	 */
257 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
258 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
259 		CP_EVENT_WRITE_0_IRQ);
260 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
261 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
262 	OUT_RING(ring, submit->seqno);
263 
264 	trace_msm_gpu_submit_flush(submit,
265 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER));
266 
267 	a6xx_flush(gpu, ring);
268 }
269 
270 static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
271 {
272 	unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT;
273 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
274 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
275 	struct msm_ringbuffer *ring = submit->ring;
276 	unsigned int i, ibs = 0;
277 
278 	/*
279 	 * Toggle concurrent binning for pagetable switch and set the thread to
280 	 * BR since only it can execute the pagetable switch packets.
281 	 */
282 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
283 	OUT_RING(ring, CP_THREAD_CONTROL_0_SYNC_THREADS | CP_SET_THREAD_BR);
284 
285 	a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx);
286 
287 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
288 		rbmemptr_stats(ring, index, cpcycles_start));
289 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
290 		rbmemptr_stats(ring, index, alwayson_start));
291 
292 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
293 	OUT_RING(ring, CP_SET_THREAD_BOTH);
294 
295 	OUT_PKT7(ring, CP_SET_MARKER, 1);
296 	OUT_RING(ring, 0x101); /* IFPC disable */
297 
298 	OUT_PKT7(ring, CP_SET_MARKER, 1);
299 	OUT_RING(ring, 0x00d); /* IB1LIST start */
300 
301 	/* Submit the commands */
302 	for (i = 0; i < submit->nr_cmds; i++) {
303 		switch (submit->cmd[i].type) {
304 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
305 			break;
306 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
307 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
308 				break;
309 			fallthrough;
310 		case MSM_SUBMIT_CMD_BUF:
311 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
312 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
313 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
314 			OUT_RING(ring, submit->cmd[i].size);
315 			ibs++;
316 			break;
317 		}
318 
319 		/*
320 		 * Periodically update shadow-wptr if needed, so that we
321 		 * can see partial progress of submits with large # of
322 		 * cmds.. otherwise we could needlessly stall waiting for
323 		 * ringbuffer state, simply due to looking at a shadow
324 		 * rptr value that has not been updated
325 		 */
326 		if ((ibs % 32) == 0)
327 			update_shadow_rptr(gpu, ring);
328 	}
329 
330 	OUT_PKT7(ring, CP_SET_MARKER, 1);
331 	OUT_RING(ring, 0x00e); /* IB1LIST end */
332 
333 	get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0),
334 		rbmemptr_stats(ring, index, cpcycles_end));
335 	get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER,
336 		rbmemptr_stats(ring, index, alwayson_end));
337 
338 	/* Write the fence to the scratch register */
339 	OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1);
340 	OUT_RING(ring, submit->seqno);
341 
342 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
343 	OUT_RING(ring, CP_SET_THREAD_BR);
344 
345 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
346 	OUT_RING(ring, CCU_INVALIDATE_DEPTH);
347 
348 	OUT_PKT7(ring, CP_EVENT_WRITE, 1);
349 	OUT_RING(ring, CCU_INVALIDATE_COLOR);
350 
351 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
352 	OUT_RING(ring, CP_SET_THREAD_BV);
353 
354 	/*
355 	 * Make sure the timestamp is committed once BV pipe is
356 	 * completely done with this submission.
357 	 */
358 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
359 	OUT_RING(ring, CACHE_CLEAN | BIT(27));
360 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, bv_fence)));
361 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence)));
362 	OUT_RING(ring, submit->seqno);
363 
364 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
365 	OUT_RING(ring, CP_SET_THREAD_BR);
366 
367 	/*
368 	 * This makes sure that BR doesn't race ahead and commit
369 	 * timestamp to memstore while BV is still processing
370 	 * this submission.
371 	 */
372 	OUT_PKT7(ring, CP_WAIT_TIMESTAMP, 4);
373 	OUT_RING(ring, 0);
374 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, bv_fence)));
375 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence)));
376 	OUT_RING(ring, submit->seqno);
377 
378 	/* write the ringbuffer timestamp */
379 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
380 	OUT_RING(ring, CACHE_CLEAN | CP_EVENT_WRITE_0_IRQ | BIT(27));
381 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
382 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
383 	OUT_RING(ring, submit->seqno);
384 
385 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
386 	OUT_RING(ring, CP_SET_THREAD_BOTH);
387 
388 	OUT_PKT7(ring, CP_SET_MARKER, 1);
389 	OUT_RING(ring, 0x100); /* IFPC enable */
390 
391 	trace_msm_gpu_submit_flush(submit,
392 		gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER));
393 
394 	a6xx_flush(gpu, ring);
395 }
396 
397 const struct adreno_reglist a612_hwcg[] = {
398 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
399 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
400 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081},
401 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
402 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
403 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
404 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
405 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
406 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
407 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
408 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
409 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
410 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
411 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
412 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
413 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
414 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
415 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222},
416 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
417 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
418 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022},
419 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
420 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
421 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
422 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
423 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
424 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
425 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
426 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
427 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
428 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
429 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
430 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
431 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
432 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
433 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
434 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
435 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
436 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
437 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
438 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
439 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
440 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
441 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
442 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
443 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
444 	{},
445 };
446 
447 /* For a615 family (a615, a616, a618 and a619) */
448 const struct adreno_reglist a615_hwcg[] = {
449 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0,  0x02222222},
450 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
451 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
452 	{REG_A6XX_RBBM_CLOCK_HYST_SP0,  0x0000F3CF},
453 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0,  0x02222222},
454 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1,  0x02222222},
455 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
456 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
457 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
458 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
459 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
460 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
461 	{REG_A6XX_RBBM_CLOCK_HYST_TP0,  0x77777777},
462 	{REG_A6XX_RBBM_CLOCK_HYST_TP1,  0x77777777},
463 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
464 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
465 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
466 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
467 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
468 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
469 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
470 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
471 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
472 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
473 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
474 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
475 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
476 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
477 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE,  0x22222222},
478 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
479 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
480 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
481 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE,  0x00000004},
482 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
483 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
484 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
485 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020},
486 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
487 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
488 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
489 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
490 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00},
491 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00},
492 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00},
493 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
494 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
495 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
496 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
497 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
498 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
499 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
500 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
501 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
502 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
503 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
504 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
505 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
506 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
507 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
508 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
509 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
510 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
511 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
512 	{},
513 };
514 
515 const struct adreno_reglist a630_hwcg[] = {
516 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222},
517 	{REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222},
518 	{REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222},
519 	{REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222},
520 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220},
521 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220},
522 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220},
523 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220},
524 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
525 	{REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
526 	{REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
527 	{REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
528 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf},
529 	{REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf},
530 	{REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf},
531 	{REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf},
532 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
533 	{REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222},
534 	{REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222},
535 	{REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222},
536 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
537 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
538 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
539 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
540 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
541 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222},
542 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222},
543 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222},
544 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
545 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222},
546 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222},
547 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222},
548 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
549 	{REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
550 	{REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
551 	{REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
552 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
553 	{REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
554 	{REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
555 	{REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
556 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
557 	{REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777},
558 	{REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777},
559 	{REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777},
560 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
561 	{REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777},
562 	{REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777},
563 	{REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777},
564 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
565 	{REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
566 	{REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
567 	{REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
568 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
569 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
570 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
571 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
572 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
573 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111},
574 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111},
575 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111},
576 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
577 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111},
578 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111},
579 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111},
580 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
581 	{REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
582 	{REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
583 	{REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
584 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
585 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
586 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
587 	{REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
588 	{REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
589 	{REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
590 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222},
591 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222},
592 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222},
593 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222},
594 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
595 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220},
596 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220},
597 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220},
598 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00},
599 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00},
600 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00},
601 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00},
602 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022},
603 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
604 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
605 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
606 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
607 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
608 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
609 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
610 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
611 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
612 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
613 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
614 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
615 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
616 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
617 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
618 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
619 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
620 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
621 	{},
622 };
623 
624 const struct adreno_reglist a640_hwcg[] = {
625 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
626 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
627 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
628 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
629 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
630 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
631 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
632 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
633 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
634 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
635 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
636 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
637 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
638 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
639 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
640 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
641 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
642 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
643 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
644 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
645 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022},
646 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
647 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
648 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
649 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
650 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
651 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
652 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
653 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
654 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
655 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
656 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
657 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
658 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
659 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
660 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
661 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
662 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
663 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
664 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
665 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
666 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
667 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
668 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
669 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
670 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
671 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
672 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
673 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
674 	{},
675 };
676 
677 const struct adreno_reglist a650_hwcg[] = {
678 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
679 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
680 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
681 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
682 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222},
683 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
684 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
685 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
686 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
687 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
688 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
689 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
690 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
691 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
692 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
693 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
694 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
695 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
696 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
697 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
698 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
699 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
700 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
701 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
702 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
703 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
704 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
705 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
706 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
707 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
708 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
709 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
710 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
711 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
712 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
713 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
714 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
715 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
716 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
717 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777},
718 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
719 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
720 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
721 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
722 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
723 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
724 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
725 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
726 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
727 	{},
728 };
729 
730 const struct adreno_reglist a660_hwcg[] = {
731 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
732 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
733 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
734 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
735 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
736 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
737 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
738 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
739 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
740 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
741 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
742 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
743 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
744 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
745 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
746 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
747 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
748 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
749 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
750 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
751 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
752 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
753 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
754 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
755 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
756 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
757 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
758 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
759 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
760 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
761 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
762 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
763 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
764 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
765 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
766 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
767 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
768 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
769 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
770 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
771 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
772 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
773 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
774 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
775 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
776 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
777 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
778 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
779 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
780 	{},
781 };
782 
783 const struct adreno_reglist a690_hwcg[] = {
784 	{REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
785 	{REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
786 	{REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
787 	{REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
788 	{REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
789 	{REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
790 	{REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222},
791 	{REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222},
792 	{REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
793 	{REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
794 	{REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111},
795 	{REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111},
796 	{REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
797 	{REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
798 	{REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777},
799 	{REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777},
800 	{REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
801 	{REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222},
802 	{REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220},
803 	{REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00},
804 	{REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022},
805 	{REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555},
806 	{REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011},
807 	{REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044},
808 	{REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
809 	{REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
810 	{REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222},
811 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002},
812 	{REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222},
813 	{REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
814 	{REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
815 	{REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
816 	{REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
817 	{REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
818 	{REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
819 	{REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
820 	{REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000},
821 	{REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222},
822 	{REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111},
823 	{REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000},
824 	{REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
825 	{REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004},
826 	{REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
827 	{REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82},
828 	{REG_A6XX_RBBM_ISDB_CNT, 0x00000182},
829 	{REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000},
830 	{REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000},
831 	{REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222},
832 	{REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111},
833 	{REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555},
834 	{REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200},
835 	{REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111},
836 	{REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555},
837 	{}
838 };
839 
840 const struct adreno_reglist a702_hwcg[] = {
841 	{ REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222 },
842 	{ REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220 },
843 	{ REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081 },
844 	{ REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf },
845 	{ REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222 },
846 	{ REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 },
847 	{ REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 },
848 	{ REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222 },
849 	{ REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 },
850 	{ REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 },
851 	{ REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 },
852 	{ REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 },
853 	{ REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 },
854 	{ REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 },
855 	{ REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 },
856 	{ REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 },
857 	{ REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 },
858 	{ REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222 },
859 	{ REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 },
860 	{ REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00 },
861 	{ REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022 },
862 	{ REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555 },
863 	{ REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 },
864 	{ REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044 },
865 	{ REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 },
866 	{ REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222 },
867 	{ REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222 },
868 	{ REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002 },
869 	{ REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 },
870 	{ REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000 },
871 	{ REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222 },
872 	{ REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 },
873 	{ REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 },
874 	{ REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 },
875 	{ REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 },
876 	{ REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 },
877 	{ REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 },
878 	{ REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 },
879 	{ REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004 },
880 	{ REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002 },
881 	{ REG_A6XX_RBBM_ISDB_CNT, 0x00000182 },
882 	{ REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 },
883 	{ REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 },
884 	{ REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 },
885 	{ REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 },
886 	{ REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 },
887 	{ REG_A6XX_RBBM_CLOCK_CNTL_FCHE, 0x00000222 },
888 	{ REG_A6XX_RBBM_CLOCK_DELAY_FCHE, 0x00000000 },
889 	{ REG_A6XX_RBBM_CLOCK_HYST_FCHE, 0x00000000 },
890 	{ REG_A6XX_RBBM_CLOCK_CNTL_GLC, 0x00222222 },
891 	{ REG_A6XX_RBBM_CLOCK_DELAY_GLC, 0x00000000 },
892 	{ REG_A6XX_RBBM_CLOCK_HYST_GLC, 0x00000000 },
893 	{ REG_A6XX_RBBM_CLOCK_CNTL_MHUB, 0x00000002 },
894 	{ REG_A6XX_RBBM_CLOCK_DELAY_MHUB, 0x00000000 },
895 	{ REG_A6XX_RBBM_CLOCK_HYST_MHUB, 0x00000000 },
896 	{}
897 };
898 
899 const struct adreno_reglist a730_hwcg[] = {
900 	{ REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222 },
901 	{ REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022222 },
902 	{ REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf },
903 	{ REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080 },
904 	{ REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222220 },
905 	{ REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 },
906 	{ REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 },
907 	{ REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00222222 },
908 	{ REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 },
909 	{ REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 },
910 	{ REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 },
911 	{ REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 },
912 	{ REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 },
913 	{ REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 },
914 	{ REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 },
915 	{ REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 },
916 	{ REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 },
917 	{ REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004 },
918 	{ REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002 },
919 	{ REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 },
920 	{ REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222 },
921 	{ REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 },
922 	{ REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x44000f00 },
923 	{ REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022 },
924 	{ REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00555555 },
925 	{ REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 },
926 	{ REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00440044 },
927 	{ REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 },
928 	{ REG_A7XX_RBBM_CLOCK_MODE2_GRAS, 0x00000222 },
929 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_GRAS, 0x00222222 },
930 	{ REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222223 },
931 	{ REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222 },
932 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_GPC, 0x00222222 },
933 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_VFD, 0x00002222 },
934 	{ REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 },
935 	{ REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 },
936 	{ REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 },
937 	{ REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000 },
938 	{ REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 },
939 	{ REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222 },
940 	{ REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 },
941 	{ REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 },
942 	{ REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 },
943 	{ REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002 },
944 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_LRZ, 0x55555552 },
945 	{ REG_A7XX_RBBM_CLOCK_MODE_CP, 0x00000223 },
946 	{ REG_A6XX_RBBM_CLOCK_CNTL, 0x8aa8aa82 },
947 	{ REG_A6XX_RBBM_ISDB_CNT, 0x00000182 },
948 	{ REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 },
949 	{ REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 },
950 	{ REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 },
951 	{ REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 },
952 	{ REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 },
953 	{},
954 };
955 
956 const struct adreno_reglist a740_hwcg[] = {
957 	{ REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222 },
958 	{ REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x22022222 },
959 	{ REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x003cf3cf },
960 	{ REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080 },
961 	{ REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222220 },
962 	{ REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 },
963 	{ REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 },
964 	{ REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00222222 },
965 	{ REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 },
966 	{ REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 },
967 	{ REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 },
968 	{ REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 },
969 	{ REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 },
970 	{ REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 },
971 	{ REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 },
972 	{ REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 },
973 	{ REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 },
974 	{ REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x00222222 },
975 	{ REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000444 },
976 	{ REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000222 },
977 	{ REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 },
978 	{ REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222 },
979 	{ REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 },
980 	{ REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x44000f00 },
981 	{ REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022 },
982 	{ REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00555555 },
983 	{ REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 },
984 	{ REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00440044 },
985 	{ REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 },
986 	{ REG_A7XX_RBBM_CLOCK_MODE2_GRAS, 0x00000222 },
987 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_GRAS, 0x00222222 },
988 	{ REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222223 },
989 	{ REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00222222 },
990 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_GPC, 0x00222222 },
991 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_VFD, 0x00002222 },
992 	{ REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 },
993 	{ REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 },
994 	{ REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 },
995 	{ REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00000000 },
996 	{ REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 },
997 	{ REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00000000 },
998 	{ REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 },
999 	{ REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 },
1000 	{ REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 },
1001 	{ REG_A7XX_RBBM_CLOCK_MODE_BV_LRZ, 0x55555552 },
1002 	{ REG_A7XX_RBBM_CLOCK_HYST2_VFD, 0x00000000 },
1003 	{ REG_A7XX_RBBM_CLOCK_MODE_CP, 0x00000222 },
1004 	{ REG_A6XX_RBBM_CLOCK_CNTL, 0x8aa8aa82 },
1005 	{ REG_A6XX_RBBM_ISDB_CNT, 0x00000182 },
1006 	{ REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 },
1007 	{ REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 },
1008 	{ REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 },
1009 	{ REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 },
1010 	{ REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 },
1011 	{},
1012 };
1013 
1014 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state)
1015 {
1016 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1017 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1018 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1019 	const struct adreno_reglist *reg;
1020 	unsigned int i;
1021 	u32 val, clock_cntl_on, cgc_mode;
1022 
1023 	if (!(adreno_gpu->info->hwcg || adreno_is_a7xx(adreno_gpu)))
1024 		return;
1025 
1026 	if (adreno_is_a630(adreno_gpu))
1027 		clock_cntl_on = 0x8aa8aa02;
1028 	else if (adreno_is_a610(adreno_gpu))
1029 		clock_cntl_on = 0xaaa8aa82;
1030 	else if (adreno_is_a702(adreno_gpu))
1031 		clock_cntl_on = 0xaaaaaa82;
1032 	else
1033 		clock_cntl_on = 0x8aa8aa82;
1034 
1035 	if (adreno_is_a7xx(adreno_gpu)) {
1036 		cgc_mode = adreno_is_a740_family(adreno_gpu) ? 0x20222 : 0x20000;
1037 
1038 		gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL,
1039 			  state ? cgc_mode : 0);
1040 		gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL,
1041 			  state ? 0x10111 : 0);
1042 		gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL,
1043 			  state ? 0x5555 : 0);
1044 	}
1045 
1046 	if (!adreno_gpu->info->hwcg) {
1047 		gpu_write(gpu, REG_A7XX_RBBM_CLOCK_CNTL_GLOBAL, 1);
1048 		gpu_write(gpu, REG_A7XX_RBBM_CGC_GLOBAL_LOAD_CMD, state ? 1 : 0);
1049 
1050 		if (state) {
1051 			gpu_write(gpu, REG_A7XX_RBBM_CGC_P2S_TRIG_CMD, 1);
1052 
1053 			if (gpu_poll_timeout(gpu, REG_A7XX_RBBM_CGC_P2S_STATUS, val,
1054 					     val & A7XX_RBBM_CGC_P2S_STATUS_TXDONE, 1, 10)) {
1055 				dev_err(&gpu->pdev->dev, "RBBM_CGC_P2S_STATUS TXDONE Poll failed\n");
1056 				return;
1057 			}
1058 
1059 			gpu_write(gpu, REG_A7XX_RBBM_CLOCK_CNTL_GLOBAL, 0);
1060 		}
1061 
1062 		return;
1063 	}
1064 
1065 	val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL);
1066 
1067 	/* Don't re-program the registers if they are already correct */
1068 	if ((!state && !val) || (state && (val == clock_cntl_on)))
1069 		return;
1070 
1071 	/* Disable SP clock before programming HWCG registers */
1072 	if (!adreno_is_a610_family(adreno_gpu) && !adreno_is_a7xx(adreno_gpu))
1073 		gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0);
1074 
1075 	for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++)
1076 		gpu_write(gpu, reg->offset, state ? reg->value : 0);
1077 
1078 	/* Enable SP clock */
1079 	if (!adreno_is_a610_family(adreno_gpu) && !adreno_is_a7xx(adreno_gpu))
1080 		gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1);
1081 
1082 	gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0);
1083 }
1084 
1085 /* For a615, a616, a618, a619, a630, a640 and a680 */
1086 static const u32 a6xx_protect[] = {
1087 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
1088 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
1089 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
1090 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
1091 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
1092 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
1093 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
1094 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
1095 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
1096 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
1097 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
1098 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
1099 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
1100 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
1101 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
1102 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
1103 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
1104 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
1105 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
1106 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
1107 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
1108 	A6XX_PROTECT_NORDWR(0x09e70, 0x0001),
1109 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
1110 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
1111 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
1112 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
1113 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
1114 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
1115 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
1116 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
1117 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
1118 	A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */
1119 };
1120 
1121 /* These are for a620 and a650 */
1122 static const u32 a650_protect[] = {
1123 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
1124 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
1125 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
1126 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
1127 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
1128 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
1129 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
1130 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
1131 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
1132 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
1133 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
1134 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
1135 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
1136 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
1137 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
1138 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
1139 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
1140 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
1141 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
1142 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
1143 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
1144 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
1145 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
1146 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
1147 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
1148 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
1149 	A6XX_PROTECT_NORDWR(0x0ae50, 0x032f),
1150 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
1151 	A6XX_PROTECT_NORDWR(0x0b608, 0x0007),
1152 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
1153 	A6XX_PROTECT_NORDWR(0x0be20, 0x17df),
1154 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
1155 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
1156 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
1157 	A6XX_PROTECT_NORDWR(0x1a800, 0x1fff),
1158 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
1159 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
1160 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
1161 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
1162 };
1163 
1164 /* These are for a635 and a660 */
1165 static const u32 a660_protect[] = {
1166 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
1167 	A6XX_PROTECT_RDONLY(0x00501, 0x0005),
1168 	A6XX_PROTECT_RDONLY(0x0050b, 0x02f4),
1169 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
1170 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
1171 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
1172 	A6XX_PROTECT_NORDWR(0x00800, 0x0082),
1173 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
1174 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
1175 	A6XX_PROTECT_RDONLY(0x008de, 0x00ae),
1176 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
1177 	A6XX_PROTECT_NORDWR(0x0098d, 0x0272),
1178 	A6XX_PROTECT_NORDWR(0x00e00, 0x0001),
1179 	A6XX_PROTECT_NORDWR(0x00e03, 0x000c),
1180 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
1181 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
1182 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
1183 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
1184 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
1185 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
1186 	A6XX_PROTECT_NORDWR(0x08e80, 0x027f),
1187 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
1188 	A6XX_PROTECT_NORDWR(0x09e60, 0x0011),
1189 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
1190 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
1191 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
1192 	A6XX_PROTECT_NORDWR(0x0ae50, 0x012f),
1193 	A6XX_PROTECT_NORDWR(0x0b604, 0x0000),
1194 	A6XX_PROTECT_NORDWR(0x0b608, 0x0006),
1195 	A6XX_PROTECT_NORDWR(0x0be02, 0x0001),
1196 	A6XX_PROTECT_NORDWR(0x0be20, 0x015f),
1197 	A6XX_PROTECT_NORDWR(0x0d000, 0x05ff),
1198 	A6XX_PROTECT_NORDWR(0x0f000, 0x0bff),
1199 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
1200 	A6XX_PROTECT_NORDWR(0x18400, 0x1fff),
1201 	A6XX_PROTECT_NORDWR(0x1a400, 0x1fff),
1202 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
1203 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
1204 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
1205 	A6XX_PROTECT_NORDWR(0x1f887, 0x001b),
1206 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */
1207 };
1208 
1209 /* These are for a690 */
1210 static const u32 a690_protect[] = {
1211 	A6XX_PROTECT_RDONLY(0x00000, 0x004ff),
1212 	A6XX_PROTECT_RDONLY(0x00501, 0x00001),
1213 	A6XX_PROTECT_RDONLY(0x0050b, 0x002f4),
1214 	A6XX_PROTECT_NORDWR(0x0050e, 0x00000),
1215 	A6XX_PROTECT_NORDWR(0x00510, 0x00000),
1216 	A6XX_PROTECT_NORDWR(0x00534, 0x00000),
1217 	A6XX_PROTECT_NORDWR(0x00800, 0x00082),
1218 	A6XX_PROTECT_NORDWR(0x008a0, 0x00008),
1219 	A6XX_PROTECT_NORDWR(0x008ab, 0x00024),
1220 	A6XX_PROTECT_RDONLY(0x008de, 0x000ae),
1221 	A6XX_PROTECT_NORDWR(0x00900, 0x0004d),
1222 	A6XX_PROTECT_NORDWR(0x0098d, 0x00272),
1223 	A6XX_PROTECT_NORDWR(0x00e00, 0x00001),
1224 	A6XX_PROTECT_NORDWR(0x00e03, 0x0000c),
1225 	A6XX_PROTECT_NORDWR(0x03c00, 0x000c3),
1226 	A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff),
1227 	A6XX_PROTECT_NORDWR(0x08630, 0x001cf),
1228 	A6XX_PROTECT_NORDWR(0x08e00, 0x00000),
1229 	A6XX_PROTECT_NORDWR(0x08e08, 0x00007),
1230 	A6XX_PROTECT_NORDWR(0x08e50, 0x0001f),
1231 	A6XX_PROTECT_NORDWR(0x08e80, 0x0027f),
1232 	A6XX_PROTECT_NORDWR(0x09624, 0x001db),
1233 	A6XX_PROTECT_NORDWR(0x09e60, 0x00011),
1234 	A6XX_PROTECT_NORDWR(0x09e78, 0x00187),
1235 	A6XX_PROTECT_NORDWR(0x0a630, 0x001cf),
1236 	A6XX_PROTECT_NORDWR(0x0ae02, 0x00000),
1237 	A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f),
1238 	A6XX_PROTECT_NORDWR(0x0b604, 0x00000),
1239 	A6XX_PROTECT_NORDWR(0x0b608, 0x00006),
1240 	A6XX_PROTECT_NORDWR(0x0be02, 0x00001),
1241 	A6XX_PROTECT_NORDWR(0x0be20, 0x0015f),
1242 	A6XX_PROTECT_NORDWR(0x0d000, 0x005ff),
1243 	A6XX_PROTECT_NORDWR(0x0f000, 0x00bff),
1244 	A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff),
1245 	A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */
1246 };
1247 
1248 static const u32 a730_protect[] = {
1249 	A6XX_PROTECT_RDONLY(0x00000, 0x04ff),
1250 	A6XX_PROTECT_RDONLY(0x0050b, 0x0058),
1251 	A6XX_PROTECT_NORDWR(0x0050e, 0x0000),
1252 	A6XX_PROTECT_NORDWR(0x00510, 0x0000),
1253 	A6XX_PROTECT_NORDWR(0x00534, 0x0000),
1254 	A6XX_PROTECT_RDONLY(0x005fb, 0x009d),
1255 	A6XX_PROTECT_NORDWR(0x00699, 0x01e9),
1256 	A6XX_PROTECT_NORDWR(0x008a0, 0x0008),
1257 	A6XX_PROTECT_NORDWR(0x008ab, 0x0024),
1258 	/* 0x008d0-0x008dd are unprotected on purpose for tools like perfetto */
1259 	A6XX_PROTECT_RDONLY(0x008de, 0x0154),
1260 	A6XX_PROTECT_NORDWR(0x00900, 0x004d),
1261 	A6XX_PROTECT_NORDWR(0x0098d, 0x00b2),
1262 	A6XX_PROTECT_NORDWR(0x00a41, 0x01be),
1263 	A6XX_PROTECT_NORDWR(0x00df0, 0x0001),
1264 	A6XX_PROTECT_NORDWR(0x00e01, 0x0000),
1265 	A6XX_PROTECT_NORDWR(0x00e07, 0x0008),
1266 	A6XX_PROTECT_NORDWR(0x03c00, 0x00c3),
1267 	A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff),
1268 	A6XX_PROTECT_NORDWR(0x08630, 0x01cf),
1269 	A6XX_PROTECT_NORDWR(0x08e00, 0x0000),
1270 	A6XX_PROTECT_NORDWR(0x08e08, 0x0000),
1271 	A6XX_PROTECT_NORDWR(0x08e50, 0x001f),
1272 	A6XX_PROTECT_NORDWR(0x08e80, 0x0280),
1273 	A6XX_PROTECT_NORDWR(0x09624, 0x01db),
1274 	A6XX_PROTECT_NORDWR(0x09e40, 0x0000),
1275 	A6XX_PROTECT_NORDWR(0x09e64, 0x000d),
1276 	A6XX_PROTECT_NORDWR(0x09e78, 0x0187),
1277 	A6XX_PROTECT_NORDWR(0x0a630, 0x01cf),
1278 	A6XX_PROTECT_NORDWR(0x0ae02, 0x0000),
1279 	A6XX_PROTECT_NORDWR(0x0ae50, 0x000f),
1280 	A6XX_PROTECT_NORDWR(0x0ae66, 0x0003),
1281 	A6XX_PROTECT_NORDWR(0x0ae6f, 0x0003),
1282 	A6XX_PROTECT_NORDWR(0x0b604, 0x0003),
1283 	A6XX_PROTECT_NORDWR(0x0ec00, 0x0fff),
1284 	A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff),
1285 	A6XX_PROTECT_NORDWR(0x18400, 0x0053),
1286 	A6XX_PROTECT_RDONLY(0x18454, 0x0004),
1287 	A6XX_PROTECT_NORDWR(0x18459, 0x1fff),
1288 	A6XX_PROTECT_NORDWR(0x1a459, 0x1fff),
1289 	A6XX_PROTECT_NORDWR(0x1c459, 0x1fff),
1290 	A6XX_PROTECT_NORDWR(0x1f400, 0x0443),
1291 	A6XX_PROTECT_RDONLY(0x1f844, 0x007b),
1292 	A6XX_PROTECT_NORDWR(0x1f860, 0x0000),
1293 	A6XX_PROTECT_NORDWR(0x1f878, 0x002a),
1294 	/* CP_PROTECT_REG[44, 46] are left untouched! */
1295 	0,
1296 	0,
1297 	0,
1298 	A6XX_PROTECT_NORDWR(0x1f8c0, 0x00000),
1299 };
1300 
1301 static void a6xx_set_cp_protect(struct msm_gpu *gpu)
1302 {
1303 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1304 	const u32 *regs = a6xx_protect;
1305 	unsigned i, count, count_max;
1306 
1307 	if (adreno_is_a650(adreno_gpu) || adreno_is_a702(adreno_gpu)) {
1308 		regs = a650_protect;
1309 		count = ARRAY_SIZE(a650_protect);
1310 		count_max = 48;
1311 		BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48);
1312 	} else if (adreno_is_a690(adreno_gpu)) {
1313 		regs = a690_protect;
1314 		count = ARRAY_SIZE(a690_protect);
1315 		count_max = 48;
1316 		BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48);
1317 	} else if (adreno_is_a660_family(adreno_gpu)) {
1318 		regs = a660_protect;
1319 		count = ARRAY_SIZE(a660_protect);
1320 		count_max = 48;
1321 		BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48);
1322 	} else if (adreno_is_a730(adreno_gpu) ||
1323 		   adreno_is_a740(adreno_gpu) ||
1324 		   adreno_is_a750(adreno_gpu)) {
1325 		regs = a730_protect;
1326 		count = ARRAY_SIZE(a730_protect);
1327 		count_max = 48;
1328 		BUILD_BUG_ON(ARRAY_SIZE(a730_protect) > 48);
1329 	} else {
1330 		regs = a6xx_protect;
1331 		count = ARRAY_SIZE(a6xx_protect);
1332 		count_max = 32;
1333 		BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32);
1334 	}
1335 
1336 	/*
1337 	 * Enable access protection to privileged registers, fault on an access
1338 	 * protect violation and select the last span to protect from the start
1339 	 * address all the way to the end of the register address space
1340 	 */
1341 	gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL,
1342 		  A6XX_CP_PROTECT_CNTL_ACCESS_PROT_EN |
1343 		  A6XX_CP_PROTECT_CNTL_ACCESS_FAULT_ON_VIOL_EN |
1344 		  A6XX_CP_PROTECT_CNTL_LAST_SPAN_INF_RANGE);
1345 
1346 	for (i = 0; i < count - 1; i++) {
1347 		/* Intentionally skip writing to some registers */
1348 		if (regs[i])
1349 			gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]);
1350 	}
1351 	/* last CP_PROTECT to have "infinite" length on the last entry */
1352 	gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]);
1353 }
1354 
1355 static void a6xx_calc_ubwc_config(struct adreno_gpu *gpu)
1356 {
1357 	/* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */
1358 	gpu->ubwc_config.rgb565_predicator = 0;
1359 	/* Unknown, introduced with A650 family */
1360 	gpu->ubwc_config.uavflagprd_inv = 0;
1361 	/* Whether the minimum access length is 64 bits */
1362 	gpu->ubwc_config.min_acc_len = 0;
1363 	/* Entirely magic, per-GPU-gen value */
1364 	gpu->ubwc_config.ubwc_mode = 0;
1365 	/*
1366 	 * The Highest Bank Bit value represents the bit of the highest DDR bank.
1367 	 * This should ideally use DRAM type detection.
1368 	 */
1369 	gpu->ubwc_config.highest_bank_bit = 15;
1370 
1371 	if (adreno_is_a610(gpu)) {
1372 		gpu->ubwc_config.highest_bank_bit = 13;
1373 		gpu->ubwc_config.min_acc_len = 1;
1374 		gpu->ubwc_config.ubwc_mode = 1;
1375 	}
1376 
1377 	if (adreno_is_a618(gpu))
1378 		gpu->ubwc_config.highest_bank_bit = 14;
1379 
1380 	if (adreno_is_a619_holi(gpu))
1381 		gpu->ubwc_config.highest_bank_bit = 13;
1382 
1383 	if (adreno_is_a640_family(gpu))
1384 		gpu->ubwc_config.amsbc = 1;
1385 
1386 	if (adreno_is_a650(gpu) ||
1387 	    adreno_is_a660(gpu) ||
1388 	    adreno_is_a690(gpu) ||
1389 	    adreno_is_a730(gpu) ||
1390 	    adreno_is_a740_family(gpu)) {
1391 		/* TODO: get ddr type from bootloader and use 2 for LPDDR4 */
1392 		gpu->ubwc_config.highest_bank_bit = 16;
1393 		gpu->ubwc_config.amsbc = 1;
1394 		gpu->ubwc_config.rgb565_predicator = 1;
1395 		gpu->ubwc_config.uavflagprd_inv = 2;
1396 	}
1397 
1398 	if (adreno_is_7c3(gpu)) {
1399 		gpu->ubwc_config.highest_bank_bit = 14;
1400 		gpu->ubwc_config.amsbc = 1;
1401 		gpu->ubwc_config.rgb565_predicator = 1;
1402 		gpu->ubwc_config.uavflagprd_inv = 2;
1403 	}
1404 
1405 	if (adreno_is_a702(gpu)) {
1406 		gpu->ubwc_config.highest_bank_bit = 14;
1407 		gpu->ubwc_config.min_acc_len = 1;
1408 		gpu->ubwc_config.ubwc_mode = 2;
1409 	}
1410 }
1411 
1412 static void a6xx_set_ubwc_config(struct msm_gpu *gpu)
1413 {
1414 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1415 	/*
1416 	 * We subtract 13 from the highest bank bit (13 is the minimum value
1417 	 * allowed by hw) and write the lowest two bits of the remaining value
1418 	 * as hbb_lo and the one above it as hbb_hi to the hardware.
1419 	 */
1420 	BUG_ON(adreno_gpu->ubwc_config.highest_bank_bit < 13);
1421 	u32 hbb = adreno_gpu->ubwc_config.highest_bank_bit - 13;
1422 	u32 hbb_hi = hbb >> 2;
1423 	u32 hbb_lo = hbb & 3;
1424 
1425 	gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL,
1426 		  adreno_gpu->ubwc_config.rgb565_predicator << 11 |
1427 		  hbb_hi << 10 | adreno_gpu->ubwc_config.amsbc << 4 |
1428 		  adreno_gpu->ubwc_config.min_acc_len << 3 |
1429 		  hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode);
1430 
1431 	gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 |
1432 		  adreno_gpu->ubwc_config.min_acc_len << 3 |
1433 		  hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode);
1434 
1435 	gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 |
1436 		  adreno_gpu->ubwc_config.uavflagprd_inv << 4 |
1437 		  adreno_gpu->ubwc_config.min_acc_len << 3 |
1438 		  hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode);
1439 
1440 	if (adreno_is_a7xx(adreno_gpu))
1441 		gpu_write(gpu, REG_A7XX_GRAS_NC_MODE_CNTL,
1442 			  FIELD_PREP(GENMASK(8, 5), hbb_lo));
1443 
1444 	gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL,
1445 		  adreno_gpu->ubwc_config.min_acc_len << 23 | hbb_lo << 21);
1446 }
1447 
1448 static int a6xx_cp_init(struct msm_gpu *gpu)
1449 {
1450 	struct msm_ringbuffer *ring = gpu->rb[0];
1451 
1452 	OUT_PKT7(ring, CP_ME_INIT, 8);
1453 
1454 	OUT_RING(ring, 0x0000002f);
1455 
1456 	/* Enable multiple hardware contexts */
1457 	OUT_RING(ring, 0x00000003);
1458 
1459 	/* Enable error detection */
1460 	OUT_RING(ring, 0x20000000);
1461 
1462 	/* Don't enable header dump */
1463 	OUT_RING(ring, 0x00000000);
1464 	OUT_RING(ring, 0x00000000);
1465 
1466 	/* No workarounds enabled */
1467 	OUT_RING(ring, 0x00000000);
1468 
1469 	/* Pad rest of the cmds with 0's */
1470 	OUT_RING(ring, 0x00000000);
1471 	OUT_RING(ring, 0x00000000);
1472 
1473 	a6xx_flush(gpu, ring);
1474 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
1475 }
1476 
1477 static int a7xx_cp_init(struct msm_gpu *gpu)
1478 {
1479 	struct msm_ringbuffer *ring = gpu->rb[0];
1480 	u32 mask;
1481 
1482 	/* Disable concurrent binning before sending CP init */
1483 	OUT_PKT7(ring, CP_THREAD_CONTROL, 1);
1484 	OUT_RING(ring, BIT(27));
1485 
1486 	OUT_PKT7(ring, CP_ME_INIT, 7);
1487 
1488 	/* Use multiple HW contexts */
1489 	mask = BIT(0);
1490 
1491 	/* Enable error detection */
1492 	mask |= BIT(1);
1493 
1494 	/* Set default reset state */
1495 	mask |= BIT(3);
1496 
1497 	/* Disable save/restore of performance counters across preemption */
1498 	mask |= BIT(6);
1499 
1500 	/* Enable the register init list with the spinlock */
1501 	mask |= BIT(8);
1502 
1503 	OUT_RING(ring, mask);
1504 
1505 	/* Enable multiple hardware contexts */
1506 	OUT_RING(ring, 0x00000003);
1507 
1508 	/* Enable error detection */
1509 	OUT_RING(ring, 0x20000000);
1510 
1511 	/* Operation mode mask */
1512 	OUT_RING(ring, 0x00000002);
1513 
1514 	/* *Don't* send a power up reg list for concurrent binning (TODO) */
1515 	/* Lo address */
1516 	OUT_RING(ring, 0x00000000);
1517 	/* Hi address */
1518 	OUT_RING(ring, 0x00000000);
1519 	/* BIT(31) set => read the regs from the list */
1520 	OUT_RING(ring, 0x00000000);
1521 
1522 	a6xx_flush(gpu, ring);
1523 	return a6xx_idle(gpu, ring) ? 0 : -EINVAL;
1524 }
1525 
1526 /*
1527  * Check that the microcode version is new enough to include several key
1528  * security fixes. Return true if the ucode is safe.
1529  */
1530 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu,
1531 		struct drm_gem_object *obj)
1532 {
1533 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1534 	struct msm_gpu *gpu = &adreno_gpu->base;
1535 	const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE];
1536 	u32 *buf = msm_gem_get_vaddr(obj);
1537 	bool ret = false;
1538 
1539 	if (IS_ERR(buf))
1540 		return false;
1541 
1542 	/* A7xx is safe! */
1543 	if (adreno_is_a7xx(adreno_gpu) || adreno_is_a702(adreno_gpu))
1544 		return true;
1545 
1546 	/*
1547 	 * Targets up to a640 (a618, a630 and a640) need to check for a
1548 	 * microcode version that is patched to support the whereami opcode or
1549 	 * one that is new enough to include it by default.
1550 	 *
1551 	 * a650 tier targets don't need whereami but still need to be
1552 	 * equal to or newer than 0.95 for other security fixes
1553 	 *
1554 	 * a660 targets have all the critical security fixes from the start
1555 	 */
1556 	if (!strcmp(sqe_name, "a630_sqe.fw")) {
1557 		/*
1558 		 * If the lowest nibble is 0xa that is an indication that this
1559 		 * microcode has been patched. The actual version is in dword
1560 		 * [3] but we only care about the patchlevel which is the lowest
1561 		 * nibble of dword [3]
1562 		 *
1563 		 * Otherwise check that the firmware is greater than or equal
1564 		 * to 1.90 which was the first version that had this fix built
1565 		 * in
1566 		 */
1567 		if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) ||
1568 			(buf[0] & 0xfff) >= 0x190) {
1569 			a6xx_gpu->has_whereami = true;
1570 			ret = true;
1571 			goto out;
1572 		}
1573 
1574 		DRM_DEV_ERROR(&gpu->pdev->dev,
1575 			"a630 SQE ucode is too old. Have version %x need at least %x\n",
1576 			buf[0] & 0xfff, 0x190);
1577 	} else if (!strcmp(sqe_name, "a650_sqe.fw")) {
1578 		if ((buf[0] & 0xfff) >= 0x095) {
1579 			ret = true;
1580 			goto out;
1581 		}
1582 
1583 		DRM_DEV_ERROR(&gpu->pdev->dev,
1584 			"a650 SQE ucode is too old. Have version %x need at least %x\n",
1585 			buf[0] & 0xfff, 0x095);
1586 	} else if (!strcmp(sqe_name, "a660_sqe.fw")) {
1587 		ret = true;
1588 	} else {
1589 		DRM_DEV_ERROR(&gpu->pdev->dev,
1590 			"unknown GPU, add it to a6xx_ucode_check_version()!!\n");
1591 	}
1592 out:
1593 	msm_gem_put_vaddr(obj);
1594 	return ret;
1595 }
1596 
1597 static int a6xx_ucode_load(struct msm_gpu *gpu)
1598 {
1599 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1600 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1601 
1602 	if (!a6xx_gpu->sqe_bo) {
1603 		a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu,
1604 			adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova);
1605 
1606 		if (IS_ERR(a6xx_gpu->sqe_bo)) {
1607 			int ret = PTR_ERR(a6xx_gpu->sqe_bo);
1608 
1609 			a6xx_gpu->sqe_bo = NULL;
1610 			DRM_DEV_ERROR(&gpu->pdev->dev,
1611 				"Could not allocate SQE ucode: %d\n", ret);
1612 
1613 			return ret;
1614 		}
1615 
1616 		msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw");
1617 		if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) {
1618 			msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
1619 			drm_gem_object_put(a6xx_gpu->sqe_bo);
1620 
1621 			a6xx_gpu->sqe_bo = NULL;
1622 			return -EPERM;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * Expanded APRIV and targets that support WHERE_AM_I both need a
1628 	 * privileged buffer to store the RPTR shadow
1629 	 */
1630 	if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) &&
1631 	    !a6xx_gpu->shadow_bo) {
1632 		a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
1633 						      sizeof(u32) * gpu->nr_rings,
1634 						      MSM_BO_WC | MSM_BO_MAP_PRIV,
1635 						      gpu->aspace, &a6xx_gpu->shadow_bo,
1636 						      &a6xx_gpu->shadow_iova);
1637 
1638 		if (IS_ERR(a6xx_gpu->shadow))
1639 			return PTR_ERR(a6xx_gpu->shadow);
1640 
1641 		msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow");
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static int a6xx_zap_shader_init(struct msm_gpu *gpu)
1648 {
1649 	static bool loaded;
1650 	int ret;
1651 
1652 	if (loaded)
1653 		return 0;
1654 
1655 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
1656 
1657 	loaded = !ret;
1658 	return ret;
1659 }
1660 
1661 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
1662 		       A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
1663 		       A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
1664 		       A6XX_RBBM_INT_0_MASK_CP_IB2 | \
1665 		       A6XX_RBBM_INT_0_MASK_CP_IB1 | \
1666 		       A6XX_RBBM_INT_0_MASK_CP_RB | \
1667 		       A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
1668 		       A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
1669 		       A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
1670 		       A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
1671 		       A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR)
1672 
1673 #define A7XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \
1674 		       A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \
1675 		       A6XX_RBBM_INT_0_MASK_RBBM_GPC_ERROR | \
1676 		       A6XX_RBBM_INT_0_MASK_CP_SW | \
1677 		       A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
1678 		       A6XX_RBBM_INT_0_MASK_PM4CPINTERRUPT | \
1679 		       A6XX_RBBM_INT_0_MASK_CP_RB_DONE_TS | \
1680 		       A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
1681 		       A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \
1682 		       A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \
1683 		       A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
1684 		       A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR | \
1685 		       A6XX_RBBM_INT_0_MASK_TSBWRITEERROR)
1686 
1687 #define A7XX_APRIV_MASK (A6XX_CP_APRIV_CNTL_ICACHE | \
1688 			 A6XX_CP_APRIV_CNTL_RBFETCH | \
1689 			 A6XX_CP_APRIV_CNTL_RBPRIVLEVEL | \
1690 			 A6XX_CP_APRIV_CNTL_RBRPWB)
1691 
1692 #define A7XX_BR_APRIVMASK (A7XX_APRIV_MASK | \
1693 			   A6XX_CP_APRIV_CNTL_CDREAD | \
1694 			   A6XX_CP_APRIV_CNTL_CDWRITE)
1695 
1696 static int hw_init(struct msm_gpu *gpu)
1697 {
1698 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1699 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
1700 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1701 	u64 gmem_range_min;
1702 	int ret;
1703 
1704 	if (!adreno_has_gmu_wrapper(adreno_gpu)) {
1705 		/* Make sure the GMU keeps the GPU on while we set it up */
1706 		ret = a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
1707 		if (ret)
1708 			return ret;
1709 	}
1710 
1711 	/* Clear GBIF halt in case GX domain was not collapsed */
1712 	if (adreno_is_a619_holi(adreno_gpu)) {
1713 		gpu_write(gpu, REG_A6XX_GBIF_HALT, 0);
1714 		gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0);
1715 		/* Let's make extra sure that the GPU can access the memory.. */
1716 		mb();
1717 	} else if (a6xx_has_gbif(adreno_gpu)) {
1718 		gpu_write(gpu, REG_A6XX_GBIF_HALT, 0);
1719 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0);
1720 		/* Let's make extra sure that the GPU can access the memory.. */
1721 		mb();
1722 	}
1723 
1724 	/* Some GPUs are stubborn and take their sweet time to unhalt GBIF! */
1725 	if (adreno_is_a7xx(adreno_gpu) && a6xx_has_gbif(adreno_gpu))
1726 		spin_until(!gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK));
1727 
1728 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0);
1729 
1730 	if (adreno_is_a619_holi(adreno_gpu))
1731 		a6xx_sptprac_enable(gmu);
1732 
1733 	/*
1734 	 * Disable the trusted memory range - we don't actually supported secure
1735 	 * memory rendering at this point in time and we don't want to block off
1736 	 * part of the virtual memory space.
1737 	 */
1738 	gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000);
1739 	gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
1740 
1741 	if (!adreno_is_a7xx(adreno_gpu)) {
1742 		/* Turn on 64 bit addressing for all blocks */
1743 		gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1);
1744 		gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1);
1745 		gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1);
1746 		gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1);
1747 		gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1);
1748 		gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1);
1749 		gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1);
1750 		gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1);
1751 		gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1);
1752 		gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1);
1753 		gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1);
1754 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
1755 	}
1756 
1757 	/* enable hardware clockgating */
1758 	a6xx_set_hwcg(gpu, true);
1759 
1760 	/* VBIF/GBIF start*/
1761 	if (adreno_is_a610_family(adreno_gpu) ||
1762 	    adreno_is_a640_family(adreno_gpu) ||
1763 	    adreno_is_a650_family(adreno_gpu) ||
1764 	    adreno_is_a7xx(adreno_gpu)) {
1765 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620);
1766 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620);
1767 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620);
1768 		gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620);
1769 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL,
1770 			  adreno_is_a7xx(adreno_gpu) ? 0x2120212 : 0x3);
1771 	} else {
1772 		gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3);
1773 	}
1774 
1775 	if (adreno_is_a630(adreno_gpu))
1776 		gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
1777 
1778 	if (adreno_is_a7xx(adreno_gpu))
1779 		gpu_write(gpu, REG_A6XX_UCHE_GBIF_GX_CONFIG, 0x10240e0);
1780 
1781 	/* Make all blocks contribute to the GPU BUSY perf counter */
1782 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff);
1783 
1784 	/* Disable L2 bypass in the UCHE */
1785 	if (adreno_is_a7xx(adreno_gpu)) {
1786 		gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu);
1787 		gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu);
1788 	} else {
1789 		gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu);
1790 		gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu);
1791 		gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu);
1792 	}
1793 
1794 	if (!(adreno_is_a650_family(adreno_gpu) ||
1795 	      adreno_is_a702(adreno_gpu) ||
1796 	      adreno_is_a730(adreno_gpu))) {
1797 		gmem_range_min = adreno_is_a740_family(adreno_gpu) ? SZ_16M : SZ_1M;
1798 
1799 		/* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */
1800 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, gmem_range_min);
1801 
1802 		gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX,
1803 			gmem_range_min + adreno_gpu->info->gmem - 1);
1804 	}
1805 
1806 	if (adreno_is_a7xx(adreno_gpu))
1807 		gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, BIT(23));
1808 	else {
1809 		gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804);
1810 		gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4);
1811 	}
1812 
1813 	if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) {
1814 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140);
1815 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1816 	} else if (adreno_is_a610_family(adreno_gpu)) {
1817 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060);
1818 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16);
1819 	} else if (!adreno_is_a7xx(adreno_gpu)) {
1820 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0);
1821 		gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c);
1822 	}
1823 
1824 	if (adreno_is_a660_family(adreno_gpu))
1825 		gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020);
1826 
1827 	/* Setting the mem pool size */
1828 	if (adreno_is_a610(adreno_gpu)) {
1829 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48);
1830 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47);
1831 	} else if (adreno_is_a702(adreno_gpu)) {
1832 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 64);
1833 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 63);
1834 	} else if (!adreno_is_a7xx(adreno_gpu))
1835 		gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128);
1836 
1837 	/* Setting the primFifo thresholds default values,
1838 	 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer
1839 	*/
1840 	if (adreno_is_a702(adreno_gpu))
1841 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x0000c000);
1842 	else if (adreno_is_a690(adreno_gpu))
1843 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00800200);
1844 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1845 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1846 	else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu))
1847 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200);
1848 	else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu))
1849 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200);
1850 	else if (adreno_is_a619(adreno_gpu))
1851 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000);
1852 	else if (adreno_is_a610(adreno_gpu))
1853 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000);
1854 	else if (!adreno_is_a7xx(adreno_gpu))
1855 		gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000);
1856 
1857 	/* Set the AHB default slave response to "ERROR" */
1858 	gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1);
1859 
1860 	/* Turn on performance counters */
1861 	gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1);
1862 
1863 	if (adreno_is_a7xx(adreno_gpu)) {
1864 		/* Turn on the IFPC counter (countable 4 on XOCLK4) */
1865 		gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_1,
1866 			  FIELD_PREP(GENMASK(7, 0), 0x4));
1867 	}
1868 
1869 	/* Select CP0 to always count cycles */
1870 	gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT);
1871 
1872 	a6xx_set_ubwc_config(gpu);
1873 
1874 	/* Enable fault detection */
1875 	if (adreno_is_a730(adreno_gpu) ||
1876 	    adreno_is_a740_family(adreno_gpu))
1877 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0xcfffff);
1878 	else if (adreno_is_a690(adreno_gpu))
1879 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x4fffff);
1880 	else if (adreno_is_a619(adreno_gpu))
1881 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff);
1882 	else if (adreno_is_a610(adreno_gpu) || adreno_is_a702(adreno_gpu))
1883 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff);
1884 	else
1885 		gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff);
1886 
1887 	gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, BIT(7) | 0x1);
1888 
1889 	/* Set weights for bicubic filtering */
1890 	if (adreno_is_a650_family(adreno_gpu)) {
1891 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0);
1892 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1,
1893 			0x3fe05ff4);
1894 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2,
1895 			0x3fa0ebee);
1896 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3,
1897 			0x3f5193ed);
1898 		gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4,
1899 			0x3f0243f0);
1900 	}
1901 
1902 	/* Set up the CX GMU counter 0 to count busy ticks */
1903 	gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
1904 
1905 	/* Enable the power counter */
1906 	gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5));
1907 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
1908 
1909 	/* Protect registers from the CP */
1910 	a6xx_set_cp_protect(gpu);
1911 
1912 	if (adreno_is_a660_family(adreno_gpu)) {
1913 		if (adreno_is_a690(adreno_gpu))
1914 			gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x00028801);
1915 		else
1916 			gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1);
1917 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0);
1918 	} else if (adreno_is_a702(adreno_gpu)) {
1919 		/* Something to do with the HLSQ cluster */
1920 		gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, BIT(24));
1921 	}
1922 
1923 	if (adreno_is_a690(adreno_gpu))
1924 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x90);
1925 	/* Set dualQ + disable afull for A660 GPU */
1926 	else if (adreno_is_a660(adreno_gpu))
1927 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906);
1928 	else if (adreno_is_a7xx(adreno_gpu))
1929 		gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG,
1930 			  FIELD_PREP(GENMASK(19, 16), 6) |
1931 			  FIELD_PREP(GENMASK(15, 12), 6) |
1932 			  FIELD_PREP(GENMASK(11, 8), 9) |
1933 			  BIT(3) | BIT(2) |
1934 			  FIELD_PREP(GENMASK(1, 0), 2));
1935 
1936 	/* Enable expanded apriv for targets that support it */
1937 	if (gpu->hw_apriv) {
1938 		if (adreno_is_a7xx(adreno_gpu)) {
1939 			gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1940 				  A7XX_BR_APRIVMASK);
1941 			gpu_write(gpu, REG_A7XX_CP_BV_APRIV_CNTL,
1942 				  A7XX_APRIV_MASK);
1943 			gpu_write(gpu, REG_A7XX_CP_LPAC_APRIV_CNTL,
1944 				  A7XX_APRIV_MASK);
1945 		} else
1946 			gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL,
1947 				  BIT(6) | BIT(5) | BIT(3) | BIT(2) | BIT(1));
1948 	}
1949 
1950 	/* Enable interrupts */
1951 	gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK,
1952 		  adreno_is_a7xx(adreno_gpu) ? A7XX_INT_MASK : A6XX_INT_MASK);
1953 
1954 	ret = adreno_hw_init(gpu);
1955 	if (ret)
1956 		goto out;
1957 
1958 	gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova);
1959 
1960 	/* Set the ringbuffer address */
1961 	gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova);
1962 
1963 	/* Targets that support extended APRIV can use the RPTR shadow from
1964 	 * hardware but all the other ones need to disable the feature. Targets
1965 	 * that support the WHERE_AM_I opcode can use that instead
1966 	 */
1967 	if (adreno_gpu->base.hw_apriv)
1968 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT);
1969 	else
1970 		gpu_write(gpu, REG_A6XX_CP_RB_CNTL,
1971 			MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
1972 
1973 	/* Configure the RPTR shadow if needed: */
1974 	if (a6xx_gpu->shadow_bo) {
1975 		gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR,
1976 			shadowptr(a6xx_gpu, gpu->rb[0]));
1977 	}
1978 
1979 	/* ..which means "always" on A7xx, also for BV shadow */
1980 	if (adreno_is_a7xx(adreno_gpu)) {
1981 		gpu_write64(gpu, REG_A7XX_CP_BV_RB_RPTR_ADDR,
1982 			    rbmemptr(gpu->rb[0], bv_fence));
1983 	}
1984 
1985 	/* Always come up on rb 0 */
1986 	a6xx_gpu->cur_ring = gpu->rb[0];
1987 
1988 	gpu->cur_ctx_seqno = 0;
1989 
1990 	/* Enable the SQE_to start the CP engine */
1991 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1);
1992 
1993 	ret = adreno_is_a7xx(adreno_gpu) ? a7xx_cp_init(gpu) : a6xx_cp_init(gpu);
1994 	if (ret)
1995 		goto out;
1996 
1997 	/*
1998 	 * Try to load a zap shader into the secure world. If successful
1999 	 * we can use the CP to switch out of secure mode. If not then we
2000 	 * have no resource but to try to switch ourselves out manually. If we
2001 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
2002 	 * be blocked and a permissions violation will soon follow.
2003 	 */
2004 	ret = a6xx_zap_shader_init(gpu);
2005 	if (!ret) {
2006 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
2007 		OUT_RING(gpu->rb[0], 0x00000000);
2008 
2009 		a6xx_flush(gpu, gpu->rb[0]);
2010 		if (!a6xx_idle(gpu, gpu->rb[0]))
2011 			return -EINVAL;
2012 	} else if (ret == -ENODEV) {
2013 		/*
2014 		 * This device does not use zap shader (but print a warning
2015 		 * just in case someone got their dt wrong.. hopefully they
2016 		 * have a debug UART to realize the error of their ways...
2017 		 * if you mess this up you are about to crash horribly)
2018 		 */
2019 		dev_warn_once(gpu->dev->dev,
2020 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
2021 		gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0);
2022 		ret = 0;
2023 	} else {
2024 		return ret;
2025 	}
2026 
2027 out:
2028 	if (adreno_has_gmu_wrapper(adreno_gpu))
2029 		return ret;
2030 	/*
2031 	 * Tell the GMU that we are done touching the GPU and it can start power
2032 	 * management
2033 	 */
2034 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET);
2035 
2036 	if (a6xx_gpu->gmu.legacy) {
2037 		/* Take the GMU out of its special boot mode */
2038 		a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER);
2039 	}
2040 
2041 	return ret;
2042 }
2043 
2044 static int a6xx_hw_init(struct msm_gpu *gpu)
2045 {
2046 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2047 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2048 	int ret;
2049 
2050 	mutex_lock(&a6xx_gpu->gmu.lock);
2051 	ret = hw_init(gpu);
2052 	mutex_unlock(&a6xx_gpu->gmu.lock);
2053 
2054 	return ret;
2055 }
2056 
2057 static void a6xx_dump(struct msm_gpu *gpu)
2058 {
2059 	DRM_DEV_INFO(&gpu->pdev->dev, "status:   %08x\n",
2060 			gpu_read(gpu, REG_A6XX_RBBM_STATUS));
2061 	adreno_dump(gpu);
2062 }
2063 
2064 static void a6xx_recover(struct msm_gpu *gpu)
2065 {
2066 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2067 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2068 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
2069 	int i, active_submits;
2070 
2071 	adreno_dump_info(gpu);
2072 
2073 	for (i = 0; i < 8; i++)
2074 		DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i,
2075 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i)));
2076 
2077 	if (hang_debug)
2078 		a6xx_dump(gpu);
2079 
2080 	/*
2081 	 * To handle recovery specific sequences during the rpm suspend we are
2082 	 * about to trigger
2083 	 */
2084 	a6xx_gpu->hung = true;
2085 
2086 	/* Halt SQE first */
2087 	gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3);
2088 
2089 	pm_runtime_dont_use_autosuspend(&gpu->pdev->dev);
2090 
2091 	/* active_submit won't change until we make a submission */
2092 	mutex_lock(&gpu->active_lock);
2093 	active_submits = gpu->active_submits;
2094 
2095 	/*
2096 	 * Temporarily clear active_submits count to silence a WARN() in the
2097 	 * runtime suspend cb
2098 	 */
2099 	gpu->active_submits = 0;
2100 
2101 	if (adreno_has_gmu_wrapper(adreno_gpu)) {
2102 		/* Drain the outstanding traffic on memory buses */
2103 		a6xx_bus_clear_pending_transactions(adreno_gpu, true);
2104 
2105 		/* Reset the GPU to a clean state */
2106 		a6xx_gpu_sw_reset(gpu, true);
2107 		a6xx_gpu_sw_reset(gpu, false);
2108 	}
2109 
2110 	reinit_completion(&gmu->pd_gate);
2111 	dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb);
2112 	dev_pm_genpd_synced_poweroff(gmu->cxpd);
2113 
2114 	/* Drop the rpm refcount from active submits */
2115 	if (active_submits)
2116 		pm_runtime_put(&gpu->pdev->dev);
2117 
2118 	/* And the final one from recover worker */
2119 	pm_runtime_put_sync(&gpu->pdev->dev);
2120 
2121 	if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000)))
2122 		DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n");
2123 
2124 	dev_pm_genpd_remove_notifier(gmu->cxpd);
2125 
2126 	pm_runtime_use_autosuspend(&gpu->pdev->dev);
2127 
2128 	if (active_submits)
2129 		pm_runtime_get(&gpu->pdev->dev);
2130 
2131 	pm_runtime_get_sync(&gpu->pdev->dev);
2132 
2133 	gpu->active_submits = active_submits;
2134 	mutex_unlock(&gpu->active_lock);
2135 
2136 	msm_gpu_hw_init(gpu);
2137 	a6xx_gpu->hung = false;
2138 }
2139 
2140 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid)
2141 {
2142 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2143 	static const char *uche_clients[7] = {
2144 		"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ",
2145 	};
2146 	u32 val;
2147 
2148 	if (adreno_is_a7xx(adreno_gpu)) {
2149 		if (mid != 1 && mid != 2 && mid != 3 && mid != 8)
2150 			return "UNKNOWN";
2151 	} else {
2152 		if (mid < 1 || mid > 3)
2153 			return "UNKNOWN";
2154 	}
2155 
2156 	/*
2157 	 * The source of the data depends on the mid ID read from FSYNR1.
2158 	 * and the client ID read from the UCHE block
2159 	 */
2160 	val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF);
2161 
2162 	if (adreno_is_a7xx(adreno_gpu)) {
2163 		/* Bit 3 for mid=3 indicates BR or BV */
2164 		static const char *uche_clients_a7xx[16] = {
2165 			"BR_VFD", "BR_SP", "BR_VSC", "BR_VPC",
2166 			"BR_HLSQ", "BR_PC", "BR_LRZ", "BR_TP",
2167 			"BV_VFD", "BV_SP", "BV_VSC", "BV_VPC",
2168 			"BV_HLSQ", "BV_PC", "BV_LRZ", "BV_TP",
2169 		};
2170 
2171 		/* LPAC has the same clients as BR and BV, but because it is
2172 		 * compute-only some of them do not exist and there are holes
2173 		 * in the array.
2174 		 */
2175 		static const char *uche_clients_lpac_a7xx[8] = {
2176 			"-", "LPAC_SP", "-", "-",
2177 			"LPAC_HLSQ", "-", "-", "LPAC_TP",
2178 		};
2179 
2180 		val &= GENMASK(6, 0);
2181 
2182 		/* mid=3 refers to BR or BV */
2183 		if (mid == 3) {
2184 			if (val < ARRAY_SIZE(uche_clients_a7xx))
2185 				return uche_clients_a7xx[val];
2186 			else
2187 				return "UCHE";
2188 		}
2189 
2190 		/* mid=8 refers to LPAC */
2191 		if (mid == 8) {
2192 			if (val < ARRAY_SIZE(uche_clients_lpac_a7xx))
2193 				return uche_clients_lpac_a7xx[val];
2194 			else
2195 				return "UCHE_LPAC";
2196 		}
2197 
2198 		/* mid=2 is a catchall for everything else in LPAC */
2199 		if (mid == 2)
2200 			return "UCHE_LPAC";
2201 
2202 		/* mid=1 is a catchall for everything else in BR/BV */
2203 		return "UCHE";
2204 	} else if (adreno_is_a660_family(adreno_gpu)) {
2205 		static const char *uche_clients_a660[8] = {
2206 			"VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", "TP",
2207 		};
2208 
2209 		static const char *uche_clients_a660_not[8] = {
2210 			"not VFD", "not SP", "not VSC", "not VPC",
2211 			"not HLSQ", "not PC", "not LRZ", "not TP",
2212 		};
2213 
2214 		val &= GENMASK(6, 0);
2215 
2216 		if (mid == 3 && val < ARRAY_SIZE(uche_clients_a660))
2217 			return uche_clients_a660[val];
2218 
2219 		if (mid == 1 && val < ARRAY_SIZE(uche_clients_a660_not))
2220 			return uche_clients_a660_not[val];
2221 
2222 		return "UCHE";
2223 	} else {
2224 		/* mid = 3 is most precise and refers to only one block per client */
2225 		if (mid == 3)
2226 			return uche_clients[val & 7];
2227 
2228 		/* For mid=2 the source is TP or VFD except when the client id is 0 */
2229 		if (mid == 2)
2230 			return ((val & 7) == 0) ? "TP" : "TP|VFD";
2231 
2232 		/* For mid=1 just return "UCHE" as a catchall for everything else */
2233 		return "UCHE";
2234 	}
2235 }
2236 
2237 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id)
2238 {
2239 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2240 
2241 	if (id == 0)
2242 		return "CP";
2243 	else if (id == 4)
2244 		return "CCU";
2245 	else if (id == 6)
2246 		return "CDP Prefetch";
2247 	else if (id == 7)
2248 		return "GMU";
2249 	else if (id == 5 && adreno_is_a7xx(adreno_gpu))
2250 		return "Flag cache";
2251 
2252 	return a6xx_uche_fault_block(gpu, id);
2253 }
2254 
2255 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
2256 {
2257 	struct msm_gpu *gpu = arg;
2258 	struct adreno_smmu_fault_info *info = data;
2259 	const char *block = "unknown";
2260 
2261 	u32 scratch[] = {
2262 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)),
2263 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)),
2264 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)),
2265 			gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)),
2266 	};
2267 
2268 	if (info)
2269 		block = a6xx_fault_block(gpu, info->fsynr1 & 0xff);
2270 
2271 	return adreno_fault_handler(gpu, iova, flags, info, block, scratch);
2272 }
2273 
2274 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu)
2275 {
2276 	u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS);
2277 
2278 	if (status & A6XX_CP_INT_CP_OPCODE_ERROR) {
2279 		u32 val;
2280 
2281 		gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1);
2282 		val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA);
2283 		dev_err_ratelimited(&gpu->pdev->dev,
2284 			"CP | opcode error | possible opcode=0x%8.8X\n",
2285 			val);
2286 	}
2287 
2288 	if (status & A6XX_CP_INT_CP_UCODE_ERROR)
2289 		dev_err_ratelimited(&gpu->pdev->dev,
2290 			"CP ucode error interrupt\n");
2291 
2292 	if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR)
2293 		dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n",
2294 			gpu_read(gpu, REG_A6XX_CP_HW_FAULT));
2295 
2296 	if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
2297 		u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS);
2298 
2299 		dev_err_ratelimited(&gpu->pdev->dev,
2300 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
2301 			val & (1 << 20) ? "READ" : "WRITE",
2302 			(val & 0x3ffff), val);
2303 	}
2304 
2305 	if (status & A6XX_CP_INT_CP_AHB_ERROR && !adreno_is_a7xx(to_adreno_gpu(gpu)))
2306 		dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n");
2307 
2308 	if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR)
2309 		dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n");
2310 
2311 	if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR)
2312 		dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n");
2313 
2314 }
2315 
2316 static void a6xx_fault_detect_irq(struct msm_gpu *gpu)
2317 {
2318 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2319 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2320 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
2321 
2322 	/*
2323 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
2324 	 * but the fault handler will trigger the devcore dump, and we want
2325 	 * to otherwise resume normally rather than killing the submit, so
2326 	 * just bail.
2327 	 */
2328 	if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT)
2329 		return;
2330 
2331 	/*
2332 	 * Force the GPU to stay on until after we finish
2333 	 * collecting information
2334 	 */
2335 	if (!adreno_has_gmu_wrapper(adreno_gpu))
2336 		gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1);
2337 
2338 	DRM_DEV_ERROR(&gpu->pdev->dev,
2339 		"gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
2340 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
2341 		gpu_read(gpu, REG_A6XX_RBBM_STATUS),
2342 		gpu_read(gpu, REG_A6XX_CP_RB_RPTR),
2343 		gpu_read(gpu, REG_A6XX_CP_RB_WPTR),
2344 		gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
2345 		gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
2346 		gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
2347 		gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE));
2348 
2349 	/* Turn off the hangcheck timer to keep it from bothering us */
2350 	del_timer(&gpu->hangcheck_timer);
2351 
2352 	kthread_queue_work(gpu->worker, &gpu->recover_work);
2353 }
2354 
2355 static irqreturn_t a6xx_irq(struct msm_gpu *gpu)
2356 {
2357 	struct msm_drm_private *priv = gpu->dev->dev_private;
2358 	u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS);
2359 
2360 	gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status);
2361 
2362 	if (priv->disable_err_irq)
2363 		status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS;
2364 
2365 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT)
2366 		a6xx_fault_detect_irq(gpu);
2367 
2368 	if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR)
2369 		dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n");
2370 
2371 	if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR)
2372 		a6xx_cp_hw_err_irq(gpu);
2373 
2374 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW)
2375 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n");
2376 
2377 	if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
2378 		dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n");
2379 
2380 	if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
2381 		dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n");
2382 
2383 	if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS)
2384 		msm_gpu_retire(gpu);
2385 
2386 	return IRQ_HANDLED;
2387 }
2388 
2389 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu)
2390 {
2391 	llcc_slice_deactivate(a6xx_gpu->llc_slice);
2392 	llcc_slice_deactivate(a6xx_gpu->htw_llc_slice);
2393 }
2394 
2395 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
2396 {
2397 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
2398 	struct msm_gpu *gpu = &adreno_gpu->base;
2399 	u32 cntl1_regval = 0;
2400 
2401 	if (IS_ERR(a6xx_gpu->llc_mmio))
2402 		return;
2403 
2404 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
2405 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
2406 
2407 		gpu_scid &= 0x1f;
2408 		cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) |
2409 			       (gpu_scid << 15) | (gpu_scid << 20);
2410 
2411 		/* On A660, the SCID programming for UCHE traffic is done in
2412 		 * A6XX_GBIF_SCACHE_CNTL0[14:10]
2413 		 */
2414 		if (adreno_is_a660_family(adreno_gpu))
2415 			gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) |
2416 				(1 << 8), (gpu_scid << 10) | (1 << 8));
2417 	}
2418 
2419 	/*
2420 	 * For targets with a MMU500, activate the slice but don't program the
2421 	 * register.  The XBL will take care of that.
2422 	 */
2423 	if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) {
2424 		if (!a6xx_gpu->have_mmu500) {
2425 			u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice);
2426 
2427 			gpuhtw_scid &= 0x1f;
2428 			cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid);
2429 		}
2430 	}
2431 
2432 	if (!cntl1_regval)
2433 		return;
2434 
2435 	/*
2436 	 * Program the slice IDs for the various GPU blocks and GPU MMU
2437 	 * pagetables
2438 	 */
2439 	if (!a6xx_gpu->have_mmu500) {
2440 		a6xx_llc_write(a6xx_gpu,
2441 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval);
2442 
2443 		/*
2444 		 * Program cacheability overrides to not allocate cache
2445 		 * lines on a write miss
2446 		 */
2447 		a6xx_llc_rmw(a6xx_gpu,
2448 			REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03);
2449 		return;
2450 	}
2451 
2452 	gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval);
2453 }
2454 
2455 static void a7xx_llc_activate(struct a6xx_gpu *a6xx_gpu)
2456 {
2457 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
2458 	struct msm_gpu *gpu = &adreno_gpu->base;
2459 
2460 	if (IS_ERR(a6xx_gpu->llc_mmio))
2461 		return;
2462 
2463 	if (!llcc_slice_activate(a6xx_gpu->llc_slice)) {
2464 		u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice);
2465 
2466 		gpu_scid &= GENMASK(4, 0);
2467 
2468 		gpu_write(gpu, REG_A6XX_GBIF_SCACHE_CNTL1,
2469 			  FIELD_PREP(GENMASK(29, 25), gpu_scid) |
2470 			  FIELD_PREP(GENMASK(24, 20), gpu_scid) |
2471 			  FIELD_PREP(GENMASK(19, 15), gpu_scid) |
2472 			  FIELD_PREP(GENMASK(14, 10), gpu_scid) |
2473 			  FIELD_PREP(GENMASK(9, 5), gpu_scid) |
2474 			  FIELD_PREP(GENMASK(4, 0), gpu_scid));
2475 
2476 		gpu_write(gpu, REG_A6XX_GBIF_SCACHE_CNTL0,
2477 			  FIELD_PREP(GENMASK(14, 10), gpu_scid) |
2478 			  BIT(8));
2479 	}
2480 
2481 	llcc_slice_activate(a6xx_gpu->htw_llc_slice);
2482 }
2483 
2484 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu)
2485 {
2486 	/* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */
2487 	if (adreno_has_gmu_wrapper(&a6xx_gpu->base))
2488 		return;
2489 
2490 	llcc_slice_putd(a6xx_gpu->llc_slice);
2491 	llcc_slice_putd(a6xx_gpu->htw_llc_slice);
2492 }
2493 
2494 static void a6xx_llc_slices_init(struct platform_device *pdev,
2495 		struct a6xx_gpu *a6xx_gpu, bool is_a7xx)
2496 {
2497 	struct device_node *phandle;
2498 
2499 	/* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */
2500 	if (adreno_has_gmu_wrapper(&a6xx_gpu->base))
2501 		return;
2502 
2503 	/*
2504 	 * There is a different programming path for A6xx targets with an
2505 	 * mmu500 attached, so detect if that is the case
2506 	 */
2507 	phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0);
2508 	a6xx_gpu->have_mmu500 = (phandle &&
2509 		of_device_is_compatible(phandle, "arm,mmu-500"));
2510 	of_node_put(phandle);
2511 
2512 	if (is_a7xx || !a6xx_gpu->have_mmu500)
2513 		a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem");
2514 	else
2515 		a6xx_gpu->llc_mmio = NULL;
2516 
2517 	a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU);
2518 	a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW);
2519 
2520 	if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice))
2521 		a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL);
2522 }
2523 
2524 #define GBIF_CLIENT_HALT_MASK		BIT(0)
2525 #define GBIF_ARB_HALT_MASK		BIT(1)
2526 #define VBIF_XIN_HALT_CTRL0_MASK	GENMASK(3, 0)
2527 #define VBIF_RESET_ACK_MASK		0xF0
2528 #define GPR0_GBIF_HALT_REQUEST		0x1E0
2529 
2530 void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off)
2531 {
2532 	struct msm_gpu *gpu = &adreno_gpu->base;
2533 
2534 	if (adreno_is_a619_holi(adreno_gpu)) {
2535 		gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST);
2536 		spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) &
2537 				(VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK);
2538 	} else if (!a6xx_has_gbif(adreno_gpu)) {
2539 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK);
2540 		spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) &
2541 				(VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK);
2542 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
2543 
2544 		return;
2545 	}
2546 
2547 	if (gx_off) {
2548 		/* Halt the gx side of GBIF */
2549 		gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1);
2550 		spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1);
2551 	}
2552 
2553 	/* Halt new client requests on GBIF */
2554 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK);
2555 	spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
2556 			(GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK);
2557 
2558 	/* Halt all AXI requests on GBIF */
2559 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK);
2560 	spin_until((gpu_read(gpu,  REG_A6XX_GBIF_HALT_ACK) &
2561 			(GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK);
2562 
2563 	/* The GBIF halt needs to be explicitly cleared */
2564 	gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0);
2565 }
2566 
2567 void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert)
2568 {
2569 	/* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */
2570 	if (adreno_is_a610(to_adreno_gpu(gpu)))
2571 		return;
2572 
2573 	gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert);
2574 	/* Perform a bogus read and add a brief delay to ensure ordering. */
2575 	gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD);
2576 	udelay(1);
2577 
2578 	/* The reset line needs to be asserted for at least 100 us */
2579 	if (assert)
2580 		udelay(100);
2581 }
2582 
2583 static int a6xx_gmu_pm_resume(struct msm_gpu *gpu)
2584 {
2585 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2586 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2587 	int ret;
2588 
2589 	gpu->needs_hw_init = true;
2590 
2591 	trace_msm_gpu_resume(0);
2592 
2593 	mutex_lock(&a6xx_gpu->gmu.lock);
2594 	ret = a6xx_gmu_resume(a6xx_gpu);
2595 	mutex_unlock(&a6xx_gpu->gmu.lock);
2596 	if (ret)
2597 		return ret;
2598 
2599 	msm_devfreq_resume(gpu);
2600 
2601 	adreno_is_a7xx(adreno_gpu) ? a7xx_llc_activate(a6xx_gpu) : a6xx_llc_activate(a6xx_gpu);
2602 
2603 	return ret;
2604 }
2605 
2606 static int a6xx_pm_resume(struct msm_gpu *gpu)
2607 {
2608 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2609 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2610 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
2611 	unsigned long freq = gpu->fast_rate;
2612 	struct dev_pm_opp *opp;
2613 	int ret;
2614 
2615 	gpu->needs_hw_init = true;
2616 
2617 	trace_msm_gpu_resume(0);
2618 
2619 	mutex_lock(&a6xx_gpu->gmu.lock);
2620 
2621 	opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq);
2622 	if (IS_ERR(opp)) {
2623 		ret = PTR_ERR(opp);
2624 		goto err_set_opp;
2625 	}
2626 	dev_pm_opp_put(opp);
2627 
2628 	/* Set the core clock and bus bw, having VDD scaling in mind */
2629 	dev_pm_opp_set_opp(&gpu->pdev->dev, opp);
2630 
2631 	pm_runtime_resume_and_get(gmu->dev);
2632 	pm_runtime_resume_and_get(gmu->gxpd);
2633 
2634 	ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks);
2635 	if (ret)
2636 		goto err_bulk_clk;
2637 
2638 	if (adreno_is_a619_holi(adreno_gpu))
2639 		a6xx_sptprac_enable(gmu);
2640 
2641 	/* If anything goes south, tear the GPU down piece by piece.. */
2642 	if (ret) {
2643 err_bulk_clk:
2644 		pm_runtime_put(gmu->gxpd);
2645 		pm_runtime_put(gmu->dev);
2646 		dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
2647 	}
2648 err_set_opp:
2649 	mutex_unlock(&a6xx_gpu->gmu.lock);
2650 
2651 	if (!ret)
2652 		msm_devfreq_resume(gpu);
2653 
2654 	return ret;
2655 }
2656 
2657 static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu)
2658 {
2659 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2660 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2661 	int i, ret;
2662 
2663 	trace_msm_gpu_suspend(0);
2664 
2665 	a6xx_llc_deactivate(a6xx_gpu);
2666 
2667 	msm_devfreq_suspend(gpu);
2668 
2669 	mutex_lock(&a6xx_gpu->gmu.lock);
2670 	ret = a6xx_gmu_stop(a6xx_gpu);
2671 	mutex_unlock(&a6xx_gpu->gmu.lock);
2672 	if (ret)
2673 		return ret;
2674 
2675 	if (a6xx_gpu->shadow_bo)
2676 		for (i = 0; i < gpu->nr_rings; i++)
2677 			a6xx_gpu->shadow[i] = 0;
2678 
2679 	gpu->suspend_count++;
2680 
2681 	return 0;
2682 }
2683 
2684 static int a6xx_pm_suspend(struct msm_gpu *gpu)
2685 {
2686 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2687 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2688 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
2689 	int i;
2690 
2691 	trace_msm_gpu_suspend(0);
2692 
2693 	msm_devfreq_suspend(gpu);
2694 
2695 	mutex_lock(&a6xx_gpu->gmu.lock);
2696 
2697 	/* Drain the outstanding traffic on memory buses */
2698 	a6xx_bus_clear_pending_transactions(adreno_gpu, true);
2699 
2700 	if (adreno_is_a619_holi(adreno_gpu))
2701 		a6xx_sptprac_disable(gmu);
2702 
2703 	clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks);
2704 
2705 	pm_runtime_put_sync(gmu->gxpd);
2706 	dev_pm_opp_set_opp(&gpu->pdev->dev, NULL);
2707 	pm_runtime_put_sync(gmu->dev);
2708 
2709 	mutex_unlock(&a6xx_gpu->gmu.lock);
2710 
2711 	if (a6xx_gpu->shadow_bo)
2712 		for (i = 0; i < gpu->nr_rings; i++)
2713 			a6xx_gpu->shadow[i] = 0;
2714 
2715 	gpu->suspend_count++;
2716 
2717 	return 0;
2718 }
2719 
2720 static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
2721 {
2722 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2723 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2724 
2725 	mutex_lock(&a6xx_gpu->gmu.lock);
2726 
2727 	/* Force the GPU power on so we can read this register */
2728 	a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
2729 
2730 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
2731 
2732 	a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET);
2733 
2734 	mutex_unlock(&a6xx_gpu->gmu.lock);
2735 
2736 	return 0;
2737 }
2738 
2739 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
2740 {
2741 	*value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER);
2742 	return 0;
2743 }
2744 
2745 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu)
2746 {
2747 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2748 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2749 
2750 	return a6xx_gpu->cur_ring;
2751 }
2752 
2753 static void a6xx_destroy(struct msm_gpu *gpu)
2754 {
2755 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2756 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2757 
2758 	if (a6xx_gpu->sqe_bo) {
2759 		msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace);
2760 		drm_gem_object_put(a6xx_gpu->sqe_bo);
2761 	}
2762 
2763 	if (a6xx_gpu->shadow_bo) {
2764 		msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace);
2765 		drm_gem_object_put(a6xx_gpu->shadow_bo);
2766 	}
2767 
2768 	a6xx_llc_slices_destroy(a6xx_gpu);
2769 
2770 	a6xx_gmu_remove(a6xx_gpu);
2771 
2772 	adreno_gpu_cleanup(adreno_gpu);
2773 
2774 	kfree(a6xx_gpu);
2775 }
2776 
2777 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
2778 {
2779 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2780 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2781 	u64 busy_cycles;
2782 
2783 	/* 19.2MHz */
2784 	*out_sample_rate = 19200000;
2785 
2786 	busy_cycles = gmu_read64(&a6xx_gpu->gmu,
2787 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L,
2788 			REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H);
2789 
2790 	return busy_cycles;
2791 }
2792 
2793 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
2794 			      bool suspended)
2795 {
2796 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2797 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2798 
2799 	mutex_lock(&a6xx_gpu->gmu.lock);
2800 	a6xx_gmu_set_freq(gpu, opp, suspended);
2801 	mutex_unlock(&a6xx_gpu->gmu.lock);
2802 }
2803 
2804 static struct msm_gem_address_space *
2805 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev)
2806 {
2807 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2808 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2809 	unsigned long quirks = 0;
2810 
2811 	/*
2812 	 * This allows GPU to set the bus attributes required to use system
2813 	 * cache on behalf of the iommu page table walker.
2814 	 */
2815 	if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) &&
2816 	    !device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY))
2817 		quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA;
2818 
2819 	return adreno_iommu_create_address_space(gpu, pdev, quirks);
2820 }
2821 
2822 static struct msm_gem_address_space *
2823 a6xx_create_private_address_space(struct msm_gpu *gpu)
2824 {
2825 	struct msm_mmu *mmu;
2826 
2827 	mmu = msm_iommu_pagetable_create(gpu->aspace->mmu);
2828 
2829 	if (IS_ERR(mmu))
2830 		return ERR_CAST(mmu);
2831 
2832 	return msm_gem_address_space_create(mmu,
2833 		"gpu", 0x100000000ULL,
2834 		adreno_private_address_space_size(gpu));
2835 }
2836 
2837 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
2838 {
2839 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
2840 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
2841 
2842 	if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami)
2843 		return a6xx_gpu->shadow[ring->id];
2844 
2845 	return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR);
2846 }
2847 
2848 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
2849 {
2850 	struct msm_cp_state cp_state = {
2851 		.ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE),
2852 		.ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE),
2853 		.ib1_rem  = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE),
2854 		.ib2_rem  = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE),
2855 	};
2856 	bool progress;
2857 
2858 	/*
2859 	 * Adjust the remaining data to account for what has already been
2860 	 * fetched from memory, but not yet consumed by the SQE.
2861 	 *
2862 	 * This is not *technically* correct, the amount buffered could
2863 	 * exceed the IB size due to hw prefetching ahead, but:
2864 	 *
2865 	 * (1) We aren't trying to find the exact position, just whether
2866 	 *     progress has been made
2867 	 * (2) The CP_REG_TO_MEM at the end of a submit should be enough
2868 	 *     to prevent prefetching into an unrelated submit.  (And
2869 	 *     either way, at some point the ROQ will be full.)
2870 	 */
2871 	cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16;
2872 	cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16;
2873 
2874 	progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state));
2875 
2876 	ring->last_cp_state = cp_state;
2877 
2878 	return progress;
2879 }
2880 
2881 static u32 fuse_to_supp_hw(const struct adreno_info *info, u32 fuse)
2882 {
2883 	if (!info->speedbins)
2884 		return UINT_MAX;
2885 
2886 	for (int i = 0; info->speedbins[i].fuse != SHRT_MAX; i++)
2887 		if (info->speedbins[i].fuse == fuse)
2888 			return BIT(info->speedbins[i].speedbin);
2889 
2890 	return UINT_MAX;
2891 }
2892 
2893 static int a6xx_set_supported_hw(struct device *dev, const struct adreno_info *info)
2894 {
2895 	u32 supp_hw;
2896 	u32 speedbin;
2897 	int ret;
2898 
2899 	ret = adreno_read_speedbin(dev, &speedbin);
2900 	/*
2901 	 * -ENOENT means that the platform doesn't support speedbin which is
2902 	 * fine
2903 	 */
2904 	if (ret == -ENOENT) {
2905 		return 0;
2906 	} else if (ret) {
2907 		dev_err_probe(dev, ret,
2908 			      "failed to read speed-bin. Some OPPs may not be supported by hardware\n");
2909 		return ret;
2910 	}
2911 
2912 	supp_hw = fuse_to_supp_hw(info, speedbin);
2913 
2914 	if (supp_hw == UINT_MAX) {
2915 		DRM_DEV_ERROR(dev,
2916 			"missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n",
2917 			speedbin);
2918 		supp_hw = BIT(0); /* Default */
2919 	}
2920 
2921 	ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1);
2922 	if (ret)
2923 		return ret;
2924 
2925 	return 0;
2926 }
2927 
2928 static const struct adreno_gpu_funcs funcs = {
2929 	.base = {
2930 		.get_param = adreno_get_param,
2931 		.set_param = adreno_set_param,
2932 		.hw_init = a6xx_hw_init,
2933 		.ucode_load = a6xx_ucode_load,
2934 		.pm_suspend = a6xx_gmu_pm_suspend,
2935 		.pm_resume = a6xx_gmu_pm_resume,
2936 		.recover = a6xx_recover,
2937 		.submit = a6xx_submit,
2938 		.active_ring = a6xx_active_ring,
2939 		.irq = a6xx_irq,
2940 		.destroy = a6xx_destroy,
2941 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2942 		.show = a6xx_show,
2943 #endif
2944 		.gpu_busy = a6xx_gpu_busy,
2945 		.gpu_get_freq = a6xx_gmu_get_freq,
2946 		.gpu_set_freq = a6xx_gpu_set_freq,
2947 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2948 		.gpu_state_get = a6xx_gpu_state_get,
2949 		.gpu_state_put = a6xx_gpu_state_put,
2950 #endif
2951 		.create_address_space = a6xx_create_address_space,
2952 		.create_private_address_space = a6xx_create_private_address_space,
2953 		.get_rptr = a6xx_get_rptr,
2954 		.progress = a6xx_progress,
2955 	},
2956 	.get_timestamp = a6xx_gmu_get_timestamp,
2957 };
2958 
2959 static const struct adreno_gpu_funcs funcs_gmuwrapper = {
2960 	.base = {
2961 		.get_param = adreno_get_param,
2962 		.set_param = adreno_set_param,
2963 		.hw_init = a6xx_hw_init,
2964 		.ucode_load = a6xx_ucode_load,
2965 		.pm_suspend = a6xx_pm_suspend,
2966 		.pm_resume = a6xx_pm_resume,
2967 		.recover = a6xx_recover,
2968 		.submit = a6xx_submit,
2969 		.active_ring = a6xx_active_ring,
2970 		.irq = a6xx_irq,
2971 		.destroy = a6xx_destroy,
2972 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2973 		.show = a6xx_show,
2974 #endif
2975 		.gpu_busy = a6xx_gpu_busy,
2976 #if defined(CONFIG_DRM_MSM_GPU_STATE)
2977 		.gpu_state_get = a6xx_gpu_state_get,
2978 		.gpu_state_put = a6xx_gpu_state_put,
2979 #endif
2980 		.create_address_space = a6xx_create_address_space,
2981 		.create_private_address_space = a6xx_create_private_address_space,
2982 		.get_rptr = a6xx_get_rptr,
2983 		.progress = a6xx_progress,
2984 	},
2985 	.get_timestamp = a6xx_get_timestamp,
2986 };
2987 
2988 static const struct adreno_gpu_funcs funcs_a7xx = {
2989 	.base = {
2990 		.get_param = adreno_get_param,
2991 		.set_param = adreno_set_param,
2992 		.hw_init = a6xx_hw_init,
2993 		.ucode_load = a6xx_ucode_load,
2994 		.pm_suspend = a6xx_gmu_pm_suspend,
2995 		.pm_resume = a6xx_gmu_pm_resume,
2996 		.recover = a6xx_recover,
2997 		.submit = a7xx_submit,
2998 		.active_ring = a6xx_active_ring,
2999 		.irq = a6xx_irq,
3000 		.destroy = a6xx_destroy,
3001 #if defined(CONFIG_DRM_MSM_GPU_STATE)
3002 		.show = a6xx_show,
3003 #endif
3004 		.gpu_busy = a6xx_gpu_busy,
3005 		.gpu_get_freq = a6xx_gmu_get_freq,
3006 		.gpu_set_freq = a6xx_gpu_set_freq,
3007 #if defined(CONFIG_DRM_MSM_GPU_STATE)
3008 		.gpu_state_get = a6xx_gpu_state_get,
3009 		.gpu_state_put = a6xx_gpu_state_put,
3010 #endif
3011 		.create_address_space = a6xx_create_address_space,
3012 		.create_private_address_space = a6xx_create_private_address_space,
3013 		.get_rptr = a6xx_get_rptr,
3014 		.progress = a6xx_progress,
3015 	},
3016 	.get_timestamp = a6xx_gmu_get_timestamp,
3017 };
3018 
3019 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev)
3020 {
3021 	struct msm_drm_private *priv = dev->dev_private;
3022 	struct platform_device *pdev = priv->gpu_pdev;
3023 	struct adreno_platform_config *config = pdev->dev.platform_data;
3024 	struct device_node *node;
3025 	struct a6xx_gpu *a6xx_gpu;
3026 	struct adreno_gpu *adreno_gpu;
3027 	struct msm_gpu *gpu;
3028 	bool is_a7xx;
3029 	int ret;
3030 
3031 	a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL);
3032 	if (!a6xx_gpu)
3033 		return ERR_PTR(-ENOMEM);
3034 
3035 	adreno_gpu = &a6xx_gpu->base;
3036 	gpu = &adreno_gpu->base;
3037 
3038 	mutex_init(&a6xx_gpu->gmu.lock);
3039 
3040 	adreno_gpu->registers = NULL;
3041 
3042 	/* Check if there is a GMU phandle and set it up */
3043 	node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0);
3044 	/* FIXME: How do we gracefully handle this? */
3045 	BUG_ON(!node);
3046 
3047 	adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper");
3048 
3049 	adreno_gpu->base.hw_apriv =
3050 		!!(config->info->quirks & ADRENO_QUIRK_HAS_HW_APRIV);
3051 
3052 	/* gpu->info only gets assigned in adreno_gpu_init() */
3053 	is_a7xx = config->info->family == ADRENO_7XX_GEN1 ||
3054 		  config->info->family == ADRENO_7XX_GEN2 ||
3055 		  config->info->family == ADRENO_7XX_GEN3;
3056 
3057 	a6xx_llc_slices_init(pdev, a6xx_gpu, is_a7xx);
3058 
3059 	ret = a6xx_set_supported_hw(&pdev->dev, config->info);
3060 	if (ret) {
3061 		a6xx_destroy(&(a6xx_gpu->base.base));
3062 		return ERR_PTR(ret);
3063 	}
3064 
3065 	if (is_a7xx)
3066 		ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_a7xx, 1);
3067 	else if (adreno_has_gmu_wrapper(adreno_gpu))
3068 		ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1);
3069 	else
3070 		ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1);
3071 	if (ret) {
3072 		a6xx_destroy(&(a6xx_gpu->base.base));
3073 		return ERR_PTR(ret);
3074 	}
3075 
3076 	/*
3077 	 * For now only clamp to idle freq for devices where this is known not
3078 	 * to cause power supply issues:
3079 	 */
3080 	if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu))
3081 		priv->gpu_clamp_to_idle = true;
3082 
3083 	if (adreno_has_gmu_wrapper(adreno_gpu))
3084 		ret = a6xx_gmu_wrapper_init(a6xx_gpu, node);
3085 	else
3086 		ret = a6xx_gmu_init(a6xx_gpu, node);
3087 	of_node_put(node);
3088 	if (ret) {
3089 		a6xx_destroy(&(a6xx_gpu->base.base));
3090 		return ERR_PTR(ret);
3091 	}
3092 
3093 	if (gpu->aspace)
3094 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu,
3095 				a6xx_fault_handler);
3096 
3097 	a6xx_calc_ubwc_config(adreno_gpu);
3098 
3099 	return gpu;
3100 }
3101