1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/pm_domain.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 62 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 65 } 66 } 67 68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 69 { 70 uint32_t wptr; 71 unsigned long flags; 72 73 update_shadow_rptr(gpu, ring); 74 75 spin_lock_irqsave(&ring->preempt_lock, flags); 76 77 /* Copy the shadow to the actual register */ 78 ring->cur = ring->next; 79 80 /* Make sure to wrap wptr if we need to */ 81 wptr = get_wptr(ring); 82 83 spin_unlock_irqrestore(&ring->preempt_lock, flags); 84 85 /* Make sure everything is posted before making a decision */ 86 mb(); 87 88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 89 } 90 91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 92 u64 iova) 93 { 94 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 96 CP_REG_TO_MEM_0_CNT(2) | 97 CP_REG_TO_MEM_0_64B); 98 OUT_RING(ring, lower_32_bits(iova)); 99 OUT_RING(ring, upper_32_bits(iova)); 100 } 101 102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 103 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 104 { 105 bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1; 106 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 107 phys_addr_t ttbr; 108 u32 asid; 109 u64 memptr = rbmemptr(ring, ttbr0); 110 111 if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno) 112 return; 113 114 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 115 return; 116 117 if (!sysprof) { 118 if (!adreno_is_a7xx(adreno_gpu)) { 119 /* Turn off protected mode to write to special registers */ 120 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 121 OUT_RING(ring, 0); 122 } 123 124 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1); 125 OUT_RING(ring, 1); 126 } 127 128 /* Execute the table update */ 129 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 130 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 131 132 OUT_RING(ring, 133 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 134 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 135 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 136 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 137 138 /* 139 * Write the new TTBR0 to the memstore. This is good for debugging. 140 */ 141 OUT_PKT7(ring, CP_MEM_WRITE, 4); 142 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 143 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 144 OUT_RING(ring, lower_32_bits(ttbr)); 145 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 146 147 /* 148 * Sync both threads after switching pagetables and enable BR only 149 * to make sure BV doesn't race ahead while BR is still switching 150 * pagetables. 151 */ 152 if (adreno_is_a7xx(&a6xx_gpu->base)) { 153 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 154 OUT_RING(ring, CP_THREAD_CONTROL_0_SYNC_THREADS | CP_SET_THREAD_BR); 155 } 156 157 /* 158 * And finally, trigger a uche flush to be sure there isn't anything 159 * lingering in that part of the GPU 160 */ 161 162 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 163 OUT_RING(ring, CACHE_INVALIDATE); 164 165 if (!sysprof) { 166 /* 167 * Wait for SRAM clear after the pgtable update, so the 168 * two can happen in parallel: 169 */ 170 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); 171 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ)); 172 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO( 173 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS)); 174 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0)); 175 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1)); 176 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1)); 177 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0)); 178 179 if (!adreno_is_a7xx(adreno_gpu)) { 180 /* Re-enable protected mode: */ 181 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 182 OUT_RING(ring, 1); 183 } 184 } 185 } 186 187 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 188 { 189 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 190 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 191 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 192 struct msm_ringbuffer *ring = submit->ring; 193 unsigned int i, ibs = 0; 194 195 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 196 197 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 198 rbmemptr_stats(ring, index, cpcycles_start)); 199 200 /* 201 * For PM4 the GMU register offsets are calculated from the base of the 202 * GPU registers so we need to add 0x1a800 to the register value on A630 203 * to get the right value from PM4. 204 */ 205 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 206 rbmemptr_stats(ring, index, alwayson_start)); 207 208 /* Invalidate CCU depth and color */ 209 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 210 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 211 212 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 213 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 214 215 /* Submit the commands */ 216 for (i = 0; i < submit->nr_cmds; i++) { 217 switch (submit->cmd[i].type) { 218 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 219 break; 220 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 221 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 222 break; 223 fallthrough; 224 case MSM_SUBMIT_CMD_BUF: 225 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 226 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 227 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 228 OUT_RING(ring, submit->cmd[i].size); 229 ibs++; 230 break; 231 } 232 233 /* 234 * Periodically update shadow-wptr if needed, so that we 235 * can see partial progress of submits with large # of 236 * cmds.. otherwise we could needlessly stall waiting for 237 * ringbuffer state, simply due to looking at a shadow 238 * rptr value that has not been updated 239 */ 240 if ((ibs % 32) == 0) 241 update_shadow_rptr(gpu, ring); 242 } 243 244 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 245 rbmemptr_stats(ring, index, cpcycles_end)); 246 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 247 rbmemptr_stats(ring, index, alwayson_end)); 248 249 /* Write the fence to the scratch register */ 250 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 251 OUT_RING(ring, submit->seqno); 252 253 /* 254 * Execute a CACHE_FLUSH_TS event. This will ensure that the 255 * timestamp is written to the memory and then triggers the interrupt 256 */ 257 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 258 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 259 CP_EVENT_WRITE_0_IRQ); 260 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 261 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 262 OUT_RING(ring, submit->seqno); 263 264 trace_msm_gpu_submit_flush(submit, 265 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER)); 266 267 a6xx_flush(gpu, ring); 268 } 269 270 static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 271 { 272 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 273 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 274 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 275 struct msm_ringbuffer *ring = submit->ring; 276 unsigned int i, ibs = 0; 277 278 /* 279 * Toggle concurrent binning for pagetable switch and set the thread to 280 * BR since only it can execute the pagetable switch packets. 281 */ 282 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 283 OUT_RING(ring, CP_THREAD_CONTROL_0_SYNC_THREADS | CP_SET_THREAD_BR); 284 285 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 286 287 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 288 rbmemptr_stats(ring, index, cpcycles_start)); 289 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 290 rbmemptr_stats(ring, index, alwayson_start)); 291 292 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 293 OUT_RING(ring, CP_SET_THREAD_BOTH); 294 295 OUT_PKT7(ring, CP_SET_MARKER, 1); 296 OUT_RING(ring, 0x101); /* IFPC disable */ 297 298 OUT_PKT7(ring, CP_SET_MARKER, 1); 299 OUT_RING(ring, 0x00d); /* IB1LIST start */ 300 301 /* Submit the commands */ 302 for (i = 0; i < submit->nr_cmds; i++) { 303 switch (submit->cmd[i].type) { 304 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 305 break; 306 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 307 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 308 break; 309 fallthrough; 310 case MSM_SUBMIT_CMD_BUF: 311 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 312 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 313 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 314 OUT_RING(ring, submit->cmd[i].size); 315 ibs++; 316 break; 317 } 318 319 /* 320 * Periodically update shadow-wptr if needed, so that we 321 * can see partial progress of submits with large # of 322 * cmds.. otherwise we could needlessly stall waiting for 323 * ringbuffer state, simply due to looking at a shadow 324 * rptr value that has not been updated 325 */ 326 if ((ibs % 32) == 0) 327 update_shadow_rptr(gpu, ring); 328 } 329 330 OUT_PKT7(ring, CP_SET_MARKER, 1); 331 OUT_RING(ring, 0x00e); /* IB1LIST end */ 332 333 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 334 rbmemptr_stats(ring, index, cpcycles_end)); 335 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 336 rbmemptr_stats(ring, index, alwayson_end)); 337 338 /* Write the fence to the scratch register */ 339 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 340 OUT_RING(ring, submit->seqno); 341 342 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 343 OUT_RING(ring, CP_SET_THREAD_BR); 344 345 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 346 OUT_RING(ring, CCU_INVALIDATE_DEPTH); 347 348 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 349 OUT_RING(ring, CCU_INVALIDATE_COLOR); 350 351 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 352 OUT_RING(ring, CP_SET_THREAD_BV); 353 354 /* 355 * Make sure the timestamp is committed once BV pipe is 356 * completely done with this submission. 357 */ 358 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 359 OUT_RING(ring, CACHE_CLEAN | BIT(27)); 360 OUT_RING(ring, lower_32_bits(rbmemptr(ring, bv_fence))); 361 OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence))); 362 OUT_RING(ring, submit->seqno); 363 364 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 365 OUT_RING(ring, CP_SET_THREAD_BR); 366 367 /* 368 * This makes sure that BR doesn't race ahead and commit 369 * timestamp to memstore while BV is still processing 370 * this submission. 371 */ 372 OUT_PKT7(ring, CP_WAIT_TIMESTAMP, 4); 373 OUT_RING(ring, 0); 374 OUT_RING(ring, lower_32_bits(rbmemptr(ring, bv_fence))); 375 OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence))); 376 OUT_RING(ring, submit->seqno); 377 378 /* write the ringbuffer timestamp */ 379 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 380 OUT_RING(ring, CACHE_CLEAN | CP_EVENT_WRITE_0_IRQ | BIT(27)); 381 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 382 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 383 OUT_RING(ring, submit->seqno); 384 385 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 386 OUT_RING(ring, CP_SET_THREAD_BOTH); 387 388 OUT_PKT7(ring, CP_SET_MARKER, 1); 389 OUT_RING(ring, 0x100); /* IFPC enable */ 390 391 trace_msm_gpu_submit_flush(submit, 392 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER)); 393 394 a6xx_flush(gpu, ring); 395 } 396 397 const struct adreno_reglist a612_hwcg[] = { 398 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 399 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 400 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081}, 401 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 402 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 403 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 404 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 405 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 406 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 407 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 408 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 409 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 410 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 411 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 412 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 413 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 414 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 415 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222}, 416 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 417 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 418 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022}, 419 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 421 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 422 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 423 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 424 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, 425 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 426 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 427 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 428 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 429 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 430 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 431 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 432 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 433 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 434 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 435 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 436 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 437 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 438 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 439 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 440 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 441 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 442 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 443 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 444 {}, 445 }; 446 447 /* For a615 family (a615, a616, a618 and a619) */ 448 const struct adreno_reglist a615_hwcg[] = { 449 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 450 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 451 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 452 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 453 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 454 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 455 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 456 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 457 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 458 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 459 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 460 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 461 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 462 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 463 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 464 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 465 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 466 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 467 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 468 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 469 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 470 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 471 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 472 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 473 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 474 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 475 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 476 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 477 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 478 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 479 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 480 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 481 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 482 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 483 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 484 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 485 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020}, 486 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 487 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 488 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 489 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 490 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00}, 491 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00}, 492 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00}, 493 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 494 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 495 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 496 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 497 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 498 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 499 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 500 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 501 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 502 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 503 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 504 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 505 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 506 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 507 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 508 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 509 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 510 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 511 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 512 {}, 513 }; 514 515 const struct adreno_reglist a630_hwcg[] = { 516 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 517 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 518 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 519 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 520 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 521 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 522 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 523 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 524 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 525 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 526 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 527 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 528 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 529 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 530 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 531 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 532 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 533 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 534 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 535 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 536 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 537 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 538 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 539 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 540 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 541 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 542 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 543 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 544 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 545 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 546 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 547 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 548 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 549 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 550 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 551 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 552 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 553 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 554 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 555 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 556 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 557 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 558 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 559 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 560 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 561 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 562 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 563 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 564 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 565 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 566 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 567 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 568 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 569 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 570 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 571 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 572 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 573 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 574 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 575 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 576 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 577 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 578 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 579 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 580 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 581 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 582 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 583 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 584 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 585 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 586 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 587 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 588 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 589 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 590 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 591 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 592 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 593 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 594 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 595 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 596 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 597 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 598 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 599 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 600 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 601 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 602 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 603 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 604 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 605 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 606 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 607 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 608 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 609 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 610 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 611 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 612 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 613 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 614 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 615 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 616 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 617 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 618 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 619 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 620 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 621 {}, 622 }; 623 624 const struct adreno_reglist a640_hwcg[] = { 625 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 626 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 627 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 628 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 629 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 630 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 631 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 632 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 633 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 634 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 635 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 636 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 637 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 638 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 639 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 640 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 641 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 642 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 643 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 644 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 645 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 646 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 647 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 648 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 649 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 650 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 651 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 652 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 653 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 654 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 655 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 656 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 657 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 658 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 659 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 660 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 661 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 662 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 663 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 664 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 665 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 666 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 667 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 668 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 669 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 670 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 671 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 672 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 673 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 674 {}, 675 }; 676 677 const struct adreno_reglist a650_hwcg[] = { 678 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 679 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 680 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 681 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 682 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 683 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 684 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 685 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 686 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 687 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 688 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 689 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 690 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 691 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 692 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 693 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 694 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 695 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 696 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 697 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 698 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 699 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 700 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 701 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 702 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 703 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 704 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 705 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 706 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 707 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 708 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 709 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 710 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 711 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 712 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 713 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 714 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 715 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 716 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 717 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 718 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 719 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 720 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 721 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 722 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 723 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 724 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 725 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 726 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 727 {}, 728 }; 729 730 const struct adreno_reglist a660_hwcg[] = { 731 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 732 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 733 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 734 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 735 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 736 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 737 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 738 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 739 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 740 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 741 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 742 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 743 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 744 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 745 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 746 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 747 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 748 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 749 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 750 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 751 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 752 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 753 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 754 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 755 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 756 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 757 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 758 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 759 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 760 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 761 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 762 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 763 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 764 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 765 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 766 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 767 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 768 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 769 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 770 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 771 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 772 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 773 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 774 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 775 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 776 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 777 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 778 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 779 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 780 {}, 781 }; 782 783 const struct adreno_reglist a690_hwcg[] = { 784 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 785 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 786 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 787 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 788 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 789 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 790 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 791 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 792 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 793 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 794 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 795 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 796 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 797 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 798 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 799 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 800 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 801 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 802 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 803 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 804 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 805 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 806 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 807 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 808 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 809 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 810 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 811 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 812 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 813 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 814 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 815 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 816 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 817 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 818 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 819 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 820 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 821 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 822 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 823 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 824 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 825 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 826 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 827 {REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82}, 828 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 829 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 830 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 831 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 832 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 833 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 834 {REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200}, 835 {REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111}, 836 {REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555}, 837 {} 838 }; 839 840 const struct adreno_reglist a730_hwcg[] = { 841 { REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222 }, 842 { REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022222 }, 843 { REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf }, 844 { REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080 }, 845 { REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222220 }, 846 { REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 }, 847 { REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 }, 848 { REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00222222 }, 849 { REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 }, 850 { REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 }, 851 { REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 }, 852 { REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 }, 853 { REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 }, 854 { REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 }, 855 { REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 }, 856 { REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 }, 857 { REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 }, 858 { REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004 }, 859 { REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002 }, 860 { REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 }, 861 { REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222 }, 862 { REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 }, 863 { REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x44000f00 }, 864 { REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022 }, 865 { REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00555555 }, 866 { REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 }, 867 { REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00440044 }, 868 { REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 }, 869 { REG_A7XX_RBBM_CLOCK_MODE2_GRAS, 0x00000222 }, 870 { REG_A7XX_RBBM_CLOCK_MODE_BV_GRAS, 0x00222222 }, 871 { REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222223 }, 872 { REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222 }, 873 { REG_A7XX_RBBM_CLOCK_MODE_BV_GPC, 0x00222222 }, 874 { REG_A7XX_RBBM_CLOCK_MODE_BV_VFD, 0x00002222 }, 875 { REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 }, 876 { REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 }, 877 { REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 }, 878 { REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000 }, 879 { REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 }, 880 { REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222 }, 881 { REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 }, 882 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 }, 883 { REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 }, 884 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002 }, 885 { REG_A7XX_RBBM_CLOCK_MODE_BV_LRZ, 0x55555552 }, 886 { REG_A7XX_RBBM_CLOCK_MODE_CP, 0x00000223 }, 887 { REG_A6XX_RBBM_CLOCK_CNTL, 0x8aa8aa82 }, 888 { REG_A6XX_RBBM_ISDB_CNT, 0x00000182 }, 889 { REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 }, 890 { REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 }, 891 { REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 }, 892 { REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 }, 893 { REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 }, 894 {}, 895 }; 896 897 const struct adreno_reglist a740_hwcg[] = { 898 { REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222 }, 899 { REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x22022222 }, 900 { REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x003cf3cf }, 901 { REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080 }, 902 { REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222220 }, 903 { REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 }, 904 { REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 }, 905 { REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00222222 }, 906 { REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 }, 907 { REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 }, 908 { REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 }, 909 { REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 }, 910 { REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 }, 911 { REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 }, 912 { REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 }, 913 { REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 }, 914 { REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 }, 915 { REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x00222222 }, 916 { REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000444 }, 917 { REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000222 }, 918 { REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 }, 919 { REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222 }, 920 { REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 }, 921 { REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x44000f00 }, 922 { REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022 }, 923 { REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00555555 }, 924 { REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 }, 925 { REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00440044 }, 926 { REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 }, 927 { REG_A7XX_RBBM_CLOCK_MODE2_GRAS, 0x00000222 }, 928 { REG_A7XX_RBBM_CLOCK_MODE_BV_GRAS, 0x00222222 }, 929 { REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222223 }, 930 { REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00222222 }, 931 { REG_A7XX_RBBM_CLOCK_MODE_BV_GPC, 0x00222222 }, 932 { REG_A7XX_RBBM_CLOCK_MODE_BV_VFD, 0x00002222 }, 933 { REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 }, 934 { REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 }, 935 { REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 }, 936 { REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00000000 }, 937 { REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 }, 938 { REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00000000 }, 939 { REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 }, 940 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 }, 941 { REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 }, 942 { REG_A7XX_RBBM_CLOCK_MODE_BV_LRZ, 0x55555552 }, 943 { REG_A7XX_RBBM_CLOCK_HYST2_VFD, 0x00000000 }, 944 { REG_A7XX_RBBM_CLOCK_MODE_CP, 0x00000222 }, 945 { REG_A6XX_RBBM_CLOCK_CNTL, 0x8aa8aa82 }, 946 { REG_A6XX_RBBM_ISDB_CNT, 0x00000182 }, 947 { REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 }, 948 { REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 }, 949 { REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 }, 950 { REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 }, 951 { REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 }, 952 {}, 953 }; 954 955 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 956 { 957 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 958 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 959 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 960 const struct adreno_reglist *reg; 961 unsigned int i; 962 u32 val, clock_cntl_on, cgc_mode; 963 964 if (!adreno_gpu->info->hwcg) 965 return; 966 967 if (adreno_is_a630(adreno_gpu)) 968 clock_cntl_on = 0x8aa8aa02; 969 else if (adreno_is_a610(adreno_gpu)) 970 clock_cntl_on = 0xaaa8aa82; 971 else 972 clock_cntl_on = 0x8aa8aa82; 973 974 if (adreno_is_a7xx(adreno_gpu)) { 975 cgc_mode = adreno_is_a740_family(adreno_gpu) ? 0x20222 : 0x20000; 976 977 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 978 state ? cgc_mode : 0); 979 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 980 state ? 0x10111 : 0); 981 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 982 state ? 0x5555 : 0); 983 } 984 985 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 986 987 /* Don't re-program the registers if they are already correct */ 988 if ((!state && !val) || (state && (val == clock_cntl_on))) 989 return; 990 991 /* Disable SP clock before programming HWCG registers */ 992 if (!adreno_is_a610(adreno_gpu) && !adreno_is_a7xx(adreno_gpu)) 993 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 994 995 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 996 gpu_write(gpu, reg->offset, state ? reg->value : 0); 997 998 /* Enable SP clock */ 999 if (!adreno_is_a610(adreno_gpu) && !adreno_is_a7xx(adreno_gpu)) 1000 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 1001 1002 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 1003 } 1004 1005 /* For a615, a616, a618, a619, a630, a640 and a680 */ 1006 static const u32 a6xx_protect[] = { 1007 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1008 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 1009 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 1010 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1011 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1012 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1013 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 1014 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1015 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1016 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 1017 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1018 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 1019 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 1020 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 1021 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1022 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1023 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1024 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1025 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1026 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1027 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1028 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 1029 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1030 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1031 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1032 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 1033 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 1034 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 1035 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 1036 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 1037 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1038 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 1039 }; 1040 1041 /* These are for a620 and a650 */ 1042 static const u32 a650_protect[] = { 1043 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1044 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 1045 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 1046 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1047 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1048 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1049 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 1050 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1051 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1052 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 1053 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1054 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 1055 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 1056 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 1057 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1058 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1059 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1060 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1061 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1062 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1063 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 1064 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1065 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 1066 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1067 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1068 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1069 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 1070 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 1071 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 1072 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 1073 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 1074 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 1075 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1076 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 1077 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 1078 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 1079 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 1080 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 1081 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 1082 }; 1083 1084 /* These are for a635 and a660 */ 1085 static const u32 a660_protect[] = { 1086 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1087 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 1088 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 1089 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1090 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1091 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1092 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 1093 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1094 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1095 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 1096 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1097 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 1098 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 1099 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 1100 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1101 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1102 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1103 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1104 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1105 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1106 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 1107 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1108 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 1109 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1110 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1111 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1112 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 1113 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 1114 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 1115 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 1116 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 1117 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 1118 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 1119 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1120 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 1121 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 1122 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 1123 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 1124 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 1125 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 1126 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 1127 }; 1128 1129 /* These are for a690 */ 1130 static const u32 a690_protect[] = { 1131 A6XX_PROTECT_RDONLY(0x00000, 0x004ff), 1132 A6XX_PROTECT_RDONLY(0x00501, 0x00001), 1133 A6XX_PROTECT_RDONLY(0x0050b, 0x002f4), 1134 A6XX_PROTECT_NORDWR(0x0050e, 0x00000), 1135 A6XX_PROTECT_NORDWR(0x00510, 0x00000), 1136 A6XX_PROTECT_NORDWR(0x00534, 0x00000), 1137 A6XX_PROTECT_NORDWR(0x00800, 0x00082), 1138 A6XX_PROTECT_NORDWR(0x008a0, 0x00008), 1139 A6XX_PROTECT_NORDWR(0x008ab, 0x00024), 1140 A6XX_PROTECT_RDONLY(0x008de, 0x000ae), 1141 A6XX_PROTECT_NORDWR(0x00900, 0x0004d), 1142 A6XX_PROTECT_NORDWR(0x0098d, 0x00272), 1143 A6XX_PROTECT_NORDWR(0x00e00, 0x00001), 1144 A6XX_PROTECT_NORDWR(0x00e03, 0x0000c), 1145 A6XX_PROTECT_NORDWR(0x03c00, 0x000c3), 1146 A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff), 1147 A6XX_PROTECT_NORDWR(0x08630, 0x001cf), 1148 A6XX_PROTECT_NORDWR(0x08e00, 0x00000), 1149 A6XX_PROTECT_NORDWR(0x08e08, 0x00007), 1150 A6XX_PROTECT_NORDWR(0x08e50, 0x0001f), 1151 A6XX_PROTECT_NORDWR(0x08e80, 0x0027f), 1152 A6XX_PROTECT_NORDWR(0x09624, 0x001db), 1153 A6XX_PROTECT_NORDWR(0x09e60, 0x00011), 1154 A6XX_PROTECT_NORDWR(0x09e78, 0x00187), 1155 A6XX_PROTECT_NORDWR(0x0a630, 0x001cf), 1156 A6XX_PROTECT_NORDWR(0x0ae02, 0x00000), 1157 A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f), 1158 A6XX_PROTECT_NORDWR(0x0b604, 0x00000), 1159 A6XX_PROTECT_NORDWR(0x0b608, 0x00006), 1160 A6XX_PROTECT_NORDWR(0x0be02, 0x00001), 1161 A6XX_PROTECT_NORDWR(0x0be20, 0x0015f), 1162 A6XX_PROTECT_NORDWR(0x0d000, 0x005ff), 1163 A6XX_PROTECT_NORDWR(0x0f000, 0x00bff), 1164 A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff), 1165 A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */ 1166 }; 1167 1168 static const u32 a730_protect[] = { 1169 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1170 A6XX_PROTECT_RDONLY(0x0050b, 0x0058), 1171 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1172 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1173 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1174 A6XX_PROTECT_RDONLY(0x005fb, 0x009d), 1175 A6XX_PROTECT_NORDWR(0x00699, 0x01e9), 1176 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1177 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1178 /* 0x008d0-0x008dd are unprotected on purpose for tools like perfetto */ 1179 A6XX_PROTECT_RDONLY(0x008de, 0x0154), 1180 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1181 A6XX_PROTECT_NORDWR(0x0098d, 0x00b2), 1182 A6XX_PROTECT_NORDWR(0x00a41, 0x01be), 1183 A6XX_PROTECT_NORDWR(0x00df0, 0x0001), 1184 A6XX_PROTECT_NORDWR(0x00e01, 0x0000), 1185 A6XX_PROTECT_NORDWR(0x00e07, 0x0008), 1186 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1187 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1188 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1189 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1190 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1191 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1192 A6XX_PROTECT_NORDWR(0x08e80, 0x0280), 1193 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1194 A6XX_PROTECT_NORDWR(0x09e40, 0x0000), 1195 A6XX_PROTECT_NORDWR(0x09e64, 0x000d), 1196 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1197 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1198 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1199 A6XX_PROTECT_NORDWR(0x0ae50, 0x000f), 1200 A6XX_PROTECT_NORDWR(0x0ae66, 0x0003), 1201 A6XX_PROTECT_NORDWR(0x0ae6f, 0x0003), 1202 A6XX_PROTECT_NORDWR(0x0b604, 0x0003), 1203 A6XX_PROTECT_NORDWR(0x0ec00, 0x0fff), 1204 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1205 A6XX_PROTECT_NORDWR(0x18400, 0x0053), 1206 A6XX_PROTECT_RDONLY(0x18454, 0x0004), 1207 A6XX_PROTECT_NORDWR(0x18459, 0x1fff), 1208 A6XX_PROTECT_NORDWR(0x1a459, 0x1fff), 1209 A6XX_PROTECT_NORDWR(0x1c459, 0x1fff), 1210 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 1211 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 1212 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 1213 A6XX_PROTECT_NORDWR(0x1f878, 0x002a), 1214 /* CP_PROTECT_REG[44, 46] are left untouched! */ 1215 0, 1216 0, 1217 0, 1218 A6XX_PROTECT_NORDWR(0x1f8c0, 0x00000), 1219 }; 1220 1221 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 1222 { 1223 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1224 const u32 *regs = a6xx_protect; 1225 unsigned i, count, count_max; 1226 1227 if (adreno_is_a650(adreno_gpu)) { 1228 regs = a650_protect; 1229 count = ARRAY_SIZE(a650_protect); 1230 count_max = 48; 1231 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 1232 } else if (adreno_is_a690(adreno_gpu)) { 1233 regs = a690_protect; 1234 count = ARRAY_SIZE(a690_protect); 1235 count_max = 48; 1236 BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48); 1237 } else if (adreno_is_a660_family(adreno_gpu)) { 1238 regs = a660_protect; 1239 count = ARRAY_SIZE(a660_protect); 1240 count_max = 48; 1241 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48); 1242 } else if (adreno_is_a730(adreno_gpu) || adreno_is_a740(adreno_gpu)) { 1243 regs = a730_protect; 1244 count = ARRAY_SIZE(a730_protect); 1245 count_max = 48; 1246 BUILD_BUG_ON(ARRAY_SIZE(a730_protect) > 48); 1247 } else { 1248 regs = a6xx_protect; 1249 count = ARRAY_SIZE(a6xx_protect); 1250 count_max = 32; 1251 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 1252 } 1253 1254 /* 1255 * Enable access protection to privileged registers, fault on an access 1256 * protect violation and select the last span to protect from the start 1257 * address all the way to the end of the register address space 1258 */ 1259 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 1260 A6XX_CP_PROTECT_CNTL_ACCESS_PROT_EN | 1261 A6XX_CP_PROTECT_CNTL_ACCESS_FAULT_ON_VIOL_EN | 1262 A6XX_CP_PROTECT_CNTL_LAST_SPAN_INF_RANGE); 1263 1264 for (i = 0; i < count - 1; i++) { 1265 /* Intentionally skip writing to some registers */ 1266 if (regs[i]) 1267 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 1268 } 1269 /* last CP_PROTECT to have "infinite" length on the last entry */ 1270 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 1271 } 1272 1273 static void a6xx_calc_ubwc_config(struct adreno_gpu *gpu) 1274 { 1275 /* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */ 1276 gpu->ubwc_config.rgb565_predicator = 0; 1277 /* Unknown, introduced with A650 family */ 1278 gpu->ubwc_config.uavflagprd_inv = 0; 1279 /* Whether the minimum access length is 64 bits */ 1280 gpu->ubwc_config.min_acc_len = 0; 1281 /* Entirely magic, per-GPU-gen value */ 1282 gpu->ubwc_config.ubwc_mode = 0; 1283 /* 1284 * The Highest Bank Bit value represents the bit of the highest DDR bank. 1285 * This should ideally use DRAM type detection. 1286 */ 1287 gpu->ubwc_config.highest_bank_bit = 15; 1288 1289 if (adreno_is_a610(gpu)) { 1290 gpu->ubwc_config.highest_bank_bit = 13; 1291 gpu->ubwc_config.min_acc_len = 1; 1292 gpu->ubwc_config.ubwc_mode = 1; 1293 } 1294 1295 /* a618 is using the hw default values */ 1296 if (adreno_is_a618(gpu)) 1297 return; 1298 1299 if (adreno_is_a619_holi(gpu)) 1300 gpu->ubwc_config.highest_bank_bit = 13; 1301 1302 if (adreno_is_a640_family(gpu)) 1303 gpu->ubwc_config.amsbc = 1; 1304 1305 if (adreno_is_a650(gpu) || 1306 adreno_is_a660(gpu) || 1307 adreno_is_a690(gpu) || 1308 adreno_is_a730(gpu) || 1309 adreno_is_a740_family(gpu)) { 1310 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 1311 gpu->ubwc_config.highest_bank_bit = 16; 1312 gpu->ubwc_config.amsbc = 1; 1313 gpu->ubwc_config.rgb565_predicator = 1; 1314 gpu->ubwc_config.uavflagprd_inv = 2; 1315 } 1316 1317 if (adreno_is_7c3(gpu)) { 1318 gpu->ubwc_config.highest_bank_bit = 14; 1319 gpu->ubwc_config.amsbc = 1; 1320 gpu->ubwc_config.rgb565_predicator = 1; 1321 gpu->ubwc_config.uavflagprd_inv = 2; 1322 } 1323 } 1324 1325 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 1326 { 1327 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1328 /* 1329 * We subtract 13 from the highest bank bit (13 is the minimum value 1330 * allowed by hw) and write the lowest two bits of the remaining value 1331 * as hbb_lo and the one above it as hbb_hi to the hardware. 1332 */ 1333 BUG_ON(adreno_gpu->ubwc_config.highest_bank_bit < 13); 1334 u32 hbb = adreno_gpu->ubwc_config.highest_bank_bit - 13; 1335 u32 hbb_hi = hbb >> 2; 1336 u32 hbb_lo = hbb & 3; 1337 1338 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 1339 adreno_gpu->ubwc_config.rgb565_predicator << 11 | 1340 hbb_hi << 10 | adreno_gpu->ubwc_config.amsbc << 4 | 1341 adreno_gpu->ubwc_config.min_acc_len << 3 | 1342 hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode); 1343 1344 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 | 1345 adreno_gpu->ubwc_config.min_acc_len << 3 | 1346 hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode); 1347 1348 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 | 1349 adreno_gpu->ubwc_config.uavflagprd_inv << 4 | 1350 adreno_gpu->ubwc_config.min_acc_len << 3 | 1351 hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode); 1352 1353 if (adreno_is_a7xx(adreno_gpu)) 1354 gpu_write(gpu, REG_A7XX_GRAS_NC_MODE_CNTL, 1355 FIELD_PREP(GENMASK(8, 5), hbb_lo)); 1356 1357 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 1358 adreno_gpu->ubwc_config.min_acc_len << 23 | hbb_lo << 21); 1359 } 1360 1361 static int a6xx_cp_init(struct msm_gpu *gpu) 1362 { 1363 struct msm_ringbuffer *ring = gpu->rb[0]; 1364 1365 OUT_PKT7(ring, CP_ME_INIT, 8); 1366 1367 OUT_RING(ring, 0x0000002f); 1368 1369 /* Enable multiple hardware contexts */ 1370 OUT_RING(ring, 0x00000003); 1371 1372 /* Enable error detection */ 1373 OUT_RING(ring, 0x20000000); 1374 1375 /* Don't enable header dump */ 1376 OUT_RING(ring, 0x00000000); 1377 OUT_RING(ring, 0x00000000); 1378 1379 /* No workarounds enabled */ 1380 OUT_RING(ring, 0x00000000); 1381 1382 /* Pad rest of the cmds with 0's */ 1383 OUT_RING(ring, 0x00000000); 1384 OUT_RING(ring, 0x00000000); 1385 1386 a6xx_flush(gpu, ring); 1387 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 1388 } 1389 1390 static int a7xx_cp_init(struct msm_gpu *gpu) 1391 { 1392 struct msm_ringbuffer *ring = gpu->rb[0]; 1393 u32 mask; 1394 1395 /* Disable concurrent binning before sending CP init */ 1396 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 1397 OUT_RING(ring, BIT(27)); 1398 1399 OUT_PKT7(ring, CP_ME_INIT, 7); 1400 1401 /* Use multiple HW contexts */ 1402 mask = BIT(0); 1403 1404 /* Enable error detection */ 1405 mask |= BIT(1); 1406 1407 /* Set default reset state */ 1408 mask |= BIT(3); 1409 1410 /* Disable save/restore of performance counters across preemption */ 1411 mask |= BIT(6); 1412 1413 /* Enable the register init list with the spinlock */ 1414 mask |= BIT(8); 1415 1416 OUT_RING(ring, mask); 1417 1418 /* Enable multiple hardware contexts */ 1419 OUT_RING(ring, 0x00000003); 1420 1421 /* Enable error detection */ 1422 OUT_RING(ring, 0x20000000); 1423 1424 /* Operation mode mask */ 1425 OUT_RING(ring, 0x00000002); 1426 1427 /* *Don't* send a power up reg list for concurrent binning (TODO) */ 1428 /* Lo address */ 1429 OUT_RING(ring, 0x00000000); 1430 /* Hi address */ 1431 OUT_RING(ring, 0x00000000); 1432 /* BIT(31) set => read the regs from the list */ 1433 OUT_RING(ring, 0x00000000); 1434 1435 a6xx_flush(gpu, ring); 1436 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 1437 } 1438 1439 /* 1440 * Check that the microcode version is new enough to include several key 1441 * security fixes. Return true if the ucode is safe. 1442 */ 1443 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 1444 struct drm_gem_object *obj) 1445 { 1446 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1447 struct msm_gpu *gpu = &adreno_gpu->base; 1448 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; 1449 u32 *buf = msm_gem_get_vaddr(obj); 1450 bool ret = false; 1451 1452 if (IS_ERR(buf)) 1453 return false; 1454 1455 /* A7xx is safe! */ 1456 if (adreno_is_a7xx(adreno_gpu)) 1457 return true; 1458 1459 /* 1460 * Targets up to a640 (a618, a630 and a640) need to check for a 1461 * microcode version that is patched to support the whereami opcode or 1462 * one that is new enough to include it by default. 1463 * 1464 * a650 tier targets don't need whereami but still need to be 1465 * equal to or newer than 0.95 for other security fixes 1466 * 1467 * a660 targets have all the critical security fixes from the start 1468 */ 1469 if (!strcmp(sqe_name, "a630_sqe.fw")) { 1470 /* 1471 * If the lowest nibble is 0xa that is an indication that this 1472 * microcode has been patched. The actual version is in dword 1473 * [3] but we only care about the patchlevel which is the lowest 1474 * nibble of dword [3] 1475 * 1476 * Otherwise check that the firmware is greater than or equal 1477 * to 1.90 which was the first version that had this fix built 1478 * in 1479 */ 1480 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 1481 (buf[0] & 0xfff) >= 0x190) { 1482 a6xx_gpu->has_whereami = true; 1483 ret = true; 1484 goto out; 1485 } 1486 1487 DRM_DEV_ERROR(&gpu->pdev->dev, 1488 "a630 SQE ucode is too old. Have version %x need at least %x\n", 1489 buf[0] & 0xfff, 0x190); 1490 } else if (!strcmp(sqe_name, "a650_sqe.fw")) { 1491 if ((buf[0] & 0xfff) >= 0x095) { 1492 ret = true; 1493 goto out; 1494 } 1495 1496 DRM_DEV_ERROR(&gpu->pdev->dev, 1497 "a650 SQE ucode is too old. Have version %x need at least %x\n", 1498 buf[0] & 0xfff, 0x095); 1499 } else if (!strcmp(sqe_name, "a660_sqe.fw")) { 1500 ret = true; 1501 } else { 1502 DRM_DEV_ERROR(&gpu->pdev->dev, 1503 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 1504 } 1505 out: 1506 msm_gem_put_vaddr(obj); 1507 return ret; 1508 } 1509 1510 static int a6xx_ucode_load(struct msm_gpu *gpu) 1511 { 1512 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1513 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1514 1515 if (!a6xx_gpu->sqe_bo) { 1516 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 1517 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 1518 1519 if (IS_ERR(a6xx_gpu->sqe_bo)) { 1520 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 1521 1522 a6xx_gpu->sqe_bo = NULL; 1523 DRM_DEV_ERROR(&gpu->pdev->dev, 1524 "Could not allocate SQE ucode: %d\n", ret); 1525 1526 return ret; 1527 } 1528 1529 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 1530 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 1531 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1532 drm_gem_object_put(a6xx_gpu->sqe_bo); 1533 1534 a6xx_gpu->sqe_bo = NULL; 1535 return -EPERM; 1536 } 1537 } 1538 1539 /* 1540 * Expanded APRIV and targets that support WHERE_AM_I both need a 1541 * privileged buffer to store the RPTR shadow 1542 */ 1543 if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) && 1544 !a6xx_gpu->shadow_bo) { 1545 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 1546 sizeof(u32) * gpu->nr_rings, 1547 MSM_BO_WC | MSM_BO_MAP_PRIV, 1548 gpu->aspace, &a6xx_gpu->shadow_bo, 1549 &a6xx_gpu->shadow_iova); 1550 1551 if (IS_ERR(a6xx_gpu->shadow)) 1552 return PTR_ERR(a6xx_gpu->shadow); 1553 1554 msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow"); 1555 } 1556 1557 return 0; 1558 } 1559 1560 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 1561 { 1562 static bool loaded; 1563 int ret; 1564 1565 if (loaded) 1566 return 0; 1567 1568 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 1569 1570 loaded = !ret; 1571 return ret; 1572 } 1573 1574 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 1575 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 1576 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 1577 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 1578 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 1579 A6XX_RBBM_INT_0_MASK_CP_RB | \ 1580 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 1581 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 1582 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 1583 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 1584 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 1585 1586 #define A7XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 1587 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 1588 A6XX_RBBM_INT_0_MASK_RBBM_GPC_ERROR | \ 1589 A6XX_RBBM_INT_0_MASK_CP_SW | \ 1590 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 1591 A6XX_RBBM_INT_0_MASK_PM4CPINTERRUPT | \ 1592 A6XX_RBBM_INT_0_MASK_CP_RB_DONE_TS | \ 1593 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 1594 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 1595 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 1596 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 1597 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR | \ 1598 A6XX_RBBM_INT_0_MASK_TSBWRITEERROR) 1599 1600 #define A7XX_APRIV_MASK (A6XX_CP_APRIV_CNTL_ICACHE | \ 1601 A6XX_CP_APRIV_CNTL_RBFETCH | \ 1602 A6XX_CP_APRIV_CNTL_RBPRIVLEVEL | \ 1603 A6XX_CP_APRIV_CNTL_RBRPWB) 1604 1605 #define A7XX_BR_APRIVMASK (A7XX_APRIV_MASK | \ 1606 A6XX_CP_APRIV_CNTL_CDREAD | \ 1607 A6XX_CP_APRIV_CNTL_CDWRITE) 1608 1609 static int hw_init(struct msm_gpu *gpu) 1610 { 1611 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1612 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1613 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1614 u64 gmem_range_min; 1615 int ret; 1616 1617 if (!adreno_has_gmu_wrapper(adreno_gpu)) { 1618 /* Make sure the GMU keeps the GPU on while we set it up */ 1619 ret = a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1620 if (ret) 1621 return ret; 1622 } 1623 1624 /* Clear GBIF halt in case GX domain was not collapsed */ 1625 if (adreno_is_a619_holi(adreno_gpu)) { 1626 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); 1627 gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0); 1628 /* Let's make extra sure that the GPU can access the memory.. */ 1629 mb(); 1630 } else if (a6xx_has_gbif(adreno_gpu)) { 1631 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); 1632 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0); 1633 /* Let's make extra sure that the GPU can access the memory.. */ 1634 mb(); 1635 } 1636 1637 /* Some GPUs are stubborn and take their sweet time to unhalt GBIF! */ 1638 if (adreno_is_a7xx(adreno_gpu) && a6xx_has_gbif(adreno_gpu)) 1639 spin_until(!gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK)); 1640 1641 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 1642 1643 if (adreno_is_a619_holi(adreno_gpu)) 1644 a6xx_sptprac_enable(gmu); 1645 1646 /* 1647 * Disable the trusted memory range - we don't actually supported secure 1648 * memory rendering at this point in time and we don't want to block off 1649 * part of the virtual memory space. 1650 */ 1651 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000); 1652 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 1653 1654 if (!adreno_is_a7xx(adreno_gpu)) { 1655 /* Turn on 64 bit addressing for all blocks */ 1656 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 1657 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 1658 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 1659 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 1660 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 1661 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 1662 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 1663 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 1664 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 1665 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 1666 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 1667 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 1668 } 1669 1670 /* enable hardware clockgating */ 1671 a6xx_set_hwcg(gpu, true); 1672 1673 /* VBIF/GBIF start*/ 1674 if (adreno_is_a610(adreno_gpu) || 1675 adreno_is_a640_family(adreno_gpu) || 1676 adreno_is_a650_family(adreno_gpu) || 1677 adreno_is_a7xx(adreno_gpu)) { 1678 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 1679 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 1680 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 1681 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 1682 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 1683 adreno_is_a7xx(adreno_gpu) ? 0x2120212 : 0x3); 1684 } else { 1685 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 1686 } 1687 1688 if (adreno_is_a630(adreno_gpu)) 1689 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 1690 1691 if (adreno_is_a7xx(adreno_gpu)) 1692 gpu_write(gpu, REG_A6XX_UCHE_GBIF_GX_CONFIG, 0x10240e0); 1693 1694 /* Make all blocks contribute to the GPU BUSY perf counter */ 1695 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 1696 1697 /* Disable L2 bypass in the UCHE */ 1698 if (adreno_is_a7xx(adreno_gpu)) { 1699 gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu); 1700 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu); 1701 } else { 1702 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu); 1703 gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu); 1704 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu); 1705 } 1706 1707 if (!(adreno_is_a650_family(adreno_gpu) || 1708 adreno_is_a730(adreno_gpu))) { 1709 gmem_range_min = adreno_is_a740_family(adreno_gpu) ? SZ_16M : SZ_1M; 1710 1711 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 1712 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, gmem_range_min); 1713 1714 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX, 1715 gmem_range_min + adreno_gpu->info->gmem - 1); 1716 } 1717 1718 if (adreno_is_a7xx(adreno_gpu)) 1719 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, BIT(23)); 1720 else { 1721 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 1722 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 1723 } 1724 1725 if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) { 1726 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 1727 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1728 } else if (adreno_is_a610(adreno_gpu)) { 1729 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060); 1730 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16); 1731 } else if (!adreno_is_a7xx(adreno_gpu)) { 1732 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 1733 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1734 } 1735 1736 if (adreno_is_a660_family(adreno_gpu)) 1737 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 1738 1739 /* Setting the mem pool size */ 1740 if (adreno_is_a610(adreno_gpu)) { 1741 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48); 1742 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47); 1743 } else if (!adreno_is_a7xx(adreno_gpu)) 1744 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 1745 1746 /* Setting the primFifo thresholds default values, 1747 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 1748 */ 1749 if (adreno_is_a690(adreno_gpu)) 1750 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00800200); 1751 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1752 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1753 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 1754 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 1755 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1756 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1757 else if (adreno_is_a619(adreno_gpu)) 1758 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000); 1759 else if (adreno_is_a610(adreno_gpu)) 1760 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000); 1761 else if (!adreno_is_a7xx(adreno_gpu)) 1762 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 1763 1764 /* Set the AHB default slave response to "ERROR" */ 1765 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 1766 1767 /* Turn on performance counters */ 1768 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 1769 1770 if (adreno_is_a7xx(adreno_gpu)) { 1771 /* Turn on the IFPC counter (countable 4 on XOCLK4) */ 1772 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_1, 1773 FIELD_PREP(GENMASK(7, 0), 0x4)); 1774 } 1775 1776 /* Select CP0 to always count cycles */ 1777 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 1778 1779 a6xx_set_ubwc_config(gpu); 1780 1781 /* Enable fault detection */ 1782 if (adreno_is_a730(adreno_gpu) || 1783 adreno_is_a740_family(adreno_gpu)) 1784 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0xcfffff); 1785 else if (adreno_is_a690(adreno_gpu)) 1786 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x4fffff); 1787 else if (adreno_is_a619(adreno_gpu)) 1788 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff); 1789 else if (adreno_is_a610(adreno_gpu)) 1790 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff); 1791 else 1792 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff); 1793 1794 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, BIT(7) | 0x1); 1795 1796 /* Set weights for bicubic filtering */ 1797 if (adreno_is_a650_family(adreno_gpu)) { 1798 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 1799 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 1800 0x3fe05ff4); 1801 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 1802 0x3fa0ebee); 1803 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 1804 0x3f5193ed); 1805 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 1806 0x3f0243f0); 1807 } 1808 1809 /* Set up the CX GMU counter 0 to count busy ticks */ 1810 gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000); 1811 1812 /* Enable the power counter */ 1813 gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5)); 1814 gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1); 1815 1816 /* Protect registers from the CP */ 1817 a6xx_set_cp_protect(gpu); 1818 1819 if (adreno_is_a660_family(adreno_gpu)) { 1820 if (adreno_is_a690(adreno_gpu)) 1821 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x00028801); 1822 else 1823 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 1824 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 1825 } 1826 1827 if (adreno_is_a690(adreno_gpu)) 1828 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x90); 1829 /* Set dualQ + disable afull for A660 GPU */ 1830 else if (adreno_is_a660(adreno_gpu)) 1831 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 1832 else if (adreno_is_a7xx(adreno_gpu)) 1833 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 1834 FIELD_PREP(GENMASK(19, 16), 6) | 1835 FIELD_PREP(GENMASK(15, 12), 6) | 1836 FIELD_PREP(GENMASK(11, 8), 9) | 1837 BIT(3) | BIT(2) | 1838 FIELD_PREP(GENMASK(1, 0), 2)); 1839 1840 /* Enable expanded apriv for targets that support it */ 1841 if (gpu->hw_apriv) { 1842 if (adreno_is_a7xx(adreno_gpu)) { 1843 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1844 A7XX_BR_APRIVMASK); 1845 gpu_write(gpu, REG_A7XX_CP_BV_APRIV_CNTL, 1846 A7XX_APRIV_MASK); 1847 gpu_write(gpu, REG_A7XX_CP_LPAC_APRIV_CNTL, 1848 A7XX_APRIV_MASK); 1849 } else 1850 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1851 BIT(6) | BIT(5) | BIT(3) | BIT(2) | BIT(1)); 1852 } 1853 1854 /* Enable interrupts */ 1855 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, 1856 adreno_is_a7xx(adreno_gpu) ? A7XX_INT_MASK : A6XX_INT_MASK); 1857 1858 ret = adreno_hw_init(gpu); 1859 if (ret) 1860 goto out; 1861 1862 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova); 1863 1864 /* Set the ringbuffer address */ 1865 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova); 1866 1867 /* Targets that support extended APRIV can use the RPTR shadow from 1868 * hardware but all the other ones need to disable the feature. Targets 1869 * that support the WHERE_AM_I opcode can use that instead 1870 */ 1871 if (adreno_gpu->base.hw_apriv) 1872 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1873 else 1874 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1875 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1876 1877 /* Configure the RPTR shadow if needed: */ 1878 if (a6xx_gpu->shadow_bo) { 1879 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR, 1880 shadowptr(a6xx_gpu, gpu->rb[0])); 1881 } 1882 1883 /* ..which means "always" on A7xx, also for BV shadow */ 1884 if (adreno_is_a7xx(adreno_gpu)) { 1885 gpu_write64(gpu, REG_A7XX_CP_BV_RB_RPTR_ADDR, 1886 rbmemptr(gpu->rb[0], bv_fence)); 1887 } 1888 1889 /* Always come up on rb 0 */ 1890 a6xx_gpu->cur_ring = gpu->rb[0]; 1891 1892 gpu->cur_ctx_seqno = 0; 1893 1894 /* Enable the SQE_to start the CP engine */ 1895 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1896 1897 ret = adreno_is_a7xx(adreno_gpu) ? a7xx_cp_init(gpu) : a6xx_cp_init(gpu); 1898 if (ret) 1899 goto out; 1900 1901 /* 1902 * Try to load a zap shader into the secure world. If successful 1903 * we can use the CP to switch out of secure mode. If not then we 1904 * have no resource but to try to switch ourselves out manually. If we 1905 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 1906 * be blocked and a permissions violation will soon follow. 1907 */ 1908 ret = a6xx_zap_shader_init(gpu); 1909 if (!ret) { 1910 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 1911 OUT_RING(gpu->rb[0], 0x00000000); 1912 1913 a6xx_flush(gpu, gpu->rb[0]); 1914 if (!a6xx_idle(gpu, gpu->rb[0])) 1915 return -EINVAL; 1916 } else if (ret == -ENODEV) { 1917 /* 1918 * This device does not use zap shader (but print a warning 1919 * just in case someone got their dt wrong.. hopefully they 1920 * have a debug UART to realize the error of their ways... 1921 * if you mess this up you are about to crash horribly) 1922 */ 1923 dev_warn_once(gpu->dev->dev, 1924 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1925 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1926 ret = 0; 1927 } else { 1928 return ret; 1929 } 1930 1931 out: 1932 if (adreno_has_gmu_wrapper(adreno_gpu)) 1933 return ret; 1934 /* 1935 * Tell the GMU that we are done touching the GPU and it can start power 1936 * management 1937 */ 1938 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1939 1940 if (a6xx_gpu->gmu.legacy) { 1941 /* Take the GMU out of its special boot mode */ 1942 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 1943 } 1944 1945 return ret; 1946 } 1947 1948 static int a6xx_hw_init(struct msm_gpu *gpu) 1949 { 1950 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1951 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1952 int ret; 1953 1954 mutex_lock(&a6xx_gpu->gmu.lock); 1955 ret = hw_init(gpu); 1956 mutex_unlock(&a6xx_gpu->gmu.lock); 1957 1958 return ret; 1959 } 1960 1961 static void a6xx_dump(struct msm_gpu *gpu) 1962 { 1963 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 1964 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 1965 adreno_dump(gpu); 1966 } 1967 1968 static void a6xx_recover(struct msm_gpu *gpu) 1969 { 1970 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1971 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1972 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1973 int i, active_submits; 1974 1975 adreno_dump_info(gpu); 1976 1977 for (i = 0; i < 8; i++) 1978 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 1979 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 1980 1981 if (hang_debug) 1982 a6xx_dump(gpu); 1983 1984 /* 1985 * To handle recovery specific sequences during the rpm suspend we are 1986 * about to trigger 1987 */ 1988 a6xx_gpu->hung = true; 1989 1990 /* Halt SQE first */ 1991 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3); 1992 1993 pm_runtime_dont_use_autosuspend(&gpu->pdev->dev); 1994 1995 /* active_submit won't change until we make a submission */ 1996 mutex_lock(&gpu->active_lock); 1997 active_submits = gpu->active_submits; 1998 1999 /* 2000 * Temporarily clear active_submits count to silence a WARN() in the 2001 * runtime suspend cb 2002 */ 2003 gpu->active_submits = 0; 2004 2005 if (adreno_has_gmu_wrapper(adreno_gpu)) { 2006 /* Drain the outstanding traffic on memory buses */ 2007 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 2008 2009 /* Reset the GPU to a clean state */ 2010 a6xx_gpu_sw_reset(gpu, true); 2011 a6xx_gpu_sw_reset(gpu, false); 2012 } 2013 2014 reinit_completion(&gmu->pd_gate); 2015 dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb); 2016 dev_pm_genpd_synced_poweroff(gmu->cxpd); 2017 2018 /* Drop the rpm refcount from active submits */ 2019 if (active_submits) 2020 pm_runtime_put(&gpu->pdev->dev); 2021 2022 /* And the final one from recover worker */ 2023 pm_runtime_put_sync(&gpu->pdev->dev); 2024 2025 if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000))) 2026 DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n"); 2027 2028 dev_pm_genpd_remove_notifier(gmu->cxpd); 2029 2030 pm_runtime_use_autosuspend(&gpu->pdev->dev); 2031 2032 if (active_submits) 2033 pm_runtime_get(&gpu->pdev->dev); 2034 2035 pm_runtime_get_sync(&gpu->pdev->dev); 2036 2037 gpu->active_submits = active_submits; 2038 mutex_unlock(&gpu->active_lock); 2039 2040 msm_gpu_hw_init(gpu); 2041 a6xx_gpu->hung = false; 2042 } 2043 2044 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 2045 { 2046 static const char *uche_clients[7] = { 2047 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 2048 }; 2049 u32 val; 2050 2051 if (mid < 1 || mid > 3) 2052 return "UNKNOWN"; 2053 2054 /* 2055 * The source of the data depends on the mid ID read from FSYNR1. 2056 * and the client ID read from the UCHE block 2057 */ 2058 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 2059 2060 /* mid = 3 is most precise and refers to only one block per client */ 2061 if (mid == 3) 2062 return uche_clients[val & 7]; 2063 2064 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 2065 if (mid == 2) 2066 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 2067 2068 /* For mid=1 just return "UCHE" as a catchall for everything else */ 2069 return "UCHE"; 2070 } 2071 2072 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 2073 { 2074 if (id == 0) 2075 return "CP"; 2076 else if (id == 4) 2077 return "CCU"; 2078 else if (id == 6) 2079 return "CDP Prefetch"; 2080 2081 return a6xx_uche_fault_block(gpu, id); 2082 } 2083 2084 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 2085 { 2086 struct msm_gpu *gpu = arg; 2087 struct adreno_smmu_fault_info *info = data; 2088 const char *block = "unknown"; 2089 2090 u32 scratch[] = { 2091 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 2092 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 2093 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 2094 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)), 2095 }; 2096 2097 if (info) 2098 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 2099 2100 return adreno_fault_handler(gpu, iova, flags, info, block, scratch); 2101 } 2102 2103 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 2104 { 2105 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 2106 2107 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 2108 u32 val; 2109 2110 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 2111 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 2112 dev_err_ratelimited(&gpu->pdev->dev, 2113 "CP | opcode error | possible opcode=0x%8.8X\n", 2114 val); 2115 } 2116 2117 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 2118 dev_err_ratelimited(&gpu->pdev->dev, 2119 "CP ucode error interrupt\n"); 2120 2121 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 2122 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 2123 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 2124 2125 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 2126 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 2127 2128 dev_err_ratelimited(&gpu->pdev->dev, 2129 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 2130 val & (1 << 20) ? "READ" : "WRITE", 2131 (val & 0x3ffff), val); 2132 } 2133 2134 if (status & A6XX_CP_INT_CP_AHB_ERROR && !adreno_is_a7xx(to_adreno_gpu(gpu))) 2135 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 2136 2137 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 2138 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 2139 2140 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 2141 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 2142 2143 } 2144 2145 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 2146 { 2147 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2148 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2149 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 2150 2151 /* 2152 * If stalled on SMMU fault, we could trip the GPU's hang detection, 2153 * but the fault handler will trigger the devcore dump, and we want 2154 * to otherwise resume normally rather than killing the submit, so 2155 * just bail. 2156 */ 2157 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 2158 return; 2159 2160 /* 2161 * Force the GPU to stay on until after we finish 2162 * collecting information 2163 */ 2164 if (!adreno_has_gmu_wrapper(adreno_gpu)) 2165 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 2166 2167 DRM_DEV_ERROR(&gpu->pdev->dev, 2168 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 2169 ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0, 2170 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 2171 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 2172 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 2173 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 2174 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 2175 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 2176 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 2177 2178 /* Turn off the hangcheck timer to keep it from bothering us */ 2179 del_timer(&gpu->hangcheck_timer); 2180 2181 kthread_queue_work(gpu->worker, &gpu->recover_work); 2182 } 2183 2184 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 2185 { 2186 struct msm_drm_private *priv = gpu->dev->dev_private; 2187 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 2188 2189 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 2190 2191 if (priv->disable_err_irq) 2192 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS; 2193 2194 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 2195 a6xx_fault_detect_irq(gpu); 2196 2197 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 2198 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 2199 2200 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 2201 a6xx_cp_hw_err_irq(gpu); 2202 2203 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 2204 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 2205 2206 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 2207 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 2208 2209 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 2210 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 2211 2212 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 2213 msm_gpu_retire(gpu); 2214 2215 return IRQ_HANDLED; 2216 } 2217 2218 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 2219 { 2220 llcc_slice_deactivate(a6xx_gpu->llc_slice); 2221 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 2222 } 2223 2224 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 2225 { 2226 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 2227 struct msm_gpu *gpu = &adreno_gpu->base; 2228 u32 cntl1_regval = 0; 2229 2230 if (IS_ERR(a6xx_gpu->llc_mmio)) 2231 return; 2232 2233 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 2234 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 2235 2236 gpu_scid &= 0x1f; 2237 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 2238 (gpu_scid << 15) | (gpu_scid << 20); 2239 2240 /* On A660, the SCID programming for UCHE traffic is done in 2241 * A6XX_GBIF_SCACHE_CNTL0[14:10] 2242 */ 2243 if (adreno_is_a660_family(adreno_gpu)) 2244 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | 2245 (1 << 8), (gpu_scid << 10) | (1 << 8)); 2246 } 2247 2248 /* 2249 * For targets with a MMU500, activate the slice but don't program the 2250 * register. The XBL will take care of that. 2251 */ 2252 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 2253 if (!a6xx_gpu->have_mmu500) { 2254 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 2255 2256 gpuhtw_scid &= 0x1f; 2257 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 2258 } 2259 } 2260 2261 if (!cntl1_regval) 2262 return; 2263 2264 /* 2265 * Program the slice IDs for the various GPU blocks and GPU MMU 2266 * pagetables 2267 */ 2268 if (!a6xx_gpu->have_mmu500) { 2269 a6xx_llc_write(a6xx_gpu, 2270 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 2271 2272 /* 2273 * Program cacheability overrides to not allocate cache 2274 * lines on a write miss 2275 */ 2276 a6xx_llc_rmw(a6xx_gpu, 2277 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 2278 return; 2279 } 2280 2281 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); 2282 } 2283 2284 static void a7xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 2285 { 2286 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 2287 struct msm_gpu *gpu = &adreno_gpu->base; 2288 2289 if (IS_ERR(a6xx_gpu->llc_mmio)) 2290 return; 2291 2292 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 2293 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 2294 2295 gpu_scid &= GENMASK(4, 0); 2296 2297 gpu_write(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, 2298 FIELD_PREP(GENMASK(29, 25), gpu_scid) | 2299 FIELD_PREP(GENMASK(24, 20), gpu_scid) | 2300 FIELD_PREP(GENMASK(19, 15), gpu_scid) | 2301 FIELD_PREP(GENMASK(14, 10), gpu_scid) | 2302 FIELD_PREP(GENMASK(9, 5), gpu_scid) | 2303 FIELD_PREP(GENMASK(4, 0), gpu_scid)); 2304 2305 gpu_write(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, 2306 FIELD_PREP(GENMASK(14, 10), gpu_scid) | 2307 BIT(8)); 2308 } 2309 2310 llcc_slice_activate(a6xx_gpu->htw_llc_slice); 2311 } 2312 2313 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 2314 { 2315 /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ 2316 if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) 2317 return; 2318 2319 llcc_slice_putd(a6xx_gpu->llc_slice); 2320 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 2321 } 2322 2323 static void a6xx_llc_slices_init(struct platform_device *pdev, 2324 struct a6xx_gpu *a6xx_gpu, bool is_a7xx) 2325 { 2326 struct device_node *phandle; 2327 2328 /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ 2329 if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) 2330 return; 2331 2332 /* 2333 * There is a different programming path for A6xx targets with an 2334 * mmu500 attached, so detect if that is the case 2335 */ 2336 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 2337 a6xx_gpu->have_mmu500 = (phandle && 2338 of_device_is_compatible(phandle, "arm,mmu-500")); 2339 of_node_put(phandle); 2340 2341 if (is_a7xx || !a6xx_gpu->have_mmu500) 2342 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem"); 2343 else 2344 a6xx_gpu->llc_mmio = NULL; 2345 2346 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 2347 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 2348 2349 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 2350 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 2351 } 2352 2353 #define GBIF_CLIENT_HALT_MASK BIT(0) 2354 #define GBIF_ARB_HALT_MASK BIT(1) 2355 #define VBIF_XIN_HALT_CTRL0_MASK GENMASK(3, 0) 2356 #define VBIF_RESET_ACK_MASK 0xF0 2357 #define GPR0_GBIF_HALT_REQUEST 0x1E0 2358 2359 void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off) 2360 { 2361 struct msm_gpu *gpu = &adreno_gpu->base; 2362 2363 if (adreno_is_a619_holi(adreno_gpu)) { 2364 gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST); 2365 spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) & 2366 (VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK); 2367 } else if (!a6xx_has_gbif(adreno_gpu)) { 2368 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK); 2369 spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) & 2370 (VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK); 2371 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0); 2372 2373 return; 2374 } 2375 2376 if (gx_off) { 2377 /* Halt the gx side of GBIF */ 2378 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1); 2379 spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1); 2380 } 2381 2382 /* Halt new client requests on GBIF */ 2383 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK); 2384 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 2385 (GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK); 2386 2387 /* Halt all AXI requests on GBIF */ 2388 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK); 2389 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 2390 (GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK); 2391 2392 /* The GBIF halt needs to be explicitly cleared */ 2393 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0); 2394 } 2395 2396 void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert) 2397 { 2398 /* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */ 2399 if (adreno_is_a610(to_adreno_gpu(gpu))) 2400 return; 2401 2402 gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert); 2403 /* Perform a bogus read and add a brief delay to ensure ordering. */ 2404 gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD); 2405 udelay(1); 2406 2407 /* The reset line needs to be asserted for at least 100 us */ 2408 if (assert) 2409 udelay(100); 2410 } 2411 2412 static int a6xx_gmu_pm_resume(struct msm_gpu *gpu) 2413 { 2414 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2415 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2416 int ret; 2417 2418 gpu->needs_hw_init = true; 2419 2420 trace_msm_gpu_resume(0); 2421 2422 mutex_lock(&a6xx_gpu->gmu.lock); 2423 ret = a6xx_gmu_resume(a6xx_gpu); 2424 mutex_unlock(&a6xx_gpu->gmu.lock); 2425 if (ret) 2426 return ret; 2427 2428 msm_devfreq_resume(gpu); 2429 2430 adreno_is_a7xx(adreno_gpu) ? a7xx_llc_activate : a6xx_llc_activate(a6xx_gpu); 2431 2432 return ret; 2433 } 2434 2435 static int a6xx_pm_resume(struct msm_gpu *gpu) 2436 { 2437 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2438 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2439 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 2440 unsigned long freq = gpu->fast_rate; 2441 struct dev_pm_opp *opp; 2442 int ret; 2443 2444 gpu->needs_hw_init = true; 2445 2446 trace_msm_gpu_resume(0); 2447 2448 mutex_lock(&a6xx_gpu->gmu.lock); 2449 2450 opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq); 2451 if (IS_ERR(opp)) { 2452 ret = PTR_ERR(opp); 2453 goto err_set_opp; 2454 } 2455 dev_pm_opp_put(opp); 2456 2457 /* Set the core clock and bus bw, having VDD scaling in mind */ 2458 dev_pm_opp_set_opp(&gpu->pdev->dev, opp); 2459 2460 pm_runtime_resume_and_get(gmu->dev); 2461 pm_runtime_resume_and_get(gmu->gxpd); 2462 2463 ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks); 2464 if (ret) 2465 goto err_bulk_clk; 2466 2467 if (adreno_is_a619_holi(adreno_gpu)) 2468 a6xx_sptprac_enable(gmu); 2469 2470 /* If anything goes south, tear the GPU down piece by piece.. */ 2471 if (ret) { 2472 err_bulk_clk: 2473 pm_runtime_put(gmu->gxpd); 2474 pm_runtime_put(gmu->dev); 2475 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 2476 } 2477 err_set_opp: 2478 mutex_unlock(&a6xx_gpu->gmu.lock); 2479 2480 if (!ret) 2481 msm_devfreq_resume(gpu); 2482 2483 return ret; 2484 } 2485 2486 static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu) 2487 { 2488 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2489 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2490 int i, ret; 2491 2492 trace_msm_gpu_suspend(0); 2493 2494 a6xx_llc_deactivate(a6xx_gpu); 2495 2496 msm_devfreq_suspend(gpu); 2497 2498 mutex_lock(&a6xx_gpu->gmu.lock); 2499 ret = a6xx_gmu_stop(a6xx_gpu); 2500 mutex_unlock(&a6xx_gpu->gmu.lock); 2501 if (ret) 2502 return ret; 2503 2504 if (a6xx_gpu->shadow_bo) 2505 for (i = 0; i < gpu->nr_rings; i++) 2506 a6xx_gpu->shadow[i] = 0; 2507 2508 gpu->suspend_count++; 2509 2510 return 0; 2511 } 2512 2513 static int a6xx_pm_suspend(struct msm_gpu *gpu) 2514 { 2515 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2516 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2517 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 2518 int i; 2519 2520 trace_msm_gpu_suspend(0); 2521 2522 msm_devfreq_suspend(gpu); 2523 2524 mutex_lock(&a6xx_gpu->gmu.lock); 2525 2526 /* Drain the outstanding traffic on memory buses */ 2527 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 2528 2529 if (adreno_is_a619_holi(adreno_gpu)) 2530 a6xx_sptprac_disable(gmu); 2531 2532 clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks); 2533 2534 pm_runtime_put_sync(gmu->gxpd); 2535 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 2536 pm_runtime_put_sync(gmu->dev); 2537 2538 mutex_unlock(&a6xx_gpu->gmu.lock); 2539 2540 if (a6xx_gpu->shadow_bo) 2541 for (i = 0; i < gpu->nr_rings; i++) 2542 a6xx_gpu->shadow[i] = 0; 2543 2544 gpu->suspend_count++; 2545 2546 return 0; 2547 } 2548 2549 static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 2550 { 2551 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2552 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2553 2554 mutex_lock(&a6xx_gpu->gmu.lock); 2555 2556 /* Force the GPU power on so we can read this register */ 2557 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 2558 2559 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); 2560 2561 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 2562 2563 mutex_unlock(&a6xx_gpu->gmu.lock); 2564 2565 return 0; 2566 } 2567 2568 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 2569 { 2570 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); 2571 return 0; 2572 } 2573 2574 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 2575 { 2576 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2577 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2578 2579 return a6xx_gpu->cur_ring; 2580 } 2581 2582 static void a6xx_destroy(struct msm_gpu *gpu) 2583 { 2584 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2585 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2586 2587 if (a6xx_gpu->sqe_bo) { 2588 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 2589 drm_gem_object_put(a6xx_gpu->sqe_bo); 2590 } 2591 2592 if (a6xx_gpu->shadow_bo) { 2593 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 2594 drm_gem_object_put(a6xx_gpu->shadow_bo); 2595 } 2596 2597 a6xx_llc_slices_destroy(a6xx_gpu); 2598 2599 a6xx_gmu_remove(a6xx_gpu); 2600 2601 adreno_gpu_cleanup(adreno_gpu); 2602 2603 kfree(a6xx_gpu); 2604 } 2605 2606 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate) 2607 { 2608 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2609 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2610 u64 busy_cycles; 2611 2612 /* 19.2MHz */ 2613 *out_sample_rate = 19200000; 2614 2615 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 2616 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 2617 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 2618 2619 return busy_cycles; 2620 } 2621 2622 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, 2623 bool suspended) 2624 { 2625 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2626 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2627 2628 mutex_lock(&a6xx_gpu->gmu.lock); 2629 a6xx_gmu_set_freq(gpu, opp, suspended); 2630 mutex_unlock(&a6xx_gpu->gmu.lock); 2631 } 2632 2633 static struct msm_gem_address_space * 2634 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 2635 { 2636 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2637 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2638 unsigned long quirks = 0; 2639 2640 /* 2641 * This allows GPU to set the bus attributes required to use system 2642 * cache on behalf of the iommu page table walker. 2643 */ 2644 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) && 2645 !device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY)) 2646 quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA; 2647 2648 return adreno_iommu_create_address_space(gpu, pdev, quirks); 2649 } 2650 2651 static struct msm_gem_address_space * 2652 a6xx_create_private_address_space(struct msm_gpu *gpu) 2653 { 2654 struct msm_mmu *mmu; 2655 2656 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 2657 2658 if (IS_ERR(mmu)) 2659 return ERR_CAST(mmu); 2660 2661 return msm_gem_address_space_create(mmu, 2662 "gpu", 0x100000000ULL, 2663 adreno_private_address_space_size(gpu)); 2664 } 2665 2666 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 2667 { 2668 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2669 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2670 2671 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 2672 return a6xx_gpu->shadow[ring->id]; 2673 2674 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 2675 } 2676 2677 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 2678 { 2679 struct msm_cp_state cp_state = { 2680 .ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 2681 .ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 2682 .ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 2683 .ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE), 2684 }; 2685 bool progress; 2686 2687 /* 2688 * Adjust the remaining data to account for what has already been 2689 * fetched from memory, but not yet consumed by the SQE. 2690 * 2691 * This is not *technically* correct, the amount buffered could 2692 * exceed the IB size due to hw prefetching ahead, but: 2693 * 2694 * (1) We aren't trying to find the exact position, just whether 2695 * progress has been made 2696 * (2) The CP_REG_TO_MEM at the end of a submit should be enough 2697 * to prevent prefetching into an unrelated submit. (And 2698 * either way, at some point the ROQ will be full.) 2699 */ 2700 cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16; 2701 cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16; 2702 2703 progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state)); 2704 2705 ring->last_cp_state = cp_state; 2706 2707 return progress; 2708 } 2709 2710 static u32 fuse_to_supp_hw(const struct adreno_info *info, u32 fuse) 2711 { 2712 if (!info->speedbins) 2713 return UINT_MAX; 2714 2715 for (int i = 0; info->speedbins[i].fuse != SHRT_MAX; i++) 2716 if (info->speedbins[i].fuse == fuse) 2717 return BIT(info->speedbins[i].speedbin); 2718 2719 return UINT_MAX; 2720 } 2721 2722 static int a6xx_set_supported_hw(struct device *dev, const struct adreno_info *info) 2723 { 2724 u32 supp_hw; 2725 u32 speedbin; 2726 int ret; 2727 2728 ret = adreno_read_speedbin(dev, &speedbin); 2729 /* 2730 * -ENOENT means that the platform doesn't support speedbin which is 2731 * fine 2732 */ 2733 if (ret == -ENOENT) { 2734 return 0; 2735 } else if (ret) { 2736 dev_err_probe(dev, ret, 2737 "failed to read speed-bin. Some OPPs may not be supported by hardware\n"); 2738 return ret; 2739 } 2740 2741 supp_hw = fuse_to_supp_hw(info, speedbin); 2742 2743 if (supp_hw == UINT_MAX) { 2744 DRM_DEV_ERROR(dev, 2745 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n", 2746 speedbin); 2747 supp_hw = BIT(0); /* Default */ 2748 } 2749 2750 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 2751 if (ret) 2752 return ret; 2753 2754 return 0; 2755 } 2756 2757 static const struct adreno_gpu_funcs funcs = { 2758 .base = { 2759 .get_param = adreno_get_param, 2760 .set_param = adreno_set_param, 2761 .hw_init = a6xx_hw_init, 2762 .ucode_load = a6xx_ucode_load, 2763 .pm_suspend = a6xx_gmu_pm_suspend, 2764 .pm_resume = a6xx_gmu_pm_resume, 2765 .recover = a6xx_recover, 2766 .submit = a6xx_submit, 2767 .active_ring = a6xx_active_ring, 2768 .irq = a6xx_irq, 2769 .destroy = a6xx_destroy, 2770 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2771 .show = a6xx_show, 2772 #endif 2773 .gpu_busy = a6xx_gpu_busy, 2774 .gpu_get_freq = a6xx_gmu_get_freq, 2775 .gpu_set_freq = a6xx_gpu_set_freq, 2776 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2777 .gpu_state_get = a6xx_gpu_state_get, 2778 .gpu_state_put = a6xx_gpu_state_put, 2779 #endif 2780 .create_address_space = a6xx_create_address_space, 2781 .create_private_address_space = a6xx_create_private_address_space, 2782 .get_rptr = a6xx_get_rptr, 2783 .progress = a6xx_progress, 2784 }, 2785 .get_timestamp = a6xx_gmu_get_timestamp, 2786 }; 2787 2788 static const struct adreno_gpu_funcs funcs_gmuwrapper = { 2789 .base = { 2790 .get_param = adreno_get_param, 2791 .set_param = adreno_set_param, 2792 .hw_init = a6xx_hw_init, 2793 .ucode_load = a6xx_ucode_load, 2794 .pm_suspend = a6xx_pm_suspend, 2795 .pm_resume = a6xx_pm_resume, 2796 .recover = a6xx_recover, 2797 .submit = a6xx_submit, 2798 .active_ring = a6xx_active_ring, 2799 .irq = a6xx_irq, 2800 .destroy = a6xx_destroy, 2801 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2802 .show = a6xx_show, 2803 #endif 2804 .gpu_busy = a6xx_gpu_busy, 2805 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2806 .gpu_state_get = a6xx_gpu_state_get, 2807 .gpu_state_put = a6xx_gpu_state_put, 2808 #endif 2809 .create_address_space = a6xx_create_address_space, 2810 .create_private_address_space = a6xx_create_private_address_space, 2811 .get_rptr = a6xx_get_rptr, 2812 .progress = a6xx_progress, 2813 }, 2814 .get_timestamp = a6xx_get_timestamp, 2815 }; 2816 2817 static const struct adreno_gpu_funcs funcs_a7xx = { 2818 .base = { 2819 .get_param = adreno_get_param, 2820 .set_param = adreno_set_param, 2821 .hw_init = a6xx_hw_init, 2822 .ucode_load = a6xx_ucode_load, 2823 .pm_suspend = a6xx_gmu_pm_suspend, 2824 .pm_resume = a6xx_gmu_pm_resume, 2825 .recover = a6xx_recover, 2826 .submit = a7xx_submit, 2827 .active_ring = a6xx_active_ring, 2828 .irq = a6xx_irq, 2829 .destroy = a6xx_destroy, 2830 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2831 .show = a6xx_show, 2832 #endif 2833 .gpu_busy = a6xx_gpu_busy, 2834 .gpu_get_freq = a6xx_gmu_get_freq, 2835 .gpu_set_freq = a6xx_gpu_set_freq, 2836 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2837 .gpu_state_get = a6xx_gpu_state_get, 2838 .gpu_state_put = a6xx_gpu_state_put, 2839 #endif 2840 .create_address_space = a6xx_create_address_space, 2841 .create_private_address_space = a6xx_create_private_address_space, 2842 .get_rptr = a6xx_get_rptr, 2843 .progress = a6xx_progress, 2844 }, 2845 .get_timestamp = a6xx_gmu_get_timestamp, 2846 }; 2847 2848 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 2849 { 2850 struct msm_drm_private *priv = dev->dev_private; 2851 struct platform_device *pdev = priv->gpu_pdev; 2852 struct adreno_platform_config *config = pdev->dev.platform_data; 2853 struct device_node *node; 2854 struct a6xx_gpu *a6xx_gpu; 2855 struct adreno_gpu *adreno_gpu; 2856 struct msm_gpu *gpu; 2857 bool is_a7xx; 2858 int ret; 2859 2860 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 2861 if (!a6xx_gpu) 2862 return ERR_PTR(-ENOMEM); 2863 2864 adreno_gpu = &a6xx_gpu->base; 2865 gpu = &adreno_gpu->base; 2866 2867 mutex_init(&a6xx_gpu->gmu.lock); 2868 2869 adreno_gpu->registers = NULL; 2870 2871 /* Check if there is a GMU phandle and set it up */ 2872 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 2873 /* FIXME: How do we gracefully handle this? */ 2874 BUG_ON(!node); 2875 2876 adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper"); 2877 2878 adreno_gpu->base.hw_apriv = 2879 !!(config->info->quirks & ADRENO_QUIRK_HAS_HW_APRIV); 2880 2881 /* gpu->info only gets assigned in adreno_gpu_init() */ 2882 is_a7xx = config->info->family == ADRENO_7XX_GEN1 || 2883 config->info->family == ADRENO_7XX_GEN2; 2884 2885 a6xx_llc_slices_init(pdev, a6xx_gpu, is_a7xx); 2886 2887 ret = a6xx_set_supported_hw(&pdev->dev, config->info); 2888 if (ret) { 2889 a6xx_destroy(&(a6xx_gpu->base.base)); 2890 return ERR_PTR(ret); 2891 } 2892 2893 if (is_a7xx) 2894 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_a7xx, 1); 2895 else if (adreno_has_gmu_wrapper(adreno_gpu)) 2896 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1); 2897 else 2898 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 2899 if (ret) { 2900 a6xx_destroy(&(a6xx_gpu->base.base)); 2901 return ERR_PTR(ret); 2902 } 2903 2904 /* 2905 * For now only clamp to idle freq for devices where this is known not 2906 * to cause power supply issues: 2907 */ 2908 if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 2909 priv->gpu_clamp_to_idle = true; 2910 2911 if (adreno_has_gmu_wrapper(adreno_gpu)) 2912 ret = a6xx_gmu_wrapper_init(a6xx_gpu, node); 2913 else 2914 ret = a6xx_gmu_init(a6xx_gpu, node); 2915 of_node_put(node); 2916 if (ret) { 2917 a6xx_destroy(&(a6xx_gpu->base.base)); 2918 return ERR_PTR(ret); 2919 } 2920 2921 if (gpu->aspace) 2922 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 2923 a6xx_fault_handler); 2924 2925 a6xx_calc_ubwc_config(adreno_gpu); 2926 2927 return gpu; 2928 } 2929