1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 5 #include "msm_gem.h" 6 #include "msm_mmu.h" 7 #include "msm_gpu_trace.h" 8 #include "a6xx_gpu.h" 9 #include "a6xx_gmu.xml.h" 10 11 #include <linux/bitfield.h> 12 #include <linux/devfreq.h> 13 #include <linux/pm_domain.h> 14 #include <linux/soc/qcom/llcc-qcom.h> 15 16 #define GPU_PAS_ID 13 17 18 static inline bool _a6xx_check_idle(struct msm_gpu *gpu) 19 { 20 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 21 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 22 23 /* Check that the GMU is idle */ 24 if (!adreno_has_gmu_wrapper(adreno_gpu) && !a6xx_gmu_isidle(&a6xx_gpu->gmu)) 25 return false; 26 27 /* Check tha the CX master is idle */ 28 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS) & 29 ~A6XX_RBBM_STATUS_CP_AHB_BUSY_CX_MASTER) 30 return false; 31 32 return !(gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS) & 33 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT); 34 } 35 36 static bool a6xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 37 { 38 /* wait for CP to drain ringbuffer: */ 39 if (!adreno_idle(gpu, ring)) 40 return false; 41 42 if (spin_until(_a6xx_check_idle(gpu))) { 43 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 44 gpu->name, __builtin_return_address(0), 45 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 46 gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS), 47 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 48 gpu_read(gpu, REG_A6XX_CP_RB_WPTR)); 49 return false; 50 } 51 52 return true; 53 } 54 55 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 56 { 57 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 58 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 59 60 /* Expanded APRIV doesn't need to issue the WHERE_AM_I opcode */ 61 if (a6xx_gpu->has_whereami && !adreno_gpu->base.hw_apriv) { 62 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 63 OUT_RING(ring, lower_32_bits(shadowptr(a6xx_gpu, ring))); 64 OUT_RING(ring, upper_32_bits(shadowptr(a6xx_gpu, ring))); 65 } 66 } 67 68 static void a6xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 69 { 70 uint32_t wptr; 71 unsigned long flags; 72 73 update_shadow_rptr(gpu, ring); 74 75 spin_lock_irqsave(&ring->preempt_lock, flags); 76 77 /* Copy the shadow to the actual register */ 78 ring->cur = ring->next; 79 80 /* Make sure to wrap wptr if we need to */ 81 wptr = get_wptr(ring); 82 83 spin_unlock_irqrestore(&ring->preempt_lock, flags); 84 85 /* Make sure everything is posted before making a decision */ 86 mb(); 87 88 gpu_write(gpu, REG_A6XX_CP_RB_WPTR, wptr); 89 } 90 91 static void get_stats_counter(struct msm_ringbuffer *ring, u32 counter, 92 u64 iova) 93 { 94 OUT_PKT7(ring, CP_REG_TO_MEM, 3); 95 OUT_RING(ring, CP_REG_TO_MEM_0_REG(counter) | 96 CP_REG_TO_MEM_0_CNT(2) | 97 CP_REG_TO_MEM_0_64B); 98 OUT_RING(ring, lower_32_bits(iova)); 99 OUT_RING(ring, upper_32_bits(iova)); 100 } 101 102 static void a6xx_set_pagetable(struct a6xx_gpu *a6xx_gpu, 103 struct msm_ringbuffer *ring, struct msm_file_private *ctx) 104 { 105 bool sysprof = refcount_read(&a6xx_gpu->base.base.sysprof_active) > 1; 106 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 107 phys_addr_t ttbr; 108 u32 asid; 109 u64 memptr = rbmemptr(ring, ttbr0); 110 111 if (ctx->seqno == a6xx_gpu->base.base.cur_ctx_seqno) 112 return; 113 114 if (msm_iommu_pagetable_params(ctx->aspace->mmu, &ttbr, &asid)) 115 return; 116 117 if (!sysprof) { 118 if (!adreno_is_a7xx(adreno_gpu)) { 119 /* Turn off protected mode to write to special registers */ 120 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 121 OUT_RING(ring, 0); 122 } 123 124 OUT_PKT4(ring, REG_A6XX_RBBM_PERFCTR_SRAM_INIT_CMD, 1); 125 OUT_RING(ring, 1); 126 } 127 128 /* Execute the table update */ 129 OUT_PKT7(ring, CP_SMMU_TABLE_UPDATE, 4); 130 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_0_TTBR0_LO(lower_32_bits(ttbr))); 131 132 OUT_RING(ring, 133 CP_SMMU_TABLE_UPDATE_1_TTBR0_HI(upper_32_bits(ttbr)) | 134 CP_SMMU_TABLE_UPDATE_1_ASID(asid)); 135 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_2_CONTEXTIDR(0)); 136 OUT_RING(ring, CP_SMMU_TABLE_UPDATE_3_CONTEXTBANK(0)); 137 138 /* 139 * Write the new TTBR0 to the memstore. This is good for debugging. 140 */ 141 OUT_PKT7(ring, CP_MEM_WRITE, 4); 142 OUT_RING(ring, CP_MEM_WRITE_0_ADDR_LO(lower_32_bits(memptr))); 143 OUT_RING(ring, CP_MEM_WRITE_1_ADDR_HI(upper_32_bits(memptr))); 144 OUT_RING(ring, lower_32_bits(ttbr)); 145 OUT_RING(ring, (asid << 16) | upper_32_bits(ttbr)); 146 147 /* 148 * Sync both threads after switching pagetables and enable BR only 149 * to make sure BV doesn't race ahead while BR is still switching 150 * pagetables. 151 */ 152 if (adreno_is_a7xx(&a6xx_gpu->base)) { 153 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 154 OUT_RING(ring, CP_THREAD_CONTROL_0_SYNC_THREADS | CP_SET_THREAD_BR); 155 } 156 157 /* 158 * And finally, trigger a uche flush to be sure there isn't anything 159 * lingering in that part of the GPU 160 */ 161 162 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 163 OUT_RING(ring, CACHE_INVALIDATE); 164 165 if (!sysprof) { 166 /* 167 * Wait for SRAM clear after the pgtable update, so the 168 * two can happen in parallel: 169 */ 170 OUT_PKT7(ring, CP_WAIT_REG_MEM, 6); 171 OUT_RING(ring, CP_WAIT_REG_MEM_0_FUNCTION(WRITE_EQ)); 172 OUT_RING(ring, CP_WAIT_REG_MEM_1_POLL_ADDR_LO( 173 REG_A6XX_RBBM_PERFCTR_SRAM_INIT_STATUS)); 174 OUT_RING(ring, CP_WAIT_REG_MEM_2_POLL_ADDR_HI(0)); 175 OUT_RING(ring, CP_WAIT_REG_MEM_3_REF(0x1)); 176 OUT_RING(ring, CP_WAIT_REG_MEM_4_MASK(0x1)); 177 OUT_RING(ring, CP_WAIT_REG_MEM_5_DELAY_LOOP_CYCLES(0)); 178 179 if (!adreno_is_a7xx(adreno_gpu)) { 180 /* Re-enable protected mode: */ 181 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 182 OUT_RING(ring, 1); 183 } 184 } 185 } 186 187 static void a6xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 188 { 189 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 190 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 191 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 192 struct msm_ringbuffer *ring = submit->ring; 193 unsigned int i, ibs = 0; 194 195 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 196 197 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 198 rbmemptr_stats(ring, index, cpcycles_start)); 199 200 /* 201 * For PM4 the GMU register offsets are calculated from the base of the 202 * GPU registers so we need to add 0x1a800 to the register value on A630 203 * to get the right value from PM4. 204 */ 205 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 206 rbmemptr_stats(ring, index, alwayson_start)); 207 208 /* Invalidate CCU depth and color */ 209 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 210 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_DEPTH)); 211 212 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 213 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(PC_CCU_INVALIDATE_COLOR)); 214 215 /* Submit the commands */ 216 for (i = 0; i < submit->nr_cmds; i++) { 217 switch (submit->cmd[i].type) { 218 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 219 break; 220 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 221 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 222 break; 223 fallthrough; 224 case MSM_SUBMIT_CMD_BUF: 225 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 226 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 227 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 228 OUT_RING(ring, submit->cmd[i].size); 229 ibs++; 230 break; 231 } 232 233 /* 234 * Periodically update shadow-wptr if needed, so that we 235 * can see partial progress of submits with large # of 236 * cmds.. otherwise we could needlessly stall waiting for 237 * ringbuffer state, simply due to looking at a shadow 238 * rptr value that has not been updated 239 */ 240 if ((ibs % 32) == 0) 241 update_shadow_rptr(gpu, ring); 242 } 243 244 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 245 rbmemptr_stats(ring, index, cpcycles_end)); 246 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 247 rbmemptr_stats(ring, index, alwayson_end)); 248 249 /* Write the fence to the scratch register */ 250 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 251 OUT_RING(ring, submit->seqno); 252 253 /* 254 * Execute a CACHE_FLUSH_TS event. This will ensure that the 255 * timestamp is written to the memory and then triggers the interrupt 256 */ 257 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 258 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 259 CP_EVENT_WRITE_0_IRQ); 260 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 261 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 262 OUT_RING(ring, submit->seqno); 263 264 trace_msm_gpu_submit_flush(submit, 265 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER)); 266 267 a6xx_flush(gpu, ring); 268 } 269 270 static void a7xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 271 { 272 unsigned int index = submit->seqno % MSM_GPU_SUBMIT_STATS_COUNT; 273 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 274 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 275 struct msm_ringbuffer *ring = submit->ring; 276 unsigned int i, ibs = 0; 277 278 /* 279 * Toggle concurrent binning for pagetable switch and set the thread to 280 * BR since only it can execute the pagetable switch packets. 281 */ 282 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 283 OUT_RING(ring, CP_THREAD_CONTROL_0_SYNC_THREADS | CP_SET_THREAD_BR); 284 285 a6xx_set_pagetable(a6xx_gpu, ring, submit->queue->ctx); 286 287 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 288 rbmemptr_stats(ring, index, cpcycles_start)); 289 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 290 rbmemptr_stats(ring, index, alwayson_start)); 291 292 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 293 OUT_RING(ring, CP_SET_THREAD_BOTH); 294 295 OUT_PKT7(ring, CP_SET_MARKER, 1); 296 OUT_RING(ring, 0x101); /* IFPC disable */ 297 298 OUT_PKT7(ring, CP_SET_MARKER, 1); 299 OUT_RING(ring, 0x00d); /* IB1LIST start */ 300 301 /* Submit the commands */ 302 for (i = 0; i < submit->nr_cmds; i++) { 303 switch (submit->cmd[i].type) { 304 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 305 break; 306 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 307 if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno) 308 break; 309 fallthrough; 310 case MSM_SUBMIT_CMD_BUF: 311 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 312 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 313 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 314 OUT_RING(ring, submit->cmd[i].size); 315 ibs++; 316 break; 317 } 318 319 /* 320 * Periodically update shadow-wptr if needed, so that we 321 * can see partial progress of submits with large # of 322 * cmds.. otherwise we could needlessly stall waiting for 323 * ringbuffer state, simply due to looking at a shadow 324 * rptr value that has not been updated 325 */ 326 if ((ibs % 32) == 0) 327 update_shadow_rptr(gpu, ring); 328 } 329 330 OUT_PKT7(ring, CP_SET_MARKER, 1); 331 OUT_RING(ring, 0x00e); /* IB1LIST end */ 332 333 get_stats_counter(ring, REG_A6XX_RBBM_PERFCTR_CP(0), 334 rbmemptr_stats(ring, index, cpcycles_end)); 335 get_stats_counter(ring, REG_A6XX_CP_ALWAYS_ON_COUNTER, 336 rbmemptr_stats(ring, index, alwayson_end)); 337 338 /* Write the fence to the scratch register */ 339 OUT_PKT4(ring, REG_A6XX_CP_SCRATCH_REG(2), 1); 340 OUT_RING(ring, submit->seqno); 341 342 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 343 OUT_RING(ring, CP_SET_THREAD_BR); 344 345 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 346 OUT_RING(ring, CCU_INVALIDATE_DEPTH); 347 348 OUT_PKT7(ring, CP_EVENT_WRITE, 1); 349 OUT_RING(ring, CCU_INVALIDATE_COLOR); 350 351 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 352 OUT_RING(ring, CP_SET_THREAD_BV); 353 354 /* 355 * Make sure the timestamp is committed once BV pipe is 356 * completely done with this submission. 357 */ 358 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 359 OUT_RING(ring, CACHE_CLEAN | BIT(27)); 360 OUT_RING(ring, lower_32_bits(rbmemptr(ring, bv_fence))); 361 OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence))); 362 OUT_RING(ring, submit->seqno); 363 364 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 365 OUT_RING(ring, CP_SET_THREAD_BR); 366 367 /* 368 * This makes sure that BR doesn't race ahead and commit 369 * timestamp to memstore while BV is still processing 370 * this submission. 371 */ 372 OUT_PKT7(ring, CP_WAIT_TIMESTAMP, 4); 373 OUT_RING(ring, 0); 374 OUT_RING(ring, lower_32_bits(rbmemptr(ring, bv_fence))); 375 OUT_RING(ring, upper_32_bits(rbmemptr(ring, bv_fence))); 376 OUT_RING(ring, submit->seqno); 377 378 /* write the ringbuffer timestamp */ 379 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 380 OUT_RING(ring, CACHE_CLEAN | CP_EVENT_WRITE_0_IRQ | BIT(27)); 381 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 382 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 383 OUT_RING(ring, submit->seqno); 384 385 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 386 OUT_RING(ring, CP_SET_THREAD_BOTH); 387 388 OUT_PKT7(ring, CP_SET_MARKER, 1); 389 OUT_RING(ring, 0x100); /* IFPC enable */ 390 391 trace_msm_gpu_submit_flush(submit, 392 gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER)); 393 394 a6xx_flush(gpu, ring); 395 } 396 397 const struct adreno_reglist a612_hwcg[] = { 398 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 399 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 400 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081}, 401 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 402 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 403 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 404 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 405 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 406 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 407 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 408 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 409 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 410 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 411 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 412 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 413 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 414 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 415 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222}, 416 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 417 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 418 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022}, 419 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 420 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 421 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 422 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 423 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 424 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, 425 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 426 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 427 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 428 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 429 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 430 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 431 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 432 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 433 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 434 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 435 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 436 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 437 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 438 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 439 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 440 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 441 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 442 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 443 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 444 {}, 445 }; 446 447 /* For a615 family (a615, a616, a618 and a619) */ 448 const struct adreno_reglist a615_hwcg[] = { 449 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 450 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 451 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 452 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 453 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 454 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 455 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 456 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 457 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 458 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 459 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 460 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 461 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 462 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 463 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 464 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 465 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 466 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 467 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 468 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 469 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 470 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 471 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 472 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 473 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 474 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 475 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 476 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 477 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 478 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 479 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 480 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 481 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 482 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 483 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 484 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 485 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002020}, 486 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 487 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 488 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 489 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 490 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040F00}, 491 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040F00}, 492 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040F00}, 493 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 494 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 495 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 496 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 497 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 498 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 499 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 500 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 501 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 502 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 503 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 504 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 505 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 506 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 507 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 508 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 509 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 510 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 511 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 512 {}, 513 }; 514 515 const struct adreno_reglist a630_hwcg[] = { 516 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222}, 517 {REG_A6XX_RBBM_CLOCK_CNTL_SP1, 0x22222222}, 518 {REG_A6XX_RBBM_CLOCK_CNTL_SP2, 0x22222222}, 519 {REG_A6XX_RBBM_CLOCK_CNTL_SP3, 0x22222222}, 520 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022220}, 521 {REG_A6XX_RBBM_CLOCK_CNTL2_SP1, 0x02022220}, 522 {REG_A6XX_RBBM_CLOCK_CNTL2_SP2, 0x02022220}, 523 {REG_A6XX_RBBM_CLOCK_CNTL2_SP3, 0x02022220}, 524 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 525 {REG_A6XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 526 {REG_A6XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 527 {REG_A6XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 528 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf}, 529 {REG_A6XX_RBBM_CLOCK_HYST_SP1, 0x0000f3cf}, 530 {REG_A6XX_RBBM_CLOCK_HYST_SP2, 0x0000f3cf}, 531 {REG_A6XX_RBBM_CLOCK_HYST_SP3, 0x0000f3cf}, 532 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 533 {REG_A6XX_RBBM_CLOCK_CNTL_TP1, 0x02222222}, 534 {REG_A6XX_RBBM_CLOCK_CNTL_TP2, 0x02222222}, 535 {REG_A6XX_RBBM_CLOCK_CNTL_TP3, 0x02222222}, 536 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 537 {REG_A6XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 538 {REG_A6XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 539 {REG_A6XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 540 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 541 {REG_A6XX_RBBM_CLOCK_CNTL3_TP1, 0x22222222}, 542 {REG_A6XX_RBBM_CLOCK_CNTL3_TP2, 0x22222222}, 543 {REG_A6XX_RBBM_CLOCK_CNTL3_TP3, 0x22222222}, 544 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 545 {REG_A6XX_RBBM_CLOCK_CNTL4_TP1, 0x00022222}, 546 {REG_A6XX_RBBM_CLOCK_CNTL4_TP2, 0x00022222}, 547 {REG_A6XX_RBBM_CLOCK_CNTL4_TP3, 0x00022222}, 548 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 549 {REG_A6XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 550 {REG_A6XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 551 {REG_A6XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 552 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 553 {REG_A6XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 554 {REG_A6XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 555 {REG_A6XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 556 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 557 {REG_A6XX_RBBM_CLOCK_HYST3_TP1, 0x77777777}, 558 {REG_A6XX_RBBM_CLOCK_HYST3_TP2, 0x77777777}, 559 {REG_A6XX_RBBM_CLOCK_HYST3_TP3, 0x77777777}, 560 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 561 {REG_A6XX_RBBM_CLOCK_HYST4_TP1, 0x00077777}, 562 {REG_A6XX_RBBM_CLOCK_HYST4_TP2, 0x00077777}, 563 {REG_A6XX_RBBM_CLOCK_HYST4_TP3, 0x00077777}, 564 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 565 {REG_A6XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 566 {REG_A6XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 567 {REG_A6XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 568 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 569 {REG_A6XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 570 {REG_A6XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 571 {REG_A6XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 572 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 573 {REG_A6XX_RBBM_CLOCK_DELAY3_TP1, 0x11111111}, 574 {REG_A6XX_RBBM_CLOCK_DELAY3_TP2, 0x11111111}, 575 {REG_A6XX_RBBM_CLOCK_DELAY3_TP3, 0x11111111}, 576 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 577 {REG_A6XX_RBBM_CLOCK_DELAY4_TP1, 0x00011111}, 578 {REG_A6XX_RBBM_CLOCK_DELAY4_TP2, 0x00011111}, 579 {REG_A6XX_RBBM_CLOCK_DELAY4_TP3, 0x00011111}, 580 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 581 {REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 582 {REG_A6XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 583 {REG_A6XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 584 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 585 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 586 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 587 {REG_A6XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 588 {REG_A6XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 589 {REG_A6XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 590 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x00002222}, 591 {REG_A6XX_RBBM_CLOCK_CNTL2_RB1, 0x00002222}, 592 {REG_A6XX_RBBM_CLOCK_CNTL2_RB2, 0x00002222}, 593 {REG_A6XX_RBBM_CLOCK_CNTL2_RB3, 0x00002222}, 594 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 595 {REG_A6XX_RBBM_CLOCK_CNTL_CCU1, 0x00002220}, 596 {REG_A6XX_RBBM_CLOCK_CNTL_CCU2, 0x00002220}, 597 {REG_A6XX_RBBM_CLOCK_CNTL_CCU3, 0x00002220}, 598 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00}, 599 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU1, 0x00040f00}, 600 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU2, 0x00040f00}, 601 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU3, 0x00040f00}, 602 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05022022}, 603 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 604 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 605 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 606 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 607 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 608 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 609 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 610 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 611 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 612 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 613 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 614 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 615 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 616 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 617 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 618 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 619 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 620 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 621 {}, 622 }; 623 624 const struct adreno_reglist a640_hwcg[] = { 625 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 626 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 627 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 628 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 629 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 630 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 631 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 632 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 633 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 634 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 635 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 636 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 637 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 638 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 639 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 640 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 641 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 642 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 643 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 644 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 645 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05222022}, 646 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 647 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 648 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 649 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 650 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 651 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 652 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 653 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 654 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 655 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 656 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 657 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 658 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 659 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 660 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 661 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 662 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 663 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 664 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 665 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 666 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 667 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 668 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 669 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 670 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 671 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 672 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 673 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 674 {}, 675 }; 676 677 const struct adreno_reglist a650_hwcg[] = { 678 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 679 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 680 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 681 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 682 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x02222222}, 683 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 684 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 685 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 686 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 687 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 688 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 689 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 690 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 691 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 692 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 693 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 694 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 695 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 696 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 697 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 698 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 699 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 700 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 701 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 702 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 703 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 704 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 705 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 706 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 707 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 708 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 709 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 710 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 711 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 712 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 713 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 714 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 715 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 716 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 717 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000777}, 718 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 719 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 720 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 721 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 722 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 723 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 724 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 725 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 726 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 727 {}, 728 }; 729 730 const struct adreno_reglist a660_hwcg[] = { 731 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 732 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 733 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 734 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 735 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 736 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 737 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 738 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 739 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 740 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 741 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 742 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 743 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 744 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 745 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 746 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 747 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 748 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 749 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 750 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 751 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 752 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 753 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 754 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 755 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 756 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 757 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 758 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 759 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 760 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 761 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 762 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 763 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 764 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 765 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 766 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 767 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 768 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 769 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 770 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 771 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 772 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 773 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 774 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 775 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 776 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 777 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 778 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 779 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 780 {}, 781 }; 782 783 const struct adreno_reglist a690_hwcg[] = { 784 {REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 785 {REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 786 {REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 787 {REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 788 {REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 789 {REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 790 {REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222}, 791 {REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222}, 792 {REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 793 {REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 794 {REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111}, 795 {REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111}, 796 {REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 797 {REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 798 {REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777}, 799 {REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777}, 800 {REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 801 {REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222}, 802 {REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220}, 803 {REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040F00}, 804 {REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022}, 805 {REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555}, 806 {REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011}, 807 {REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044}, 808 {REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 809 {REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 810 {REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x00222222}, 811 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002}, 812 {REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222}, 813 {REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 814 {REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 815 {REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 816 {REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 817 {REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 818 {REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 819 {REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 820 {REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000}, 821 {REG_A6XX_RBBM_CLOCK_CNTL_TEX_FCHE, 0x00000222}, 822 {REG_A6XX_RBBM_CLOCK_DELAY_TEX_FCHE, 0x00000111}, 823 {REG_A6XX_RBBM_CLOCK_HYST_TEX_FCHE, 0x00000000}, 824 {REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 825 {REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004}, 826 {REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 827 {REG_A6XX_RBBM_CLOCK_CNTL, 0x8AA8AA82}, 828 {REG_A6XX_RBBM_ISDB_CNT, 0x00000182}, 829 {REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000}, 830 {REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000}, 831 {REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222}, 832 {REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111}, 833 {REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555}, 834 {REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 0x20200}, 835 {REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 0x10111}, 836 {REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 0x5555}, 837 {} 838 }; 839 840 const struct adreno_reglist a702_hwcg[] = { 841 { REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x22222222 }, 842 { REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220 }, 843 { REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000081 }, 844 { REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf }, 845 { REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222222 }, 846 { REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 }, 847 { REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 }, 848 { REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00022222 }, 849 { REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 }, 850 { REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 }, 851 { REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 }, 852 { REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 }, 853 { REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 }, 854 { REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 }, 855 { REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 }, 856 { REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 }, 857 { REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 }, 858 { REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01202222 }, 859 { REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 }, 860 { REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x00040f00 }, 861 { REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x05522022 }, 862 { REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00005555 }, 863 { REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 }, 864 { REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00445044 }, 865 { REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 }, 866 { REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222 }, 867 { REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222222 }, 868 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002 }, 869 { REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 }, 870 { REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000 }, 871 { REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222 }, 872 { REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 }, 873 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 }, 874 { REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 }, 875 { REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 }, 876 { REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 }, 877 { REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 }, 878 { REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 }, 879 { REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004 }, 880 { REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002 }, 881 { REG_A6XX_RBBM_ISDB_CNT, 0x00000182 }, 882 { REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 }, 883 { REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 }, 884 { REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 }, 885 { REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 }, 886 { REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 }, 887 { REG_A6XX_RBBM_CLOCK_CNTL_FCHE, 0x00000222 }, 888 { REG_A6XX_RBBM_CLOCK_DELAY_FCHE, 0x00000000 }, 889 { REG_A6XX_RBBM_CLOCK_HYST_FCHE, 0x00000000 }, 890 { REG_A6XX_RBBM_CLOCK_CNTL_GLC, 0x00222222 }, 891 { REG_A6XX_RBBM_CLOCK_DELAY_GLC, 0x00000000 }, 892 { REG_A6XX_RBBM_CLOCK_HYST_GLC, 0x00000000 }, 893 { REG_A6XX_RBBM_CLOCK_CNTL_MHUB, 0x00000002 }, 894 { REG_A6XX_RBBM_CLOCK_DELAY_MHUB, 0x00000000 }, 895 { REG_A6XX_RBBM_CLOCK_HYST_MHUB, 0x00000000 }, 896 {} 897 }; 898 899 const struct adreno_reglist a730_hwcg[] = { 900 { REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222 }, 901 { REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x02022222 }, 902 { REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x0000f3cf }, 903 { REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080 }, 904 { REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222220 }, 905 { REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 }, 906 { REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 }, 907 { REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00222222 }, 908 { REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 }, 909 { REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 }, 910 { REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 }, 911 { REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 }, 912 { REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 }, 913 { REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 }, 914 { REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 }, 915 { REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 }, 916 { REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 }, 917 { REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000004 }, 918 { REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002 }, 919 { REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 }, 920 { REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222 }, 921 { REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 }, 922 { REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x44000f00 }, 923 { REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022 }, 924 { REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00555555 }, 925 { REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 }, 926 { REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00440044 }, 927 { REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 }, 928 { REG_A7XX_RBBM_CLOCK_MODE2_GRAS, 0x00000222 }, 929 { REG_A7XX_RBBM_CLOCK_MODE_BV_GRAS, 0x00222222 }, 930 { REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222223 }, 931 { REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00002222 }, 932 { REG_A7XX_RBBM_CLOCK_MODE_BV_GPC, 0x00222222 }, 933 { REG_A7XX_RBBM_CLOCK_MODE_BV_VFD, 0x00002222 }, 934 { REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 }, 935 { REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 }, 936 { REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 }, 937 { REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000 }, 938 { REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 }, 939 { REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00002222 }, 940 { REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 }, 941 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 }, 942 { REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 }, 943 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ_2, 0x00000002 }, 944 { REG_A7XX_RBBM_CLOCK_MODE_BV_LRZ, 0x55555552 }, 945 { REG_A7XX_RBBM_CLOCK_MODE_CP, 0x00000223 }, 946 { REG_A6XX_RBBM_CLOCK_CNTL, 0x8aa8aa82 }, 947 { REG_A6XX_RBBM_ISDB_CNT, 0x00000182 }, 948 { REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 }, 949 { REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 }, 950 { REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 }, 951 { REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 }, 952 { REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 }, 953 {}, 954 }; 955 956 const struct adreno_reglist a740_hwcg[] = { 957 { REG_A6XX_RBBM_CLOCK_CNTL_SP0, 0x02222222 }, 958 { REG_A6XX_RBBM_CLOCK_CNTL2_SP0, 0x22022222 }, 959 { REG_A6XX_RBBM_CLOCK_HYST_SP0, 0x003cf3cf }, 960 { REG_A6XX_RBBM_CLOCK_DELAY_SP0, 0x00000080 }, 961 { REG_A6XX_RBBM_CLOCK_CNTL_TP0, 0x22222220 }, 962 { REG_A6XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222 }, 963 { REG_A6XX_RBBM_CLOCK_CNTL3_TP0, 0x22222222 }, 964 { REG_A6XX_RBBM_CLOCK_CNTL4_TP0, 0x00222222 }, 965 { REG_A6XX_RBBM_CLOCK_HYST_TP0, 0x77777777 }, 966 { REG_A6XX_RBBM_CLOCK_HYST2_TP0, 0x77777777 }, 967 { REG_A6XX_RBBM_CLOCK_HYST3_TP0, 0x77777777 }, 968 { REG_A6XX_RBBM_CLOCK_HYST4_TP0, 0x00077777 }, 969 { REG_A6XX_RBBM_CLOCK_DELAY_TP0, 0x11111111 }, 970 { REG_A6XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111 }, 971 { REG_A6XX_RBBM_CLOCK_DELAY3_TP0, 0x11111111 }, 972 { REG_A6XX_RBBM_CLOCK_DELAY4_TP0, 0x00011111 }, 973 { REG_A6XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222 }, 974 { REG_A6XX_RBBM_CLOCK_CNTL2_UCHE, 0x00222222 }, 975 { REG_A6XX_RBBM_CLOCK_HYST_UCHE, 0x00000444 }, 976 { REG_A6XX_RBBM_CLOCK_DELAY_UCHE, 0x00000222 }, 977 { REG_A6XX_RBBM_CLOCK_CNTL_RB0, 0x22222222 }, 978 { REG_A6XX_RBBM_CLOCK_CNTL2_RB0, 0x01002222 }, 979 { REG_A6XX_RBBM_CLOCK_CNTL_CCU0, 0x00002220 }, 980 { REG_A6XX_RBBM_CLOCK_HYST_RB_CCU0, 0x44000f00 }, 981 { REG_A6XX_RBBM_CLOCK_CNTL_RAC, 0x25222022 }, 982 { REG_A6XX_RBBM_CLOCK_CNTL2_RAC, 0x00555555 }, 983 { REG_A6XX_RBBM_CLOCK_DELAY_RAC, 0x00000011 }, 984 { REG_A6XX_RBBM_CLOCK_HYST_RAC, 0x00440044 }, 985 { REG_A6XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222 }, 986 { REG_A7XX_RBBM_CLOCK_MODE2_GRAS, 0x00000222 }, 987 { REG_A7XX_RBBM_CLOCK_MODE_BV_GRAS, 0x00222222 }, 988 { REG_A6XX_RBBM_CLOCK_MODE_GPC, 0x02222223 }, 989 { REG_A6XX_RBBM_CLOCK_MODE_VFD, 0x00222222 }, 990 { REG_A7XX_RBBM_CLOCK_MODE_BV_GPC, 0x00222222 }, 991 { REG_A7XX_RBBM_CLOCK_MODE_BV_VFD, 0x00002222 }, 992 { REG_A6XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000 }, 993 { REG_A6XX_RBBM_CLOCK_HYST_GPC, 0x04104004 }, 994 { REG_A6XX_RBBM_CLOCK_HYST_VFD, 0x00000000 }, 995 { REG_A6XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00000000 }, 996 { REG_A6XX_RBBM_CLOCK_DELAY_GPC, 0x00000200 }, 997 { REG_A6XX_RBBM_CLOCK_DELAY_VFD, 0x00000000 }, 998 { REG_A6XX_RBBM_CLOCK_MODE_HLSQ, 0x00002222 }, 999 { REG_A6XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000 }, 1000 { REG_A6XX_RBBM_CLOCK_HYST_HLSQ, 0x00000000 }, 1001 { REG_A7XX_RBBM_CLOCK_MODE_BV_LRZ, 0x55555552 }, 1002 { REG_A7XX_RBBM_CLOCK_HYST2_VFD, 0x00000000 }, 1003 { REG_A7XX_RBBM_CLOCK_MODE_CP, 0x00000222 }, 1004 { REG_A6XX_RBBM_CLOCK_CNTL, 0x8aa8aa82 }, 1005 { REG_A6XX_RBBM_ISDB_CNT, 0x00000182 }, 1006 { REG_A6XX_RBBM_RAC_THRESHOLD_CNT, 0x00000000 }, 1007 { REG_A6XX_RBBM_SP_HYST_CNT, 0x00000000 }, 1008 { REG_A6XX_RBBM_CLOCK_CNTL_GMU_GX, 0x00000222 }, 1009 { REG_A6XX_RBBM_CLOCK_DELAY_GMU_GX, 0x00000111 }, 1010 { REG_A6XX_RBBM_CLOCK_HYST_GMU_GX, 0x00000555 }, 1011 {}, 1012 }; 1013 1014 static void a6xx_set_hwcg(struct msm_gpu *gpu, bool state) 1015 { 1016 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1017 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1018 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1019 const struct adreno_reglist *reg; 1020 unsigned int i; 1021 u32 val, clock_cntl_on, cgc_mode; 1022 1023 if (!(adreno_gpu->info->hwcg || adreno_is_a7xx(adreno_gpu))) 1024 return; 1025 1026 if (adreno_is_a630(adreno_gpu)) 1027 clock_cntl_on = 0x8aa8aa02; 1028 else if (adreno_is_a610(adreno_gpu)) 1029 clock_cntl_on = 0xaaa8aa82; 1030 else if (adreno_is_a702(adreno_gpu)) 1031 clock_cntl_on = 0xaaaaaa82; 1032 else 1033 clock_cntl_on = 0x8aa8aa82; 1034 1035 if (adreno_is_a7xx(adreno_gpu)) { 1036 cgc_mode = adreno_is_a740_family(adreno_gpu) ? 0x20222 : 0x20000; 1037 1038 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_MODE_CNTL, 1039 state ? cgc_mode : 0); 1040 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_DELAY_CNTL, 1041 state ? 0x10111 : 0); 1042 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GPU_GMU_AO_GMU_CGC_HYST_CNTL, 1043 state ? 0x5555 : 0); 1044 } 1045 1046 if (!adreno_gpu->info->hwcg) { 1047 gpu_write(gpu, REG_A7XX_RBBM_CLOCK_CNTL_GLOBAL, 1); 1048 gpu_write(gpu, REG_A7XX_RBBM_CGC_GLOBAL_LOAD_CMD, state ? 1 : 0); 1049 1050 if (state) { 1051 gpu_write(gpu, REG_A7XX_RBBM_CGC_P2S_TRIG_CMD, 1); 1052 1053 if (gpu_poll_timeout(gpu, REG_A7XX_RBBM_CGC_P2S_STATUS, val, 1054 val & A7XX_RBBM_CGC_P2S_STATUS_TXDONE, 1, 10)) { 1055 dev_err(&gpu->pdev->dev, "RBBM_CGC_P2S_STATUS TXDONE Poll failed\n"); 1056 return; 1057 } 1058 1059 gpu_write(gpu, REG_A7XX_RBBM_CLOCK_CNTL_GLOBAL, 0); 1060 } 1061 1062 return; 1063 } 1064 1065 val = gpu_read(gpu, REG_A6XX_RBBM_CLOCK_CNTL); 1066 1067 /* Don't re-program the registers if they are already correct */ 1068 if ((!state && !val) || (state && (val == clock_cntl_on))) 1069 return; 1070 1071 /* Disable SP clock before programming HWCG registers */ 1072 if (!adreno_is_a610_family(adreno_gpu) && !adreno_is_a7xx(adreno_gpu)) 1073 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 1, 0); 1074 1075 for (i = 0; (reg = &adreno_gpu->info->hwcg[i], reg->offset); i++) 1076 gpu_write(gpu, reg->offset, state ? reg->value : 0); 1077 1078 /* Enable SP clock */ 1079 if (!adreno_is_a610_family(adreno_gpu) && !adreno_is_a7xx(adreno_gpu)) 1080 gmu_rmw(gmu, REG_A6XX_GPU_GMU_GX_SPTPRAC_CLOCK_CONTROL, 0, 1); 1081 1082 gpu_write(gpu, REG_A6XX_RBBM_CLOCK_CNTL, state ? clock_cntl_on : 0); 1083 } 1084 1085 /* For a615, a616, a618, a619, a630, a640 and a680 */ 1086 static const u32 a6xx_protect[] = { 1087 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1088 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 1089 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 1090 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1091 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1092 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1093 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 1094 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1095 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1096 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 1097 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1098 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 1099 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 1100 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 1101 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1102 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1103 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1104 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1105 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1106 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1107 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1108 A6XX_PROTECT_NORDWR(0x09e70, 0x0001), 1109 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1110 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1111 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1112 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 1113 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 1114 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 1115 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 1116 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 1117 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1118 A6XX_PROTECT_NORDWR(0x11c00, 0x0000), /* note: infinite range */ 1119 }; 1120 1121 /* These are for a620 and a650 */ 1122 static const u32 a650_protect[] = { 1123 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1124 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 1125 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 1126 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1127 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1128 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1129 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 1130 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1131 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1132 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 1133 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1134 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 1135 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 1136 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 1137 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1138 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1139 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1140 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1141 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1142 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1143 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 1144 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1145 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 1146 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1147 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1148 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1149 A6XX_PROTECT_NORDWR(0x0ae50, 0x032f), 1150 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 1151 A6XX_PROTECT_NORDWR(0x0b608, 0x0007), 1152 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 1153 A6XX_PROTECT_NORDWR(0x0be20, 0x17df), 1154 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 1155 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1156 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 1157 A6XX_PROTECT_NORDWR(0x1a800, 0x1fff), 1158 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 1159 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 1160 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 1161 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 1162 }; 1163 1164 /* These are for a635 and a660 */ 1165 static const u32 a660_protect[] = { 1166 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1167 A6XX_PROTECT_RDONLY(0x00501, 0x0005), 1168 A6XX_PROTECT_RDONLY(0x0050b, 0x02f4), 1169 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1170 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1171 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1172 A6XX_PROTECT_NORDWR(0x00800, 0x0082), 1173 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1174 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1175 A6XX_PROTECT_RDONLY(0x008de, 0x00ae), 1176 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1177 A6XX_PROTECT_NORDWR(0x0098d, 0x0272), 1178 A6XX_PROTECT_NORDWR(0x00e00, 0x0001), 1179 A6XX_PROTECT_NORDWR(0x00e03, 0x000c), 1180 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1181 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1182 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1183 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1184 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1185 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1186 A6XX_PROTECT_NORDWR(0x08e80, 0x027f), 1187 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1188 A6XX_PROTECT_NORDWR(0x09e60, 0x0011), 1189 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1190 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1191 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1192 A6XX_PROTECT_NORDWR(0x0ae50, 0x012f), 1193 A6XX_PROTECT_NORDWR(0x0b604, 0x0000), 1194 A6XX_PROTECT_NORDWR(0x0b608, 0x0006), 1195 A6XX_PROTECT_NORDWR(0x0be02, 0x0001), 1196 A6XX_PROTECT_NORDWR(0x0be20, 0x015f), 1197 A6XX_PROTECT_NORDWR(0x0d000, 0x05ff), 1198 A6XX_PROTECT_NORDWR(0x0f000, 0x0bff), 1199 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1200 A6XX_PROTECT_NORDWR(0x18400, 0x1fff), 1201 A6XX_PROTECT_NORDWR(0x1a400, 0x1fff), 1202 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 1203 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 1204 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 1205 A6XX_PROTECT_NORDWR(0x1f887, 0x001b), 1206 A6XX_PROTECT_NORDWR(0x1f8c0, 0x0000), /* note: infinite range */ 1207 }; 1208 1209 /* These are for a690 */ 1210 static const u32 a690_protect[] = { 1211 A6XX_PROTECT_RDONLY(0x00000, 0x004ff), 1212 A6XX_PROTECT_RDONLY(0x00501, 0x00001), 1213 A6XX_PROTECT_RDONLY(0x0050b, 0x002f4), 1214 A6XX_PROTECT_NORDWR(0x0050e, 0x00000), 1215 A6XX_PROTECT_NORDWR(0x00510, 0x00000), 1216 A6XX_PROTECT_NORDWR(0x00534, 0x00000), 1217 A6XX_PROTECT_NORDWR(0x00800, 0x00082), 1218 A6XX_PROTECT_NORDWR(0x008a0, 0x00008), 1219 A6XX_PROTECT_NORDWR(0x008ab, 0x00024), 1220 A6XX_PROTECT_RDONLY(0x008de, 0x000ae), 1221 A6XX_PROTECT_NORDWR(0x00900, 0x0004d), 1222 A6XX_PROTECT_NORDWR(0x0098d, 0x00272), 1223 A6XX_PROTECT_NORDWR(0x00e00, 0x00001), 1224 A6XX_PROTECT_NORDWR(0x00e03, 0x0000c), 1225 A6XX_PROTECT_NORDWR(0x03c00, 0x000c3), 1226 A6XX_PROTECT_RDONLY(0x03cc4, 0x01fff), 1227 A6XX_PROTECT_NORDWR(0x08630, 0x001cf), 1228 A6XX_PROTECT_NORDWR(0x08e00, 0x00000), 1229 A6XX_PROTECT_NORDWR(0x08e08, 0x00007), 1230 A6XX_PROTECT_NORDWR(0x08e50, 0x0001f), 1231 A6XX_PROTECT_NORDWR(0x08e80, 0x0027f), 1232 A6XX_PROTECT_NORDWR(0x09624, 0x001db), 1233 A6XX_PROTECT_NORDWR(0x09e60, 0x00011), 1234 A6XX_PROTECT_NORDWR(0x09e78, 0x00187), 1235 A6XX_PROTECT_NORDWR(0x0a630, 0x001cf), 1236 A6XX_PROTECT_NORDWR(0x0ae02, 0x00000), 1237 A6XX_PROTECT_NORDWR(0x0ae50, 0x0012f), 1238 A6XX_PROTECT_NORDWR(0x0b604, 0x00000), 1239 A6XX_PROTECT_NORDWR(0x0b608, 0x00006), 1240 A6XX_PROTECT_NORDWR(0x0be02, 0x00001), 1241 A6XX_PROTECT_NORDWR(0x0be20, 0x0015f), 1242 A6XX_PROTECT_NORDWR(0x0d000, 0x005ff), 1243 A6XX_PROTECT_NORDWR(0x0f000, 0x00bff), 1244 A6XX_PROTECT_RDONLY(0x0fc00, 0x01fff), 1245 A6XX_PROTECT_NORDWR(0x11c00, 0x00000), /*note: infiite range */ 1246 }; 1247 1248 static const u32 a730_protect[] = { 1249 A6XX_PROTECT_RDONLY(0x00000, 0x04ff), 1250 A6XX_PROTECT_RDONLY(0x0050b, 0x0058), 1251 A6XX_PROTECT_NORDWR(0x0050e, 0x0000), 1252 A6XX_PROTECT_NORDWR(0x00510, 0x0000), 1253 A6XX_PROTECT_NORDWR(0x00534, 0x0000), 1254 A6XX_PROTECT_RDONLY(0x005fb, 0x009d), 1255 A6XX_PROTECT_NORDWR(0x00699, 0x01e9), 1256 A6XX_PROTECT_NORDWR(0x008a0, 0x0008), 1257 A6XX_PROTECT_NORDWR(0x008ab, 0x0024), 1258 /* 0x008d0-0x008dd are unprotected on purpose for tools like perfetto */ 1259 A6XX_PROTECT_RDONLY(0x008de, 0x0154), 1260 A6XX_PROTECT_NORDWR(0x00900, 0x004d), 1261 A6XX_PROTECT_NORDWR(0x0098d, 0x00b2), 1262 A6XX_PROTECT_NORDWR(0x00a41, 0x01be), 1263 A6XX_PROTECT_NORDWR(0x00df0, 0x0001), 1264 A6XX_PROTECT_NORDWR(0x00e01, 0x0000), 1265 A6XX_PROTECT_NORDWR(0x00e07, 0x0008), 1266 A6XX_PROTECT_NORDWR(0x03c00, 0x00c3), 1267 A6XX_PROTECT_RDONLY(0x03cc4, 0x1fff), 1268 A6XX_PROTECT_NORDWR(0x08630, 0x01cf), 1269 A6XX_PROTECT_NORDWR(0x08e00, 0x0000), 1270 A6XX_PROTECT_NORDWR(0x08e08, 0x0000), 1271 A6XX_PROTECT_NORDWR(0x08e50, 0x001f), 1272 A6XX_PROTECT_NORDWR(0x08e80, 0x0280), 1273 A6XX_PROTECT_NORDWR(0x09624, 0x01db), 1274 A6XX_PROTECT_NORDWR(0x09e40, 0x0000), 1275 A6XX_PROTECT_NORDWR(0x09e64, 0x000d), 1276 A6XX_PROTECT_NORDWR(0x09e78, 0x0187), 1277 A6XX_PROTECT_NORDWR(0x0a630, 0x01cf), 1278 A6XX_PROTECT_NORDWR(0x0ae02, 0x0000), 1279 A6XX_PROTECT_NORDWR(0x0ae50, 0x000f), 1280 A6XX_PROTECT_NORDWR(0x0ae66, 0x0003), 1281 A6XX_PROTECT_NORDWR(0x0ae6f, 0x0003), 1282 A6XX_PROTECT_NORDWR(0x0b604, 0x0003), 1283 A6XX_PROTECT_NORDWR(0x0ec00, 0x0fff), 1284 A6XX_PROTECT_RDONLY(0x0fc00, 0x1fff), 1285 A6XX_PROTECT_NORDWR(0x18400, 0x0053), 1286 A6XX_PROTECT_RDONLY(0x18454, 0x0004), 1287 A6XX_PROTECT_NORDWR(0x18459, 0x1fff), 1288 A6XX_PROTECT_NORDWR(0x1a459, 0x1fff), 1289 A6XX_PROTECT_NORDWR(0x1c459, 0x1fff), 1290 A6XX_PROTECT_NORDWR(0x1f400, 0x0443), 1291 A6XX_PROTECT_RDONLY(0x1f844, 0x007b), 1292 A6XX_PROTECT_NORDWR(0x1f860, 0x0000), 1293 A6XX_PROTECT_NORDWR(0x1f878, 0x002a), 1294 /* CP_PROTECT_REG[44, 46] are left untouched! */ 1295 0, 1296 0, 1297 0, 1298 A6XX_PROTECT_NORDWR(0x1f8c0, 0x00000), 1299 }; 1300 1301 static void a6xx_set_cp_protect(struct msm_gpu *gpu) 1302 { 1303 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1304 const u32 *regs = a6xx_protect; 1305 unsigned i, count, count_max; 1306 1307 if (adreno_is_a650(adreno_gpu) || adreno_is_a702(adreno_gpu)) { 1308 regs = a650_protect; 1309 count = ARRAY_SIZE(a650_protect); 1310 count_max = 48; 1311 BUILD_BUG_ON(ARRAY_SIZE(a650_protect) > 48); 1312 } else if (adreno_is_a690(adreno_gpu)) { 1313 regs = a690_protect; 1314 count = ARRAY_SIZE(a690_protect); 1315 count_max = 48; 1316 BUILD_BUG_ON(ARRAY_SIZE(a690_protect) > 48); 1317 } else if (adreno_is_a660_family(adreno_gpu)) { 1318 regs = a660_protect; 1319 count = ARRAY_SIZE(a660_protect); 1320 count_max = 48; 1321 BUILD_BUG_ON(ARRAY_SIZE(a660_protect) > 48); 1322 } else if (adreno_is_a730(adreno_gpu) || 1323 adreno_is_a740(adreno_gpu) || 1324 adreno_is_a750(adreno_gpu)) { 1325 regs = a730_protect; 1326 count = ARRAY_SIZE(a730_protect); 1327 count_max = 48; 1328 BUILD_BUG_ON(ARRAY_SIZE(a730_protect) > 48); 1329 } else { 1330 regs = a6xx_protect; 1331 count = ARRAY_SIZE(a6xx_protect); 1332 count_max = 32; 1333 BUILD_BUG_ON(ARRAY_SIZE(a6xx_protect) > 32); 1334 } 1335 1336 /* 1337 * Enable access protection to privileged registers, fault on an access 1338 * protect violation and select the last span to protect from the start 1339 * address all the way to the end of the register address space 1340 */ 1341 gpu_write(gpu, REG_A6XX_CP_PROTECT_CNTL, 1342 A6XX_CP_PROTECT_CNTL_ACCESS_PROT_EN | 1343 A6XX_CP_PROTECT_CNTL_ACCESS_FAULT_ON_VIOL_EN | 1344 A6XX_CP_PROTECT_CNTL_LAST_SPAN_INF_RANGE); 1345 1346 for (i = 0; i < count - 1; i++) { 1347 /* Intentionally skip writing to some registers */ 1348 if (regs[i]) 1349 gpu_write(gpu, REG_A6XX_CP_PROTECT(i), regs[i]); 1350 } 1351 /* last CP_PROTECT to have "infinite" length on the last entry */ 1352 gpu_write(gpu, REG_A6XX_CP_PROTECT(count_max - 1), regs[i]); 1353 } 1354 1355 static void a6xx_calc_ubwc_config(struct adreno_gpu *gpu) 1356 { 1357 /* Unknown, introduced with A650 family, related to UBWC mode/ver 4 */ 1358 gpu->ubwc_config.rgb565_predicator = 0; 1359 /* Unknown, introduced with A650 family */ 1360 gpu->ubwc_config.uavflagprd_inv = 0; 1361 /* Whether the minimum access length is 64 bits */ 1362 gpu->ubwc_config.min_acc_len = 0; 1363 /* Entirely magic, per-GPU-gen value */ 1364 gpu->ubwc_config.ubwc_mode = 0; 1365 /* 1366 * The Highest Bank Bit value represents the bit of the highest DDR bank. 1367 * This should ideally use DRAM type detection. 1368 */ 1369 gpu->ubwc_config.highest_bank_bit = 15; 1370 1371 if (adreno_is_a610(gpu)) { 1372 gpu->ubwc_config.highest_bank_bit = 13; 1373 gpu->ubwc_config.min_acc_len = 1; 1374 gpu->ubwc_config.ubwc_mode = 1; 1375 } 1376 1377 if (adreno_is_a618(gpu)) 1378 gpu->ubwc_config.highest_bank_bit = 14; 1379 1380 if (adreno_is_a619_holi(gpu)) 1381 gpu->ubwc_config.highest_bank_bit = 13; 1382 1383 if (adreno_is_a640_family(gpu)) 1384 gpu->ubwc_config.amsbc = 1; 1385 1386 if (adreno_is_a650(gpu) || 1387 adreno_is_a660(gpu) || 1388 adreno_is_a690(gpu) || 1389 adreno_is_a730(gpu) || 1390 adreno_is_a740_family(gpu)) { 1391 /* TODO: get ddr type from bootloader and use 2 for LPDDR4 */ 1392 gpu->ubwc_config.highest_bank_bit = 16; 1393 gpu->ubwc_config.amsbc = 1; 1394 gpu->ubwc_config.rgb565_predicator = 1; 1395 gpu->ubwc_config.uavflagprd_inv = 2; 1396 } 1397 1398 if (adreno_is_7c3(gpu)) { 1399 gpu->ubwc_config.highest_bank_bit = 14; 1400 gpu->ubwc_config.amsbc = 1; 1401 gpu->ubwc_config.rgb565_predicator = 1; 1402 gpu->ubwc_config.uavflagprd_inv = 2; 1403 } 1404 1405 if (adreno_is_a702(gpu)) { 1406 gpu->ubwc_config.highest_bank_bit = 14; 1407 gpu->ubwc_config.min_acc_len = 1; 1408 gpu->ubwc_config.ubwc_mode = 2; 1409 } 1410 } 1411 1412 static void a6xx_set_ubwc_config(struct msm_gpu *gpu) 1413 { 1414 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1415 /* 1416 * We subtract 13 from the highest bank bit (13 is the minimum value 1417 * allowed by hw) and write the lowest two bits of the remaining value 1418 * as hbb_lo and the one above it as hbb_hi to the hardware. 1419 */ 1420 BUG_ON(adreno_gpu->ubwc_config.highest_bank_bit < 13); 1421 u32 hbb = adreno_gpu->ubwc_config.highest_bank_bit - 13; 1422 u32 hbb_hi = hbb >> 2; 1423 u32 hbb_lo = hbb & 3; 1424 1425 gpu_write(gpu, REG_A6XX_RB_NC_MODE_CNTL, 1426 adreno_gpu->ubwc_config.rgb565_predicator << 11 | 1427 hbb_hi << 10 | adreno_gpu->ubwc_config.amsbc << 4 | 1428 adreno_gpu->ubwc_config.min_acc_len << 3 | 1429 hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode); 1430 1431 gpu_write(gpu, REG_A6XX_TPL1_NC_MODE_CNTL, hbb_hi << 4 | 1432 adreno_gpu->ubwc_config.min_acc_len << 3 | 1433 hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode); 1434 1435 gpu_write(gpu, REG_A6XX_SP_NC_MODE_CNTL, hbb_hi << 10 | 1436 adreno_gpu->ubwc_config.uavflagprd_inv << 4 | 1437 adreno_gpu->ubwc_config.min_acc_len << 3 | 1438 hbb_lo << 1 | adreno_gpu->ubwc_config.ubwc_mode); 1439 1440 if (adreno_is_a7xx(adreno_gpu)) 1441 gpu_write(gpu, REG_A7XX_GRAS_NC_MODE_CNTL, 1442 FIELD_PREP(GENMASK(8, 5), hbb_lo)); 1443 1444 gpu_write(gpu, REG_A6XX_UCHE_MODE_CNTL, 1445 adreno_gpu->ubwc_config.min_acc_len << 23 | hbb_lo << 21); 1446 } 1447 1448 static int a6xx_cp_init(struct msm_gpu *gpu) 1449 { 1450 struct msm_ringbuffer *ring = gpu->rb[0]; 1451 1452 OUT_PKT7(ring, CP_ME_INIT, 8); 1453 1454 OUT_RING(ring, 0x0000002f); 1455 1456 /* Enable multiple hardware contexts */ 1457 OUT_RING(ring, 0x00000003); 1458 1459 /* Enable error detection */ 1460 OUT_RING(ring, 0x20000000); 1461 1462 /* Don't enable header dump */ 1463 OUT_RING(ring, 0x00000000); 1464 OUT_RING(ring, 0x00000000); 1465 1466 /* No workarounds enabled */ 1467 OUT_RING(ring, 0x00000000); 1468 1469 /* Pad rest of the cmds with 0's */ 1470 OUT_RING(ring, 0x00000000); 1471 OUT_RING(ring, 0x00000000); 1472 1473 a6xx_flush(gpu, ring); 1474 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 1475 } 1476 1477 static int a7xx_cp_init(struct msm_gpu *gpu) 1478 { 1479 struct msm_ringbuffer *ring = gpu->rb[0]; 1480 u32 mask; 1481 1482 /* Disable concurrent binning before sending CP init */ 1483 OUT_PKT7(ring, CP_THREAD_CONTROL, 1); 1484 OUT_RING(ring, BIT(27)); 1485 1486 OUT_PKT7(ring, CP_ME_INIT, 7); 1487 1488 /* Use multiple HW contexts */ 1489 mask = BIT(0); 1490 1491 /* Enable error detection */ 1492 mask |= BIT(1); 1493 1494 /* Set default reset state */ 1495 mask |= BIT(3); 1496 1497 /* Disable save/restore of performance counters across preemption */ 1498 mask |= BIT(6); 1499 1500 /* Enable the register init list with the spinlock */ 1501 mask |= BIT(8); 1502 1503 OUT_RING(ring, mask); 1504 1505 /* Enable multiple hardware contexts */ 1506 OUT_RING(ring, 0x00000003); 1507 1508 /* Enable error detection */ 1509 OUT_RING(ring, 0x20000000); 1510 1511 /* Operation mode mask */ 1512 OUT_RING(ring, 0x00000002); 1513 1514 /* *Don't* send a power up reg list for concurrent binning (TODO) */ 1515 /* Lo address */ 1516 OUT_RING(ring, 0x00000000); 1517 /* Hi address */ 1518 OUT_RING(ring, 0x00000000); 1519 /* BIT(31) set => read the regs from the list */ 1520 OUT_RING(ring, 0x00000000); 1521 1522 a6xx_flush(gpu, ring); 1523 return a6xx_idle(gpu, ring) ? 0 : -EINVAL; 1524 } 1525 1526 /* 1527 * Check that the microcode version is new enough to include several key 1528 * security fixes. Return true if the ucode is safe. 1529 */ 1530 static bool a6xx_ucode_check_version(struct a6xx_gpu *a6xx_gpu, 1531 struct drm_gem_object *obj) 1532 { 1533 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1534 struct msm_gpu *gpu = &adreno_gpu->base; 1535 const char *sqe_name = adreno_gpu->info->fw[ADRENO_FW_SQE]; 1536 u32 *buf = msm_gem_get_vaddr(obj); 1537 bool ret = false; 1538 1539 if (IS_ERR(buf)) 1540 return false; 1541 1542 /* A7xx is safe! */ 1543 if (adreno_is_a7xx(adreno_gpu) || adreno_is_a702(adreno_gpu)) 1544 return true; 1545 1546 /* 1547 * Targets up to a640 (a618, a630 and a640) need to check for a 1548 * microcode version that is patched to support the whereami opcode or 1549 * one that is new enough to include it by default. 1550 * 1551 * a650 tier targets don't need whereami but still need to be 1552 * equal to or newer than 0.95 for other security fixes 1553 * 1554 * a660 targets have all the critical security fixes from the start 1555 */ 1556 if (!strcmp(sqe_name, "a630_sqe.fw")) { 1557 /* 1558 * If the lowest nibble is 0xa that is an indication that this 1559 * microcode has been patched. The actual version is in dword 1560 * [3] but we only care about the patchlevel which is the lowest 1561 * nibble of dword [3] 1562 * 1563 * Otherwise check that the firmware is greater than or equal 1564 * to 1.90 which was the first version that had this fix built 1565 * in 1566 */ 1567 if ((((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) || 1568 (buf[0] & 0xfff) >= 0x190) { 1569 a6xx_gpu->has_whereami = true; 1570 ret = true; 1571 goto out; 1572 } 1573 1574 DRM_DEV_ERROR(&gpu->pdev->dev, 1575 "a630 SQE ucode is too old. Have version %x need at least %x\n", 1576 buf[0] & 0xfff, 0x190); 1577 } else if (!strcmp(sqe_name, "a650_sqe.fw")) { 1578 if ((buf[0] & 0xfff) >= 0x095) { 1579 ret = true; 1580 goto out; 1581 } 1582 1583 DRM_DEV_ERROR(&gpu->pdev->dev, 1584 "a650 SQE ucode is too old. Have version %x need at least %x\n", 1585 buf[0] & 0xfff, 0x095); 1586 } else if (!strcmp(sqe_name, "a660_sqe.fw")) { 1587 ret = true; 1588 } else { 1589 DRM_DEV_ERROR(&gpu->pdev->dev, 1590 "unknown GPU, add it to a6xx_ucode_check_version()!!\n"); 1591 } 1592 out: 1593 msm_gem_put_vaddr(obj); 1594 return ret; 1595 } 1596 1597 static int a6xx_ucode_load(struct msm_gpu *gpu) 1598 { 1599 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1600 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1601 1602 if (!a6xx_gpu->sqe_bo) { 1603 a6xx_gpu->sqe_bo = adreno_fw_create_bo(gpu, 1604 adreno_gpu->fw[ADRENO_FW_SQE], &a6xx_gpu->sqe_iova); 1605 1606 if (IS_ERR(a6xx_gpu->sqe_bo)) { 1607 int ret = PTR_ERR(a6xx_gpu->sqe_bo); 1608 1609 a6xx_gpu->sqe_bo = NULL; 1610 DRM_DEV_ERROR(&gpu->pdev->dev, 1611 "Could not allocate SQE ucode: %d\n", ret); 1612 1613 return ret; 1614 } 1615 1616 msm_gem_object_set_name(a6xx_gpu->sqe_bo, "sqefw"); 1617 if (!a6xx_ucode_check_version(a6xx_gpu, a6xx_gpu->sqe_bo)) { 1618 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 1619 drm_gem_object_put(a6xx_gpu->sqe_bo); 1620 1621 a6xx_gpu->sqe_bo = NULL; 1622 return -EPERM; 1623 } 1624 } 1625 1626 /* 1627 * Expanded APRIV and targets that support WHERE_AM_I both need a 1628 * privileged buffer to store the RPTR shadow 1629 */ 1630 if ((adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) && 1631 !a6xx_gpu->shadow_bo) { 1632 a6xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 1633 sizeof(u32) * gpu->nr_rings, 1634 MSM_BO_WC | MSM_BO_MAP_PRIV, 1635 gpu->aspace, &a6xx_gpu->shadow_bo, 1636 &a6xx_gpu->shadow_iova); 1637 1638 if (IS_ERR(a6xx_gpu->shadow)) 1639 return PTR_ERR(a6xx_gpu->shadow); 1640 1641 msm_gem_object_set_name(a6xx_gpu->shadow_bo, "shadow"); 1642 } 1643 1644 return 0; 1645 } 1646 1647 static int a6xx_zap_shader_init(struct msm_gpu *gpu) 1648 { 1649 static bool loaded; 1650 int ret; 1651 1652 if (loaded) 1653 return 0; 1654 1655 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 1656 1657 loaded = !ret; 1658 return ret; 1659 } 1660 1661 #define A6XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 1662 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 1663 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 1664 A6XX_RBBM_INT_0_MASK_CP_IB2 | \ 1665 A6XX_RBBM_INT_0_MASK_CP_IB1 | \ 1666 A6XX_RBBM_INT_0_MASK_CP_RB | \ 1667 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 1668 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 1669 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 1670 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 1671 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR) 1672 1673 #define A7XX_INT_MASK (A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR | \ 1674 A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW | \ 1675 A6XX_RBBM_INT_0_MASK_RBBM_GPC_ERROR | \ 1676 A6XX_RBBM_INT_0_MASK_CP_SW | \ 1677 A6XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 1678 A6XX_RBBM_INT_0_MASK_PM4CPINTERRUPT | \ 1679 A6XX_RBBM_INT_0_MASK_CP_RB_DONE_TS | \ 1680 A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 1681 A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW | \ 1682 A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT | \ 1683 A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 1684 A6XX_RBBM_INT_0_MASK_UCHE_TRAP_INTR | \ 1685 A6XX_RBBM_INT_0_MASK_TSBWRITEERROR) 1686 1687 #define A7XX_APRIV_MASK (A6XX_CP_APRIV_CNTL_ICACHE | \ 1688 A6XX_CP_APRIV_CNTL_RBFETCH | \ 1689 A6XX_CP_APRIV_CNTL_RBPRIVLEVEL | \ 1690 A6XX_CP_APRIV_CNTL_RBRPWB) 1691 1692 #define A7XX_BR_APRIVMASK (A7XX_APRIV_MASK | \ 1693 A6XX_CP_APRIV_CNTL_CDREAD | \ 1694 A6XX_CP_APRIV_CNTL_CDWRITE) 1695 1696 static int hw_init(struct msm_gpu *gpu) 1697 { 1698 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1699 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 1700 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1701 u64 gmem_range_min; 1702 int ret; 1703 1704 if (!adreno_has_gmu_wrapper(adreno_gpu)) { 1705 /* Make sure the GMU keeps the GPU on while we set it up */ 1706 ret = a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 1707 if (ret) 1708 return ret; 1709 } 1710 1711 /* Clear GBIF halt in case GX domain was not collapsed */ 1712 if (adreno_is_a619_holi(adreno_gpu)) { 1713 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); 1714 gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, 0); 1715 /* Let's make extra sure that the GPU can access the memory.. */ 1716 mb(); 1717 } else if (a6xx_has_gbif(adreno_gpu)) { 1718 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0); 1719 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 0); 1720 /* Let's make extra sure that the GPU can access the memory.. */ 1721 mb(); 1722 } 1723 1724 /* Some GPUs are stubborn and take their sweet time to unhalt GBIF! */ 1725 if (adreno_is_a7xx(adreno_gpu) && a6xx_has_gbif(adreno_gpu)) 1726 spin_until(!gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK)); 1727 1728 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_CNTL, 0); 1729 1730 if (adreno_is_a619_holi(adreno_gpu)) 1731 a6xx_sptprac_enable(gmu); 1732 1733 /* 1734 * Disable the trusted memory range - we don't actually supported secure 1735 * memory rendering at this point in time and we don't want to block off 1736 * part of the virtual memory space. 1737 */ 1738 gpu_write64(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_BASE, 0x00000000); 1739 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 1740 1741 if (!adreno_is_a7xx(adreno_gpu)) { 1742 /* Turn on 64 bit addressing for all blocks */ 1743 gpu_write(gpu, REG_A6XX_CP_ADDR_MODE_CNTL, 0x1); 1744 gpu_write(gpu, REG_A6XX_VSC_ADDR_MODE_CNTL, 0x1); 1745 gpu_write(gpu, REG_A6XX_GRAS_ADDR_MODE_CNTL, 0x1); 1746 gpu_write(gpu, REG_A6XX_RB_ADDR_MODE_CNTL, 0x1); 1747 gpu_write(gpu, REG_A6XX_PC_ADDR_MODE_CNTL, 0x1); 1748 gpu_write(gpu, REG_A6XX_HLSQ_ADDR_MODE_CNTL, 0x1); 1749 gpu_write(gpu, REG_A6XX_VFD_ADDR_MODE_CNTL, 0x1); 1750 gpu_write(gpu, REG_A6XX_VPC_ADDR_MODE_CNTL, 0x1); 1751 gpu_write(gpu, REG_A6XX_UCHE_ADDR_MODE_CNTL, 0x1); 1752 gpu_write(gpu, REG_A6XX_SP_ADDR_MODE_CNTL, 0x1); 1753 gpu_write(gpu, REG_A6XX_TPL1_ADDR_MODE_CNTL, 0x1); 1754 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 1755 } 1756 1757 /* enable hardware clockgating */ 1758 a6xx_set_hwcg(gpu, true); 1759 1760 /* VBIF/GBIF start*/ 1761 if (adreno_is_a610_family(adreno_gpu) || 1762 adreno_is_a640_family(adreno_gpu) || 1763 adreno_is_a650_family(adreno_gpu) || 1764 adreno_is_a7xx(adreno_gpu)) { 1765 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE0, 0x00071620); 1766 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE1, 0x00071620); 1767 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE2, 0x00071620); 1768 gpu_write(gpu, REG_A6XX_GBIF_QSB_SIDE3, 0x00071620); 1769 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 1770 adreno_is_a7xx(adreno_gpu) ? 0x2120212 : 0x3); 1771 } else { 1772 gpu_write(gpu, REG_A6XX_RBBM_VBIF_CLIENT_QOS_CNTL, 0x3); 1773 } 1774 1775 if (adreno_is_a630(adreno_gpu)) 1776 gpu_write(gpu, REG_A6XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 1777 1778 if (adreno_is_a7xx(adreno_gpu)) 1779 gpu_write(gpu, REG_A6XX_UCHE_GBIF_GX_CONFIG, 0x10240e0); 1780 1781 /* Make all blocks contribute to the GPU BUSY perf counter */ 1782 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xffffffff); 1783 1784 /* Disable L2 bypass in the UCHE */ 1785 if (adreno_is_a7xx(adreno_gpu)) { 1786 gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu); 1787 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu); 1788 } else { 1789 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_RANGE_MAX, 0x0001ffffffffffc0llu); 1790 gpu_write64(gpu, REG_A6XX_UCHE_TRAP_BASE, 0x0001fffffffff000llu); 1791 gpu_write64(gpu, REG_A6XX_UCHE_WRITE_THRU_BASE, 0x0001fffffffff000llu); 1792 } 1793 1794 if (!(adreno_is_a650_family(adreno_gpu) || 1795 adreno_is_a702(adreno_gpu) || 1796 adreno_is_a730(adreno_gpu))) { 1797 gmem_range_min = adreno_is_a740_family(adreno_gpu) ? SZ_16M : SZ_1M; 1798 1799 /* Set the GMEM VA range [0x100000:0x100000 + gpu->gmem - 1] */ 1800 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MIN, gmem_range_min); 1801 1802 gpu_write64(gpu, REG_A6XX_UCHE_GMEM_RANGE_MAX, 1803 gmem_range_min + adreno_gpu->info->gmem - 1); 1804 } 1805 1806 if (adreno_is_a7xx(adreno_gpu)) 1807 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, BIT(23)); 1808 else { 1809 gpu_write(gpu, REG_A6XX_UCHE_FILTER_CNTL, 0x804); 1810 gpu_write(gpu, REG_A6XX_UCHE_CACHE_WAYS, 0x4); 1811 } 1812 1813 if (adreno_is_a640_family(adreno_gpu) || adreno_is_a650_family(adreno_gpu)) { 1814 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x02000140); 1815 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1816 } else if (adreno_is_a610_family(adreno_gpu)) { 1817 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x00800060); 1818 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x40201b16); 1819 } else if (!adreno_is_a7xx(adreno_gpu)) { 1820 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_2, 0x010000c0); 1821 gpu_write(gpu, REG_A6XX_CP_ROQ_THRESHOLDS_1, 0x8040362c); 1822 } 1823 1824 if (adreno_is_a660_family(adreno_gpu)) 1825 gpu_write(gpu, REG_A6XX_CP_LPAC_PROG_FIFO_SIZE, 0x00000020); 1826 1827 /* Setting the mem pool size */ 1828 if (adreno_is_a610(adreno_gpu)) { 1829 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 48); 1830 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 47); 1831 } else if (adreno_is_a702(adreno_gpu)) { 1832 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 64); 1833 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_DBG_ADDR, 63); 1834 } else if (!adreno_is_a7xx(adreno_gpu)) 1835 gpu_write(gpu, REG_A6XX_CP_MEM_POOL_SIZE, 128); 1836 1837 /* Setting the primFifo thresholds default values, 1838 * and vccCacheSkipDis=1 bit (0x200) for A640 and newer 1839 */ 1840 if (adreno_is_a702(adreno_gpu)) 1841 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x0000c000); 1842 else if (adreno_is_a690(adreno_gpu)) 1843 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00800200); 1844 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1845 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1846 else if (adreno_is_a640_family(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 1847 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00200200); 1848 else if (adreno_is_a650(adreno_gpu) || adreno_is_a660(adreno_gpu)) 1849 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00300200); 1850 else if (adreno_is_a619(adreno_gpu)) 1851 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00018000); 1852 else if (adreno_is_a610(adreno_gpu)) 1853 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00080000); 1854 else if (!adreno_is_a7xx(adreno_gpu)) 1855 gpu_write(gpu, REG_A6XX_PC_DBG_ECO_CNTL, 0x00180000); 1856 1857 /* Set the AHB default slave response to "ERROR" */ 1858 gpu_write(gpu, REG_A6XX_CP_AHB_CNTL, 0x1); 1859 1860 /* Turn on performance counters */ 1861 gpu_write(gpu, REG_A6XX_RBBM_PERFCTR_CNTL, 0x1); 1862 1863 if (adreno_is_a7xx(adreno_gpu)) { 1864 /* Turn on the IFPC counter (countable 4 on XOCLK4) */ 1865 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_1, 1866 FIELD_PREP(GENMASK(7, 0), 0x4)); 1867 } 1868 1869 /* Select CP0 to always count cycles */ 1870 gpu_write(gpu, REG_A6XX_CP_PERFCTR_CP_SEL(0), PERF_CP_ALWAYS_COUNT); 1871 1872 a6xx_set_ubwc_config(gpu); 1873 1874 /* Enable fault detection */ 1875 if (adreno_is_a730(adreno_gpu) || 1876 adreno_is_a740_family(adreno_gpu)) 1877 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0xcfffff); 1878 else if (adreno_is_a690(adreno_gpu)) 1879 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x4fffff); 1880 else if (adreno_is_a619(adreno_gpu)) 1881 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3fffff); 1882 else if (adreno_is_a610(adreno_gpu) || adreno_is_a702(adreno_gpu)) 1883 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x3ffff); 1884 else 1885 gpu_write(gpu, REG_A6XX_RBBM_INTERFACE_HANG_INT_CNTL, (1 << 30) | 0x1fffff); 1886 1887 gpu_write(gpu, REG_A6XX_UCHE_CLIENT_PF, BIT(7) | 0x1); 1888 1889 /* Set weights for bicubic filtering */ 1890 if (adreno_is_a650_family(adreno_gpu)) { 1891 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_0, 0); 1892 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_1, 1893 0x3fe05ff4); 1894 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_2, 1895 0x3fa0ebee); 1896 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_3, 1897 0x3f5193ed); 1898 gpu_write(gpu, REG_A6XX_TPL1_BICUBIC_WEIGHTS_TABLE_4, 1899 0x3f0243f0); 1900 } 1901 1902 /* Set up the CX GMU counter 0 to count busy ticks */ 1903 gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000); 1904 1905 /* Enable the power counter */ 1906 gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, BIT(5)); 1907 gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1); 1908 1909 /* Protect registers from the CP */ 1910 a6xx_set_cp_protect(gpu); 1911 1912 if (adreno_is_a660_family(adreno_gpu)) { 1913 if (adreno_is_a690(adreno_gpu)) 1914 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x00028801); 1915 else 1916 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, 0x1); 1917 gpu_write(gpu, REG_A6XX_RBBM_GBIF_CLIENT_QOS_CNTL, 0x0); 1918 } else if (adreno_is_a702(adreno_gpu)) { 1919 /* Something to do with the HLSQ cluster */ 1920 gpu_write(gpu, REG_A6XX_CP_CHICKEN_DBG, BIT(24)); 1921 } 1922 1923 if (adreno_is_a690(adreno_gpu)) 1924 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x90); 1925 /* Set dualQ + disable afull for A660 GPU */ 1926 else if (adreno_is_a660(adreno_gpu)) 1927 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 0x66906); 1928 else if (adreno_is_a7xx(adreno_gpu)) 1929 gpu_write(gpu, REG_A6XX_UCHE_CMDQ_CONFIG, 1930 FIELD_PREP(GENMASK(19, 16), 6) | 1931 FIELD_PREP(GENMASK(15, 12), 6) | 1932 FIELD_PREP(GENMASK(11, 8), 9) | 1933 BIT(3) | BIT(2) | 1934 FIELD_PREP(GENMASK(1, 0), 2)); 1935 1936 /* Enable expanded apriv for targets that support it */ 1937 if (gpu->hw_apriv) { 1938 if (adreno_is_a7xx(adreno_gpu)) { 1939 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1940 A7XX_BR_APRIVMASK); 1941 gpu_write(gpu, REG_A7XX_CP_BV_APRIV_CNTL, 1942 A7XX_APRIV_MASK); 1943 gpu_write(gpu, REG_A7XX_CP_LPAC_APRIV_CNTL, 1944 A7XX_APRIV_MASK); 1945 } else 1946 gpu_write(gpu, REG_A6XX_CP_APRIV_CNTL, 1947 BIT(6) | BIT(5) | BIT(3) | BIT(2) | BIT(1)); 1948 } 1949 1950 /* Enable interrupts */ 1951 gpu_write(gpu, REG_A6XX_RBBM_INT_0_MASK, 1952 adreno_is_a7xx(adreno_gpu) ? A7XX_INT_MASK : A6XX_INT_MASK); 1953 1954 ret = adreno_hw_init(gpu); 1955 if (ret) 1956 goto out; 1957 1958 gpu_write64(gpu, REG_A6XX_CP_SQE_INSTR_BASE, a6xx_gpu->sqe_iova); 1959 1960 /* Set the ringbuffer address */ 1961 gpu_write64(gpu, REG_A6XX_CP_RB_BASE, gpu->rb[0]->iova); 1962 1963 /* Targets that support extended APRIV can use the RPTR shadow from 1964 * hardware but all the other ones need to disable the feature. Targets 1965 * that support the WHERE_AM_I opcode can use that instead 1966 */ 1967 if (adreno_gpu->base.hw_apriv) 1968 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, MSM_GPU_RB_CNTL_DEFAULT); 1969 else 1970 gpu_write(gpu, REG_A6XX_CP_RB_CNTL, 1971 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 1972 1973 /* Configure the RPTR shadow if needed: */ 1974 if (a6xx_gpu->shadow_bo) { 1975 gpu_write64(gpu, REG_A6XX_CP_RB_RPTR_ADDR, 1976 shadowptr(a6xx_gpu, gpu->rb[0])); 1977 } 1978 1979 /* ..which means "always" on A7xx, also for BV shadow */ 1980 if (adreno_is_a7xx(adreno_gpu)) { 1981 gpu_write64(gpu, REG_A7XX_CP_BV_RB_RPTR_ADDR, 1982 rbmemptr(gpu->rb[0], bv_fence)); 1983 } 1984 1985 /* Always come up on rb 0 */ 1986 a6xx_gpu->cur_ring = gpu->rb[0]; 1987 1988 gpu->cur_ctx_seqno = 0; 1989 1990 /* Enable the SQE_to start the CP engine */ 1991 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 1); 1992 1993 ret = adreno_is_a7xx(adreno_gpu) ? a7xx_cp_init(gpu) : a6xx_cp_init(gpu); 1994 if (ret) 1995 goto out; 1996 1997 /* 1998 * Try to load a zap shader into the secure world. If successful 1999 * we can use the CP to switch out of secure mode. If not then we 2000 * have no resource but to try to switch ourselves out manually. If we 2001 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 2002 * be blocked and a permissions violation will soon follow. 2003 */ 2004 ret = a6xx_zap_shader_init(gpu); 2005 if (!ret) { 2006 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 2007 OUT_RING(gpu->rb[0], 0x00000000); 2008 2009 a6xx_flush(gpu, gpu->rb[0]); 2010 if (!a6xx_idle(gpu, gpu->rb[0])) 2011 return -EINVAL; 2012 } else if (ret == -ENODEV) { 2013 /* 2014 * This device does not use zap shader (but print a warning 2015 * just in case someone got their dt wrong.. hopefully they 2016 * have a debug UART to realize the error of their ways... 2017 * if you mess this up you are about to crash horribly) 2018 */ 2019 dev_warn_once(gpu->dev->dev, 2020 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 2021 gpu_write(gpu, REG_A6XX_RBBM_SECVID_TRUST_CNTL, 0x0); 2022 ret = 0; 2023 } else { 2024 return ret; 2025 } 2026 2027 out: 2028 if (adreno_has_gmu_wrapper(adreno_gpu)) 2029 return ret; 2030 /* 2031 * Tell the GMU that we are done touching the GPU and it can start power 2032 * management 2033 */ 2034 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_GPU_SET); 2035 2036 if (a6xx_gpu->gmu.legacy) { 2037 /* Take the GMU out of its special boot mode */ 2038 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_BOOT_SLUMBER); 2039 } 2040 2041 return ret; 2042 } 2043 2044 static int a6xx_hw_init(struct msm_gpu *gpu) 2045 { 2046 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2047 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2048 int ret; 2049 2050 mutex_lock(&a6xx_gpu->gmu.lock); 2051 ret = hw_init(gpu); 2052 mutex_unlock(&a6xx_gpu->gmu.lock); 2053 2054 return ret; 2055 } 2056 2057 static void a6xx_dump(struct msm_gpu *gpu) 2058 { 2059 DRM_DEV_INFO(&gpu->pdev->dev, "status: %08x\n", 2060 gpu_read(gpu, REG_A6XX_RBBM_STATUS)); 2061 adreno_dump(gpu); 2062 } 2063 2064 static void a6xx_recover(struct msm_gpu *gpu) 2065 { 2066 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2067 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2068 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 2069 int i, active_submits; 2070 2071 adreno_dump_info(gpu); 2072 2073 for (i = 0; i < 8; i++) 2074 DRM_DEV_INFO(&gpu->pdev->dev, "CP_SCRATCH_REG%d: %u\n", i, 2075 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(i))); 2076 2077 if (hang_debug) 2078 a6xx_dump(gpu); 2079 2080 /* 2081 * To handle recovery specific sequences during the rpm suspend we are 2082 * about to trigger 2083 */ 2084 a6xx_gpu->hung = true; 2085 2086 /* Halt SQE first */ 2087 gpu_write(gpu, REG_A6XX_CP_SQE_CNTL, 3); 2088 2089 pm_runtime_dont_use_autosuspend(&gpu->pdev->dev); 2090 2091 /* active_submit won't change until we make a submission */ 2092 mutex_lock(&gpu->active_lock); 2093 active_submits = gpu->active_submits; 2094 2095 /* 2096 * Temporarily clear active_submits count to silence a WARN() in the 2097 * runtime suspend cb 2098 */ 2099 gpu->active_submits = 0; 2100 2101 if (adreno_has_gmu_wrapper(adreno_gpu)) { 2102 /* Drain the outstanding traffic on memory buses */ 2103 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 2104 2105 /* Reset the GPU to a clean state */ 2106 a6xx_gpu_sw_reset(gpu, true); 2107 a6xx_gpu_sw_reset(gpu, false); 2108 } 2109 2110 reinit_completion(&gmu->pd_gate); 2111 dev_pm_genpd_add_notifier(gmu->cxpd, &gmu->pd_nb); 2112 dev_pm_genpd_synced_poweroff(gmu->cxpd); 2113 2114 /* Drop the rpm refcount from active submits */ 2115 if (active_submits) 2116 pm_runtime_put(&gpu->pdev->dev); 2117 2118 /* And the final one from recover worker */ 2119 pm_runtime_put_sync(&gpu->pdev->dev); 2120 2121 if (!wait_for_completion_timeout(&gmu->pd_gate, msecs_to_jiffies(1000))) 2122 DRM_DEV_ERROR(&gpu->pdev->dev, "cx gdsc didn't collapse\n"); 2123 2124 dev_pm_genpd_remove_notifier(gmu->cxpd); 2125 2126 pm_runtime_use_autosuspend(&gpu->pdev->dev); 2127 2128 if (active_submits) 2129 pm_runtime_get(&gpu->pdev->dev); 2130 2131 pm_runtime_get_sync(&gpu->pdev->dev); 2132 2133 gpu->active_submits = active_submits; 2134 mutex_unlock(&gpu->active_lock); 2135 2136 msm_gpu_hw_init(gpu); 2137 a6xx_gpu->hung = false; 2138 } 2139 2140 static const char *a6xx_uche_fault_block(struct msm_gpu *gpu, u32 mid) 2141 { 2142 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2143 static const char *uche_clients[7] = { 2144 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", 2145 }; 2146 u32 val; 2147 2148 if (adreno_is_a7xx(adreno_gpu)) { 2149 if (mid != 1 && mid != 2 && mid != 3 && mid != 8) 2150 return "UNKNOWN"; 2151 } else { 2152 if (mid < 1 || mid > 3) 2153 return "UNKNOWN"; 2154 } 2155 2156 /* 2157 * The source of the data depends on the mid ID read from FSYNR1. 2158 * and the client ID read from the UCHE block 2159 */ 2160 val = gpu_read(gpu, REG_A6XX_UCHE_CLIENT_PF); 2161 2162 if (adreno_is_a7xx(adreno_gpu)) { 2163 /* Bit 3 for mid=3 indicates BR or BV */ 2164 static const char *uche_clients_a7xx[16] = { 2165 "BR_VFD", "BR_SP", "BR_VSC", "BR_VPC", 2166 "BR_HLSQ", "BR_PC", "BR_LRZ", "BR_TP", 2167 "BV_VFD", "BV_SP", "BV_VSC", "BV_VPC", 2168 "BV_HLSQ", "BV_PC", "BV_LRZ", "BV_TP", 2169 }; 2170 2171 /* LPAC has the same clients as BR and BV, but because it is 2172 * compute-only some of them do not exist and there are holes 2173 * in the array. 2174 */ 2175 static const char *uche_clients_lpac_a7xx[8] = { 2176 "-", "LPAC_SP", "-", "-", 2177 "LPAC_HLSQ", "-", "-", "LPAC_TP", 2178 }; 2179 2180 val &= GENMASK(6, 0); 2181 2182 /* mid=3 refers to BR or BV */ 2183 if (mid == 3) { 2184 if (val < ARRAY_SIZE(uche_clients_a7xx)) 2185 return uche_clients_a7xx[val]; 2186 else 2187 return "UCHE"; 2188 } 2189 2190 /* mid=8 refers to LPAC */ 2191 if (mid == 8) { 2192 if (val < ARRAY_SIZE(uche_clients_lpac_a7xx)) 2193 return uche_clients_lpac_a7xx[val]; 2194 else 2195 return "UCHE_LPAC"; 2196 } 2197 2198 /* mid=2 is a catchall for everything else in LPAC */ 2199 if (mid == 2) 2200 return "UCHE_LPAC"; 2201 2202 /* mid=1 is a catchall for everything else in BR/BV */ 2203 return "UCHE"; 2204 } else if (adreno_is_a660_family(adreno_gpu)) { 2205 static const char *uche_clients_a660[8] = { 2206 "VFD", "SP", "VSC", "VPC", "HLSQ", "PC", "LRZ", "TP", 2207 }; 2208 2209 static const char *uche_clients_a660_not[8] = { 2210 "not VFD", "not SP", "not VSC", "not VPC", 2211 "not HLSQ", "not PC", "not LRZ", "not TP", 2212 }; 2213 2214 val &= GENMASK(6, 0); 2215 2216 if (mid == 3 && val < ARRAY_SIZE(uche_clients_a660)) 2217 return uche_clients_a660[val]; 2218 2219 if (mid == 1 && val < ARRAY_SIZE(uche_clients_a660_not)) 2220 return uche_clients_a660_not[val]; 2221 2222 return "UCHE"; 2223 } else { 2224 /* mid = 3 is most precise and refers to only one block per client */ 2225 if (mid == 3) 2226 return uche_clients[val & 7]; 2227 2228 /* For mid=2 the source is TP or VFD except when the client id is 0 */ 2229 if (mid == 2) 2230 return ((val & 7) == 0) ? "TP" : "TP|VFD"; 2231 2232 /* For mid=1 just return "UCHE" as a catchall for everything else */ 2233 return "UCHE"; 2234 } 2235 } 2236 2237 static const char *a6xx_fault_block(struct msm_gpu *gpu, u32 id) 2238 { 2239 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2240 2241 if (id == 0) 2242 return "CP"; 2243 else if (id == 4) 2244 return "CCU"; 2245 else if (id == 6) 2246 return "CDP Prefetch"; 2247 else if (id == 7) 2248 return "GMU"; 2249 else if (id == 5 && adreno_is_a7xx(adreno_gpu)) 2250 return "Flag cache"; 2251 2252 return a6xx_uche_fault_block(gpu, id); 2253 } 2254 2255 static int a6xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 2256 { 2257 struct msm_gpu *gpu = arg; 2258 struct adreno_smmu_fault_info *info = data; 2259 const char *block = "unknown"; 2260 2261 u32 scratch[] = { 2262 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(4)), 2263 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(5)), 2264 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(6)), 2265 gpu_read(gpu, REG_A6XX_CP_SCRATCH_REG(7)), 2266 }; 2267 2268 if (info) 2269 block = a6xx_fault_block(gpu, info->fsynr1 & 0xff); 2270 2271 return adreno_fault_handler(gpu, iova, flags, info, block, scratch); 2272 } 2273 2274 static void a6xx_cp_hw_err_irq(struct msm_gpu *gpu) 2275 { 2276 u32 status = gpu_read(gpu, REG_A6XX_CP_INTERRUPT_STATUS); 2277 2278 if (status & A6XX_CP_INT_CP_OPCODE_ERROR) { 2279 u32 val; 2280 2281 gpu_write(gpu, REG_A6XX_CP_SQE_STAT_ADDR, 1); 2282 val = gpu_read(gpu, REG_A6XX_CP_SQE_STAT_DATA); 2283 dev_err_ratelimited(&gpu->pdev->dev, 2284 "CP | opcode error | possible opcode=0x%8.8X\n", 2285 val); 2286 } 2287 2288 if (status & A6XX_CP_INT_CP_UCODE_ERROR) 2289 dev_err_ratelimited(&gpu->pdev->dev, 2290 "CP ucode error interrupt\n"); 2291 2292 if (status & A6XX_CP_INT_CP_HW_FAULT_ERROR) 2293 dev_err_ratelimited(&gpu->pdev->dev, "CP | HW fault | status=0x%8.8X\n", 2294 gpu_read(gpu, REG_A6XX_CP_HW_FAULT)); 2295 2296 if (status & A6XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 2297 u32 val = gpu_read(gpu, REG_A6XX_CP_PROTECT_STATUS); 2298 2299 dev_err_ratelimited(&gpu->pdev->dev, 2300 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 2301 val & (1 << 20) ? "READ" : "WRITE", 2302 (val & 0x3ffff), val); 2303 } 2304 2305 if (status & A6XX_CP_INT_CP_AHB_ERROR && !adreno_is_a7xx(to_adreno_gpu(gpu))) 2306 dev_err_ratelimited(&gpu->pdev->dev, "CP AHB error interrupt\n"); 2307 2308 if (status & A6XX_CP_INT_CP_VSD_PARITY_ERROR) 2309 dev_err_ratelimited(&gpu->pdev->dev, "CP VSD decoder parity error\n"); 2310 2311 if (status & A6XX_CP_INT_CP_ILLEGAL_INSTR_ERROR) 2312 dev_err_ratelimited(&gpu->pdev->dev, "CP illegal instruction error\n"); 2313 2314 } 2315 2316 static void a6xx_fault_detect_irq(struct msm_gpu *gpu) 2317 { 2318 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2319 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2320 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 2321 2322 /* 2323 * If stalled on SMMU fault, we could trip the GPU's hang detection, 2324 * but the fault handler will trigger the devcore dump, and we want 2325 * to otherwise resume normally rather than killing the submit, so 2326 * just bail. 2327 */ 2328 if (gpu_read(gpu, REG_A6XX_RBBM_STATUS3) & A6XX_RBBM_STATUS3_SMMU_STALLED_ON_FAULT) 2329 return; 2330 2331 /* 2332 * Force the GPU to stay on until after we finish 2333 * collecting information 2334 */ 2335 if (!adreno_has_gmu_wrapper(adreno_gpu)) 2336 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 1); 2337 2338 DRM_DEV_ERROR(&gpu->pdev->dev, 2339 "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 2340 ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0, 2341 gpu_read(gpu, REG_A6XX_RBBM_STATUS), 2342 gpu_read(gpu, REG_A6XX_CP_RB_RPTR), 2343 gpu_read(gpu, REG_A6XX_CP_RB_WPTR), 2344 gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 2345 gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 2346 gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 2347 gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE)); 2348 2349 /* Turn off the hangcheck timer to keep it from bothering us */ 2350 del_timer(&gpu->hangcheck_timer); 2351 2352 kthread_queue_work(gpu->worker, &gpu->recover_work); 2353 } 2354 2355 static irqreturn_t a6xx_irq(struct msm_gpu *gpu) 2356 { 2357 struct msm_drm_private *priv = gpu->dev->dev_private; 2358 u32 status = gpu_read(gpu, REG_A6XX_RBBM_INT_0_STATUS); 2359 2360 gpu_write(gpu, REG_A6XX_RBBM_INT_CLEAR_CMD, status); 2361 2362 if (priv->disable_err_irq) 2363 status &= A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS; 2364 2365 if (status & A6XX_RBBM_INT_0_MASK_RBBM_HANG_DETECT) 2366 a6xx_fault_detect_irq(gpu); 2367 2368 if (status & A6XX_RBBM_INT_0_MASK_CP_AHB_ERROR) 2369 dev_err_ratelimited(&gpu->pdev->dev, "CP | AHB bus error\n"); 2370 2371 if (status & A6XX_RBBM_INT_0_MASK_CP_HW_ERROR) 2372 a6xx_cp_hw_err_irq(gpu); 2373 2374 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNCFIFO_OVERFLOW) 2375 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB ASYNC overflow\n"); 2376 2377 if (status & A6XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 2378 dev_err_ratelimited(&gpu->pdev->dev, "RBBM | ATB bus overflow\n"); 2379 2380 if (status & A6XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 2381 dev_err_ratelimited(&gpu->pdev->dev, "UCHE | Out of bounds access\n"); 2382 2383 if (status & A6XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) 2384 msm_gpu_retire(gpu); 2385 2386 return IRQ_HANDLED; 2387 } 2388 2389 static void a6xx_llc_deactivate(struct a6xx_gpu *a6xx_gpu) 2390 { 2391 llcc_slice_deactivate(a6xx_gpu->llc_slice); 2392 llcc_slice_deactivate(a6xx_gpu->htw_llc_slice); 2393 } 2394 2395 static void a6xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 2396 { 2397 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 2398 struct msm_gpu *gpu = &adreno_gpu->base; 2399 u32 cntl1_regval = 0; 2400 2401 if (IS_ERR(a6xx_gpu->llc_mmio)) 2402 return; 2403 2404 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 2405 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 2406 2407 gpu_scid &= 0x1f; 2408 cntl1_regval = (gpu_scid << 0) | (gpu_scid << 5) | (gpu_scid << 10) | 2409 (gpu_scid << 15) | (gpu_scid << 20); 2410 2411 /* On A660, the SCID programming for UCHE traffic is done in 2412 * A6XX_GBIF_SCACHE_CNTL0[14:10] 2413 */ 2414 if (adreno_is_a660_family(adreno_gpu)) 2415 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, (0x1f << 10) | 2416 (1 << 8), (gpu_scid << 10) | (1 << 8)); 2417 } 2418 2419 /* 2420 * For targets with a MMU500, activate the slice but don't program the 2421 * register. The XBL will take care of that. 2422 */ 2423 if (!llcc_slice_activate(a6xx_gpu->htw_llc_slice)) { 2424 if (!a6xx_gpu->have_mmu500) { 2425 u32 gpuhtw_scid = llcc_get_slice_id(a6xx_gpu->htw_llc_slice); 2426 2427 gpuhtw_scid &= 0x1f; 2428 cntl1_regval |= FIELD_PREP(GENMASK(29, 25), gpuhtw_scid); 2429 } 2430 } 2431 2432 if (!cntl1_regval) 2433 return; 2434 2435 /* 2436 * Program the slice IDs for the various GPU blocks and GPU MMU 2437 * pagetables 2438 */ 2439 if (!a6xx_gpu->have_mmu500) { 2440 a6xx_llc_write(a6xx_gpu, 2441 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_1, cntl1_regval); 2442 2443 /* 2444 * Program cacheability overrides to not allocate cache 2445 * lines on a write miss 2446 */ 2447 a6xx_llc_rmw(a6xx_gpu, 2448 REG_A6XX_CX_MISC_SYSTEM_CACHE_CNTL_0, 0xF, 0x03); 2449 return; 2450 } 2451 2452 gpu_rmw(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, GENMASK(24, 0), cntl1_regval); 2453 } 2454 2455 static void a7xx_llc_activate(struct a6xx_gpu *a6xx_gpu) 2456 { 2457 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 2458 struct msm_gpu *gpu = &adreno_gpu->base; 2459 2460 if (IS_ERR(a6xx_gpu->llc_mmio)) 2461 return; 2462 2463 if (!llcc_slice_activate(a6xx_gpu->llc_slice)) { 2464 u32 gpu_scid = llcc_get_slice_id(a6xx_gpu->llc_slice); 2465 2466 gpu_scid &= GENMASK(4, 0); 2467 2468 gpu_write(gpu, REG_A6XX_GBIF_SCACHE_CNTL1, 2469 FIELD_PREP(GENMASK(29, 25), gpu_scid) | 2470 FIELD_PREP(GENMASK(24, 20), gpu_scid) | 2471 FIELD_PREP(GENMASK(19, 15), gpu_scid) | 2472 FIELD_PREP(GENMASK(14, 10), gpu_scid) | 2473 FIELD_PREP(GENMASK(9, 5), gpu_scid) | 2474 FIELD_PREP(GENMASK(4, 0), gpu_scid)); 2475 2476 gpu_write(gpu, REG_A6XX_GBIF_SCACHE_CNTL0, 2477 FIELD_PREP(GENMASK(14, 10), gpu_scid) | 2478 BIT(8)); 2479 } 2480 2481 llcc_slice_activate(a6xx_gpu->htw_llc_slice); 2482 } 2483 2484 static void a6xx_llc_slices_destroy(struct a6xx_gpu *a6xx_gpu) 2485 { 2486 /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ 2487 if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) 2488 return; 2489 2490 llcc_slice_putd(a6xx_gpu->llc_slice); 2491 llcc_slice_putd(a6xx_gpu->htw_llc_slice); 2492 } 2493 2494 static void a6xx_llc_slices_init(struct platform_device *pdev, 2495 struct a6xx_gpu *a6xx_gpu, bool is_a7xx) 2496 { 2497 struct device_node *phandle; 2498 2499 /* No LLCC on non-RPMh (and by extension, non-GMU) SoCs */ 2500 if (adreno_has_gmu_wrapper(&a6xx_gpu->base)) 2501 return; 2502 2503 /* 2504 * There is a different programming path for A6xx targets with an 2505 * mmu500 attached, so detect if that is the case 2506 */ 2507 phandle = of_parse_phandle(pdev->dev.of_node, "iommus", 0); 2508 a6xx_gpu->have_mmu500 = (phandle && 2509 of_device_is_compatible(phandle, "arm,mmu-500")); 2510 of_node_put(phandle); 2511 2512 if (is_a7xx || !a6xx_gpu->have_mmu500) 2513 a6xx_gpu->llc_mmio = msm_ioremap(pdev, "cx_mem"); 2514 else 2515 a6xx_gpu->llc_mmio = NULL; 2516 2517 a6xx_gpu->llc_slice = llcc_slice_getd(LLCC_GPU); 2518 a6xx_gpu->htw_llc_slice = llcc_slice_getd(LLCC_GPUHTW); 2519 2520 if (IS_ERR_OR_NULL(a6xx_gpu->llc_slice) && IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice)) 2521 a6xx_gpu->llc_mmio = ERR_PTR(-EINVAL); 2522 } 2523 2524 #define GBIF_CLIENT_HALT_MASK BIT(0) 2525 #define GBIF_ARB_HALT_MASK BIT(1) 2526 #define VBIF_XIN_HALT_CTRL0_MASK GENMASK(3, 0) 2527 #define VBIF_RESET_ACK_MASK 0xF0 2528 #define GPR0_GBIF_HALT_REQUEST 0x1E0 2529 2530 void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off) 2531 { 2532 struct msm_gpu *gpu = &adreno_gpu->base; 2533 2534 if (adreno_is_a619_holi(adreno_gpu)) { 2535 gpu_write(gpu, REG_A6XX_RBBM_GPR0_CNTL, GPR0_GBIF_HALT_REQUEST); 2536 spin_until((gpu_read(gpu, REG_A6XX_RBBM_VBIF_GX_RESET_STATUS) & 2537 (VBIF_RESET_ACK_MASK)) == VBIF_RESET_ACK_MASK); 2538 } else if (!a6xx_has_gbif(adreno_gpu)) { 2539 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, VBIF_XIN_HALT_CTRL0_MASK); 2540 spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) & 2541 (VBIF_XIN_HALT_CTRL0_MASK)) == VBIF_XIN_HALT_CTRL0_MASK); 2542 gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0); 2543 2544 return; 2545 } 2546 2547 if (gx_off) { 2548 /* Halt the gx side of GBIF */ 2549 gpu_write(gpu, REG_A6XX_RBBM_GBIF_HALT, 1); 2550 spin_until(gpu_read(gpu, REG_A6XX_RBBM_GBIF_HALT_ACK) & 1); 2551 } 2552 2553 /* Halt new client requests on GBIF */ 2554 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK); 2555 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 2556 (GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK); 2557 2558 /* Halt all AXI requests on GBIF */ 2559 gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK); 2560 spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) & 2561 (GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK); 2562 2563 /* The GBIF halt needs to be explicitly cleared */ 2564 gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0); 2565 } 2566 2567 void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert) 2568 { 2569 /* 11nm chips (e.g. ones with A610) have hw issues with the reset line! */ 2570 if (adreno_is_a610(to_adreno_gpu(gpu))) 2571 return; 2572 2573 gpu_write(gpu, REG_A6XX_RBBM_SW_RESET_CMD, assert); 2574 /* Perform a bogus read and add a brief delay to ensure ordering. */ 2575 gpu_read(gpu, REG_A6XX_RBBM_SW_RESET_CMD); 2576 udelay(1); 2577 2578 /* The reset line needs to be asserted for at least 100 us */ 2579 if (assert) 2580 udelay(100); 2581 } 2582 2583 static int a6xx_gmu_pm_resume(struct msm_gpu *gpu) 2584 { 2585 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2586 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2587 int ret; 2588 2589 gpu->needs_hw_init = true; 2590 2591 trace_msm_gpu_resume(0); 2592 2593 mutex_lock(&a6xx_gpu->gmu.lock); 2594 ret = a6xx_gmu_resume(a6xx_gpu); 2595 mutex_unlock(&a6xx_gpu->gmu.lock); 2596 if (ret) 2597 return ret; 2598 2599 msm_devfreq_resume(gpu); 2600 2601 adreno_is_a7xx(adreno_gpu) ? a7xx_llc_activate(a6xx_gpu) : a6xx_llc_activate(a6xx_gpu); 2602 2603 return ret; 2604 } 2605 2606 static int a6xx_pm_resume(struct msm_gpu *gpu) 2607 { 2608 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2609 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2610 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 2611 unsigned long freq = gpu->fast_rate; 2612 struct dev_pm_opp *opp; 2613 int ret; 2614 2615 gpu->needs_hw_init = true; 2616 2617 trace_msm_gpu_resume(0); 2618 2619 mutex_lock(&a6xx_gpu->gmu.lock); 2620 2621 opp = dev_pm_opp_find_freq_ceil(&gpu->pdev->dev, &freq); 2622 if (IS_ERR(opp)) { 2623 ret = PTR_ERR(opp); 2624 goto err_set_opp; 2625 } 2626 dev_pm_opp_put(opp); 2627 2628 /* Set the core clock and bus bw, having VDD scaling in mind */ 2629 dev_pm_opp_set_opp(&gpu->pdev->dev, opp); 2630 2631 pm_runtime_resume_and_get(gmu->dev); 2632 pm_runtime_resume_and_get(gmu->gxpd); 2633 2634 ret = clk_bulk_prepare_enable(gpu->nr_clocks, gpu->grp_clks); 2635 if (ret) 2636 goto err_bulk_clk; 2637 2638 if (adreno_is_a619_holi(adreno_gpu)) 2639 a6xx_sptprac_enable(gmu); 2640 2641 /* If anything goes south, tear the GPU down piece by piece.. */ 2642 if (ret) { 2643 err_bulk_clk: 2644 pm_runtime_put(gmu->gxpd); 2645 pm_runtime_put(gmu->dev); 2646 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 2647 } 2648 err_set_opp: 2649 mutex_unlock(&a6xx_gpu->gmu.lock); 2650 2651 if (!ret) 2652 msm_devfreq_resume(gpu); 2653 2654 return ret; 2655 } 2656 2657 static int a6xx_gmu_pm_suspend(struct msm_gpu *gpu) 2658 { 2659 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2660 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2661 int i, ret; 2662 2663 trace_msm_gpu_suspend(0); 2664 2665 a6xx_llc_deactivate(a6xx_gpu); 2666 2667 msm_devfreq_suspend(gpu); 2668 2669 mutex_lock(&a6xx_gpu->gmu.lock); 2670 ret = a6xx_gmu_stop(a6xx_gpu); 2671 mutex_unlock(&a6xx_gpu->gmu.lock); 2672 if (ret) 2673 return ret; 2674 2675 if (a6xx_gpu->shadow_bo) 2676 for (i = 0; i < gpu->nr_rings; i++) 2677 a6xx_gpu->shadow[i] = 0; 2678 2679 gpu->suspend_count++; 2680 2681 return 0; 2682 } 2683 2684 static int a6xx_pm_suspend(struct msm_gpu *gpu) 2685 { 2686 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2687 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2688 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 2689 int i; 2690 2691 trace_msm_gpu_suspend(0); 2692 2693 msm_devfreq_suspend(gpu); 2694 2695 mutex_lock(&a6xx_gpu->gmu.lock); 2696 2697 /* Drain the outstanding traffic on memory buses */ 2698 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 2699 2700 if (adreno_is_a619_holi(adreno_gpu)) 2701 a6xx_sptprac_disable(gmu); 2702 2703 clk_bulk_disable_unprepare(gpu->nr_clocks, gpu->grp_clks); 2704 2705 pm_runtime_put_sync(gmu->gxpd); 2706 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 2707 pm_runtime_put_sync(gmu->dev); 2708 2709 mutex_unlock(&a6xx_gpu->gmu.lock); 2710 2711 if (a6xx_gpu->shadow_bo) 2712 for (i = 0; i < gpu->nr_rings; i++) 2713 a6xx_gpu->shadow[i] = 0; 2714 2715 gpu->suspend_count++; 2716 2717 return 0; 2718 } 2719 2720 static int a6xx_gmu_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 2721 { 2722 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2723 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2724 2725 mutex_lock(&a6xx_gpu->gmu.lock); 2726 2727 /* Force the GPU power on so we can read this register */ 2728 a6xx_gmu_set_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 2729 2730 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); 2731 2732 a6xx_gmu_clear_oob(&a6xx_gpu->gmu, GMU_OOB_PERFCOUNTER_SET); 2733 2734 mutex_unlock(&a6xx_gpu->gmu.lock); 2735 2736 return 0; 2737 } 2738 2739 static int a6xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 2740 { 2741 *value = gpu_read64(gpu, REG_A6XX_CP_ALWAYS_ON_COUNTER); 2742 return 0; 2743 } 2744 2745 static struct msm_ringbuffer *a6xx_active_ring(struct msm_gpu *gpu) 2746 { 2747 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2748 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2749 2750 return a6xx_gpu->cur_ring; 2751 } 2752 2753 static void a6xx_destroy(struct msm_gpu *gpu) 2754 { 2755 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2756 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2757 2758 if (a6xx_gpu->sqe_bo) { 2759 msm_gem_unpin_iova(a6xx_gpu->sqe_bo, gpu->aspace); 2760 drm_gem_object_put(a6xx_gpu->sqe_bo); 2761 } 2762 2763 if (a6xx_gpu->shadow_bo) { 2764 msm_gem_unpin_iova(a6xx_gpu->shadow_bo, gpu->aspace); 2765 drm_gem_object_put(a6xx_gpu->shadow_bo); 2766 } 2767 2768 a6xx_llc_slices_destroy(a6xx_gpu); 2769 2770 a6xx_gmu_remove(a6xx_gpu); 2771 2772 adreno_gpu_cleanup(adreno_gpu); 2773 2774 kfree(a6xx_gpu); 2775 } 2776 2777 static u64 a6xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate) 2778 { 2779 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2780 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2781 u64 busy_cycles; 2782 2783 /* 19.2MHz */ 2784 *out_sample_rate = 19200000; 2785 2786 busy_cycles = gmu_read64(&a6xx_gpu->gmu, 2787 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_L, 2788 REG_A6XX_GMU_CX_GMU_POWER_COUNTER_XOCLK_0_H); 2789 2790 return busy_cycles; 2791 } 2792 2793 static void a6xx_gpu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, 2794 bool suspended) 2795 { 2796 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2797 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2798 2799 mutex_lock(&a6xx_gpu->gmu.lock); 2800 a6xx_gmu_set_freq(gpu, opp, suspended); 2801 mutex_unlock(&a6xx_gpu->gmu.lock); 2802 } 2803 2804 static struct msm_gem_address_space * 2805 a6xx_create_address_space(struct msm_gpu *gpu, struct platform_device *pdev) 2806 { 2807 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2808 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2809 unsigned long quirks = 0; 2810 2811 /* 2812 * This allows GPU to set the bus attributes required to use system 2813 * cache on behalf of the iommu page table walker. 2814 */ 2815 if (!IS_ERR_OR_NULL(a6xx_gpu->htw_llc_slice) && 2816 !device_iommu_capable(&pdev->dev, IOMMU_CAP_CACHE_COHERENCY)) 2817 quirks |= IO_PGTABLE_QUIRK_ARM_OUTER_WBWA; 2818 2819 return adreno_iommu_create_address_space(gpu, pdev, quirks); 2820 } 2821 2822 static struct msm_gem_address_space * 2823 a6xx_create_private_address_space(struct msm_gpu *gpu) 2824 { 2825 struct msm_mmu *mmu; 2826 2827 mmu = msm_iommu_pagetable_create(gpu->aspace->mmu); 2828 2829 if (IS_ERR(mmu)) 2830 return ERR_CAST(mmu); 2831 2832 return msm_gem_address_space_create(mmu, 2833 "gpu", 0x100000000ULL, 2834 adreno_private_address_space_size(gpu)); 2835 } 2836 2837 static uint32_t a6xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 2838 { 2839 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 2840 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 2841 2842 if (adreno_gpu->base.hw_apriv || a6xx_gpu->has_whereami) 2843 return a6xx_gpu->shadow[ring->id]; 2844 2845 return ring->memptrs->rptr = gpu_read(gpu, REG_A6XX_CP_RB_RPTR); 2846 } 2847 2848 static bool a6xx_progress(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 2849 { 2850 struct msm_cp_state cp_state = { 2851 .ib1_base = gpu_read64(gpu, REG_A6XX_CP_IB1_BASE), 2852 .ib2_base = gpu_read64(gpu, REG_A6XX_CP_IB2_BASE), 2853 .ib1_rem = gpu_read(gpu, REG_A6XX_CP_IB1_REM_SIZE), 2854 .ib2_rem = gpu_read(gpu, REG_A6XX_CP_IB2_REM_SIZE), 2855 }; 2856 bool progress; 2857 2858 /* 2859 * Adjust the remaining data to account for what has already been 2860 * fetched from memory, but not yet consumed by the SQE. 2861 * 2862 * This is not *technically* correct, the amount buffered could 2863 * exceed the IB size due to hw prefetching ahead, but: 2864 * 2865 * (1) We aren't trying to find the exact position, just whether 2866 * progress has been made 2867 * (2) The CP_REG_TO_MEM at the end of a submit should be enough 2868 * to prevent prefetching into an unrelated submit. (And 2869 * either way, at some point the ROQ will be full.) 2870 */ 2871 cp_state.ib1_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB1) >> 16; 2872 cp_state.ib2_rem += gpu_read(gpu, REG_A6XX_CP_ROQ_AVAIL_IB2) >> 16; 2873 2874 progress = !!memcmp(&cp_state, &ring->last_cp_state, sizeof(cp_state)); 2875 2876 ring->last_cp_state = cp_state; 2877 2878 return progress; 2879 } 2880 2881 static u32 fuse_to_supp_hw(const struct adreno_info *info, u32 fuse) 2882 { 2883 if (!info->speedbins) 2884 return UINT_MAX; 2885 2886 for (int i = 0; info->speedbins[i].fuse != SHRT_MAX; i++) 2887 if (info->speedbins[i].fuse == fuse) 2888 return BIT(info->speedbins[i].speedbin); 2889 2890 return UINT_MAX; 2891 } 2892 2893 static int a6xx_set_supported_hw(struct device *dev, const struct adreno_info *info) 2894 { 2895 u32 supp_hw; 2896 u32 speedbin; 2897 int ret; 2898 2899 ret = adreno_read_speedbin(dev, &speedbin); 2900 /* 2901 * -ENOENT means that the platform doesn't support speedbin which is 2902 * fine 2903 */ 2904 if (ret == -ENOENT) { 2905 return 0; 2906 } else if (ret) { 2907 dev_err_probe(dev, ret, 2908 "failed to read speed-bin. Some OPPs may not be supported by hardware\n"); 2909 return ret; 2910 } 2911 2912 supp_hw = fuse_to_supp_hw(info, speedbin); 2913 2914 if (supp_hw == UINT_MAX) { 2915 DRM_DEV_ERROR(dev, 2916 "missing support for speed-bin: %u. Some OPPs may not be supported by hardware\n", 2917 speedbin); 2918 supp_hw = BIT(0); /* Default */ 2919 } 2920 2921 ret = devm_pm_opp_set_supported_hw(dev, &supp_hw, 1); 2922 if (ret) 2923 return ret; 2924 2925 return 0; 2926 } 2927 2928 static const struct adreno_gpu_funcs funcs = { 2929 .base = { 2930 .get_param = adreno_get_param, 2931 .set_param = adreno_set_param, 2932 .hw_init = a6xx_hw_init, 2933 .ucode_load = a6xx_ucode_load, 2934 .pm_suspend = a6xx_gmu_pm_suspend, 2935 .pm_resume = a6xx_gmu_pm_resume, 2936 .recover = a6xx_recover, 2937 .submit = a6xx_submit, 2938 .active_ring = a6xx_active_ring, 2939 .irq = a6xx_irq, 2940 .destroy = a6xx_destroy, 2941 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2942 .show = a6xx_show, 2943 #endif 2944 .gpu_busy = a6xx_gpu_busy, 2945 .gpu_get_freq = a6xx_gmu_get_freq, 2946 .gpu_set_freq = a6xx_gpu_set_freq, 2947 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2948 .gpu_state_get = a6xx_gpu_state_get, 2949 .gpu_state_put = a6xx_gpu_state_put, 2950 #endif 2951 .create_address_space = a6xx_create_address_space, 2952 .create_private_address_space = a6xx_create_private_address_space, 2953 .get_rptr = a6xx_get_rptr, 2954 .progress = a6xx_progress, 2955 }, 2956 .get_timestamp = a6xx_gmu_get_timestamp, 2957 }; 2958 2959 static const struct adreno_gpu_funcs funcs_gmuwrapper = { 2960 .base = { 2961 .get_param = adreno_get_param, 2962 .set_param = adreno_set_param, 2963 .hw_init = a6xx_hw_init, 2964 .ucode_load = a6xx_ucode_load, 2965 .pm_suspend = a6xx_pm_suspend, 2966 .pm_resume = a6xx_pm_resume, 2967 .recover = a6xx_recover, 2968 .submit = a6xx_submit, 2969 .active_ring = a6xx_active_ring, 2970 .irq = a6xx_irq, 2971 .destroy = a6xx_destroy, 2972 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2973 .show = a6xx_show, 2974 #endif 2975 .gpu_busy = a6xx_gpu_busy, 2976 #if defined(CONFIG_DRM_MSM_GPU_STATE) 2977 .gpu_state_get = a6xx_gpu_state_get, 2978 .gpu_state_put = a6xx_gpu_state_put, 2979 #endif 2980 .create_address_space = a6xx_create_address_space, 2981 .create_private_address_space = a6xx_create_private_address_space, 2982 .get_rptr = a6xx_get_rptr, 2983 .progress = a6xx_progress, 2984 }, 2985 .get_timestamp = a6xx_get_timestamp, 2986 }; 2987 2988 static const struct adreno_gpu_funcs funcs_a7xx = { 2989 .base = { 2990 .get_param = adreno_get_param, 2991 .set_param = adreno_set_param, 2992 .hw_init = a6xx_hw_init, 2993 .ucode_load = a6xx_ucode_load, 2994 .pm_suspend = a6xx_gmu_pm_suspend, 2995 .pm_resume = a6xx_gmu_pm_resume, 2996 .recover = a6xx_recover, 2997 .submit = a7xx_submit, 2998 .active_ring = a6xx_active_ring, 2999 .irq = a6xx_irq, 3000 .destroy = a6xx_destroy, 3001 #if defined(CONFIG_DRM_MSM_GPU_STATE) 3002 .show = a6xx_show, 3003 #endif 3004 .gpu_busy = a6xx_gpu_busy, 3005 .gpu_get_freq = a6xx_gmu_get_freq, 3006 .gpu_set_freq = a6xx_gpu_set_freq, 3007 #if defined(CONFIG_DRM_MSM_GPU_STATE) 3008 .gpu_state_get = a6xx_gpu_state_get, 3009 .gpu_state_put = a6xx_gpu_state_put, 3010 #endif 3011 .create_address_space = a6xx_create_address_space, 3012 .create_private_address_space = a6xx_create_private_address_space, 3013 .get_rptr = a6xx_get_rptr, 3014 .progress = a6xx_progress, 3015 }, 3016 .get_timestamp = a6xx_gmu_get_timestamp, 3017 }; 3018 3019 struct msm_gpu *a6xx_gpu_init(struct drm_device *dev) 3020 { 3021 struct msm_drm_private *priv = dev->dev_private; 3022 struct platform_device *pdev = priv->gpu_pdev; 3023 struct adreno_platform_config *config = pdev->dev.platform_data; 3024 struct device_node *node; 3025 struct a6xx_gpu *a6xx_gpu; 3026 struct adreno_gpu *adreno_gpu; 3027 struct msm_gpu *gpu; 3028 bool is_a7xx; 3029 int ret; 3030 3031 a6xx_gpu = kzalloc(sizeof(*a6xx_gpu), GFP_KERNEL); 3032 if (!a6xx_gpu) 3033 return ERR_PTR(-ENOMEM); 3034 3035 adreno_gpu = &a6xx_gpu->base; 3036 gpu = &adreno_gpu->base; 3037 3038 mutex_init(&a6xx_gpu->gmu.lock); 3039 3040 adreno_gpu->registers = NULL; 3041 3042 /* Check if there is a GMU phandle and set it up */ 3043 node = of_parse_phandle(pdev->dev.of_node, "qcom,gmu", 0); 3044 /* FIXME: How do we gracefully handle this? */ 3045 BUG_ON(!node); 3046 3047 adreno_gpu->gmu_is_wrapper = of_device_is_compatible(node, "qcom,adreno-gmu-wrapper"); 3048 3049 adreno_gpu->base.hw_apriv = 3050 !!(config->info->quirks & ADRENO_QUIRK_HAS_HW_APRIV); 3051 3052 /* gpu->info only gets assigned in adreno_gpu_init() */ 3053 is_a7xx = config->info->family == ADRENO_7XX_GEN1 || 3054 config->info->family == ADRENO_7XX_GEN2 || 3055 config->info->family == ADRENO_7XX_GEN3; 3056 3057 a6xx_llc_slices_init(pdev, a6xx_gpu, is_a7xx); 3058 3059 ret = a6xx_set_supported_hw(&pdev->dev, config->info); 3060 if (ret) { 3061 a6xx_destroy(&(a6xx_gpu->base.base)); 3062 return ERR_PTR(ret); 3063 } 3064 3065 if (is_a7xx) 3066 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_a7xx, 1); 3067 else if (adreno_has_gmu_wrapper(adreno_gpu)) 3068 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs_gmuwrapper, 1); 3069 else 3070 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 1); 3071 if (ret) { 3072 a6xx_destroy(&(a6xx_gpu->base.base)); 3073 return ERR_PTR(ret); 3074 } 3075 3076 /* 3077 * For now only clamp to idle freq for devices where this is known not 3078 * to cause power supply issues: 3079 */ 3080 if (adreno_is_a618(adreno_gpu) || adreno_is_7c3(adreno_gpu)) 3081 priv->gpu_clamp_to_idle = true; 3082 3083 if (adreno_has_gmu_wrapper(adreno_gpu)) 3084 ret = a6xx_gmu_wrapper_init(a6xx_gpu, node); 3085 else 3086 ret = a6xx_gmu_init(a6xx_gpu, node); 3087 of_node_put(node); 3088 if (ret) { 3089 a6xx_destroy(&(a6xx_gpu->base.base)); 3090 return ERR_PTR(ret); 3091 } 3092 3093 if (gpu->aspace) 3094 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, 3095 a6xx_fault_handler); 3096 3097 a6xx_calc_ubwc_config(adreno_gpu); 3098 3099 return gpu; 3100 } 3101