1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */ 3 4 #include <linux/bitfield.h> 5 #include <linux/clk.h> 6 #include <linux/interconnect.h> 7 #include <linux/of_platform.h> 8 #include <linux/platform_device.h> 9 #include <linux/pm_domain.h> 10 #include <linux/pm_opp.h> 11 #include <soc/qcom/cmd-db.h> 12 #include <drm/drm_gem.h> 13 14 #include "a6xx_gpu.h" 15 #include "a6xx_gmu.xml.h" 16 #include "msm_gem.h" 17 #include "msm_gpu_trace.h" 18 #include "msm_mmu.h" 19 20 static void a6xx_gmu_fault(struct a6xx_gmu *gmu) 21 { 22 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 23 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 24 struct msm_gpu *gpu = &adreno_gpu->base; 25 26 /* FIXME: add a banner here */ 27 gmu->hung = true; 28 29 /* Turn off the hangcheck timer while we are resetting */ 30 del_timer(&gpu->hangcheck_timer); 31 32 /* Queue the GPU handler because we need to treat this as a recovery */ 33 kthread_queue_work(gpu->worker, &gpu->recover_work); 34 } 35 36 static irqreturn_t a6xx_gmu_irq(int irq, void *data) 37 { 38 struct a6xx_gmu *gmu = data; 39 u32 status; 40 41 status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS); 42 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status); 43 44 if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) { 45 dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n"); 46 47 a6xx_gmu_fault(gmu); 48 } 49 50 if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR) 51 dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n"); 52 53 if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR) 54 dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n", 55 gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS)); 56 57 return IRQ_HANDLED; 58 } 59 60 static irqreturn_t a6xx_hfi_irq(int irq, void *data) 61 { 62 struct a6xx_gmu *gmu = data; 63 u32 status; 64 65 status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO); 66 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status); 67 68 if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) { 69 dev_err_ratelimited(gmu->dev, "GMU firmware fault\n"); 70 71 a6xx_gmu_fault(gmu); 72 } 73 74 return IRQ_HANDLED; 75 } 76 77 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu) 78 { 79 u32 val; 80 81 /* This can be called from gpu state code so make sure GMU is valid */ 82 if (!gmu->initialized) 83 return false; 84 85 val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS); 86 87 return !(val & 88 (A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF | 89 A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF)); 90 } 91 92 /* Check to see if the GX rail is still powered */ 93 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu) 94 { 95 u32 val; 96 97 /* This can be called from gpu state code so make sure GMU is valid */ 98 if (!gmu->initialized) 99 return false; 100 101 val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS); 102 103 return !(val & 104 (A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF | 105 A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF)); 106 } 107 108 void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp, 109 bool suspended) 110 { 111 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 112 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 113 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 114 u32 perf_index; 115 unsigned long gpu_freq; 116 int ret = 0; 117 118 gpu_freq = dev_pm_opp_get_freq(opp); 119 120 if (gpu_freq == gmu->freq) 121 return; 122 123 for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++) 124 if (gpu_freq == gmu->gpu_freqs[perf_index]) 125 break; 126 127 gmu->current_perf_index = perf_index; 128 gmu->freq = gmu->gpu_freqs[perf_index]; 129 130 trace_msm_gmu_freq_change(gmu->freq, perf_index); 131 132 /* 133 * This can get called from devfreq while the hardware is idle. Don't 134 * bring up the power if it isn't already active. All we're doing here 135 * is updating the frequency so that when we come back online we're at 136 * the right rate. 137 */ 138 if (suspended) 139 return; 140 141 if (!gmu->legacy) { 142 a6xx_hfi_set_freq(gmu, perf_index); 143 dev_pm_opp_set_opp(&gpu->pdev->dev, opp); 144 return; 145 } 146 147 gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0); 148 149 gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING, 150 ((3 & 0xf) << 28) | perf_index); 151 152 /* 153 * Send an invalid index as a vote for the bus bandwidth and let the 154 * firmware decide on the right vote 155 */ 156 gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff); 157 158 /* Set and clear the OOB for DCVS to trigger the GMU */ 159 a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET); 160 a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET); 161 162 ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN); 163 if (ret) 164 dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret); 165 166 dev_pm_opp_set_opp(&gpu->pdev->dev, opp); 167 } 168 169 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu) 170 { 171 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 172 struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu); 173 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 174 175 return gmu->freq; 176 } 177 178 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu) 179 { 180 u32 val; 181 int local = gmu->idle_level; 182 183 /* SPTP and IFPC both report as IFPC */ 184 if (gmu->idle_level == GMU_IDLE_STATE_SPTP) 185 local = GMU_IDLE_STATE_IFPC; 186 187 val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE); 188 189 if (val == local) { 190 if (gmu->idle_level != GMU_IDLE_STATE_IFPC || 191 !a6xx_gmu_gx_is_on(gmu)) 192 return true; 193 } 194 195 return false; 196 } 197 198 /* Wait for the GMU to get to its most idle state */ 199 int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu) 200 { 201 return spin_until(a6xx_gmu_check_idle_level(gmu)); 202 } 203 204 static int a6xx_gmu_start(struct a6xx_gmu *gmu) 205 { 206 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 207 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 208 u32 mask, reset_val, val; 209 int ret; 210 211 val = gmu_read(gmu, REG_A6XX_GMU_CM3_DTCM_START + 0xff8); 212 if (val <= 0x20010004) { 213 mask = 0xffffffff; 214 reset_val = 0xbabeface; 215 } else { 216 mask = 0x1ff; 217 reset_val = 0x100; 218 } 219 220 gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1); 221 222 /* Set the log wptr index 223 * note: downstream saves the value in poweroff and restores it here 224 */ 225 if (adreno_is_a7xx(adreno_gpu)) 226 gmu_write(gmu, REG_A7XX_GMU_GENERAL_9, 0); 227 else 228 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_RESP, 0); 229 230 231 gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0); 232 233 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val, 234 (val & mask) == reset_val, 100, 10000); 235 236 if (ret) 237 DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n"); 238 239 return ret; 240 } 241 242 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu) 243 { 244 u32 val; 245 int ret; 246 247 gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1); 248 249 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val, 250 val & 1, 100, 10000); 251 if (ret) 252 DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n"); 253 254 return ret; 255 } 256 257 struct a6xx_gmu_oob_bits { 258 int set, ack, set_new, ack_new, clear, clear_new; 259 const char *name; 260 }; 261 262 /* These are the interrupt / ack bits for each OOB request that are set 263 * in a6xx_gmu_set_oob and a6xx_clear_oob 264 */ 265 static const struct a6xx_gmu_oob_bits a6xx_gmu_oob_bits[] = { 266 [GMU_OOB_GPU_SET] = { 267 .name = "GPU_SET", 268 .set = 16, 269 .ack = 24, 270 .set_new = 30, 271 .ack_new = 31, 272 .clear = 24, 273 .clear_new = 31, 274 }, 275 276 [GMU_OOB_PERFCOUNTER_SET] = { 277 .name = "PERFCOUNTER", 278 .set = 17, 279 .ack = 25, 280 .set_new = 28, 281 .ack_new = 30, 282 .clear = 25, 283 .clear_new = 29, 284 }, 285 286 [GMU_OOB_BOOT_SLUMBER] = { 287 .name = "BOOT_SLUMBER", 288 .set = 22, 289 .ack = 30, 290 .clear = 30, 291 }, 292 293 [GMU_OOB_DCVS_SET] = { 294 .name = "GPU_DCVS", 295 .set = 23, 296 .ack = 31, 297 .clear = 31, 298 }, 299 }; 300 301 /* Trigger a OOB (out of band) request to the GMU */ 302 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state) 303 { 304 int ret; 305 u32 val; 306 int request, ack; 307 308 WARN_ON_ONCE(!mutex_is_locked(&gmu->lock)); 309 310 if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits)) 311 return -EINVAL; 312 313 if (gmu->legacy) { 314 request = a6xx_gmu_oob_bits[state].set; 315 ack = a6xx_gmu_oob_bits[state].ack; 316 } else { 317 request = a6xx_gmu_oob_bits[state].set_new; 318 ack = a6xx_gmu_oob_bits[state].ack_new; 319 if (!request || !ack) { 320 DRM_DEV_ERROR(gmu->dev, 321 "Invalid non-legacy GMU request %s\n", 322 a6xx_gmu_oob_bits[state].name); 323 return -EINVAL; 324 } 325 } 326 327 /* Trigger the equested OOB operation */ 328 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request); 329 330 /* Wait for the acknowledge interrupt */ 331 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val, 332 val & (1 << ack), 100, 10000); 333 334 if (ret) 335 DRM_DEV_ERROR(gmu->dev, 336 "Timeout waiting for GMU OOB set %s: 0x%x\n", 337 a6xx_gmu_oob_bits[state].name, 338 gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO)); 339 340 /* Clear the acknowledge interrupt */ 341 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack); 342 343 return ret; 344 } 345 346 /* Clear a pending OOB state in the GMU */ 347 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state) 348 { 349 int bit; 350 351 WARN_ON_ONCE(!mutex_is_locked(&gmu->lock)); 352 353 if (state >= ARRAY_SIZE(a6xx_gmu_oob_bits)) 354 return; 355 356 if (gmu->legacy) 357 bit = a6xx_gmu_oob_bits[state].clear; 358 else 359 bit = a6xx_gmu_oob_bits[state].clear_new; 360 361 gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << bit); 362 } 363 364 /* Enable CPU control of SPTP power power collapse */ 365 int a6xx_sptprac_enable(struct a6xx_gmu *gmu) 366 { 367 int ret; 368 u32 val; 369 370 if (!gmu->legacy) 371 return 0; 372 373 gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000); 374 375 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val, 376 (val & 0x38) == 0x28, 1, 100); 377 378 if (ret) { 379 DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n", 380 gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS)); 381 } 382 383 return 0; 384 } 385 386 /* Disable CPU control of SPTP power power collapse */ 387 void a6xx_sptprac_disable(struct a6xx_gmu *gmu) 388 { 389 u32 val; 390 int ret; 391 392 if (!gmu->legacy) 393 return; 394 395 /* Make sure retention is on */ 396 gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11)); 397 398 gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001); 399 400 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val, 401 (val & 0x04), 100, 10000); 402 403 if (ret) 404 DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n", 405 gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS)); 406 } 407 408 /* Let the GMU know we are starting a boot sequence */ 409 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu) 410 { 411 u32 vote; 412 413 /* Let the GMU know we are getting ready for boot */ 414 gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0); 415 416 /* Choose the "default" power level as the highest available */ 417 vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1]; 418 419 gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff); 420 gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff); 421 422 /* Let the GMU know the boot sequence has started */ 423 return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER); 424 } 425 426 /* Let the GMU know that we are about to go into slumber */ 427 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu) 428 { 429 int ret; 430 431 /* Disable the power counter so the GMU isn't busy */ 432 gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0); 433 434 /* Disable SPTP_PC if the CPU is responsible for it */ 435 if (gmu->idle_level < GMU_IDLE_STATE_SPTP) 436 a6xx_sptprac_disable(gmu); 437 438 if (!gmu->legacy) { 439 ret = a6xx_hfi_send_prep_slumber(gmu); 440 goto out; 441 } 442 443 /* Tell the GMU to get ready to slumber */ 444 gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1); 445 446 ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER); 447 a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER); 448 449 if (!ret) { 450 /* Check to see if the GMU really did slumber */ 451 if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE) 452 != 0x0f) { 453 DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n"); 454 ret = -ETIMEDOUT; 455 } 456 } 457 458 out: 459 /* Put fence into allow mode */ 460 gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0); 461 return ret; 462 } 463 464 static int a6xx_rpmh_start(struct a6xx_gmu *gmu) 465 { 466 int ret; 467 u32 val; 468 469 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1); 470 /* Wait for the register to finish posting */ 471 wmb(); 472 473 ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val, 474 val & (1 << 1), 100, 10000); 475 if (ret) { 476 DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n"); 477 return ret; 478 } 479 480 ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val, 481 !val, 100, 10000); 482 483 if (ret) { 484 DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n"); 485 return ret; 486 } 487 488 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0); 489 490 return 0; 491 } 492 493 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu) 494 { 495 int ret; 496 u32 val; 497 498 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1); 499 500 ret = gmu_poll_timeout_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, 501 val, val & (1 << 16), 100, 10000); 502 if (ret) 503 DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n"); 504 505 gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0); 506 } 507 508 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value) 509 { 510 msm_writel(value, ptr + (offset << 2)); 511 } 512 513 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev, 514 const char *name); 515 516 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu) 517 { 518 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 519 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 520 struct platform_device *pdev = to_platform_device(gmu->dev); 521 void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc"); 522 u32 seqmem0_drv0_reg = REG_A6XX_RSCC_SEQ_MEM_0_DRV0; 523 void __iomem *seqptr = NULL; 524 uint32_t pdc_address_offset; 525 bool pdc_in_aop = false; 526 527 if (IS_ERR(pdcptr)) 528 goto err; 529 530 if (adreno_is_a650(adreno_gpu) || 531 adreno_is_a660_family(adreno_gpu) || 532 adreno_is_a7xx(adreno_gpu)) 533 pdc_in_aop = true; 534 else if (adreno_is_a618(adreno_gpu) || adreno_is_a640_family(adreno_gpu)) 535 pdc_address_offset = 0x30090; 536 else if (adreno_is_a619(adreno_gpu)) 537 pdc_address_offset = 0x300a0; 538 else 539 pdc_address_offset = 0x30080; 540 541 if (!pdc_in_aop) { 542 seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq"); 543 if (IS_ERR(seqptr)) 544 goto err; 545 } 546 547 /* Disable SDE clock gating */ 548 gmu_write_rscc(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24)); 549 550 /* Setup RSC PDC handshake for sleep and wakeup */ 551 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1); 552 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0); 553 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0); 554 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0); 555 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0); 556 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 557 adreno_is_a740_family(adreno_gpu) ? 0x80000021 : 0x80000000); 558 gmu_write_rscc(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0); 559 gmu_write_rscc(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0); 560 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520); 561 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510); 562 gmu_write_rscc(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514); 563 564 /* The second spin of A7xx GPUs messed with some register offsets.. */ 565 if (adreno_is_a740_family(adreno_gpu)) 566 seqmem0_drv0_reg = REG_A7XX_RSCC_SEQ_MEM_0_DRV0_A740; 567 568 /* Load RSC sequencer uCode for sleep and wakeup */ 569 if (adreno_is_a650_family(adreno_gpu) || 570 adreno_is_a7xx(adreno_gpu)) { 571 gmu_write_rscc(gmu, seqmem0_drv0_reg, 0xeaaae5a0); 572 gmu_write_rscc(gmu, seqmem0_drv0_reg + 1, 0xe1a1ebab); 573 gmu_write_rscc(gmu, seqmem0_drv0_reg + 2, 0xa2e0a581); 574 gmu_write_rscc(gmu, seqmem0_drv0_reg + 3, 0xecac82e2); 575 gmu_write_rscc(gmu, seqmem0_drv0_reg + 4, 0x0020edad); 576 } else { 577 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0); 578 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7); 579 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1); 580 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2); 581 gmu_write_rscc(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8); 582 } 583 584 if (pdc_in_aop) 585 goto setup_pdc; 586 587 /* Load PDC sequencer uCode for power up and power down sequence */ 588 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1); 589 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2); 590 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0); 591 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284); 592 pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc); 593 594 /* Set TCS commands used by PDC sequence for low power modes */ 595 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7); 596 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0); 597 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0); 598 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108); 599 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010); 600 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1); 601 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108); 602 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000); 603 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0); 604 605 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108); 606 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, pdc_address_offset); 607 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0); 608 609 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7); 610 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0); 611 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0); 612 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108); 613 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010); 614 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2); 615 616 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108); 617 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000); 618 if (adreno_is_a618(adreno_gpu) || adreno_is_a619(adreno_gpu) || 619 adreno_is_a650_family(adreno_gpu)) 620 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x2); 621 else 622 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3); 623 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108); 624 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, pdc_address_offset); 625 pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3); 626 627 /* Setup GPU PDC */ 628 setup_pdc: 629 pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0); 630 pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001); 631 632 /* ensure no writes happen before the uCode is fully written */ 633 wmb(); 634 635 a6xx_rpmh_stop(gmu); 636 637 err: 638 if (!IS_ERR_OR_NULL(pdcptr)) 639 iounmap(pdcptr); 640 if (!IS_ERR_OR_NULL(seqptr)) 641 iounmap(seqptr); 642 } 643 644 /* 645 * The lowest 16 bits of this value are the number of XO clock cycles for main 646 * hysteresis which is set at 0x1680 cycles (300 us). The higher 16 bits are 647 * for the shorter hysteresis that happens after main - this is 0xa (.5 us) 648 */ 649 650 #define GMU_PWR_COL_HYST 0x000a1680 651 652 /* Set up the idle state for the GMU */ 653 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu) 654 { 655 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 656 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 657 658 /* Disable GMU WB/RB buffer */ 659 gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1); 660 gmu_write(gmu, REG_A6XX_GMU_ICACHE_CONFIG, 0x1); 661 gmu_write(gmu, REG_A6XX_GMU_DCACHE_CONFIG, 0x1); 662 663 /* A7xx knows better by default! */ 664 if (adreno_is_a7xx(adreno_gpu)) 665 return; 666 667 gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400); 668 669 switch (gmu->idle_level) { 670 case GMU_IDLE_STATE_IFPC: 671 gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST, 672 GMU_PWR_COL_HYST); 673 gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0, 674 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE | 675 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE); 676 fallthrough; 677 case GMU_IDLE_STATE_SPTP: 678 gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST, 679 GMU_PWR_COL_HYST); 680 gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0, 681 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE | 682 A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE); 683 } 684 685 /* Enable RPMh GPU client */ 686 gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0, 687 A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE | 688 A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE | 689 A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE | 690 A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE | 691 A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE | 692 A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE); 693 } 694 695 struct block_header { 696 u32 addr; 697 u32 size; 698 u32 type; 699 u32 value; 700 u32 data[]; 701 }; 702 703 static bool fw_block_mem(struct a6xx_gmu_bo *bo, const struct block_header *blk) 704 { 705 if (!in_range(blk->addr, bo->iova, bo->size)) 706 return false; 707 708 memcpy(bo->virt + blk->addr - bo->iova, blk->data, blk->size); 709 return true; 710 } 711 712 static int a6xx_gmu_fw_load(struct a6xx_gmu *gmu) 713 { 714 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 715 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 716 const struct firmware *fw_image = adreno_gpu->fw[ADRENO_FW_GMU]; 717 const struct block_header *blk; 718 u32 reg_offset; 719 720 u32 itcm_base = 0x00000000; 721 u32 dtcm_base = 0x00040000; 722 723 if (adreno_is_a650_family(adreno_gpu) || adreno_is_a7xx(adreno_gpu)) 724 dtcm_base = 0x10004000; 725 726 if (gmu->legacy) { 727 /* Sanity check the size of the firmware that was loaded */ 728 if (fw_image->size > 0x8000) { 729 DRM_DEV_ERROR(gmu->dev, 730 "GMU firmware is bigger than the available region\n"); 731 return -EINVAL; 732 } 733 734 gmu_write_bulk(gmu, REG_A6XX_GMU_CM3_ITCM_START, 735 (u32*) fw_image->data, fw_image->size); 736 return 0; 737 } 738 739 740 for (blk = (const struct block_header *) fw_image->data; 741 (const u8*) blk < fw_image->data + fw_image->size; 742 blk = (const struct block_header *) &blk->data[blk->size >> 2]) { 743 if (blk->size == 0) 744 continue; 745 746 if (in_range(blk->addr, itcm_base, SZ_16K)) { 747 reg_offset = (blk->addr - itcm_base) >> 2; 748 gmu_write_bulk(gmu, 749 REG_A6XX_GMU_CM3_ITCM_START + reg_offset, 750 blk->data, blk->size); 751 } else if (in_range(blk->addr, dtcm_base, SZ_16K)) { 752 reg_offset = (blk->addr - dtcm_base) >> 2; 753 gmu_write_bulk(gmu, 754 REG_A6XX_GMU_CM3_DTCM_START + reg_offset, 755 blk->data, blk->size); 756 } else if (!fw_block_mem(&gmu->icache, blk) && 757 !fw_block_mem(&gmu->dcache, blk) && 758 !fw_block_mem(&gmu->dummy, blk)) { 759 DRM_DEV_ERROR(gmu->dev, 760 "failed to match fw block (addr=%.8x size=%d data[0]=%.8x)\n", 761 blk->addr, blk->size, blk->data[0]); 762 } 763 } 764 765 return 0; 766 } 767 768 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state) 769 { 770 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 771 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 772 u32 fence_range_lower, fence_range_upper; 773 u32 chipid, chipid_min = 0; 774 int ret; 775 776 /* Vote veto for FAL10 */ 777 if (adreno_is_a650_family(adreno_gpu) || adreno_is_a7xx(adreno_gpu)) { 778 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FALNEXT_INTF, 1); 779 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_CX_FAL_INTF, 1); 780 } 781 782 /* Turn on TCM (Tightly Coupled Memory) retention */ 783 if (adreno_is_a7xx(adreno_gpu)) 784 a6xx_llc_write(a6xx_gpu, REG_A7XX_CX_MISC_TCM_RET_CNTL, 1); 785 else 786 gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1); 787 788 if (state == GMU_WARM_BOOT) { 789 ret = a6xx_rpmh_start(gmu); 790 if (ret) 791 return ret; 792 } else { 793 if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU], 794 "GMU firmware is not loaded\n")) 795 return -ENOENT; 796 797 ret = a6xx_rpmh_start(gmu); 798 if (ret) 799 return ret; 800 801 ret = a6xx_gmu_fw_load(gmu); 802 if (ret) 803 return ret; 804 } 805 806 /* Clear init result to make sure we are getting a fresh value */ 807 gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0); 808 gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02); 809 810 /* Write the iova of the HFI table */ 811 gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi.iova); 812 gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1); 813 814 if (adreno_is_a7xx(adreno_gpu)) { 815 fence_range_upper = 0x32; 816 fence_range_lower = 0x8a0; 817 } else { 818 fence_range_upper = 0xa; 819 fence_range_lower = 0xa0; 820 } 821 822 gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0, 823 BIT(31) | 824 FIELD_PREP(GENMASK(30, 18), fence_range_upper) | 825 FIELD_PREP(GENMASK(17, 0), fence_range_lower)); 826 827 /* 828 * Snapshots toggle the NMI bit which will result in a jump to the NMI 829 * handler instead of __main. Set the M3 config value to avoid that. 830 */ 831 gmu_write(gmu, REG_A6XX_GMU_CM3_CFG, 0x4052); 832 833 /* NOTE: A730 may also fall in this if-condition with a future GMU fw update. */ 834 if (adreno_is_a7xx(adreno_gpu) && !adreno_is_a730(adreno_gpu)) { 835 /* A7xx GPUs have obfuscated chip IDs. Use constant maj = 7 */ 836 chipid = FIELD_PREP(GENMASK(31, 24), 0x7); 837 838 /* 839 * The min part has a 1-1 mapping for each GPU SKU. 840 * This chipid that the GMU expects corresponds to the "GENX_Y_Z" naming, 841 * where X = major, Y = minor, Z = patchlevel, e.g. GEN7_2_1 for prod A740. 842 */ 843 if (adreno_is_a740(adreno_gpu)) 844 chipid_min = 2; 845 else if (adreno_is_a750(adreno_gpu)) 846 chipid_min = 9; 847 else 848 return -EINVAL; 849 850 chipid |= FIELD_PREP(GENMASK(23, 16), chipid_min); 851 852 /* Get the patchid (which may vary) from the device tree */ 853 chipid |= FIELD_PREP(GENMASK(15, 8), adreno_patchid(adreno_gpu)); 854 } else { 855 /* 856 * Note that the GMU has a slightly different layout for 857 * chip_id, for whatever reason, so a bit of massaging 858 * is needed. The upper 16b are the same, but minor and 859 * patchid are packed in four bits each with the lower 860 * 8b unused: 861 */ 862 chipid = adreno_gpu->chip_id & 0xffff0000; 863 chipid |= (adreno_gpu->chip_id << 4) & 0xf000; /* minor */ 864 chipid |= (adreno_gpu->chip_id << 8) & 0x0f00; /* patchid */ 865 } 866 867 if (adreno_is_a7xx(adreno_gpu)) { 868 gmu_write(gmu, REG_A7XX_GMU_GENERAL_10, chipid); 869 gmu_write(gmu, REG_A7XX_GMU_GENERAL_8, 870 (gmu->log.iova & GENMASK(31, 12)) | 871 ((gmu->log.size / SZ_4K - 1) & GENMASK(7, 0))); 872 } else { 873 gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid); 874 875 gmu_write(gmu, REG_A6XX_GPU_GMU_CX_GMU_PWR_COL_CP_MSG, 876 gmu->log.iova | (gmu->log.size / SZ_4K - 1)); 877 } 878 879 /* Set up the lowest idle level on the GMU */ 880 a6xx_gmu_power_config(gmu); 881 882 ret = a6xx_gmu_start(gmu); 883 if (ret) 884 return ret; 885 886 if (gmu->legacy) { 887 ret = a6xx_gmu_gfx_rail_on(gmu); 888 if (ret) 889 return ret; 890 } 891 892 /* Enable SPTP_PC if the CPU is responsible for it */ 893 if (gmu->idle_level < GMU_IDLE_STATE_SPTP) { 894 ret = a6xx_sptprac_enable(gmu); 895 if (ret) 896 return ret; 897 } 898 899 ret = a6xx_gmu_hfi_start(gmu); 900 if (ret) 901 return ret; 902 903 /* FIXME: Do we need this wmb() here? */ 904 wmb(); 905 906 return 0; 907 } 908 909 #define A6XX_HFI_IRQ_MASK \ 910 (A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) 911 912 #define A6XX_GMU_IRQ_MASK \ 913 (A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \ 914 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \ 915 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR) 916 917 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu) 918 { 919 disable_irq(gmu->gmu_irq); 920 disable_irq(gmu->hfi_irq); 921 922 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0); 923 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0); 924 } 925 926 static void a6xx_gmu_rpmh_off(struct a6xx_gmu *gmu) 927 { 928 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 929 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 930 u32 val, seqmem_off = 0; 931 932 /* The second spin of A7xx GPUs messed with some register offsets.. */ 933 if (adreno_is_a740_family(adreno_gpu)) 934 seqmem_off = 4; 935 936 /* Make sure there are no outstanding RPMh votes */ 937 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS + seqmem_off, 938 val, (val & 1), 100, 10000); 939 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS + seqmem_off, 940 val, (val & 1), 100, 10000); 941 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS + seqmem_off, 942 val, (val & 1), 100, 10000); 943 gmu_poll_timeout_rscc(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS + seqmem_off, 944 val, (val & 1), 100, 1000); 945 } 946 947 /* Force the GMU off in case it isn't responsive */ 948 static void a6xx_gmu_force_off(struct a6xx_gmu *gmu) 949 { 950 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 951 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 952 struct msm_gpu *gpu = &adreno_gpu->base; 953 954 /* 955 * Turn off keep alive that might have been enabled by the hang 956 * interrupt 957 */ 958 gmu_write(&a6xx_gpu->gmu, REG_A6XX_GMU_GMU_PWR_COL_KEEPALIVE, 0); 959 960 /* Flush all the queues */ 961 a6xx_hfi_stop(gmu); 962 963 /* Stop the interrupts */ 964 a6xx_gmu_irq_disable(gmu); 965 966 /* Force off SPTP in case the GMU is managing it */ 967 a6xx_sptprac_disable(gmu); 968 969 /* Make sure there are no outstanding RPMh votes */ 970 a6xx_gmu_rpmh_off(gmu); 971 972 /* Clear the WRITEDROPPED fields and put fence into allow mode */ 973 gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS_CLR, 0x7); 974 gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0); 975 976 /* Make sure the above writes go through */ 977 wmb(); 978 979 /* Halt the gmu cm3 core */ 980 gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1); 981 982 a6xx_bus_clear_pending_transactions(adreno_gpu, true); 983 984 /* Reset GPU core blocks */ 985 a6xx_gpu_sw_reset(gpu, true); 986 } 987 988 static void a6xx_gmu_set_initial_freq(struct msm_gpu *gpu, struct a6xx_gmu *gmu) 989 { 990 struct dev_pm_opp *gpu_opp; 991 unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index]; 992 993 gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true); 994 if (IS_ERR(gpu_opp)) 995 return; 996 997 gmu->freq = 0; /* so a6xx_gmu_set_freq() doesn't exit early */ 998 a6xx_gmu_set_freq(gpu, gpu_opp, false); 999 dev_pm_opp_put(gpu_opp); 1000 } 1001 1002 static void a6xx_gmu_set_initial_bw(struct msm_gpu *gpu, struct a6xx_gmu *gmu) 1003 { 1004 struct dev_pm_opp *gpu_opp; 1005 unsigned long gpu_freq = gmu->gpu_freqs[gmu->current_perf_index]; 1006 1007 gpu_opp = dev_pm_opp_find_freq_exact(&gpu->pdev->dev, gpu_freq, true); 1008 if (IS_ERR(gpu_opp)) 1009 return; 1010 1011 dev_pm_opp_set_opp(&gpu->pdev->dev, gpu_opp); 1012 dev_pm_opp_put(gpu_opp); 1013 } 1014 1015 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu) 1016 { 1017 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1018 struct msm_gpu *gpu = &adreno_gpu->base; 1019 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1020 int status, ret; 1021 1022 if (WARN(!gmu->initialized, "The GMU is not set up yet\n")) 1023 return -EINVAL; 1024 1025 gmu->hung = false; 1026 1027 /* Notify AOSS about the ACD state (unimplemented for now => disable it) */ 1028 if (!IS_ERR(gmu->qmp)) { 1029 ret = qmp_send(gmu->qmp, "{class: gpu, res: acd, val: %d}", 1030 0 /* Hardcode ACD to be disabled for now */); 1031 if (ret) 1032 dev_err(gmu->dev, "failed to send GPU ACD state\n"); 1033 } 1034 1035 /* Turn on the resources */ 1036 pm_runtime_get_sync(gmu->dev); 1037 1038 /* 1039 * "enable" the GX power domain which won't actually do anything but it 1040 * will make sure that the refcounting is correct in case we need to 1041 * bring down the GX after a GMU failure 1042 */ 1043 if (!IS_ERR_OR_NULL(gmu->gxpd)) 1044 pm_runtime_get_sync(gmu->gxpd); 1045 1046 /* Use a known rate to bring up the GMU */ 1047 clk_set_rate(gmu->core_clk, 200000000); 1048 clk_set_rate(gmu->hub_clk, adreno_is_a740_family(adreno_gpu) ? 1049 200000000 : 150000000); 1050 ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks); 1051 if (ret) { 1052 pm_runtime_put(gmu->gxpd); 1053 pm_runtime_put(gmu->dev); 1054 return ret; 1055 } 1056 1057 /* Set the bus quota to a reasonable value for boot */ 1058 a6xx_gmu_set_initial_bw(gpu, gmu); 1059 1060 /* Enable the GMU interrupt */ 1061 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0); 1062 gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~A6XX_GMU_IRQ_MASK); 1063 enable_irq(gmu->gmu_irq); 1064 1065 /* Check to see if we are doing a cold or warm boot */ 1066 if (adreno_is_a7xx(adreno_gpu)) { 1067 status = a6xx_llc_read(a6xx_gpu, REG_A7XX_CX_MISC_TCM_RET_CNTL) == 1 ? 1068 GMU_WARM_BOOT : GMU_COLD_BOOT; 1069 } else if (gmu->legacy) { 1070 status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ? 1071 GMU_WARM_BOOT : GMU_COLD_BOOT; 1072 } else { 1073 /* 1074 * Warm boot path does not work on newer A6xx GPUs 1075 * Presumably this is because icache/dcache regions must be restored 1076 */ 1077 status = GMU_COLD_BOOT; 1078 } 1079 1080 ret = a6xx_gmu_fw_start(gmu, status); 1081 if (ret) 1082 goto out; 1083 1084 ret = a6xx_hfi_start(gmu, status); 1085 if (ret) 1086 goto out; 1087 1088 /* 1089 * Turn on the GMU firmware fault interrupt after we know the boot 1090 * sequence is successful 1091 */ 1092 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0); 1093 gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~A6XX_HFI_IRQ_MASK); 1094 enable_irq(gmu->hfi_irq); 1095 1096 /* Set the GPU to the current freq */ 1097 a6xx_gmu_set_initial_freq(gpu, gmu); 1098 1099 out: 1100 /* On failure, shut down the GMU to leave it in a good state */ 1101 if (ret) { 1102 disable_irq(gmu->gmu_irq); 1103 a6xx_rpmh_stop(gmu); 1104 pm_runtime_put(gmu->gxpd); 1105 pm_runtime_put(gmu->dev); 1106 } 1107 1108 return ret; 1109 } 1110 1111 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu) 1112 { 1113 u32 reg; 1114 1115 if (!gmu->initialized) 1116 return true; 1117 1118 reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS); 1119 1120 if (reg & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB) 1121 return false; 1122 1123 return true; 1124 } 1125 1126 /* Gracefully try to shut down the GMU and by extension the GPU */ 1127 static void a6xx_gmu_shutdown(struct a6xx_gmu *gmu) 1128 { 1129 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1130 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1131 u32 val; 1132 1133 /* 1134 * The GMU may still be in slumber unless the GPU started so check and 1135 * skip putting it back into slumber if so 1136 */ 1137 val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE); 1138 1139 if (val != 0xf) { 1140 int ret = a6xx_gmu_wait_for_idle(gmu); 1141 1142 /* If the GMU isn't responding assume it is hung */ 1143 if (ret) { 1144 a6xx_gmu_force_off(gmu); 1145 return; 1146 } 1147 1148 a6xx_bus_clear_pending_transactions(adreno_gpu, a6xx_gpu->hung); 1149 1150 /* tell the GMU we want to slumber */ 1151 ret = a6xx_gmu_notify_slumber(gmu); 1152 if (ret) { 1153 a6xx_gmu_force_off(gmu); 1154 return; 1155 } 1156 1157 ret = gmu_poll_timeout(gmu, 1158 REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val, 1159 !(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB), 1160 100, 10000); 1161 1162 /* 1163 * Let the user know we failed to slumber but don't worry too 1164 * much because we are powering down anyway 1165 */ 1166 1167 if (ret) 1168 DRM_DEV_ERROR(gmu->dev, 1169 "Unable to slumber GMU: status = 0%x/0%x\n", 1170 gmu_read(gmu, 1171 REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS), 1172 gmu_read(gmu, 1173 REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2)); 1174 } 1175 1176 /* Turn off HFI */ 1177 a6xx_hfi_stop(gmu); 1178 1179 /* Stop the interrupts and mask the hardware */ 1180 a6xx_gmu_irq_disable(gmu); 1181 1182 /* Tell RPMh to power off the GPU */ 1183 a6xx_rpmh_stop(gmu); 1184 } 1185 1186 1187 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu) 1188 { 1189 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1190 struct msm_gpu *gpu = &a6xx_gpu->base.base; 1191 1192 if (!pm_runtime_active(gmu->dev)) 1193 return 0; 1194 1195 /* 1196 * Force the GMU off if we detected a hang, otherwise try to shut it 1197 * down gracefully 1198 */ 1199 if (gmu->hung) 1200 a6xx_gmu_force_off(gmu); 1201 else 1202 a6xx_gmu_shutdown(gmu); 1203 1204 /* Remove the bus vote */ 1205 dev_pm_opp_set_opp(&gpu->pdev->dev, NULL); 1206 1207 /* 1208 * Make sure the GX domain is off before turning off the GMU (CX) 1209 * domain. Usually the GMU does this but only if the shutdown sequence 1210 * was successful 1211 */ 1212 if (!IS_ERR_OR_NULL(gmu->gxpd)) 1213 pm_runtime_put_sync(gmu->gxpd); 1214 1215 clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks); 1216 1217 pm_runtime_put_sync(gmu->dev); 1218 1219 return 0; 1220 } 1221 1222 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu) 1223 { 1224 msm_gem_kernel_put(gmu->hfi.obj, gmu->aspace); 1225 msm_gem_kernel_put(gmu->debug.obj, gmu->aspace); 1226 msm_gem_kernel_put(gmu->icache.obj, gmu->aspace); 1227 msm_gem_kernel_put(gmu->dcache.obj, gmu->aspace); 1228 msm_gem_kernel_put(gmu->dummy.obj, gmu->aspace); 1229 msm_gem_kernel_put(gmu->log.obj, gmu->aspace); 1230 1231 gmu->aspace->mmu->funcs->detach(gmu->aspace->mmu); 1232 msm_gem_address_space_put(gmu->aspace); 1233 } 1234 1235 static int a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo, 1236 size_t size, u64 iova, const char *name) 1237 { 1238 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1239 struct drm_device *dev = a6xx_gpu->base.base.dev; 1240 uint32_t flags = MSM_BO_WC; 1241 u64 range_start, range_end; 1242 int ret; 1243 1244 size = PAGE_ALIGN(size); 1245 if (!iova) { 1246 /* no fixed address - use GMU's uncached range */ 1247 range_start = 0x60000000 + PAGE_SIZE; /* skip dummy page */ 1248 range_end = 0x80000000; 1249 } else { 1250 /* range for fixed address */ 1251 range_start = iova; 1252 range_end = iova + size; 1253 /* use IOMMU_PRIV for icache/dcache */ 1254 flags |= MSM_BO_MAP_PRIV; 1255 } 1256 1257 bo->obj = msm_gem_new(dev, size, flags); 1258 if (IS_ERR(bo->obj)) 1259 return PTR_ERR(bo->obj); 1260 1261 ret = msm_gem_get_and_pin_iova_range(bo->obj, gmu->aspace, &bo->iova, 1262 range_start, range_end); 1263 if (ret) { 1264 drm_gem_object_put(bo->obj); 1265 return ret; 1266 } 1267 1268 bo->virt = msm_gem_get_vaddr(bo->obj); 1269 bo->size = size; 1270 1271 msm_gem_object_set_name(bo->obj, name); 1272 1273 return 0; 1274 } 1275 1276 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu) 1277 { 1278 struct msm_mmu *mmu; 1279 1280 mmu = msm_iommu_new(gmu->dev, 0); 1281 if (!mmu) 1282 return -ENODEV; 1283 if (IS_ERR(mmu)) 1284 return PTR_ERR(mmu); 1285 1286 gmu->aspace = msm_gem_address_space_create(mmu, "gmu", 0x0, 0x80000000); 1287 if (IS_ERR(gmu->aspace)) 1288 return PTR_ERR(gmu->aspace); 1289 1290 return 0; 1291 } 1292 1293 /* Return the 'arc-level' for the given frequency */ 1294 static unsigned int a6xx_gmu_get_arc_level(struct device *dev, 1295 unsigned long freq) 1296 { 1297 struct dev_pm_opp *opp; 1298 unsigned int val; 1299 1300 if (!freq) 1301 return 0; 1302 1303 opp = dev_pm_opp_find_freq_exact(dev, freq, true); 1304 if (IS_ERR(opp)) 1305 return 0; 1306 1307 val = dev_pm_opp_get_level(opp); 1308 1309 dev_pm_opp_put(opp); 1310 1311 return val; 1312 } 1313 1314 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes, 1315 unsigned long *freqs, int freqs_count, const char *id) 1316 { 1317 int i, j; 1318 const u16 *pri, *sec; 1319 size_t pri_count, sec_count; 1320 1321 pri = cmd_db_read_aux_data(id, &pri_count); 1322 if (IS_ERR(pri)) 1323 return PTR_ERR(pri); 1324 /* 1325 * The data comes back as an array of unsigned shorts so adjust the 1326 * count accordingly 1327 */ 1328 pri_count >>= 1; 1329 if (!pri_count) 1330 return -EINVAL; 1331 1332 sec = cmd_db_read_aux_data("mx.lvl", &sec_count); 1333 if (IS_ERR(sec)) 1334 return PTR_ERR(sec); 1335 1336 sec_count >>= 1; 1337 if (!sec_count) 1338 return -EINVAL; 1339 1340 /* Construct a vote for each frequency */ 1341 for (i = 0; i < freqs_count; i++) { 1342 u8 pindex = 0, sindex = 0; 1343 unsigned int level = a6xx_gmu_get_arc_level(dev, freqs[i]); 1344 1345 /* Get the primary index that matches the arc level */ 1346 for (j = 0; j < pri_count; j++) { 1347 if (pri[j] >= level) { 1348 pindex = j; 1349 break; 1350 } 1351 } 1352 1353 if (j == pri_count) { 1354 DRM_DEV_ERROR(dev, 1355 "Level %u not found in the RPMh list\n", 1356 level); 1357 DRM_DEV_ERROR(dev, "Available levels:\n"); 1358 for (j = 0; j < pri_count; j++) 1359 DRM_DEV_ERROR(dev, " %u\n", pri[j]); 1360 1361 return -EINVAL; 1362 } 1363 1364 /* 1365 * Look for a level in in the secondary list that matches. If 1366 * nothing fits, use the maximum non zero vote 1367 */ 1368 1369 for (j = 0; j < sec_count; j++) { 1370 if (sec[j] >= level) { 1371 sindex = j; 1372 break; 1373 } else if (sec[j]) { 1374 sindex = j; 1375 } 1376 } 1377 1378 /* Construct the vote */ 1379 votes[i] = ((pri[pindex] & 0xffff) << 16) | 1380 (sindex << 8) | pindex; 1381 } 1382 1383 return 0; 1384 } 1385 1386 /* 1387 * The GMU votes with the RPMh for itself and on behalf of the GPU but we need 1388 * to construct the list of votes on the CPU and send it over. Query the RPMh 1389 * voltage levels and build the votes 1390 */ 1391 1392 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu) 1393 { 1394 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1395 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1396 struct msm_gpu *gpu = &adreno_gpu->base; 1397 int ret; 1398 1399 /* Build the GX votes */ 1400 ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes, 1401 gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl"); 1402 1403 /* Build the CX votes */ 1404 ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes, 1405 gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl"); 1406 1407 return ret; 1408 } 1409 1410 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs, 1411 u32 size) 1412 { 1413 int count = dev_pm_opp_get_opp_count(dev); 1414 struct dev_pm_opp *opp; 1415 int i, index = 0; 1416 unsigned long freq = 1; 1417 1418 /* 1419 * The OPP table doesn't contain the "off" frequency level so we need to 1420 * add 1 to the table size to account for it 1421 */ 1422 1423 if (WARN(count + 1 > size, 1424 "The GMU frequency table is being truncated\n")) 1425 count = size - 1; 1426 1427 /* Set the "off" frequency */ 1428 freqs[index++] = 0; 1429 1430 for (i = 0; i < count; i++) { 1431 opp = dev_pm_opp_find_freq_ceil(dev, &freq); 1432 if (IS_ERR(opp)) 1433 break; 1434 1435 dev_pm_opp_put(opp); 1436 freqs[index++] = freq++; 1437 } 1438 1439 return index; 1440 } 1441 1442 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu) 1443 { 1444 struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu); 1445 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1446 struct msm_gpu *gpu = &adreno_gpu->base; 1447 1448 int ret = 0; 1449 1450 /* 1451 * The GMU handles its own frequency switching so build a list of 1452 * available frequencies to send during initialization 1453 */ 1454 ret = devm_pm_opp_of_add_table(gmu->dev); 1455 if (ret) { 1456 DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n"); 1457 return ret; 1458 } 1459 1460 gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev, 1461 gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs)); 1462 1463 /* 1464 * The GMU also handles GPU frequency switching so build a list 1465 * from the GPU OPP table 1466 */ 1467 gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev, 1468 gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs)); 1469 1470 gmu->current_perf_index = gmu->nr_gpu_freqs - 1; 1471 1472 /* Build the list of RPMh votes that we'll send to the GMU */ 1473 return a6xx_gmu_rpmh_votes_init(gmu); 1474 } 1475 1476 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu) 1477 { 1478 int ret = devm_clk_bulk_get_all(gmu->dev, &gmu->clocks); 1479 1480 if (ret < 1) 1481 return ret; 1482 1483 gmu->nr_clocks = ret; 1484 1485 gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks, 1486 gmu->nr_clocks, "gmu"); 1487 1488 gmu->hub_clk = msm_clk_bulk_get_clock(gmu->clocks, 1489 gmu->nr_clocks, "hub"); 1490 1491 return 0; 1492 } 1493 1494 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev, 1495 const char *name) 1496 { 1497 void __iomem *ret; 1498 struct resource *res = platform_get_resource_byname(pdev, 1499 IORESOURCE_MEM, name); 1500 1501 if (!res) { 1502 DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name); 1503 return ERR_PTR(-EINVAL); 1504 } 1505 1506 ret = ioremap(res->start, resource_size(res)); 1507 if (!ret) { 1508 DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name); 1509 return ERR_PTR(-EINVAL); 1510 } 1511 1512 return ret; 1513 } 1514 1515 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev, 1516 const char *name, irq_handler_t handler) 1517 { 1518 int irq, ret; 1519 1520 irq = platform_get_irq_byname(pdev, name); 1521 1522 ret = request_irq(irq, handler, IRQF_TRIGGER_HIGH, name, gmu); 1523 if (ret) { 1524 DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s %d\n", 1525 name, ret); 1526 return ret; 1527 } 1528 1529 disable_irq(irq); 1530 1531 return irq; 1532 } 1533 1534 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu) 1535 { 1536 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1537 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1538 struct platform_device *pdev = to_platform_device(gmu->dev); 1539 1540 mutex_lock(&gmu->lock); 1541 if (!gmu->initialized) { 1542 mutex_unlock(&gmu->lock); 1543 return; 1544 } 1545 1546 gmu->initialized = false; 1547 1548 mutex_unlock(&gmu->lock); 1549 1550 pm_runtime_force_suspend(gmu->dev); 1551 1552 /* 1553 * Since cxpd is a virt device, the devlink with gmu-dev will be removed 1554 * automatically when we do detach 1555 */ 1556 dev_pm_domain_detach(gmu->cxpd, false); 1557 1558 if (!IS_ERR_OR_NULL(gmu->gxpd)) { 1559 pm_runtime_disable(gmu->gxpd); 1560 dev_pm_domain_detach(gmu->gxpd, false); 1561 } 1562 1563 if (!IS_ERR_OR_NULL(gmu->qmp)) 1564 qmp_put(gmu->qmp); 1565 1566 iounmap(gmu->mmio); 1567 if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc")) 1568 iounmap(gmu->rscc); 1569 gmu->mmio = NULL; 1570 gmu->rscc = NULL; 1571 1572 if (!adreno_has_gmu_wrapper(adreno_gpu)) { 1573 a6xx_gmu_memory_free(gmu); 1574 1575 free_irq(gmu->gmu_irq, gmu); 1576 free_irq(gmu->hfi_irq, gmu); 1577 } 1578 1579 /* Drop reference taken in of_find_device_by_node */ 1580 put_device(gmu->dev); 1581 } 1582 1583 static int cxpd_notifier_cb(struct notifier_block *nb, 1584 unsigned long action, void *data) 1585 { 1586 struct a6xx_gmu *gmu = container_of(nb, struct a6xx_gmu, pd_nb); 1587 1588 if (action == GENPD_NOTIFY_OFF) 1589 complete_all(&gmu->pd_gate); 1590 1591 return 0; 1592 } 1593 1594 int a6xx_gmu_wrapper_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node) 1595 { 1596 struct platform_device *pdev = of_find_device_by_node(node); 1597 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1598 int ret; 1599 1600 if (!pdev) 1601 return -ENODEV; 1602 1603 gmu->dev = &pdev->dev; 1604 1605 of_dma_configure(gmu->dev, node, true); 1606 1607 pm_runtime_enable(gmu->dev); 1608 1609 /* Mark legacy for manual SPTPRAC control */ 1610 gmu->legacy = true; 1611 1612 /* Map the GMU registers */ 1613 gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu"); 1614 if (IS_ERR(gmu->mmio)) { 1615 ret = PTR_ERR(gmu->mmio); 1616 goto err_mmio; 1617 } 1618 1619 gmu->cxpd = dev_pm_domain_attach_by_name(gmu->dev, "cx"); 1620 if (IS_ERR(gmu->cxpd)) { 1621 ret = PTR_ERR(gmu->cxpd); 1622 goto err_mmio; 1623 } 1624 1625 if (!device_link_add(gmu->dev, gmu->cxpd, DL_FLAG_PM_RUNTIME)) { 1626 ret = -ENODEV; 1627 goto detach_cxpd; 1628 } 1629 1630 init_completion(&gmu->pd_gate); 1631 complete_all(&gmu->pd_gate); 1632 gmu->pd_nb.notifier_call = cxpd_notifier_cb; 1633 1634 /* Get a link to the GX power domain to reset the GPU */ 1635 gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx"); 1636 if (IS_ERR(gmu->gxpd)) { 1637 ret = PTR_ERR(gmu->gxpd); 1638 goto err_mmio; 1639 } 1640 1641 gmu->initialized = true; 1642 1643 return 0; 1644 1645 detach_cxpd: 1646 dev_pm_domain_detach(gmu->cxpd, false); 1647 1648 err_mmio: 1649 iounmap(gmu->mmio); 1650 1651 /* Drop reference taken in of_find_device_by_node */ 1652 put_device(gmu->dev); 1653 1654 return ret; 1655 } 1656 1657 int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node) 1658 { 1659 struct adreno_gpu *adreno_gpu = &a6xx_gpu->base; 1660 struct a6xx_gmu *gmu = &a6xx_gpu->gmu; 1661 struct platform_device *pdev = of_find_device_by_node(node); 1662 struct device_link *link; 1663 int ret; 1664 1665 if (!pdev) 1666 return -ENODEV; 1667 1668 gmu->dev = &pdev->dev; 1669 1670 of_dma_configure(gmu->dev, node, true); 1671 1672 /* Fow now, don't do anything fancy until we get our feet under us */ 1673 gmu->idle_level = GMU_IDLE_STATE_ACTIVE; 1674 1675 pm_runtime_enable(gmu->dev); 1676 1677 /* Get the list of clocks */ 1678 ret = a6xx_gmu_clocks_probe(gmu); 1679 if (ret) 1680 goto err_put_device; 1681 1682 ret = a6xx_gmu_memory_probe(gmu); 1683 if (ret) 1684 goto err_put_device; 1685 1686 1687 /* A660 now requires handling "prealloc requests" in GMU firmware 1688 * For now just hardcode allocations based on the known firmware. 1689 * note: there is no indication that these correspond to "dummy" or 1690 * "debug" regions, but this "guess" allows reusing these BOs which 1691 * are otherwise unused by a660. 1692 */ 1693 gmu->dummy.size = SZ_4K; 1694 if (adreno_is_a660_family(adreno_gpu) || 1695 adreno_is_a7xx(adreno_gpu)) { 1696 ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_4K * 7, 1697 0x60400000, "debug"); 1698 if (ret) 1699 goto err_memory; 1700 1701 gmu->dummy.size = SZ_8K; 1702 } 1703 1704 /* Allocate memory for the GMU dummy page */ 1705 ret = a6xx_gmu_memory_alloc(gmu, &gmu->dummy, gmu->dummy.size, 1706 0x60000000, "dummy"); 1707 if (ret) 1708 goto err_memory; 1709 1710 /* Note that a650 family also includes a660 family: */ 1711 if (adreno_is_a650_family(adreno_gpu) || 1712 adreno_is_a7xx(adreno_gpu)) { 1713 ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache, 1714 SZ_16M - SZ_16K, 0x04000, "icache"); 1715 if (ret) 1716 goto err_memory; 1717 /* 1718 * NOTE: when porting legacy ("pre-650-family") GPUs you may be tempted to add a condition 1719 * to allocate icache/dcache here, as per downstream code flow, but it may not actually be 1720 * necessary. If you omit this step and you don't get random pagefaults, you are likely 1721 * good to go without this! 1722 */ 1723 } else if (adreno_is_a640_family(adreno_gpu)) { 1724 ret = a6xx_gmu_memory_alloc(gmu, &gmu->icache, 1725 SZ_256K - SZ_16K, 0x04000, "icache"); 1726 if (ret) 1727 goto err_memory; 1728 1729 ret = a6xx_gmu_memory_alloc(gmu, &gmu->dcache, 1730 SZ_256K - SZ_16K, 0x44000, "dcache"); 1731 if (ret) 1732 goto err_memory; 1733 } else if (adreno_is_a630_family(adreno_gpu)) { 1734 /* HFI v1, has sptprac */ 1735 gmu->legacy = true; 1736 1737 /* Allocate memory for the GMU debug region */ 1738 ret = a6xx_gmu_memory_alloc(gmu, &gmu->debug, SZ_16K, 0, "debug"); 1739 if (ret) 1740 goto err_memory; 1741 } 1742 1743 /* Allocate memory for the GMU log region */ 1744 ret = a6xx_gmu_memory_alloc(gmu, &gmu->log, SZ_16K, 0, "log"); 1745 if (ret) 1746 goto err_memory; 1747 1748 /* Allocate memory for for the HFI queues */ 1749 ret = a6xx_gmu_memory_alloc(gmu, &gmu->hfi, SZ_16K, 0, "hfi"); 1750 if (ret) 1751 goto err_memory; 1752 1753 /* Map the GMU registers */ 1754 gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu"); 1755 if (IS_ERR(gmu->mmio)) { 1756 ret = PTR_ERR(gmu->mmio); 1757 goto err_memory; 1758 } 1759 1760 if (adreno_is_a650_family(adreno_gpu) || 1761 adreno_is_a7xx(adreno_gpu)) { 1762 gmu->rscc = a6xx_gmu_get_mmio(pdev, "rscc"); 1763 if (IS_ERR(gmu->rscc)) { 1764 ret = -ENODEV; 1765 goto err_mmio; 1766 } 1767 } else { 1768 gmu->rscc = gmu->mmio + 0x23000; 1769 } 1770 1771 /* Get the HFI and GMU interrupts */ 1772 gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq); 1773 gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq); 1774 1775 if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0) { 1776 ret = -ENODEV; 1777 goto err_mmio; 1778 } 1779 1780 gmu->cxpd = dev_pm_domain_attach_by_name(gmu->dev, "cx"); 1781 if (IS_ERR(gmu->cxpd)) { 1782 ret = PTR_ERR(gmu->cxpd); 1783 goto err_mmio; 1784 } 1785 1786 link = device_link_add(gmu->dev, gmu->cxpd, DL_FLAG_PM_RUNTIME); 1787 if (!link) { 1788 ret = -ENODEV; 1789 goto detach_cxpd; 1790 } 1791 1792 gmu->qmp = qmp_get(gmu->dev); 1793 if (IS_ERR(gmu->qmp) && adreno_is_a7xx(adreno_gpu)) { 1794 ret = PTR_ERR(gmu->qmp); 1795 goto remove_device_link; 1796 } 1797 1798 init_completion(&gmu->pd_gate); 1799 complete_all(&gmu->pd_gate); 1800 gmu->pd_nb.notifier_call = cxpd_notifier_cb; 1801 1802 /* 1803 * Get a link to the GX power domain to reset the GPU in case of GMU 1804 * crash 1805 */ 1806 gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx"); 1807 1808 /* Get the power levels for the GMU and GPU */ 1809 a6xx_gmu_pwrlevels_probe(gmu); 1810 1811 /* Set up the HFI queues */ 1812 a6xx_hfi_init(gmu); 1813 1814 /* Initialize RPMh */ 1815 a6xx_gmu_rpmh_init(gmu); 1816 1817 gmu->initialized = true; 1818 1819 return 0; 1820 1821 remove_device_link: 1822 device_link_del(link); 1823 1824 detach_cxpd: 1825 dev_pm_domain_detach(gmu->cxpd, false); 1826 1827 err_mmio: 1828 iounmap(gmu->mmio); 1829 if (platform_get_resource_byname(pdev, IORESOURCE_MEM, "rscc")) 1830 iounmap(gmu->rscc); 1831 free_irq(gmu->gmu_irq, gmu); 1832 free_irq(gmu->hfi_irq, gmu); 1833 1834 err_memory: 1835 a6xx_gmu_memory_free(gmu); 1836 err_put_device: 1837 /* Drop reference taken in of_find_device_by_node */ 1838 put_device(gmu->dev); 1839 1840 return ret; 1841 } 1842