xref: /linux/drivers/gpu/drm/msm/adreno/a6xx_gmu.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2017-2019 The Linux Foundation. All rights reserved. */
3 
4 #include <linux/clk.h>
5 #include <linux/interconnect.h>
6 #include <linux/pm_domain.h>
7 #include <linux/pm_opp.h>
8 #include <soc/qcom/cmd-db.h>
9 
10 #include "a6xx_gpu.h"
11 #include "a6xx_gmu.xml.h"
12 
13 static void a6xx_gmu_fault(struct a6xx_gmu *gmu)
14 {
15 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
16 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
17 	struct msm_gpu *gpu = &adreno_gpu->base;
18 	struct drm_device *dev = gpu->dev;
19 	struct msm_drm_private *priv = dev->dev_private;
20 
21 	/* FIXME: add a banner here */
22 	gmu->hung = true;
23 
24 	/* Turn off the hangcheck timer while we are resetting */
25 	del_timer(&gpu->hangcheck_timer);
26 
27 	/* Queue the GPU handler because we need to treat this as a recovery */
28 	queue_work(priv->wq, &gpu->recover_work);
29 }
30 
31 static irqreturn_t a6xx_gmu_irq(int irq, void *data)
32 {
33 	struct a6xx_gmu *gmu = data;
34 	u32 status;
35 
36 	status = gmu_read(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_STATUS);
37 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, status);
38 
39 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE) {
40 		dev_err_ratelimited(gmu->dev, "GMU watchdog expired\n");
41 
42 		a6xx_gmu_fault(gmu);
43 	}
44 
45 	if (status &  A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR)
46 		dev_err_ratelimited(gmu->dev, "GMU AHB bus error\n");
47 
48 	if (status & A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
49 		dev_err_ratelimited(gmu->dev, "GMU fence error: 0x%x\n",
50 			gmu_read(gmu, REG_A6XX_GMU_AHB_FENCE_STATUS));
51 
52 	return IRQ_HANDLED;
53 }
54 
55 static irqreturn_t a6xx_hfi_irq(int irq, void *data)
56 {
57 	struct a6xx_gmu *gmu = data;
58 	u32 status;
59 
60 	status = gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO);
61 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, status);
62 
63 	if (status & A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT) {
64 		dev_err_ratelimited(gmu->dev, "GMU firmware fault\n");
65 
66 		a6xx_gmu_fault(gmu);
67 	}
68 
69 	return IRQ_HANDLED;
70 }
71 
72 bool a6xx_gmu_sptprac_is_on(struct a6xx_gmu *gmu)
73 {
74 	u32 val;
75 
76 	/* This can be called from gpu state code so make sure GMU is valid */
77 	if (!gmu->initialized)
78 		return false;
79 
80 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
81 
82 	return !(val &
83 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SPTPRAC_GDSC_POWER_OFF |
84 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_SP_CLOCK_OFF));
85 }
86 
87 /* Check to see if the GX rail is still powered */
88 bool a6xx_gmu_gx_is_on(struct a6xx_gmu *gmu)
89 {
90 	u32 val;
91 
92 	/* This can be called from gpu state code so make sure GMU is valid */
93 	if (!gmu->initialized)
94 		return false;
95 
96 	val = gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS);
97 
98 	return !(val &
99 		(A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_GDSC_POWER_OFF |
100 		A6XX_GMU_SPTPRAC_PWR_CLK_STATUS_GX_HM_CLK_OFF));
101 }
102 
103 static void __a6xx_gmu_set_freq(struct a6xx_gmu *gmu, int index)
104 {
105 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
106 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
107 	struct msm_gpu *gpu = &adreno_gpu->base;
108 	int ret;
109 
110 	gmu_write(gmu, REG_A6XX_GMU_DCVS_ACK_OPTION, 0);
111 
112 	gmu_write(gmu, REG_A6XX_GMU_DCVS_PERF_SETTING,
113 		((3 & 0xf) << 28) | index);
114 
115 	/*
116 	 * Send an invalid index as a vote for the bus bandwidth and let the
117 	 * firmware decide on the right vote
118 	 */
119 	gmu_write(gmu, REG_A6XX_GMU_DCVS_BW_SETTING, 0xff);
120 
121 	/* Set and clear the OOB for DCVS to trigger the GMU */
122 	a6xx_gmu_set_oob(gmu, GMU_OOB_DCVS_SET);
123 	a6xx_gmu_clear_oob(gmu, GMU_OOB_DCVS_SET);
124 
125 	ret = gmu_read(gmu, REG_A6XX_GMU_DCVS_RETURN);
126 	if (ret)
127 		dev_err(gmu->dev, "GMU set GPU frequency error: %d\n", ret);
128 
129 	gmu->freq = gmu->gpu_freqs[index];
130 
131 	/*
132 	 * Eventually we will want to scale the path vote with the frequency but
133 	 * for now leave it at max so that the performance is nominal.
134 	 */
135 	icc_set_bw(gpu->icc_path, 0, MBps_to_icc(7216));
136 }
137 
138 void a6xx_gmu_set_freq(struct msm_gpu *gpu, unsigned long freq)
139 {
140 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
141 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
142 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
143 	u32 perf_index = 0;
144 
145 	if (freq == gmu->freq)
146 		return;
147 
148 	for (perf_index = 0; perf_index < gmu->nr_gpu_freqs - 1; perf_index++)
149 		if (freq == gmu->gpu_freqs[perf_index])
150 			break;
151 
152 	gmu->current_perf_index = perf_index;
153 
154 	__a6xx_gmu_set_freq(gmu, perf_index);
155 }
156 
157 unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu)
158 {
159 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
160 	struct a6xx_gpu *a6xx_gpu = to_a6xx_gpu(adreno_gpu);
161 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
162 
163 	return  gmu->freq;
164 }
165 
166 static bool a6xx_gmu_check_idle_level(struct a6xx_gmu *gmu)
167 {
168 	u32 val;
169 	int local = gmu->idle_level;
170 
171 	/* SPTP and IFPC both report as IFPC */
172 	if (gmu->idle_level == GMU_IDLE_STATE_SPTP)
173 		local = GMU_IDLE_STATE_IFPC;
174 
175 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
176 
177 	if (val == local) {
178 		if (gmu->idle_level != GMU_IDLE_STATE_IFPC ||
179 			!a6xx_gmu_gx_is_on(gmu))
180 			return true;
181 	}
182 
183 	return false;
184 }
185 
186 /* Wait for the GMU to get to its most idle state */
187 int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu)
188 {
189 	return spin_until(a6xx_gmu_check_idle_level(gmu));
190 }
191 
192 static int a6xx_gmu_start(struct a6xx_gmu *gmu)
193 {
194 	int ret;
195 	u32 val;
196 
197 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 1);
198 	gmu_write(gmu, REG_A6XX_GMU_CM3_SYSRESET, 0);
199 
200 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, val,
201 		val == 0xbabeface, 100, 10000);
202 
203 	if (ret)
204 		DRM_DEV_ERROR(gmu->dev, "GMU firmware initialization timed out\n");
205 
206 	return ret;
207 }
208 
209 static int a6xx_gmu_hfi_start(struct a6xx_gmu *gmu)
210 {
211 	u32 val;
212 	int ret;
213 
214 	gmu_write(gmu, REG_A6XX_GMU_HFI_CTRL_INIT, 1);
215 
216 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_HFI_CTRL_STATUS, val,
217 		val & 1, 100, 10000);
218 	if (ret)
219 		DRM_DEV_ERROR(gmu->dev, "Unable to start the HFI queues\n");
220 
221 	return ret;
222 }
223 
224 /* Trigger a OOB (out of band) request to the GMU */
225 int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
226 {
227 	int ret;
228 	u32 val;
229 	int request, ack;
230 	const char *name;
231 
232 	switch (state) {
233 	case GMU_OOB_GPU_SET:
234 		request = GMU_OOB_GPU_SET_REQUEST;
235 		ack = GMU_OOB_GPU_SET_ACK;
236 		name = "GPU_SET";
237 		break;
238 	case GMU_OOB_BOOT_SLUMBER:
239 		request = GMU_OOB_BOOT_SLUMBER_REQUEST;
240 		ack = GMU_OOB_BOOT_SLUMBER_ACK;
241 		name = "BOOT_SLUMBER";
242 		break;
243 	case GMU_OOB_DCVS_SET:
244 		request = GMU_OOB_DCVS_REQUEST;
245 		ack = GMU_OOB_DCVS_ACK;
246 		name = "GPU_DCVS";
247 		break;
248 	default:
249 		return -EINVAL;
250 	}
251 
252 	/* Trigger the equested OOB operation */
253 	gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 1 << request);
254 
255 	/* Wait for the acknowledge interrupt */
256 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val,
257 		val & (1 << ack), 100, 10000);
258 
259 	if (ret)
260 		DRM_DEV_ERROR(gmu->dev,
261 			"Timeout waiting for GMU OOB set %s: 0x%x\n",
262 				name,
263 				gmu_read(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO));
264 
265 	/* Clear the acknowledge interrupt */
266 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, 1 << ack);
267 
268 	return ret;
269 }
270 
271 /* Clear a pending OOB state in the GMU */
272 void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state)
273 {
274 	switch (state) {
275 	case GMU_OOB_GPU_SET:
276 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
277 			1 << GMU_OOB_GPU_SET_CLEAR);
278 		break;
279 	case GMU_OOB_BOOT_SLUMBER:
280 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
281 			1 << GMU_OOB_BOOT_SLUMBER_CLEAR);
282 		break;
283 	case GMU_OOB_DCVS_SET:
284 		gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET,
285 			1 << GMU_OOB_DCVS_CLEAR);
286 		break;
287 	}
288 }
289 
290 /* Enable CPU control of SPTP power power collapse */
291 static int a6xx_sptprac_enable(struct a6xx_gmu *gmu)
292 {
293 	int ret;
294 	u32 val;
295 
296 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778000);
297 
298 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
299 		(val & 0x38) == 0x28, 1, 100);
300 
301 	if (ret) {
302 		DRM_DEV_ERROR(gmu->dev, "Unable to power on SPTPRAC: 0x%x\n",
303 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
304 	}
305 
306 	return 0;
307 }
308 
309 /* Disable CPU control of SPTP power power collapse */
310 static void a6xx_sptprac_disable(struct a6xx_gmu *gmu)
311 {
312 	u32 val;
313 	int ret;
314 
315 	/* Make sure retention is on */
316 	gmu_rmw(gmu, REG_A6XX_GPU_CC_GX_GDSCR, 0, (1 << 11));
317 
318 	gmu_write(gmu, REG_A6XX_GMU_GX_SPTPRAC_POWER_CONTROL, 0x778001);
319 
320 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS, val,
321 		(val & 0x04), 100, 10000);
322 
323 	if (ret)
324 		DRM_DEV_ERROR(gmu->dev, "failed to power off SPTPRAC: 0x%x\n",
325 			gmu_read(gmu, REG_A6XX_GMU_SPTPRAC_PWR_CLK_STATUS));
326 }
327 
328 /* Let the GMU know we are starting a boot sequence */
329 static int a6xx_gmu_gfx_rail_on(struct a6xx_gmu *gmu)
330 {
331 	u32 vote;
332 
333 	/* Let the GMU know we are getting ready for boot */
334 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 0);
335 
336 	/* Choose the "default" power level as the highest available */
337 	vote = gmu->gx_arc_votes[gmu->nr_gpu_freqs - 1];
338 
339 	gmu_write(gmu, REG_A6XX_GMU_GX_VOTE_IDX, vote & 0xff);
340 	gmu_write(gmu, REG_A6XX_GMU_MX_VOTE_IDX, (vote >> 8) & 0xff);
341 
342 	/* Let the GMU know the boot sequence has started */
343 	return a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
344 }
345 
346 /* Let the GMU know that we are about to go into slumber */
347 static int a6xx_gmu_notify_slumber(struct a6xx_gmu *gmu)
348 {
349 	int ret;
350 
351 	/* Disable the power counter so the GMU isn't busy */
352 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 0);
353 
354 	/* Disable SPTP_PC if the CPU is responsible for it */
355 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP)
356 		a6xx_sptprac_disable(gmu);
357 
358 	/* Tell the GMU to get ready to slumber */
359 	gmu_write(gmu, REG_A6XX_GMU_BOOT_SLUMBER_OPTION, 1);
360 
361 	ret = a6xx_gmu_set_oob(gmu, GMU_OOB_BOOT_SLUMBER);
362 	a6xx_gmu_clear_oob(gmu, GMU_OOB_BOOT_SLUMBER);
363 
364 	if (!ret) {
365 		/* Check to see if the GMU really did slumber */
366 		if (gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE)
367 			!= 0x0f) {
368 			DRM_DEV_ERROR(gmu->dev, "The GMU did not go into slumber\n");
369 			ret = -ETIMEDOUT;
370 		}
371 	}
372 
373 	/* Put fence into allow mode */
374 	gmu_write(gmu, REG_A6XX_GMU_AO_AHB_FENCE_CTRL, 0);
375 	return ret;
376 }
377 
378 static int a6xx_rpmh_start(struct a6xx_gmu *gmu)
379 {
380 	int ret;
381 	u32 val;
382 
383 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1 << 1);
384 	/* Wait for the register to finish posting */
385 	wmb();
386 
387 	ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_RSCC_CONTROL_ACK, val,
388 		val & (1 << 1), 100, 10000);
389 	if (ret) {
390 		DRM_DEV_ERROR(gmu->dev, "Unable to power on the GPU RSC\n");
391 		return ret;
392 	}
393 
394 	ret = gmu_poll_timeout(gmu, REG_A6XX_RSCC_SEQ_BUSY_DRV0, val,
395 		!val, 100, 10000);
396 
397 	if (ret) {
398 		DRM_DEV_ERROR(gmu->dev, "GPU RSC sequence stuck while waking up the GPU\n");
399 		return ret;
400 	}
401 
402 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
403 
404 	/* Set up CX GMU counter 0 to count busy ticks */
405 	gmu_write(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_MASK, 0xff000000);
406 	gmu_rmw(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_SELECT_0, 0xff, 0x20);
407 
408 	/* Enable the power counter */
409 	gmu_write(gmu, REG_A6XX_GMU_CX_GMU_POWER_COUNTER_ENABLE, 1);
410 	return 0;
411 }
412 
413 static void a6xx_rpmh_stop(struct a6xx_gmu *gmu)
414 {
415 	int ret;
416 	u32 val;
417 
418 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 1);
419 
420 	ret = gmu_poll_timeout(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0,
421 		val, val & (1 << 16), 100, 10000);
422 	if (ret)
423 		DRM_DEV_ERROR(gmu->dev, "Unable to power off the GPU RSC\n");
424 
425 	gmu_write(gmu, REG_A6XX_GMU_RSCC_CONTROL_REQ, 0);
426 }
427 
428 static inline void pdc_write(void __iomem *ptr, u32 offset, u32 value)
429 {
430 	return msm_writel(value, ptr + (offset << 2));
431 }
432 
433 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
434 		const char *name);
435 
436 static void a6xx_gmu_rpmh_init(struct a6xx_gmu *gmu)
437 {
438 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
439 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
440 	struct platform_device *pdev = to_platform_device(gmu->dev);
441 	void __iomem *pdcptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc");
442 	void __iomem *seqptr = a6xx_gmu_get_mmio(pdev, "gmu_pdc_seq");
443 
444 	if (!pdcptr || !seqptr)
445 		goto err;
446 
447 	/* Disable SDE clock gating */
448 	gmu_write(gmu, REG_A6XX_GPU_RSCC_RSC_STATUS0_DRV0, BIT(24));
449 
450 	/* Setup RSC PDC handshake for sleep and wakeup */
451 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SLAVE_ID_DRV0, 1);
452 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA, 0);
453 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR, 0);
454 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 2, 0);
455 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 2, 0);
456 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_DATA + 4, 0x80000000);
457 	gmu_write(gmu, REG_A6XX_RSCC_HIDDEN_TCS_CMD0_ADDR + 4, 0);
458 	gmu_write(gmu, REG_A6XX_RSCC_OVERRIDE_START_ADDR, 0);
459 	gmu_write(gmu, REG_A6XX_RSCC_PDC_SEQ_START_ADDR, 0x4520);
460 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_LO, 0x4510);
461 	gmu_write(gmu, REG_A6XX_RSCC_PDC_MATCH_VALUE_HI, 0x4514);
462 
463 	/* Load RSC sequencer uCode for sleep and wakeup */
464 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0, 0xa7a506a0);
465 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 1, 0xa1e6a6e7);
466 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 2, 0xa2e081e1);
467 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 3, 0xe9a982e2);
468 	gmu_write(gmu, REG_A6XX_RSCC_SEQ_MEM_0_DRV0 + 4, 0x0020e8a8);
469 
470 	/* Load PDC sequencer uCode for power up and power down sequence */
471 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0, 0xfebea1e1);
472 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 1, 0xa5a4a3a2);
473 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 2, 0x8382a6e0);
474 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 3, 0xbce3e284);
475 	pdc_write(seqptr, REG_A6XX_PDC_GPU_SEQ_MEM_0 + 4, 0x002081fc);
476 
477 	/* Set TCS commands used by PDC sequence for low power modes */
478 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_ENABLE_BANK, 7);
479 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD_WAIT_FOR_CMPL_BANK, 0);
480 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CONTROL, 0);
481 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID, 0x10108);
482 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR, 0x30010);
483 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA, 1);
484 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 4, 0x10108);
485 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 4, 0x30000);
486 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 4, 0x0);
487 
488 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_MSGID + 8, 0x10108);
489 	if (adreno_is_a618(adreno_gpu))
490 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, 0x30090);
491 	else
492 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_ADDR + 8, 0x30080);
493 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS1_CMD0_DATA + 8, 0x0);
494 
495 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_ENABLE_BANK, 7);
496 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD_WAIT_FOR_CMPL_BANK, 0);
497 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CONTROL, 0);
498 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID, 0x10108);
499 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR, 0x30010);
500 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA, 2);
501 
502 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 4, 0x10108);
503 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 4, 0x30000);
504 	if (adreno_is_a618(adreno_gpu))
505 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x2);
506 	else
507 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 4, 0x3);
508 
509 
510 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_MSGID + 8, 0x10108);
511 	if (adreno_is_a618(adreno_gpu))
512 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, 0x30090);
513 	else
514 		pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_ADDR + 8, 0x30080);
515 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_TCS3_CMD0_DATA + 8, 0x3);
516 
517 	/* Setup GPU PDC */
518 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_SEQ_START_ADDR, 0);
519 	pdc_write(pdcptr, REG_A6XX_PDC_GPU_ENABLE_PDC, 0x80000001);
520 
521 	/* ensure no writes happen before the uCode is fully written */
522 	wmb();
523 
524 err:
525 	if (!IS_ERR_OR_NULL(pdcptr))
526 		iounmap(pdcptr);
527 	if (!IS_ERR_OR_NULL(seqptr))
528 		iounmap(seqptr);
529 }
530 
531 /*
532  * The lowest 16 bits of this value are the number of XO clock cycles for main
533  * hysteresis which is set at 0x1680 cycles (300 us).  The higher 16 bits are
534  * for the shorter hysteresis that happens after main - this is 0xa (.5 us)
535  */
536 
537 #define GMU_PWR_COL_HYST 0x000a1680
538 
539 /* Set up the idle state for the GMU */
540 static void a6xx_gmu_power_config(struct a6xx_gmu *gmu)
541 {
542 	/* Disable GMU WB/RB buffer */
543 	gmu_write(gmu, REG_A6XX_GMU_SYS_BUS_CONFIG, 0x1);
544 
545 	gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0x9c40400);
546 
547 	switch (gmu->idle_level) {
548 	case GMU_IDLE_STATE_IFPC:
549 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_HYST,
550 			GMU_PWR_COL_HYST);
551 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
552 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
553 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_HM_POWER_COLLAPSE_ENABLE);
554 		/* Fall through */
555 	case GMU_IDLE_STATE_SPTP:
556 		gmu_write(gmu, REG_A6XX_GMU_PWR_COL_SPTPRAC_HYST,
557 			GMU_PWR_COL_HYST);
558 		gmu_rmw(gmu, REG_A6XX_GMU_PWR_COL_INTER_FRAME_CTRL, 0,
559 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_IFPC_ENABLE |
560 			A6XX_GMU_PWR_COL_INTER_FRAME_CTRL_SPTPRAC_POWER_CONTROL_ENABLE);
561 	}
562 
563 	/* Enable RPMh GPU client */
564 	gmu_rmw(gmu, REG_A6XX_GMU_RPMH_CTRL, 0,
565 		A6XX_GMU_RPMH_CTRL_RPMH_INTERFACE_ENABLE |
566 		A6XX_GMU_RPMH_CTRL_LLC_VOTE_ENABLE |
567 		A6XX_GMU_RPMH_CTRL_DDR_VOTE_ENABLE |
568 		A6XX_GMU_RPMH_CTRL_MX_VOTE_ENABLE |
569 		A6XX_GMU_RPMH_CTRL_CX_VOTE_ENABLE |
570 		A6XX_GMU_RPMH_CTRL_GFX_VOTE_ENABLE);
571 }
572 
573 static int a6xx_gmu_fw_start(struct a6xx_gmu *gmu, unsigned int state)
574 {
575 	static bool rpmh_init;
576 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
577 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
578 	int i, ret;
579 	u32 chipid;
580 	u32 *image;
581 
582 	if (state == GMU_WARM_BOOT) {
583 		ret = a6xx_rpmh_start(gmu);
584 		if (ret)
585 			return ret;
586 	} else {
587 		if (WARN(!adreno_gpu->fw[ADRENO_FW_GMU],
588 			"GMU firmware is not loaded\n"))
589 			return -ENOENT;
590 
591 		/* Sanity check the size of the firmware that was loaded */
592 		if (adreno_gpu->fw[ADRENO_FW_GMU]->size > 0x8000) {
593 			DRM_DEV_ERROR(gmu->dev,
594 				"GMU firmware is bigger than the available region\n");
595 			return -EINVAL;
596 		}
597 
598 		/* Turn on register retention */
599 		gmu_write(gmu, REG_A6XX_GMU_GENERAL_7, 1);
600 
601 		/* We only need to load the RPMh microcode once */
602 		if (!rpmh_init) {
603 			a6xx_gmu_rpmh_init(gmu);
604 			rpmh_init = true;
605 		} else {
606 			ret = a6xx_rpmh_start(gmu);
607 			if (ret)
608 				return ret;
609 		}
610 
611 		image = (u32 *) adreno_gpu->fw[ADRENO_FW_GMU]->data;
612 
613 		for (i = 0; i < adreno_gpu->fw[ADRENO_FW_GMU]->size >> 2; i++)
614 			gmu_write(gmu, REG_A6XX_GMU_CM3_ITCM_START + i,
615 				image[i]);
616 	}
617 
618 	gmu_write(gmu, REG_A6XX_GMU_CM3_FW_INIT_RESULT, 0);
619 	gmu_write(gmu, REG_A6XX_GMU_CM3_BOOT_CONFIG, 0x02);
620 
621 	/* Write the iova of the HFI table */
622 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_ADDR, gmu->hfi->iova);
623 	gmu_write(gmu, REG_A6XX_GMU_HFI_QTBL_INFO, 1);
624 
625 	gmu_write(gmu, REG_A6XX_GMU_AHB_FENCE_RANGE_0,
626 		(1 << 31) | (0xa << 18) | (0xa0));
627 
628 	chipid = adreno_gpu->rev.core << 24;
629 	chipid |= adreno_gpu->rev.major << 16;
630 	chipid |= adreno_gpu->rev.minor << 12;
631 	chipid |= adreno_gpu->rev.patchid << 8;
632 
633 	gmu_write(gmu, REG_A6XX_GMU_HFI_SFR_ADDR, chipid);
634 
635 	/* Set up the lowest idle level on the GMU */
636 	a6xx_gmu_power_config(gmu);
637 
638 	ret = a6xx_gmu_start(gmu);
639 	if (ret)
640 		return ret;
641 
642 	ret = a6xx_gmu_gfx_rail_on(gmu);
643 	if (ret)
644 		return ret;
645 
646 	/* Enable SPTP_PC if the CPU is responsible for it */
647 	if (gmu->idle_level < GMU_IDLE_STATE_SPTP) {
648 		ret = a6xx_sptprac_enable(gmu);
649 		if (ret)
650 			return ret;
651 	}
652 
653 	ret = a6xx_gmu_hfi_start(gmu);
654 	if (ret)
655 		return ret;
656 
657 	/* FIXME: Do we need this wmb() here? */
658 	wmb();
659 
660 	return 0;
661 }
662 
663 #define A6XX_HFI_IRQ_MASK \
664 	(A6XX_GMU_GMU2HOST_INTR_INFO_CM3_FAULT)
665 
666 #define A6XX_GMU_IRQ_MASK \
667 	(A6XX_GMU_AO_HOST_INTERRUPT_STATUS_WDOG_BITE | \
668 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_HOST_AHB_BUS_ERROR | \
669 	 A6XX_GMU_AO_HOST_INTERRUPT_STATUS_FENCE_ERR)
670 
671 static void a6xx_gmu_irq_disable(struct a6xx_gmu *gmu)
672 {
673 	disable_irq(gmu->gmu_irq);
674 	disable_irq(gmu->hfi_irq);
675 
676 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~0);
677 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~0);
678 }
679 
680 static void a6xx_gmu_rpmh_off(struct a6xx_gmu *gmu)
681 {
682 	u32 val;
683 
684 	/* Make sure there are no outstanding RPMh votes */
685 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS0_DRV0_STATUS, val,
686 		(val & 1), 100, 10000);
687 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS1_DRV0_STATUS, val,
688 		(val & 1), 100, 10000);
689 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS2_DRV0_STATUS, val,
690 		(val & 1), 100, 10000);
691 	gmu_poll_timeout(gmu, REG_A6XX_RSCC_TCS3_DRV0_STATUS, val,
692 		(val & 1), 100, 1000);
693 }
694 
695 /* Force the GMU off in case it isn't responsive */
696 static void a6xx_gmu_force_off(struct a6xx_gmu *gmu)
697 {
698 	/* Flush all the queues */
699 	a6xx_hfi_stop(gmu);
700 
701 	/* Stop the interrupts */
702 	a6xx_gmu_irq_disable(gmu);
703 
704 	/* Force off SPTP in case the GMU is managing it */
705 	a6xx_sptprac_disable(gmu);
706 
707 	/* Make sure there are no outstanding RPMh votes */
708 	a6xx_gmu_rpmh_off(gmu);
709 }
710 
711 int a6xx_gmu_resume(struct a6xx_gpu *a6xx_gpu)
712 {
713 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
714 	struct msm_gpu *gpu = &adreno_gpu->base;
715 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
716 	int status, ret;
717 
718 	if (WARN(!gmu->initialized, "The GMU is not set up yet\n"))
719 		return 0;
720 
721 	gmu->hung = false;
722 
723 	/* Turn on the resources */
724 	pm_runtime_get_sync(gmu->dev);
725 
726 	/* Use a known rate to bring up the GMU */
727 	clk_set_rate(gmu->core_clk, 200000000);
728 	ret = clk_bulk_prepare_enable(gmu->nr_clocks, gmu->clocks);
729 	if (ret) {
730 		pm_runtime_put(gmu->dev);
731 		return ret;
732 	}
733 
734 	/* Set the bus quota to a reasonable value for boot */
735 	icc_set_bw(gpu->icc_path, 0, MBps_to_icc(3072));
736 
737 	/* Enable the GMU interrupt */
738 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_CLR, ~0);
739 	gmu_write(gmu, REG_A6XX_GMU_AO_HOST_INTERRUPT_MASK, ~A6XX_GMU_IRQ_MASK);
740 	enable_irq(gmu->gmu_irq);
741 
742 	/* Check to see if we are doing a cold or warm boot */
743 	status = gmu_read(gmu, REG_A6XX_GMU_GENERAL_7) == 1 ?
744 		GMU_WARM_BOOT : GMU_COLD_BOOT;
745 
746 	ret = a6xx_gmu_fw_start(gmu, status);
747 	if (ret)
748 		goto out;
749 
750 	ret = a6xx_hfi_start(gmu, status);
751 	if (ret)
752 		goto out;
753 
754 	/*
755 	 * Turn on the GMU firmware fault interrupt after we know the boot
756 	 * sequence is successful
757 	 */
758 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, ~0);
759 	gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_MASK, ~A6XX_HFI_IRQ_MASK);
760 	enable_irq(gmu->hfi_irq);
761 
762 	/* Set the GPU to the current freq */
763 	__a6xx_gmu_set_freq(gmu, gmu->current_perf_index);
764 
765 	/*
766 	 * "enable" the GX power domain which won't actually do anything but it
767 	 * will make sure that the refcounting is correct in case we need to
768 	 * bring down the GX after a GMU failure
769 	 */
770 	if (!IS_ERR_OR_NULL(gmu->gxpd))
771 		pm_runtime_get(gmu->gxpd);
772 
773 out:
774 	/* On failure, shut down the GMU to leave it in a good state */
775 	if (ret) {
776 		disable_irq(gmu->gmu_irq);
777 		a6xx_rpmh_stop(gmu);
778 		pm_runtime_put(gmu->dev);
779 	}
780 
781 	return ret;
782 }
783 
784 bool a6xx_gmu_isidle(struct a6xx_gmu *gmu)
785 {
786 	u32 reg;
787 
788 	if (!gmu->initialized)
789 		return true;
790 
791 	reg = gmu_read(gmu, REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS);
792 
793 	if (reg &  A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB)
794 		return false;
795 
796 	return true;
797 }
798 
799 #define GBIF_CLIENT_HALT_MASK             BIT(0)
800 #define GBIF_ARB_HALT_MASK                BIT(1)
801 
802 static void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu)
803 {
804 	struct msm_gpu *gpu = &adreno_gpu->base;
805 
806 	if (!a6xx_has_gbif(adreno_gpu)) {
807 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0xf);
808 		spin_until((gpu_read(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL1) &
809 								0xf) == 0xf);
810 		gpu_write(gpu, REG_A6XX_VBIF_XIN_HALT_CTRL0, 0);
811 
812 		return;
813 	}
814 
815 	/* Halt new client requests on GBIF */
816 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_CLIENT_HALT_MASK);
817 	spin_until((gpu_read(gpu, REG_A6XX_GBIF_HALT_ACK) &
818 			(GBIF_CLIENT_HALT_MASK)) == GBIF_CLIENT_HALT_MASK);
819 
820 	/* Halt all AXI requests on GBIF */
821 	gpu_write(gpu, REG_A6XX_GBIF_HALT, GBIF_ARB_HALT_MASK);
822 	spin_until((gpu_read(gpu,  REG_A6XX_GBIF_HALT_ACK) &
823 			(GBIF_ARB_HALT_MASK)) == GBIF_ARB_HALT_MASK);
824 
825 	/* The GBIF halt needs to be explicitly cleared */
826 	gpu_write(gpu, REG_A6XX_GBIF_HALT, 0x0);
827 }
828 
829 /* Gracefully try to shut down the GMU and by extension the GPU */
830 static void a6xx_gmu_shutdown(struct a6xx_gmu *gmu)
831 {
832 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
833 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
834 	u32 val;
835 
836 	/*
837 	 * The GMU may still be in slumber unless the GPU started so check and
838 	 * skip putting it back into slumber if so
839 	 */
840 	val = gmu_read(gmu, REG_A6XX_GPU_GMU_CX_GMU_RPMH_POWER_STATE);
841 
842 	if (val != 0xf) {
843 		int ret = a6xx_gmu_wait_for_idle(gmu);
844 
845 		/* If the GMU isn't responding assume it is hung */
846 		if (ret) {
847 			a6xx_gmu_force_off(gmu);
848 			return;
849 		}
850 
851 		a6xx_bus_clear_pending_transactions(adreno_gpu);
852 
853 		/* tell the GMU we want to slumber */
854 		a6xx_gmu_notify_slumber(gmu);
855 
856 		ret = gmu_poll_timeout(gmu,
857 			REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS, val,
858 			!(val & A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS_GPUBUSYIGNAHB),
859 			100, 10000);
860 
861 		/*
862 		 * Let the user know we failed to slumber but don't worry too
863 		 * much because we are powering down anyway
864 		 */
865 
866 		if (ret)
867 			DRM_DEV_ERROR(gmu->dev,
868 				"Unable to slumber GMU: status = 0%x/0%x\n",
869 				gmu_read(gmu,
870 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS),
871 				gmu_read(gmu,
872 					REG_A6XX_GPU_GMU_AO_GPU_CX_BUSY_STATUS2));
873 	}
874 
875 	/* Turn off HFI */
876 	a6xx_hfi_stop(gmu);
877 
878 	/* Stop the interrupts and mask the hardware */
879 	a6xx_gmu_irq_disable(gmu);
880 
881 	/* Tell RPMh to power off the GPU */
882 	a6xx_rpmh_stop(gmu);
883 }
884 
885 
886 int a6xx_gmu_stop(struct a6xx_gpu *a6xx_gpu)
887 {
888 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
889 	struct msm_gpu *gpu = &a6xx_gpu->base.base;
890 
891 	if (!pm_runtime_active(gmu->dev))
892 		return 0;
893 
894 	/*
895 	 * Force the GMU off if we detected a hang, otherwise try to shut it
896 	 * down gracefully
897 	 */
898 	if (gmu->hung)
899 		a6xx_gmu_force_off(gmu);
900 	else
901 		a6xx_gmu_shutdown(gmu);
902 
903 	/* Remove the bus vote */
904 	icc_set_bw(gpu->icc_path, 0, 0);
905 
906 	/*
907 	 * Make sure the GX domain is off before turning off the GMU (CX)
908 	 * domain. Usually the GMU does this but only if the shutdown sequence
909 	 * was successful
910 	 */
911 	if (!IS_ERR_OR_NULL(gmu->gxpd))
912 		pm_runtime_put_sync(gmu->gxpd);
913 
914 	clk_bulk_disable_unprepare(gmu->nr_clocks, gmu->clocks);
915 
916 	pm_runtime_put_sync(gmu->dev);
917 
918 	return 0;
919 }
920 
921 static void a6xx_gmu_memory_free(struct a6xx_gmu *gmu, struct a6xx_gmu_bo *bo)
922 {
923 	int count, i;
924 	u64 iova;
925 
926 	if (IS_ERR_OR_NULL(bo))
927 		return;
928 
929 	count = bo->size >> PAGE_SHIFT;
930 	iova = bo->iova;
931 
932 	for (i = 0; i < count; i++, iova += PAGE_SIZE) {
933 		iommu_unmap(gmu->domain, iova, PAGE_SIZE);
934 		__free_pages(bo->pages[i], 0);
935 	}
936 
937 	kfree(bo->pages);
938 	kfree(bo);
939 }
940 
941 static struct a6xx_gmu_bo *a6xx_gmu_memory_alloc(struct a6xx_gmu *gmu,
942 		size_t size)
943 {
944 	struct a6xx_gmu_bo *bo;
945 	int ret, count, i;
946 
947 	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
948 	if (!bo)
949 		return ERR_PTR(-ENOMEM);
950 
951 	bo->size = PAGE_ALIGN(size);
952 
953 	count = bo->size >> PAGE_SHIFT;
954 
955 	bo->pages = kcalloc(count, sizeof(struct page *), GFP_KERNEL);
956 	if (!bo->pages) {
957 		kfree(bo);
958 		return ERR_PTR(-ENOMEM);
959 	}
960 
961 	for (i = 0; i < count; i++) {
962 		bo->pages[i] = alloc_page(GFP_KERNEL);
963 		if (!bo->pages[i])
964 			goto err;
965 	}
966 
967 	bo->iova = gmu->uncached_iova_base;
968 
969 	for (i = 0; i < count; i++) {
970 		ret = iommu_map(gmu->domain,
971 			bo->iova + (PAGE_SIZE * i),
972 			page_to_phys(bo->pages[i]), PAGE_SIZE,
973 			IOMMU_READ | IOMMU_WRITE);
974 
975 		if (ret) {
976 			DRM_DEV_ERROR(gmu->dev, "Unable to map GMU buffer object\n");
977 
978 			for (i = i - 1 ; i >= 0; i--)
979 				iommu_unmap(gmu->domain,
980 					bo->iova + (PAGE_SIZE * i),
981 					PAGE_SIZE);
982 
983 			goto err;
984 		}
985 	}
986 
987 	bo->virt = vmap(bo->pages, count, VM_IOREMAP,
988 		pgprot_writecombine(PAGE_KERNEL));
989 	if (!bo->virt)
990 		goto err;
991 
992 	/* Align future IOVA addresses on 1MB boundaries */
993 	gmu->uncached_iova_base += ALIGN(size, SZ_1M);
994 
995 	return bo;
996 
997 err:
998 	for (i = 0; i < count; i++) {
999 		if (bo->pages[i])
1000 			__free_pages(bo->pages[i], 0);
1001 	}
1002 
1003 	kfree(bo->pages);
1004 	kfree(bo);
1005 
1006 	return ERR_PTR(-ENOMEM);
1007 }
1008 
1009 static int a6xx_gmu_memory_probe(struct a6xx_gmu *gmu)
1010 {
1011 	int ret;
1012 
1013 	/*
1014 	 * The GMU address space is hardcoded to treat the range
1015 	 * 0x60000000 - 0x80000000 as un-cached memory. All buffers shared
1016 	 * between the GMU and the CPU will live in this space
1017 	 */
1018 	gmu->uncached_iova_base = 0x60000000;
1019 
1020 
1021 	gmu->domain = iommu_domain_alloc(&platform_bus_type);
1022 	if (!gmu->domain)
1023 		return -ENODEV;
1024 
1025 	ret = iommu_attach_device(gmu->domain, gmu->dev);
1026 
1027 	if (ret) {
1028 		iommu_domain_free(gmu->domain);
1029 		gmu->domain = NULL;
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 /* Return the 'arc-level' for the given frequency */
1036 static unsigned int a6xx_gmu_get_arc_level(struct device *dev,
1037 					   unsigned long freq)
1038 {
1039 	struct dev_pm_opp *opp;
1040 	unsigned int val;
1041 
1042 	if (!freq)
1043 		return 0;
1044 
1045 	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
1046 	if (IS_ERR(opp))
1047 		return 0;
1048 
1049 	val = dev_pm_opp_get_level(opp);
1050 
1051 	dev_pm_opp_put(opp);
1052 
1053 	return val;
1054 }
1055 
1056 static int a6xx_gmu_rpmh_arc_votes_init(struct device *dev, u32 *votes,
1057 		unsigned long *freqs, int freqs_count, const char *id)
1058 {
1059 	int i, j;
1060 	const u16 *pri, *sec;
1061 	size_t pri_count, sec_count;
1062 
1063 	pri = cmd_db_read_aux_data(id, &pri_count);
1064 	if (IS_ERR(pri))
1065 		return PTR_ERR(pri);
1066 	/*
1067 	 * The data comes back as an array of unsigned shorts so adjust the
1068 	 * count accordingly
1069 	 */
1070 	pri_count >>= 1;
1071 	if (!pri_count)
1072 		return -EINVAL;
1073 
1074 	sec = cmd_db_read_aux_data("mx.lvl", &sec_count);
1075 	if (IS_ERR(sec))
1076 		return PTR_ERR(sec);
1077 
1078 	sec_count >>= 1;
1079 	if (!sec_count)
1080 		return -EINVAL;
1081 
1082 	/* Construct a vote for each frequency */
1083 	for (i = 0; i < freqs_count; i++) {
1084 		u8 pindex = 0, sindex = 0;
1085 		unsigned int level = a6xx_gmu_get_arc_level(dev, freqs[i]);
1086 
1087 		/* Get the primary index that matches the arc level */
1088 		for (j = 0; j < pri_count; j++) {
1089 			if (pri[j] >= level) {
1090 				pindex = j;
1091 				break;
1092 			}
1093 		}
1094 
1095 		if (j == pri_count) {
1096 			DRM_DEV_ERROR(dev,
1097 				"Level %u not found in in the RPMh list\n",
1098 					level);
1099 			DRM_DEV_ERROR(dev, "Available levels:\n");
1100 			for (j = 0; j < pri_count; j++)
1101 				DRM_DEV_ERROR(dev, "  %u\n", pri[j]);
1102 
1103 			return -EINVAL;
1104 		}
1105 
1106 		/*
1107 		 * Look for a level in in the secondary list that matches. If
1108 		 * nothing fits, use the maximum non zero vote
1109 		 */
1110 
1111 		for (j = 0; j < sec_count; j++) {
1112 			if (sec[j] >= level) {
1113 				sindex = j;
1114 				break;
1115 			} else if (sec[j]) {
1116 				sindex = j;
1117 			}
1118 		}
1119 
1120 		/* Construct the vote */
1121 		votes[i] = ((pri[pindex] & 0xffff) << 16) |
1122 			(sindex << 8) | pindex;
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 /*
1129  * The GMU votes with the RPMh for itself and on behalf of the GPU but we need
1130  * to construct the list of votes on the CPU and send it over. Query the RPMh
1131  * voltage levels and build the votes
1132  */
1133 
1134 static int a6xx_gmu_rpmh_votes_init(struct a6xx_gmu *gmu)
1135 {
1136 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1137 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1138 	struct msm_gpu *gpu = &adreno_gpu->base;
1139 	int ret;
1140 
1141 	/* Build the GX votes */
1142 	ret = a6xx_gmu_rpmh_arc_votes_init(&gpu->pdev->dev, gmu->gx_arc_votes,
1143 		gmu->gpu_freqs, gmu->nr_gpu_freqs, "gfx.lvl");
1144 
1145 	/* Build the CX votes */
1146 	ret |= a6xx_gmu_rpmh_arc_votes_init(gmu->dev, gmu->cx_arc_votes,
1147 		gmu->gmu_freqs, gmu->nr_gmu_freqs, "cx.lvl");
1148 
1149 	return ret;
1150 }
1151 
1152 static int a6xx_gmu_build_freq_table(struct device *dev, unsigned long *freqs,
1153 		u32 size)
1154 {
1155 	int count = dev_pm_opp_get_opp_count(dev);
1156 	struct dev_pm_opp *opp;
1157 	int i, index = 0;
1158 	unsigned long freq = 1;
1159 
1160 	/*
1161 	 * The OPP table doesn't contain the "off" frequency level so we need to
1162 	 * add 1 to the table size to account for it
1163 	 */
1164 
1165 	if (WARN(count + 1 > size,
1166 		"The GMU frequency table is being truncated\n"))
1167 		count = size - 1;
1168 
1169 	/* Set the "off" frequency */
1170 	freqs[index++] = 0;
1171 
1172 	for (i = 0; i < count; i++) {
1173 		opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1174 		if (IS_ERR(opp))
1175 			break;
1176 
1177 		dev_pm_opp_put(opp);
1178 		freqs[index++] = freq++;
1179 	}
1180 
1181 	return index;
1182 }
1183 
1184 static int a6xx_gmu_pwrlevels_probe(struct a6xx_gmu *gmu)
1185 {
1186 	struct a6xx_gpu *a6xx_gpu = container_of(gmu, struct a6xx_gpu, gmu);
1187 	struct adreno_gpu *adreno_gpu = &a6xx_gpu->base;
1188 	struct msm_gpu *gpu = &adreno_gpu->base;
1189 
1190 	int ret = 0;
1191 
1192 	/*
1193 	 * The GMU handles its own frequency switching so build a list of
1194 	 * available frequencies to send during initialization
1195 	 */
1196 	ret = dev_pm_opp_of_add_table(gmu->dev);
1197 	if (ret) {
1198 		DRM_DEV_ERROR(gmu->dev, "Unable to set the OPP table for the GMU\n");
1199 		return ret;
1200 	}
1201 
1202 	gmu->nr_gmu_freqs = a6xx_gmu_build_freq_table(gmu->dev,
1203 		gmu->gmu_freqs, ARRAY_SIZE(gmu->gmu_freqs));
1204 
1205 	/*
1206 	 * The GMU also handles GPU frequency switching so build a list
1207 	 * from the GPU OPP table
1208 	 */
1209 	gmu->nr_gpu_freqs = a6xx_gmu_build_freq_table(&gpu->pdev->dev,
1210 		gmu->gpu_freqs, ARRAY_SIZE(gmu->gpu_freqs));
1211 
1212 	gmu->current_perf_index = gmu->nr_gpu_freqs - 1;
1213 
1214 	/* Build the list of RPMh votes that we'll send to the GMU */
1215 	return a6xx_gmu_rpmh_votes_init(gmu);
1216 }
1217 
1218 static int a6xx_gmu_clocks_probe(struct a6xx_gmu *gmu)
1219 {
1220 	int ret = devm_clk_bulk_get_all(gmu->dev, &gmu->clocks);
1221 
1222 	if (ret < 1)
1223 		return ret;
1224 
1225 	gmu->nr_clocks = ret;
1226 
1227 	gmu->core_clk = msm_clk_bulk_get_clock(gmu->clocks,
1228 		gmu->nr_clocks, "gmu");
1229 
1230 	return 0;
1231 }
1232 
1233 static void __iomem *a6xx_gmu_get_mmio(struct platform_device *pdev,
1234 		const char *name)
1235 {
1236 	void __iomem *ret;
1237 	struct resource *res = platform_get_resource_byname(pdev,
1238 			IORESOURCE_MEM, name);
1239 
1240 	if (!res) {
1241 		DRM_DEV_ERROR(&pdev->dev, "Unable to find the %s registers\n", name);
1242 		return ERR_PTR(-EINVAL);
1243 	}
1244 
1245 	ret = ioremap(res->start, resource_size(res));
1246 	if (!ret) {
1247 		DRM_DEV_ERROR(&pdev->dev, "Unable to map the %s registers\n", name);
1248 		return ERR_PTR(-EINVAL);
1249 	}
1250 
1251 	return ret;
1252 }
1253 
1254 static int a6xx_gmu_get_irq(struct a6xx_gmu *gmu, struct platform_device *pdev,
1255 		const char *name, irq_handler_t handler)
1256 {
1257 	int irq, ret;
1258 
1259 	irq = platform_get_irq_byname(pdev, name);
1260 
1261 	ret = request_irq(irq, handler, IRQF_TRIGGER_HIGH, name, gmu);
1262 	if (ret) {
1263 		DRM_DEV_ERROR(&pdev->dev, "Unable to get interrupt %s %d\n",
1264 			      name, ret);
1265 		return ret;
1266 	}
1267 
1268 	disable_irq(irq);
1269 
1270 	return irq;
1271 }
1272 
1273 void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu)
1274 {
1275 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1276 
1277 	if (!gmu->initialized)
1278 		return;
1279 
1280 	pm_runtime_force_suspend(gmu->dev);
1281 
1282 	if (!IS_ERR_OR_NULL(gmu->gxpd)) {
1283 		pm_runtime_disable(gmu->gxpd);
1284 		dev_pm_domain_detach(gmu->gxpd, false);
1285 	}
1286 
1287 	iounmap(gmu->mmio);
1288 	gmu->mmio = NULL;
1289 
1290 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1291 
1292 	iommu_detach_device(gmu->domain, gmu->dev);
1293 
1294 	iommu_domain_free(gmu->domain);
1295 
1296 	free_irq(gmu->gmu_irq, gmu);
1297 	free_irq(gmu->hfi_irq, gmu);
1298 
1299 	/* Drop reference taken in of_find_device_by_node */
1300 	put_device(gmu->dev);
1301 
1302 	gmu->initialized = false;
1303 }
1304 
1305 int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node)
1306 {
1307 	struct a6xx_gmu *gmu = &a6xx_gpu->gmu;
1308 	struct platform_device *pdev = of_find_device_by_node(node);
1309 	int ret;
1310 
1311 	if (!pdev)
1312 		return -ENODEV;
1313 
1314 	gmu->dev = &pdev->dev;
1315 
1316 	of_dma_configure(gmu->dev, node, true);
1317 
1318 	/* Fow now, don't do anything fancy until we get our feet under us */
1319 	gmu->idle_level = GMU_IDLE_STATE_ACTIVE;
1320 
1321 	pm_runtime_enable(gmu->dev);
1322 
1323 	/* Get the list of clocks */
1324 	ret = a6xx_gmu_clocks_probe(gmu);
1325 	if (ret)
1326 		goto err_put_device;
1327 
1328 	/* Set up the IOMMU context bank */
1329 	ret = a6xx_gmu_memory_probe(gmu);
1330 	if (ret)
1331 		goto err_put_device;
1332 
1333 	/* Allocate memory for for the HFI queues */
1334 	gmu->hfi = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1335 	if (IS_ERR(gmu->hfi))
1336 		goto err_memory;
1337 
1338 	/* Allocate memory for the GMU debug region */
1339 	gmu->debug = a6xx_gmu_memory_alloc(gmu, SZ_16K);
1340 	if (IS_ERR(gmu->debug))
1341 		goto err_memory;
1342 
1343 	/* Map the GMU registers */
1344 	gmu->mmio = a6xx_gmu_get_mmio(pdev, "gmu");
1345 	if (IS_ERR(gmu->mmio))
1346 		goto err_memory;
1347 
1348 	/* Get the HFI and GMU interrupts */
1349 	gmu->hfi_irq = a6xx_gmu_get_irq(gmu, pdev, "hfi", a6xx_hfi_irq);
1350 	gmu->gmu_irq = a6xx_gmu_get_irq(gmu, pdev, "gmu", a6xx_gmu_irq);
1351 
1352 	if (gmu->hfi_irq < 0 || gmu->gmu_irq < 0)
1353 		goto err_mmio;
1354 
1355 	/*
1356 	 * Get a link to the GX power domain to reset the GPU in case of GMU
1357 	 * crash
1358 	 */
1359 	gmu->gxpd = dev_pm_domain_attach_by_name(gmu->dev, "gx");
1360 
1361 	/* Get the power levels for the GMU and GPU */
1362 	a6xx_gmu_pwrlevels_probe(gmu);
1363 
1364 	/* Set up the HFI queues */
1365 	a6xx_hfi_init(gmu);
1366 
1367 	gmu->initialized = true;
1368 
1369 	return 0;
1370 
1371 err_mmio:
1372 	iounmap(gmu->mmio);
1373 	free_irq(gmu->gmu_irq, gmu);
1374 	free_irq(gmu->hfi_irq, gmu);
1375 err_memory:
1376 	a6xx_gmu_memory_free(gmu, gmu->hfi);
1377 
1378 	if (gmu->domain) {
1379 		iommu_detach_device(gmu->domain, gmu->dev);
1380 
1381 		iommu_domain_free(gmu->domain);
1382 	}
1383 	ret = -ENODEV;
1384 
1385 err_put_device:
1386 	/* Drop reference taken in of_find_device_by_node */
1387 	put_device(gmu->dev);
1388 
1389 	return ret;
1390 }
1391