1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved. 3 */ 4 5 #include <linux/kernel.h> 6 #include <linux/types.h> 7 #include <linux/cpumask.h> 8 #include <linux/firmware/qcom/qcom_scm.h> 9 #include <linux/pm_opp.h> 10 #include <linux/nvmem-consumer.h> 11 #include <linux/slab.h> 12 #include "msm_gem.h" 13 #include "msm_mmu.h" 14 #include "a5xx_gpu.h" 15 16 extern bool hang_debug; 17 static void a5xx_dump(struct msm_gpu *gpu); 18 19 #define GPU_PAS_ID 13 20 21 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 22 { 23 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 24 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 25 26 if (a5xx_gpu->has_whereami) { 27 OUT_PKT7(ring, CP_WHERE_AM_I, 2); 28 OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring))); 29 OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring))); 30 } 31 } 32 33 void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring, 34 bool sync) 35 { 36 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 37 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 38 uint32_t wptr; 39 unsigned long flags; 40 41 /* 42 * Most flush operations need to issue a WHERE_AM_I opcode to sync up 43 * the rptr shadow 44 */ 45 if (sync) 46 update_shadow_rptr(gpu, ring); 47 48 spin_lock_irqsave(&ring->preempt_lock, flags); 49 50 /* Copy the shadow to the actual register */ 51 ring->cur = ring->next; 52 53 /* Make sure to wrap wptr if we need to */ 54 wptr = get_wptr(ring); 55 56 spin_unlock_irqrestore(&ring->preempt_lock, flags); 57 58 /* Make sure everything is posted before making a decision */ 59 mb(); 60 61 /* Update HW if this is the current ring and we are not in preempt */ 62 if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu)) 63 gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr); 64 } 65 66 static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit) 67 { 68 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 69 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 70 struct msm_ringbuffer *ring = submit->ring; 71 struct drm_gem_object *obj; 72 uint32_t *ptr, dwords; 73 unsigned int i; 74 75 for (i = 0; i < submit->nr_cmds; i++) { 76 switch (submit->cmd[i].type) { 77 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 78 break; 79 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 80 if (ring->cur_ctx_seqno == submit->queue->ctx->seqno) 81 break; 82 fallthrough; 83 case MSM_SUBMIT_CMD_BUF: 84 /* copy commands into RB: */ 85 obj = submit->bos[submit->cmd[i].idx].obj; 86 dwords = submit->cmd[i].size; 87 88 ptr = msm_gem_get_vaddr(obj); 89 90 /* _get_vaddr() shouldn't fail at this point, 91 * since we've already mapped it once in 92 * submit_reloc() 93 */ 94 if (WARN_ON(IS_ERR_OR_NULL(ptr))) 95 return; 96 97 for (i = 0; i < dwords; i++) { 98 /* normally the OUT_PKTn() would wait 99 * for space for the packet. But since 100 * we just OUT_RING() the whole thing, 101 * need to call adreno_wait_ring() 102 * ourself: 103 */ 104 adreno_wait_ring(ring, 1); 105 OUT_RING(ring, ptr[i]); 106 } 107 108 msm_gem_put_vaddr(obj); 109 110 break; 111 } 112 } 113 114 a5xx_gpu->last_seqno[ring->id] = submit->seqno; 115 a5xx_flush(gpu, ring, true); 116 a5xx_preempt_trigger(gpu); 117 118 /* we might not necessarily have a cmd from userspace to 119 * trigger an event to know that submit has completed, so 120 * do this manually: 121 */ 122 a5xx_idle(gpu, ring); 123 ring->memptrs->fence = submit->seqno; 124 msm_gpu_retire(gpu); 125 } 126 127 static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit) 128 { 129 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 130 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 131 struct msm_ringbuffer *ring = submit->ring; 132 unsigned int i, ibs = 0; 133 134 if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) { 135 ring->cur_ctx_seqno = 0; 136 a5xx_submit_in_rb(gpu, submit); 137 return; 138 } 139 140 OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1); 141 OUT_RING(ring, 0x02); 142 143 /* Turn off protected mode to write to special registers */ 144 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 145 OUT_RING(ring, 0); 146 147 /* Set the save preemption record for the ring/command */ 148 OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2); 149 OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id])); 150 OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id])); 151 152 /* Turn back on protected mode */ 153 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 154 OUT_RING(ring, 1); 155 156 /* 157 * Disable local preemption by default because it requires 158 * user-space to be aware of it and provide additional handling 159 * to restore rendering state or do various flushes on switch. 160 */ 161 OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1); 162 OUT_RING(ring, 0x0); 163 164 /* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */ 165 OUT_PKT7(ring, CP_YIELD_ENABLE, 1); 166 OUT_RING(ring, 0x02); 167 168 /* Submit the commands */ 169 for (i = 0; i < submit->nr_cmds; i++) { 170 switch (submit->cmd[i].type) { 171 case MSM_SUBMIT_CMD_IB_TARGET_BUF: 172 break; 173 case MSM_SUBMIT_CMD_CTX_RESTORE_BUF: 174 if (ring->cur_ctx_seqno == submit->queue->ctx->seqno) 175 break; 176 fallthrough; 177 case MSM_SUBMIT_CMD_BUF: 178 OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3); 179 OUT_RING(ring, lower_32_bits(submit->cmd[i].iova)); 180 OUT_RING(ring, upper_32_bits(submit->cmd[i].iova)); 181 OUT_RING(ring, submit->cmd[i].size); 182 ibs++; 183 break; 184 } 185 186 /* 187 * Periodically update shadow-wptr if needed, so that we 188 * can see partial progress of submits with large # of 189 * cmds.. otherwise we could needlessly stall waiting for 190 * ringbuffer state, simply due to looking at a shadow 191 * rptr value that has not been updated 192 */ 193 if ((ibs % 32) == 0) 194 update_shadow_rptr(gpu, ring); 195 } 196 197 /* 198 * Write the render mode to NULL (0) to indicate to the CP that the IBs 199 * are done rendering - otherwise a lucky preemption would start 200 * replaying from the last checkpoint 201 */ 202 OUT_PKT7(ring, CP_SET_RENDER_MODE, 5); 203 OUT_RING(ring, 0); 204 OUT_RING(ring, 0); 205 OUT_RING(ring, 0); 206 OUT_RING(ring, 0); 207 OUT_RING(ring, 0); 208 209 /* Turn off IB level preemptions */ 210 OUT_PKT7(ring, CP_YIELD_ENABLE, 1); 211 OUT_RING(ring, 0x01); 212 213 /* Write the fence to the scratch register */ 214 OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1); 215 OUT_RING(ring, submit->seqno); 216 a5xx_gpu->last_seqno[ring->id] = submit->seqno; 217 218 /* 219 * Execute a CACHE_FLUSH_TS event. This will ensure that the 220 * timestamp is written to the memory and then triggers the interrupt 221 */ 222 OUT_PKT7(ring, CP_EVENT_WRITE, 4); 223 OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) | 224 CP_EVENT_WRITE_0_IRQ); 225 OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence))); 226 OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence))); 227 OUT_RING(ring, submit->seqno); 228 229 /* Yield the floor on command completion */ 230 OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4); 231 /* 232 * If dword[2:1] are non zero, they specify an address for the CP to 233 * write the value of dword[3] to on preemption complete. Write 0 to 234 * skip the write 235 */ 236 OUT_RING(ring, 0x00); 237 OUT_RING(ring, 0x00); 238 /* Data value - not used if the address above is 0 */ 239 OUT_RING(ring, 0x01); 240 /* Set bit 0 to trigger an interrupt on preempt complete */ 241 OUT_RING(ring, 0x01); 242 243 /* A WHERE_AM_I packet is not needed after a YIELD */ 244 a5xx_flush(gpu, ring, false); 245 246 /* Check to see if we need to start preemption */ 247 a5xx_preempt_trigger(gpu); 248 } 249 250 static const struct adreno_five_hwcg_regs { 251 u32 offset; 252 u32 value; 253 } a5xx_hwcg[] = { 254 {REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 255 {REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222}, 256 {REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222}, 257 {REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222}, 258 {REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 259 {REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220}, 260 {REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220}, 261 {REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220}, 262 {REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 263 {REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF}, 264 {REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF}, 265 {REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF}, 266 {REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 267 {REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 268 {REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080}, 269 {REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080}, 270 {REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 271 {REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222}, 272 {REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222}, 273 {REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222}, 274 {REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 275 {REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 276 {REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222}, 277 {REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222}, 278 {REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222}, 279 {REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222}, 280 {REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222}, 281 {REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222}, 282 {REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 283 {REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 284 {REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777}, 285 {REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777}, 286 {REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 287 {REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 288 {REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777}, 289 {REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777}, 290 {REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777}, 291 {REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777}, 292 {REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777}, 293 {REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777}, 294 {REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 295 {REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 296 {REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111}, 297 {REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111}, 298 {REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 299 {REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 300 {REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111}, 301 {REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111}, 302 {REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111}, 303 {REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111}, 304 {REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111}, 305 {REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111}, 306 {REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 307 {REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 308 {REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 309 {REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 310 {REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444}, 311 {REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 312 {REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 313 {REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 314 {REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222}, 315 {REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222}, 316 {REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222}, 317 {REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222}, 318 {REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222}, 319 {REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222}, 320 {REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220}, 321 {REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220}, 322 {REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220}, 323 {REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220}, 324 {REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222}, 325 {REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555}, 326 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404}, 327 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404}, 328 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404}, 329 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404}, 330 {REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044}, 331 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002}, 332 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002}, 333 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002}, 334 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002}, 335 {REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011}, 336 {REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 337 {REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, 338 {REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 339 {REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 340 {REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 341 {REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 342 {REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 343 {REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 344 {REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 345 {REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222} 346 }, a50x_hwcg[] = { 347 {REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 348 {REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 349 {REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 350 {REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 351 {REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 352 {REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 353 {REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222}, 354 {REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 355 {REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 356 {REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777}, 357 {REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 358 {REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 359 {REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111}, 360 {REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 361 {REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 362 {REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 363 {REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 364 {REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4}, 365 {REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 366 {REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 367 {REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222}, 368 {REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220}, 369 {REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222}, 370 {REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555}, 371 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404}, 372 {REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044}, 373 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002}, 374 {REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011}, 375 {REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 376 {REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, 377 {REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 378 {REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 379 {REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 380 {REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 381 {REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 382 {REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 383 {REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 384 {REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 385 }, a512_hwcg[] = { 386 {REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222}, 387 {REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222}, 388 {REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220}, 389 {REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220}, 390 {REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF}, 391 {REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF}, 392 {REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080}, 393 {REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080}, 394 {REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222}, 395 {REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222}, 396 {REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222}, 397 {REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222}, 398 {REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222}, 399 {REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222}, 400 {REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777}, 401 {REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777}, 402 {REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777}, 403 {REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777}, 404 {REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777}, 405 {REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777}, 406 {REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111}, 407 {REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111}, 408 {REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111}, 409 {REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111}, 410 {REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111}, 411 {REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111}, 412 {REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222}, 413 {REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222}, 414 {REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222}, 415 {REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222}, 416 {REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444}, 417 {REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002}, 418 {REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222}, 419 {REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222}, 420 {REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222}, 421 {REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222}, 422 {REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220}, 423 {REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220}, 424 {REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222}, 425 {REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555}, 426 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404}, 427 {REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404}, 428 {REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044}, 429 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002}, 430 {REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002}, 431 {REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011}, 432 {REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222}, 433 {REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222}, 434 {REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222}, 435 {REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000}, 436 {REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004}, 437 {REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000}, 438 {REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000}, 439 {REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000}, 440 {REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200}, 441 {REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}, 442 }; 443 444 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state) 445 { 446 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 447 const struct adreno_five_hwcg_regs *regs; 448 unsigned int i, sz; 449 450 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 451 adreno_is_a508(adreno_gpu)) { 452 regs = a50x_hwcg; 453 sz = ARRAY_SIZE(a50x_hwcg); 454 } else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) { 455 regs = a512_hwcg; 456 sz = ARRAY_SIZE(a512_hwcg); 457 } else { 458 regs = a5xx_hwcg; 459 sz = ARRAY_SIZE(a5xx_hwcg); 460 } 461 462 for (i = 0; i < sz; i++) 463 gpu_write(gpu, regs[i].offset, 464 state ? regs[i].value : 0); 465 466 if (adreno_is_a540(adreno_gpu)) { 467 gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0); 468 gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0); 469 } 470 471 gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0); 472 gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180); 473 } 474 475 static int a5xx_me_init(struct msm_gpu *gpu) 476 { 477 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 478 struct msm_ringbuffer *ring = gpu->rb[0]; 479 480 OUT_PKT7(ring, CP_ME_INIT, 8); 481 482 OUT_RING(ring, 0x0000002F); 483 484 /* Enable multiple hardware contexts */ 485 OUT_RING(ring, 0x00000003); 486 487 /* Enable error detection */ 488 OUT_RING(ring, 0x20000000); 489 490 /* Don't enable header dump */ 491 OUT_RING(ring, 0x00000000); 492 OUT_RING(ring, 0x00000000); 493 494 /* Specify workarounds for various microcode issues */ 495 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 496 adreno_is_a530(adreno_gpu)) { 497 /* Workaround for token end syncs 498 * Force a WFI after every direct-render 3D mode draw and every 499 * 2D mode 3 draw 500 */ 501 OUT_RING(ring, 0x0000000B); 502 } else if (adreno_is_a510(adreno_gpu)) { 503 /* Workaround for token and syncs */ 504 OUT_RING(ring, 0x00000001); 505 } else { 506 /* No workarounds enabled */ 507 OUT_RING(ring, 0x00000000); 508 } 509 510 OUT_RING(ring, 0x00000000); 511 OUT_RING(ring, 0x00000000); 512 513 a5xx_flush(gpu, ring, true); 514 return a5xx_idle(gpu, ring) ? 0 : -EINVAL; 515 } 516 517 static int a5xx_preempt_start(struct msm_gpu *gpu) 518 { 519 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 520 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 521 struct msm_ringbuffer *ring = gpu->rb[0]; 522 523 if (gpu->nr_rings == 1) 524 return 0; 525 526 /* Turn off protected mode to write to special registers */ 527 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 528 OUT_RING(ring, 0); 529 530 /* Set the save preemption record for the ring/command */ 531 OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2); 532 OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id])); 533 OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id])); 534 535 /* Turn back on protected mode */ 536 OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1); 537 OUT_RING(ring, 1); 538 539 OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1); 540 OUT_RING(ring, 0x00); 541 542 OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1); 543 OUT_RING(ring, 0x01); 544 545 OUT_PKT7(ring, CP_YIELD_ENABLE, 1); 546 OUT_RING(ring, 0x01); 547 548 /* Yield the floor on command completion */ 549 OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4); 550 OUT_RING(ring, 0x00); 551 OUT_RING(ring, 0x00); 552 OUT_RING(ring, 0x01); 553 OUT_RING(ring, 0x01); 554 555 /* The WHERE_AMI_I packet is not needed after a YIELD is issued */ 556 a5xx_flush(gpu, ring, false); 557 558 return a5xx_idle(gpu, ring) ? 0 : -EINVAL; 559 } 560 561 static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu, 562 struct drm_gem_object *obj) 563 { 564 u32 *buf = msm_gem_get_vaddr(obj); 565 566 if (IS_ERR(buf)) 567 return; 568 569 /* 570 * If the lowest nibble is 0xa that is an indication that this microcode 571 * has been patched. The actual version is in dword [3] but we only care 572 * about the patchlevel which is the lowest nibble of dword [3] 573 */ 574 if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1) 575 a5xx_gpu->has_whereami = true; 576 577 msm_gem_put_vaddr(obj); 578 } 579 580 static int a5xx_ucode_load(struct msm_gpu *gpu) 581 { 582 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 583 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 584 int ret; 585 586 if (!a5xx_gpu->pm4_bo) { 587 a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu, 588 adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova); 589 590 591 if (IS_ERR(a5xx_gpu->pm4_bo)) { 592 ret = PTR_ERR(a5xx_gpu->pm4_bo); 593 a5xx_gpu->pm4_bo = NULL; 594 DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n", 595 ret); 596 return ret; 597 } 598 599 msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw"); 600 } 601 602 if (!a5xx_gpu->pfp_bo) { 603 a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu, 604 adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova); 605 606 if (IS_ERR(a5xx_gpu->pfp_bo)) { 607 ret = PTR_ERR(a5xx_gpu->pfp_bo); 608 a5xx_gpu->pfp_bo = NULL; 609 DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n", 610 ret); 611 return ret; 612 } 613 614 msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw"); 615 a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo); 616 } 617 618 if (a5xx_gpu->has_whereami) { 619 if (!a5xx_gpu->shadow_bo) { 620 a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev, 621 sizeof(u32) * gpu->nr_rings, 622 MSM_BO_WC | MSM_BO_MAP_PRIV, 623 gpu->aspace, &a5xx_gpu->shadow_bo, 624 &a5xx_gpu->shadow_iova); 625 626 if (IS_ERR(a5xx_gpu->shadow)) 627 return PTR_ERR(a5xx_gpu->shadow); 628 629 msm_gem_object_set_name(a5xx_gpu->shadow_bo, "shadow"); 630 } 631 } else if (gpu->nr_rings > 1) { 632 /* Disable preemption if WHERE_AM_I isn't available */ 633 a5xx_preempt_fini(gpu); 634 gpu->nr_rings = 1; 635 } 636 637 return 0; 638 } 639 640 #define SCM_GPU_ZAP_SHADER_RESUME 0 641 642 static int a5xx_zap_shader_resume(struct msm_gpu *gpu) 643 { 644 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 645 int ret; 646 647 /* 648 * Adreno 506 have CPZ Retention feature and doesn't require 649 * to resume zap shader 650 */ 651 if (adreno_is_a506(adreno_gpu)) 652 return 0; 653 654 ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID); 655 if (ret) 656 DRM_ERROR("%s: zap-shader resume failed: %d\n", 657 gpu->name, ret); 658 659 return ret; 660 } 661 662 static int a5xx_zap_shader_init(struct msm_gpu *gpu) 663 { 664 static bool loaded; 665 int ret; 666 667 /* 668 * If the zap shader is already loaded into memory we just need to kick 669 * the remote processor to reinitialize it 670 */ 671 if (loaded) 672 return a5xx_zap_shader_resume(gpu); 673 674 ret = adreno_zap_shader_load(gpu, GPU_PAS_ID); 675 676 loaded = !ret; 677 return ret; 678 } 679 680 #define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \ 681 A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \ 682 A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \ 683 A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \ 684 A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \ 685 A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \ 686 A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \ 687 A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \ 688 A5XX_RBBM_INT_0_MASK_CP_SW | \ 689 A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \ 690 A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \ 691 A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP) 692 693 static int a5xx_hw_init(struct msm_gpu *gpu) 694 { 695 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 696 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 697 u32 hbb; 698 int ret; 699 700 gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003); 701 702 if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) || 703 adreno_is_a540(adreno_gpu)) 704 gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009); 705 706 /* Make all blocks contribute to the GPU BUSY perf counter */ 707 gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF); 708 709 /* Enable RBBM error reporting bits */ 710 gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001); 711 712 if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) { 713 /* 714 * Mask out the activity signals from RB1-3 to avoid false 715 * positives 716 */ 717 718 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11, 719 0xF0000000); 720 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12, 721 0xFFFFFFFF); 722 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13, 723 0xFFFFFFFF); 724 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14, 725 0xFFFFFFFF); 726 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15, 727 0xFFFFFFFF); 728 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16, 729 0xFFFFFFFF); 730 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17, 731 0xFFFFFFFF); 732 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18, 733 0xFFFFFFFF); 734 } 735 736 /* Enable fault detection */ 737 gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL, 738 (1 << 30) | 0xFFFF); 739 740 /* Turn on performance counters */ 741 gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01); 742 743 /* Select CP0 to always count cycles */ 744 gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT); 745 746 /* Select RBBM0 to countable 6 to get the busy status for devfreq */ 747 gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6); 748 749 /* Increase VFD cache access so LRZ and other data gets evicted less */ 750 gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02); 751 752 /* Disable L2 bypass in the UCHE */ 753 gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000); 754 gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF); 755 gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000); 756 gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF); 757 758 /* Set the GMEM VA range (0 to gpu->gmem) */ 759 gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000); 760 gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000); 761 gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO, 762 0x00100000 + adreno_gpu->info->gmem - 1); 763 gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000); 764 765 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 766 adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu)) { 767 gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20); 768 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 769 adreno_is_a508(adreno_gpu)) 770 gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400); 771 else 772 gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20); 773 gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030); 774 gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A); 775 } else { 776 gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40); 777 if (adreno_is_a530(adreno_gpu)) 778 gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40); 779 else 780 gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400); 781 gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060); 782 gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16); 783 } 784 785 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 786 adreno_is_a508(adreno_gpu)) 787 gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 788 (0x100 << 11 | 0x100 << 22)); 789 else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) || 790 adreno_is_a512(adreno_gpu)) 791 gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 792 (0x200 << 11 | 0x200 << 22)); 793 else 794 gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 795 (0x400 << 11 | 0x300 << 22)); 796 797 if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI) 798 gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8)); 799 800 /* 801 * Disable the RB sampler datapath DP2 clock gating optimization 802 * for 1-SP GPUs, as it is enabled by default. 803 */ 804 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 805 adreno_is_a508(adreno_gpu) || adreno_is_a509(adreno_gpu) || 806 adreno_is_a512(adreno_gpu)) 807 gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9)); 808 809 /* Disable UCHE global filter as SP can invalidate/flush independently */ 810 gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29)); 811 812 /* Enable USE_RETENTION_FLOPS */ 813 gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000); 814 815 /* Enable ME/PFP split notification */ 816 gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF); 817 818 /* 819 * In A5x, CCU can send context_done event of a particular context to 820 * UCHE which ultimately reaches CP even when there is valid 821 * transaction of that context inside CCU. This can let CP to program 822 * config registers, which will make the "valid transaction" inside 823 * CCU to be interpreted differently. This can cause gpu fault. This 824 * bug is fixed in latest A510 revision. To enable this bug fix - 825 * bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1 826 * (disable). For older A510 version this bit is unused. 827 */ 828 if (adreno_is_a510(adreno_gpu)) 829 gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0); 830 831 /* Enable HWCG */ 832 a5xx_set_hwcg(gpu, true); 833 834 gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F); 835 836 BUG_ON(adreno_gpu->ubwc_config.highest_bank_bit < 13); 837 hbb = adreno_gpu->ubwc_config.highest_bank_bit - 13; 838 839 gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, hbb << 7); 840 gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, hbb << 1); 841 842 if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) || 843 adreno_is_a540(adreno_gpu)) 844 gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, hbb); 845 846 /* Disable All flat shading optimization (ALLFLATOPTDIS) */ 847 gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10)); 848 849 /* Protect registers from the CP */ 850 gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007); 851 852 /* RBBM */ 853 gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4)); 854 gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8)); 855 gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16)); 856 gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32)); 857 gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64)); 858 gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64)); 859 860 /* Content protect */ 861 gpu_write(gpu, REG_A5XX_CP_PROTECT(6), 862 ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 863 16)); 864 gpu_write(gpu, REG_A5XX_CP_PROTECT(7), 865 ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2)); 866 867 /* CP */ 868 gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64)); 869 gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8)); 870 gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32)); 871 gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1)); 872 873 /* RB */ 874 gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1)); 875 gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2)); 876 877 /* VPC */ 878 gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8)); 879 gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16)); 880 881 /* UCHE */ 882 gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16)); 883 884 /* SMMU */ 885 gpu_write(gpu, REG_A5XX_CP_PROTECT(17), 886 ADRENO_PROTECT_RW(0x10000, 0x8000)); 887 888 gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0); 889 /* 890 * Disable the trusted memory range - we don't actually supported secure 891 * memory rendering at this point in time and we don't want to block off 892 * part of the virtual memory space. 893 */ 894 gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 0x00000000); 895 gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000); 896 897 /* Put the GPU into 64 bit by default */ 898 gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1); 899 gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1); 900 gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1); 901 gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1); 902 gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1); 903 gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1); 904 gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1); 905 gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1); 906 gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1); 907 gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1); 908 gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1); 909 gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1); 910 911 /* 912 * VPC corner case with local memory load kill leads to corrupt 913 * internal state. Normal Disable does not work for all a5x chips. 914 * So do the following setting to disable it. 915 */ 916 if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) { 917 gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23)); 918 gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0); 919 } 920 921 ret = adreno_hw_init(gpu); 922 if (ret) 923 return ret; 924 925 if (adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu)) 926 a5xx_gpmu_ucode_init(gpu); 927 928 gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO, a5xx_gpu->pm4_iova); 929 gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO, a5xx_gpu->pfp_iova); 930 931 /* Set the ringbuffer address */ 932 gpu_write64(gpu, REG_A5XX_CP_RB_BASE, gpu->rb[0]->iova); 933 934 /* 935 * If the microcode supports the WHERE_AM_I opcode then we can use that 936 * in lieu of the RPTR shadow and enable preemption. Otherwise, we 937 * can't safely use the RPTR shadow or preemption. In either case, the 938 * RPTR shadow should be disabled in hardware. 939 */ 940 gpu_write(gpu, REG_A5XX_CP_RB_CNTL, 941 MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE); 942 943 /* Configure the RPTR shadow if needed: */ 944 if (a5xx_gpu->shadow_bo) { 945 gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR, 946 shadowptr(a5xx_gpu, gpu->rb[0])); 947 } 948 949 a5xx_preempt_hw_init(gpu); 950 951 /* Disable the interrupts through the initial bringup stage */ 952 gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK); 953 954 /* Clear ME_HALT to start the micro engine */ 955 gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0); 956 ret = a5xx_me_init(gpu); 957 if (ret) 958 return ret; 959 960 ret = a5xx_power_init(gpu); 961 if (ret) 962 return ret; 963 964 /* 965 * Send a pipeline event stat to get misbehaving counters to start 966 * ticking correctly 967 */ 968 if (adreno_is_a530(adreno_gpu)) { 969 OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1); 970 OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT)); 971 972 a5xx_flush(gpu, gpu->rb[0], true); 973 if (!a5xx_idle(gpu, gpu->rb[0])) 974 return -EINVAL; 975 } 976 977 /* 978 * If the chip that we are using does support loading one, then 979 * try to load a zap shader into the secure world. If successful 980 * we can use the CP to switch out of secure mode. If not then we 981 * have no resource but to try to switch ourselves out manually. If we 982 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will 983 * be blocked and a permissions violation will soon follow. 984 */ 985 ret = a5xx_zap_shader_init(gpu); 986 if (!ret) { 987 OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1); 988 OUT_RING(gpu->rb[0], 0x00000000); 989 990 a5xx_flush(gpu, gpu->rb[0], true); 991 if (!a5xx_idle(gpu, gpu->rb[0])) 992 return -EINVAL; 993 } else if (ret == -ENODEV) { 994 /* 995 * This device does not use zap shader (but print a warning 996 * just in case someone got their dt wrong.. hopefully they 997 * have a debug UART to realize the error of their ways... 998 * if you mess this up you are about to crash horribly) 999 */ 1000 dev_warn_once(gpu->dev->dev, 1001 "Zap shader not enabled - using SECVID_TRUST_CNTL instead\n"); 1002 gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0); 1003 } else { 1004 return ret; 1005 } 1006 1007 /* Last step - yield the ringbuffer */ 1008 a5xx_preempt_start(gpu); 1009 1010 return 0; 1011 } 1012 1013 static void a5xx_recover(struct msm_gpu *gpu) 1014 { 1015 int i; 1016 1017 adreno_dump_info(gpu); 1018 1019 for (i = 0; i < 8; i++) { 1020 printk("CP_SCRATCH_REG%d: %u\n", i, 1021 gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i))); 1022 } 1023 1024 if (hang_debug) 1025 a5xx_dump(gpu); 1026 1027 gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1); 1028 gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD); 1029 gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0); 1030 adreno_recover(gpu); 1031 } 1032 1033 static void a5xx_destroy(struct msm_gpu *gpu) 1034 { 1035 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1036 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 1037 1038 DBG("%s", gpu->name); 1039 1040 a5xx_preempt_fini(gpu); 1041 1042 if (a5xx_gpu->pm4_bo) { 1043 msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace); 1044 drm_gem_object_put(a5xx_gpu->pm4_bo); 1045 } 1046 1047 if (a5xx_gpu->pfp_bo) { 1048 msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace); 1049 drm_gem_object_put(a5xx_gpu->pfp_bo); 1050 } 1051 1052 if (a5xx_gpu->gpmu_bo) { 1053 msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace); 1054 drm_gem_object_put(a5xx_gpu->gpmu_bo); 1055 } 1056 1057 if (a5xx_gpu->shadow_bo) { 1058 msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace); 1059 drm_gem_object_put(a5xx_gpu->shadow_bo); 1060 } 1061 1062 adreno_gpu_cleanup(adreno_gpu); 1063 kfree(a5xx_gpu); 1064 } 1065 1066 static inline bool _a5xx_check_idle(struct msm_gpu *gpu) 1067 { 1068 if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY) 1069 return false; 1070 1071 /* 1072 * Nearly every abnormality ends up pausing the GPU and triggering a 1073 * fault so we can safely just watch for this one interrupt to fire 1074 */ 1075 return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) & 1076 A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT); 1077 } 1078 1079 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1080 { 1081 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1082 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 1083 1084 if (ring != a5xx_gpu->cur_ring) { 1085 WARN(1, "Tried to idle a non-current ringbuffer\n"); 1086 return false; 1087 } 1088 1089 /* wait for CP to drain ringbuffer: */ 1090 if (!adreno_idle(gpu, ring)) 1091 return false; 1092 1093 if (spin_until(_a5xx_check_idle(gpu))) { 1094 DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n", 1095 gpu->name, __builtin_return_address(0), 1096 gpu_read(gpu, REG_A5XX_RBBM_STATUS), 1097 gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS), 1098 gpu_read(gpu, REG_A5XX_CP_RB_RPTR), 1099 gpu_read(gpu, REG_A5XX_CP_RB_WPTR)); 1100 return false; 1101 } 1102 1103 return true; 1104 } 1105 1106 static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data) 1107 { 1108 struct msm_gpu *gpu = arg; 1109 struct adreno_smmu_fault_info *info = data; 1110 char block[12] = "unknown"; 1111 u32 scratch[] = { 1112 gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)), 1113 gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)), 1114 gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)), 1115 gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)), 1116 }; 1117 1118 if (info) 1119 snprintf(block, sizeof(block), "%x", info->fsynr1); 1120 1121 return adreno_fault_handler(gpu, iova, flags, info, block, scratch); 1122 } 1123 1124 static void a5xx_cp_err_irq(struct msm_gpu *gpu) 1125 { 1126 u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS); 1127 1128 if (status & A5XX_CP_INT_CP_OPCODE_ERROR) { 1129 u32 val; 1130 1131 gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0); 1132 1133 /* 1134 * REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so 1135 * read it twice 1136 */ 1137 1138 gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA); 1139 val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA); 1140 1141 dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n", 1142 val); 1143 } 1144 1145 if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR) 1146 dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n", 1147 gpu_read(gpu, REG_A5XX_CP_HW_FAULT)); 1148 1149 if (status & A5XX_CP_INT_CP_DMA_ERROR) 1150 dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n"); 1151 1152 if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) { 1153 u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS); 1154 1155 dev_err_ratelimited(gpu->dev->dev, 1156 "CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n", 1157 val & (1 << 24) ? "WRITE" : "READ", 1158 (val & 0xFFFFF) >> 2, val); 1159 } 1160 1161 if (status & A5XX_CP_INT_CP_AHB_ERROR) { 1162 u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT); 1163 const char *access[16] = { "reserved", "reserved", 1164 "timestamp lo", "timestamp hi", "pfp read", "pfp write", 1165 "", "", "me read", "me write", "", "", "crashdump read", 1166 "crashdump write" }; 1167 1168 dev_err_ratelimited(gpu->dev->dev, 1169 "CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n", 1170 status & 0xFFFFF, access[(status >> 24) & 0xF], 1171 (status & (1 << 31)), status); 1172 } 1173 } 1174 1175 static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status) 1176 { 1177 if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) { 1178 u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS); 1179 1180 dev_err_ratelimited(gpu->dev->dev, 1181 "RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n", 1182 val & (1 << 28) ? "WRITE" : "READ", 1183 (val & 0xFFFFF) >> 2, (val >> 20) & 0x3, 1184 (val >> 24) & 0xF); 1185 1186 /* Clear the error */ 1187 gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4)); 1188 1189 /* Clear the interrupt */ 1190 gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD, 1191 A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR); 1192 } 1193 1194 if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT) 1195 dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n"); 1196 1197 if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT) 1198 dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n", 1199 gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS)); 1200 1201 if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT) 1202 dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n", 1203 gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS)); 1204 1205 if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT) 1206 dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n", 1207 gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS)); 1208 1209 if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW) 1210 dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n"); 1211 1212 if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW) 1213 dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n"); 1214 } 1215 1216 static void a5xx_uche_err_irq(struct msm_gpu *gpu) 1217 { 1218 uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI); 1219 1220 addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO); 1221 1222 dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n", 1223 addr); 1224 } 1225 1226 static void a5xx_gpmu_err_irq(struct msm_gpu *gpu) 1227 { 1228 dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n"); 1229 } 1230 1231 static void a5xx_fault_detect_irq(struct msm_gpu *gpu) 1232 { 1233 struct drm_device *dev = gpu->dev; 1234 struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu); 1235 1236 /* 1237 * If stalled on SMMU fault, we could trip the GPU's hang detection, 1238 * but the fault handler will trigger the devcore dump, and we want 1239 * to otherwise resume normally rather than killing the submit, so 1240 * just bail. 1241 */ 1242 if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24)) 1243 return; 1244 1245 DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n", 1246 ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0, 1247 gpu_read(gpu, REG_A5XX_RBBM_STATUS), 1248 gpu_read(gpu, REG_A5XX_CP_RB_RPTR), 1249 gpu_read(gpu, REG_A5XX_CP_RB_WPTR), 1250 gpu_read64(gpu, REG_A5XX_CP_IB1_BASE), 1251 gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ), 1252 gpu_read64(gpu, REG_A5XX_CP_IB2_BASE), 1253 gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ)); 1254 1255 /* Turn off the hangcheck timer to keep it from bothering us */ 1256 del_timer(&gpu->hangcheck_timer); 1257 1258 kthread_queue_work(gpu->worker, &gpu->recover_work); 1259 } 1260 1261 #define RBBM_ERROR_MASK \ 1262 (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \ 1263 A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \ 1264 A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \ 1265 A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \ 1266 A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \ 1267 A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW) 1268 1269 static irqreturn_t a5xx_irq(struct msm_gpu *gpu) 1270 { 1271 struct msm_drm_private *priv = gpu->dev->dev_private; 1272 u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS); 1273 1274 /* 1275 * Clear all the interrupts except RBBM_AHB_ERROR - if we clear it 1276 * before the source is cleared the interrupt will storm. 1277 */ 1278 gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD, 1279 status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR); 1280 1281 if (priv->disable_err_irq) { 1282 status &= A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | 1283 A5XX_RBBM_INT_0_MASK_CP_SW; 1284 } 1285 1286 /* Pass status to a5xx_rbbm_err_irq because we've already cleared it */ 1287 if (status & RBBM_ERROR_MASK) 1288 a5xx_rbbm_err_irq(gpu, status); 1289 1290 if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR) 1291 a5xx_cp_err_irq(gpu); 1292 1293 if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT) 1294 a5xx_fault_detect_irq(gpu); 1295 1296 if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS) 1297 a5xx_uche_err_irq(gpu); 1298 1299 if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP) 1300 a5xx_gpmu_err_irq(gpu); 1301 1302 if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) { 1303 a5xx_preempt_trigger(gpu); 1304 msm_gpu_retire(gpu); 1305 } 1306 1307 if (status & A5XX_RBBM_INT_0_MASK_CP_SW) 1308 a5xx_preempt_irq(gpu); 1309 1310 return IRQ_HANDLED; 1311 } 1312 1313 static const u32 a5xx_registers[] = { 1314 0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B, 1315 0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095, 1316 0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3, 1317 0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841, 1318 0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28, 1319 0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53, 1320 0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98, 1321 0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585, 1322 0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8, 1323 0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E, 1324 0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545, 1325 0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0, 1326 0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57, 1327 0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8, 1328 0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9, 1329 0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201, 1330 0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A, 1331 0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F, 1332 0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0, 1333 0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947, 1334 0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7, 1335 0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68, 1336 0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB, 1337 0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05, 1338 0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3, 1339 0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D, 1340 0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5, 1341 0xAC60, 0xAC60, ~0, 1342 }; 1343 1344 static void a5xx_dump(struct msm_gpu *gpu) 1345 { 1346 DRM_DEV_INFO(gpu->dev->dev, "status: %08x\n", 1347 gpu_read(gpu, REG_A5XX_RBBM_STATUS)); 1348 adreno_dump(gpu); 1349 } 1350 1351 static int a5xx_pm_resume(struct msm_gpu *gpu) 1352 { 1353 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1354 int ret; 1355 1356 /* Turn on the core power */ 1357 ret = msm_gpu_pm_resume(gpu); 1358 if (ret) 1359 return ret; 1360 1361 /* Adreno 505, 506, 508, 509, 510, 512 needs manual RBBM sus/res control */ 1362 if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) { 1363 /* Halt the sp_input_clk at HM level */ 1364 gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055); 1365 a5xx_set_hwcg(gpu, true); 1366 /* Turn on sp_input_clk at HM level */ 1367 gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0); 1368 return 0; 1369 } 1370 1371 /* Turn the RBCCU domain first to limit the chances of voltage droop */ 1372 gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000); 1373 1374 /* Wait 3 usecs before polling */ 1375 udelay(3); 1376 1377 ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS, 1378 (1 << 20), (1 << 20)); 1379 if (ret) { 1380 DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n", 1381 gpu->name, 1382 gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS)); 1383 return ret; 1384 } 1385 1386 /* Turn on the SP domain */ 1387 gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000); 1388 ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS, 1389 (1 << 20), (1 << 20)); 1390 if (ret) 1391 DRM_ERROR("%s: timeout waiting for SP GDSC enable\n", 1392 gpu->name); 1393 1394 return ret; 1395 } 1396 1397 static int a5xx_pm_suspend(struct msm_gpu *gpu) 1398 { 1399 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1400 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 1401 u32 mask = 0xf; 1402 int i, ret; 1403 1404 /* A505, A506, A508, A510 have 3 XIN ports in VBIF */ 1405 if (adreno_is_a505(adreno_gpu) || adreno_is_a506(adreno_gpu) || 1406 adreno_is_a508(adreno_gpu) || adreno_is_a510(adreno_gpu)) 1407 mask = 0x7; 1408 1409 /* Clear the VBIF pipe before shutting down */ 1410 gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask); 1411 spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) & 1412 mask) == mask); 1413 1414 gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0); 1415 1416 /* 1417 * Reset the VBIF before power collapse to avoid issue with FIFO 1418 * entries on Adreno A510 and A530 (the others will tend to lock up) 1419 */ 1420 if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) { 1421 gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000); 1422 gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000); 1423 } 1424 1425 ret = msm_gpu_pm_suspend(gpu); 1426 if (ret) 1427 return ret; 1428 1429 if (a5xx_gpu->has_whereami) 1430 for (i = 0; i < gpu->nr_rings; i++) 1431 a5xx_gpu->shadow[i] = 0; 1432 1433 return 0; 1434 } 1435 1436 static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value) 1437 { 1438 *value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO); 1439 1440 return 0; 1441 } 1442 1443 struct a5xx_crashdumper { 1444 void *ptr; 1445 struct drm_gem_object *bo; 1446 u64 iova; 1447 }; 1448 1449 struct a5xx_gpu_state { 1450 struct msm_gpu_state base; 1451 u32 *hlsqregs; 1452 }; 1453 1454 static int a5xx_crashdumper_init(struct msm_gpu *gpu, 1455 struct a5xx_crashdumper *dumper) 1456 { 1457 dumper->ptr = msm_gem_kernel_new(gpu->dev, 1458 SZ_1M, MSM_BO_WC, gpu->aspace, 1459 &dumper->bo, &dumper->iova); 1460 1461 if (!IS_ERR(dumper->ptr)) 1462 msm_gem_object_set_name(dumper->bo, "crashdump"); 1463 1464 return PTR_ERR_OR_ZERO(dumper->ptr); 1465 } 1466 1467 static int a5xx_crashdumper_run(struct msm_gpu *gpu, 1468 struct a5xx_crashdumper *dumper) 1469 { 1470 u32 val; 1471 1472 if (IS_ERR_OR_NULL(dumper->ptr)) 1473 return -EINVAL; 1474 1475 gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO, dumper->iova); 1476 1477 gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1); 1478 1479 return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val, 1480 val & 0x04, 100, 10000); 1481 } 1482 1483 /* 1484 * These are a list of the registers that need to be read through the HLSQ 1485 * aperture through the crashdumper. These are not nominally accessible from 1486 * the CPU on a secure platform. 1487 */ 1488 static const struct { 1489 u32 type; 1490 u32 regoffset; 1491 u32 count; 1492 } a5xx_hlsq_aperture_regs[] = { 1493 { 0x35, 0xe00, 0x32 }, /* HSLQ non-context */ 1494 { 0x31, 0x2080, 0x1 }, /* HLSQ 2D context 0 */ 1495 { 0x33, 0x2480, 0x1 }, /* HLSQ 2D context 1 */ 1496 { 0x32, 0xe780, 0x62 }, /* HLSQ 3D context 0 */ 1497 { 0x34, 0xef80, 0x62 }, /* HLSQ 3D context 1 */ 1498 { 0x3f, 0x0ec0, 0x40 }, /* SP non-context */ 1499 { 0x3d, 0x2040, 0x1 }, /* SP 2D context 0 */ 1500 { 0x3b, 0x2440, 0x1 }, /* SP 2D context 1 */ 1501 { 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */ 1502 { 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */ 1503 { 0x3a, 0x0f00, 0x1c }, /* TP non-context */ 1504 { 0x38, 0x2000, 0xa }, /* TP 2D context 0 */ 1505 { 0x36, 0x2400, 0xa }, /* TP 2D context 1 */ 1506 { 0x39, 0xe700, 0x80 }, /* TP 3D context 0 */ 1507 { 0x37, 0xef00, 0x80 }, /* TP 3D context 1 */ 1508 }; 1509 1510 static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu, 1511 struct a5xx_gpu_state *a5xx_state) 1512 { 1513 struct a5xx_crashdumper dumper = { 0 }; 1514 u32 offset, count = 0; 1515 u64 *ptr; 1516 int i; 1517 1518 if (a5xx_crashdumper_init(gpu, &dumper)) 1519 return; 1520 1521 /* The script will be written at offset 0 */ 1522 ptr = dumper.ptr; 1523 1524 /* Start writing the data at offset 256k */ 1525 offset = dumper.iova + (256 * SZ_1K); 1526 1527 /* Count how many additional registers to get from the HLSQ aperture */ 1528 for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) 1529 count += a5xx_hlsq_aperture_regs[i].count; 1530 1531 a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL); 1532 if (!a5xx_state->hlsqregs) 1533 return; 1534 1535 /* Build the crashdump script */ 1536 for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) { 1537 u32 type = a5xx_hlsq_aperture_regs[i].type; 1538 u32 c = a5xx_hlsq_aperture_regs[i].count; 1539 1540 /* Write the register to select the desired bank */ 1541 *ptr++ = ((u64) type << 8); 1542 *ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) | 1543 (1 << 21) | 1; 1544 1545 *ptr++ = offset; 1546 *ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44) 1547 | c; 1548 1549 offset += c * sizeof(u32); 1550 } 1551 1552 /* Write two zeros to close off the script */ 1553 *ptr++ = 0; 1554 *ptr++ = 0; 1555 1556 if (a5xx_crashdumper_run(gpu, &dumper)) { 1557 kfree(a5xx_state->hlsqregs); 1558 msm_gem_kernel_put(dumper.bo, gpu->aspace); 1559 return; 1560 } 1561 1562 /* Copy the data from the crashdumper to the state */ 1563 memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K), 1564 count * sizeof(u32)); 1565 1566 msm_gem_kernel_put(dumper.bo, gpu->aspace); 1567 } 1568 1569 static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu) 1570 { 1571 struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state), 1572 GFP_KERNEL); 1573 bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24)); 1574 1575 if (!a5xx_state) 1576 return ERR_PTR(-ENOMEM); 1577 1578 /* Temporarily disable hardware clock gating before reading the hw */ 1579 a5xx_set_hwcg(gpu, false); 1580 1581 /* First get the generic state from the adreno core */ 1582 adreno_gpu_state_get(gpu, &(a5xx_state->base)); 1583 1584 a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS); 1585 1586 /* 1587 * Get the HLSQ regs with the help of the crashdumper, but only if 1588 * we are not stalled in an iommu fault (in which case the crashdumper 1589 * would not have access to memory) 1590 */ 1591 if (!stalled) 1592 a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state); 1593 1594 a5xx_set_hwcg(gpu, true); 1595 1596 return &a5xx_state->base; 1597 } 1598 1599 static void a5xx_gpu_state_destroy(struct kref *kref) 1600 { 1601 struct msm_gpu_state *state = container_of(kref, 1602 struct msm_gpu_state, ref); 1603 struct a5xx_gpu_state *a5xx_state = container_of(state, 1604 struct a5xx_gpu_state, base); 1605 1606 kfree(a5xx_state->hlsqregs); 1607 1608 adreno_gpu_state_destroy(state); 1609 kfree(a5xx_state); 1610 } 1611 1612 static int a5xx_gpu_state_put(struct msm_gpu_state *state) 1613 { 1614 if (IS_ERR_OR_NULL(state)) 1615 return 1; 1616 1617 return kref_put(&state->ref, a5xx_gpu_state_destroy); 1618 } 1619 1620 1621 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 1622 static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state, 1623 struct drm_printer *p) 1624 { 1625 int i, j; 1626 u32 pos = 0; 1627 struct a5xx_gpu_state *a5xx_state = container_of(state, 1628 struct a5xx_gpu_state, base); 1629 1630 if (IS_ERR_OR_NULL(state)) 1631 return; 1632 1633 adreno_show(gpu, state, p); 1634 1635 /* Dump the additional a5xx HLSQ registers */ 1636 if (!a5xx_state->hlsqregs) 1637 return; 1638 1639 drm_printf(p, "registers-hlsq:\n"); 1640 1641 for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) { 1642 u32 o = a5xx_hlsq_aperture_regs[i].regoffset; 1643 u32 c = a5xx_hlsq_aperture_regs[i].count; 1644 1645 for (j = 0; j < c; j++, pos++, o++) { 1646 /* 1647 * To keep the crashdump simple we pull the entire range 1648 * for each register type but not all of the registers 1649 * in the range are valid. Fortunately invalid registers 1650 * stick out like a sore thumb with a value of 1651 * 0xdeadbeef 1652 */ 1653 if (a5xx_state->hlsqregs[pos] == 0xdeadbeef) 1654 continue; 1655 1656 drm_printf(p, " - { offset: 0x%04x, value: 0x%08x }\n", 1657 o << 2, a5xx_state->hlsqregs[pos]); 1658 } 1659 } 1660 } 1661 #endif 1662 1663 static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu) 1664 { 1665 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1666 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 1667 1668 return a5xx_gpu->cur_ring; 1669 } 1670 1671 static u64 a5xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate) 1672 { 1673 u64 busy_cycles; 1674 1675 busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO); 1676 *out_sample_rate = clk_get_rate(gpu->core_clk); 1677 1678 return busy_cycles; 1679 } 1680 1681 static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring) 1682 { 1683 struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu); 1684 struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu); 1685 1686 if (a5xx_gpu->has_whereami) 1687 return a5xx_gpu->shadow[ring->id]; 1688 1689 return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR); 1690 } 1691 1692 static const struct adreno_gpu_funcs funcs = { 1693 .base = { 1694 .get_param = adreno_get_param, 1695 .set_param = adreno_set_param, 1696 .hw_init = a5xx_hw_init, 1697 .ucode_load = a5xx_ucode_load, 1698 .pm_suspend = a5xx_pm_suspend, 1699 .pm_resume = a5xx_pm_resume, 1700 .recover = a5xx_recover, 1701 .submit = a5xx_submit, 1702 .active_ring = a5xx_active_ring, 1703 .irq = a5xx_irq, 1704 .destroy = a5xx_destroy, 1705 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP) 1706 .show = a5xx_show, 1707 #endif 1708 #if defined(CONFIG_DEBUG_FS) 1709 .debugfs_init = a5xx_debugfs_init, 1710 #endif 1711 .gpu_busy = a5xx_gpu_busy, 1712 .gpu_state_get = a5xx_gpu_state_get, 1713 .gpu_state_put = a5xx_gpu_state_put, 1714 .create_address_space = adreno_create_address_space, 1715 .get_rptr = a5xx_get_rptr, 1716 }, 1717 .get_timestamp = a5xx_get_timestamp, 1718 }; 1719 1720 static void check_speed_bin(struct device *dev) 1721 { 1722 struct nvmem_cell *cell; 1723 u32 val; 1724 1725 /* 1726 * If the OPP table specifies a opp-supported-hw property then we have 1727 * to set something with dev_pm_opp_set_supported_hw() or the table 1728 * doesn't get populated so pick an arbitrary value that should 1729 * ensure the default frequencies are selected but not conflict with any 1730 * actual bins 1731 */ 1732 val = 0x80; 1733 1734 cell = nvmem_cell_get(dev, "speed_bin"); 1735 1736 if (!IS_ERR(cell)) { 1737 void *buf = nvmem_cell_read(cell, NULL); 1738 1739 if (!IS_ERR(buf)) { 1740 u8 bin = *((u8 *) buf); 1741 1742 val = (1 << bin); 1743 kfree(buf); 1744 } 1745 1746 nvmem_cell_put(cell); 1747 } 1748 1749 devm_pm_opp_set_supported_hw(dev, &val, 1); 1750 } 1751 1752 struct msm_gpu *a5xx_gpu_init(struct drm_device *dev) 1753 { 1754 struct msm_drm_private *priv = dev->dev_private; 1755 struct platform_device *pdev = priv->gpu_pdev; 1756 struct adreno_platform_config *config = pdev->dev.platform_data; 1757 struct a5xx_gpu *a5xx_gpu = NULL; 1758 struct adreno_gpu *adreno_gpu; 1759 struct msm_gpu *gpu; 1760 unsigned int nr_rings; 1761 int ret; 1762 1763 if (!pdev) { 1764 DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n"); 1765 return ERR_PTR(-ENXIO); 1766 } 1767 1768 a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL); 1769 if (!a5xx_gpu) 1770 return ERR_PTR(-ENOMEM); 1771 1772 adreno_gpu = &a5xx_gpu->base; 1773 gpu = &adreno_gpu->base; 1774 1775 adreno_gpu->registers = a5xx_registers; 1776 1777 a5xx_gpu->lm_leakage = 0x4E001A; 1778 1779 check_speed_bin(&pdev->dev); 1780 1781 nr_rings = 4; 1782 1783 if (config->info->revn == 510) 1784 nr_rings = 1; 1785 1786 ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, nr_rings); 1787 if (ret) { 1788 a5xx_destroy(&(a5xx_gpu->base.base)); 1789 return ERR_PTR(ret); 1790 } 1791 1792 if (gpu->aspace) 1793 msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler); 1794 1795 /* Set up the preemption specific bits and pieces for each ringbuffer */ 1796 a5xx_preempt_init(gpu); 1797 1798 /* Set the highest bank bit */ 1799 if (adreno_is_a540(adreno_gpu) || adreno_is_a530(adreno_gpu)) 1800 adreno_gpu->ubwc_config.highest_bank_bit = 15; 1801 else 1802 adreno_gpu->ubwc_config.highest_bank_bit = 14; 1803 1804 /* a5xx only supports UBWC 1.0, these are not configurable */ 1805 adreno_gpu->ubwc_config.macrotile_mode = 0; 1806 adreno_gpu->ubwc_config.ubwc_swizzle = 0x7; 1807 1808 return gpu; 1809 } 1810