xref: /linux/drivers/gpu/drm/msm/adreno/a5xx_gpu.c (revision 7bdbfb4e36e34eb788e44f27666bf0a2b3b90803)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/cpumask.h>
8 #include <linux/firmware/qcom/qcom_scm.h>
9 #include <linux/pm_opp.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/slab.h>
12 #include "msm_gem.h"
13 #include "msm_mmu.h"
14 #include "a5xx_gpu.h"
15 
16 extern bool hang_debug;
17 static void a5xx_dump(struct msm_gpu *gpu);
18 
19 #define GPU_PAS_ID 13
20 
21 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
22 {
23 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
24 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
25 
26 	if (a5xx_gpu->has_whereami) {
27 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
28 		OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring)));
29 		OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring)));
30 	}
31 }
32 
33 void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
34 		bool sync)
35 {
36 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
37 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
38 	uint32_t wptr;
39 	unsigned long flags;
40 
41 	/*
42 	 * Most flush operations need to issue a WHERE_AM_I opcode to sync up
43 	 * the rptr shadow
44 	 */
45 	if (sync)
46 		update_shadow_rptr(gpu, ring);
47 
48 	spin_lock_irqsave(&ring->preempt_lock, flags);
49 
50 	/* Copy the shadow to the actual register */
51 	ring->cur = ring->next;
52 
53 	/* Make sure to wrap wptr if we need to */
54 	wptr = get_wptr(ring);
55 
56 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
57 
58 	/* Make sure everything is posted before making a decision */
59 	mb();
60 
61 	/* Update HW if this is the current ring and we are not in preempt */
62 	if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu))
63 		gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr);
64 }
65 
66 static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit)
67 {
68 	struct msm_ringbuffer *ring = submit->ring;
69 	struct drm_gem_object *obj;
70 	uint32_t *ptr, dwords;
71 	unsigned int i;
72 
73 	for (i = 0; i < submit->nr_cmds; i++) {
74 		switch (submit->cmd[i].type) {
75 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
76 			break;
77 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
78 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
79 				break;
80 			fallthrough;
81 		case MSM_SUBMIT_CMD_BUF:
82 			/* copy commands into RB: */
83 			obj = submit->bos[submit->cmd[i].idx].obj;
84 			dwords = submit->cmd[i].size;
85 
86 			ptr = msm_gem_get_vaddr(obj);
87 
88 			/* _get_vaddr() shouldn't fail at this point,
89 			 * since we've already mapped it once in
90 			 * submit_reloc()
91 			 */
92 			if (WARN_ON(IS_ERR_OR_NULL(ptr)))
93 				return;
94 
95 			for (i = 0; i < dwords; i++) {
96 				/* normally the OUT_PKTn() would wait
97 				 * for space for the packet.  But since
98 				 * we just OUT_RING() the whole thing,
99 				 * need to call adreno_wait_ring()
100 				 * ourself:
101 				 */
102 				adreno_wait_ring(ring, 1);
103 				OUT_RING(ring, ptr[i]);
104 			}
105 
106 			msm_gem_put_vaddr(obj);
107 
108 			break;
109 		}
110 	}
111 
112 	a5xx_flush(gpu, ring, true);
113 	a5xx_preempt_trigger(gpu);
114 
115 	/* we might not necessarily have a cmd from userspace to
116 	 * trigger an event to know that submit has completed, so
117 	 * do this manually:
118 	 */
119 	a5xx_idle(gpu, ring);
120 	ring->memptrs->fence = submit->seqno;
121 	msm_gpu_retire(gpu);
122 }
123 
124 static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
125 {
126 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
127 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
128 	struct msm_ringbuffer *ring = submit->ring;
129 	unsigned int i, ibs = 0;
130 
131 	if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) {
132 		gpu->cur_ctx_seqno = 0;
133 		a5xx_submit_in_rb(gpu, submit);
134 		return;
135 	}
136 
137 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
138 	OUT_RING(ring, 0x02);
139 
140 	/* Turn off protected mode to write to special registers */
141 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
142 	OUT_RING(ring, 0);
143 
144 	/* Set the save preemption record for the ring/command */
145 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
146 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
147 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
148 
149 	/* Turn back on protected mode */
150 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
151 	OUT_RING(ring, 1);
152 
153 	/* Enable local preemption for finegrain preemption */
154 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
155 	OUT_RING(ring, 0x1);
156 
157 	/* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */
158 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
159 	OUT_RING(ring, 0x02);
160 
161 	/* Submit the commands */
162 	for (i = 0; i < submit->nr_cmds; i++) {
163 		switch (submit->cmd[i].type) {
164 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
165 			break;
166 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
167 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
168 				break;
169 			fallthrough;
170 		case MSM_SUBMIT_CMD_BUF:
171 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
172 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
173 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
174 			OUT_RING(ring, submit->cmd[i].size);
175 			ibs++;
176 			break;
177 		}
178 
179 		/*
180 		 * Periodically update shadow-wptr if needed, so that we
181 		 * can see partial progress of submits with large # of
182 		 * cmds.. otherwise we could needlessly stall waiting for
183 		 * ringbuffer state, simply due to looking at a shadow
184 		 * rptr value that has not been updated
185 		 */
186 		if ((ibs % 32) == 0)
187 			update_shadow_rptr(gpu, ring);
188 	}
189 
190 	/*
191 	 * Write the render mode to NULL (0) to indicate to the CP that the IBs
192 	 * are done rendering - otherwise a lucky preemption would start
193 	 * replaying from the last checkpoint
194 	 */
195 	OUT_PKT7(ring, CP_SET_RENDER_MODE, 5);
196 	OUT_RING(ring, 0);
197 	OUT_RING(ring, 0);
198 	OUT_RING(ring, 0);
199 	OUT_RING(ring, 0);
200 	OUT_RING(ring, 0);
201 
202 	/* Turn off IB level preemptions */
203 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
204 	OUT_RING(ring, 0x01);
205 
206 	/* Write the fence to the scratch register */
207 	OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1);
208 	OUT_RING(ring, submit->seqno);
209 
210 	/*
211 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
212 	 * timestamp is written to the memory and then triggers the interrupt
213 	 */
214 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
215 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
216 		CP_EVENT_WRITE_0_IRQ);
217 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
218 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
219 	OUT_RING(ring, submit->seqno);
220 
221 	/* Yield the floor on command completion */
222 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
223 	/*
224 	 * If dword[2:1] are non zero, they specify an address for the CP to
225 	 * write the value of dword[3] to on preemption complete. Write 0 to
226 	 * skip the write
227 	 */
228 	OUT_RING(ring, 0x00);
229 	OUT_RING(ring, 0x00);
230 	/* Data value - not used if the address above is 0 */
231 	OUT_RING(ring, 0x01);
232 	/* Set bit 0 to trigger an interrupt on preempt complete */
233 	OUT_RING(ring, 0x01);
234 
235 	/* A WHERE_AM_I packet is not needed after a YIELD */
236 	a5xx_flush(gpu, ring, false);
237 
238 	/* Check to see if we need to start preemption */
239 	a5xx_preempt_trigger(gpu);
240 }
241 
242 static const struct adreno_five_hwcg_regs {
243 	u32 offset;
244 	u32 value;
245 } a5xx_hwcg[] = {
246 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
247 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
248 	{REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222},
249 	{REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222},
250 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
251 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
252 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220},
253 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220},
254 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
255 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
256 	{REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF},
257 	{REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF},
258 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
259 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
260 	{REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
261 	{REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
262 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
263 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
264 	{REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222},
265 	{REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222},
266 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
267 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
268 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
269 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
270 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
271 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
272 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222},
273 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222},
274 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
275 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
276 	{REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
277 	{REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
278 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
279 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
280 	{REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
281 	{REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
282 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
283 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
284 	{REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777},
285 	{REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777},
286 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
287 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
288 	{REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
289 	{REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
290 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
291 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
292 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
293 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
294 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
295 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
296 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111},
297 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111},
298 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
299 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
300 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
301 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
302 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
303 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
304 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
305 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
306 	{REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
307 	{REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
308 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
309 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
310 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222},
311 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222},
312 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
313 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
314 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220},
315 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220},
316 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
317 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
318 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
319 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
320 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404},
321 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404},
322 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
323 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
324 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
325 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002},
326 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002},
327 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
328 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
329 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
330 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
331 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
332 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
333 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
334 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
335 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
336 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
337 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}
338 }, a50x_hwcg[] = {
339 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
340 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
341 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
342 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
343 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
344 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
345 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
346 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
347 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
348 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
349 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
350 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
351 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
352 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
353 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
354 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
355 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
356 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4},
357 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
358 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
359 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
360 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
361 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
362 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
363 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
364 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
365 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
366 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
367 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
368 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
369 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
370 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
371 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
372 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
373 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
374 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
375 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
376 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
377 }, a512_hwcg[] = {
378 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
379 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
380 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
381 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
382 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
383 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
384 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
385 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
386 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
387 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
388 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
389 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
390 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
391 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
392 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
393 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
394 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
395 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
396 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
397 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
398 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
399 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
400 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
401 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
402 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
403 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
404 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
405 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
406 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
407 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
408 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
409 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
410 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
411 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
412 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
413 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
414 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
415 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
416 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
417 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
418 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
419 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
420 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
421 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
422 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
423 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
424 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
425 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
426 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
427 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
428 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
429 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
430 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
431 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
432 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
433 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
434 };
435 
436 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state)
437 {
438 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
439 	const struct adreno_five_hwcg_regs *regs;
440 	unsigned int i, sz;
441 
442 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu)) {
443 		regs = a50x_hwcg;
444 		sz = ARRAY_SIZE(a50x_hwcg);
445 	} else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) {
446 		regs = a512_hwcg;
447 		sz = ARRAY_SIZE(a512_hwcg);
448 	} else {
449 		regs = a5xx_hwcg;
450 		sz = ARRAY_SIZE(a5xx_hwcg);
451 	}
452 
453 	for (i = 0; i < sz; i++)
454 		gpu_write(gpu, regs[i].offset,
455 			  state ? regs[i].value : 0);
456 
457 	if (adreno_is_a540(adreno_gpu)) {
458 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0);
459 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0);
460 	}
461 
462 	gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0);
463 	gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180);
464 }
465 
466 static int a5xx_me_init(struct msm_gpu *gpu)
467 {
468 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
469 	struct msm_ringbuffer *ring = gpu->rb[0];
470 
471 	OUT_PKT7(ring, CP_ME_INIT, 8);
472 
473 	OUT_RING(ring, 0x0000002F);
474 
475 	/* Enable multiple hardware contexts */
476 	OUT_RING(ring, 0x00000003);
477 
478 	/* Enable error detection */
479 	OUT_RING(ring, 0x20000000);
480 
481 	/* Don't enable header dump */
482 	OUT_RING(ring, 0x00000000);
483 	OUT_RING(ring, 0x00000000);
484 
485 	/* Specify workarounds for various microcode issues */
486 	if (adreno_is_a506(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
487 		/* Workaround for token end syncs
488 		 * Force a WFI after every direct-render 3D mode draw and every
489 		 * 2D mode 3 draw
490 		 */
491 		OUT_RING(ring, 0x0000000B);
492 	} else if (adreno_is_a510(adreno_gpu)) {
493 		/* Workaround for token and syncs */
494 		OUT_RING(ring, 0x00000001);
495 	} else {
496 		/* No workarounds enabled */
497 		OUT_RING(ring, 0x00000000);
498 	}
499 
500 	OUT_RING(ring, 0x00000000);
501 	OUT_RING(ring, 0x00000000);
502 
503 	a5xx_flush(gpu, ring, true);
504 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
505 }
506 
507 static int a5xx_preempt_start(struct msm_gpu *gpu)
508 {
509 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
510 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
511 	struct msm_ringbuffer *ring = gpu->rb[0];
512 
513 	if (gpu->nr_rings == 1)
514 		return 0;
515 
516 	/* Turn off protected mode to write to special registers */
517 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
518 	OUT_RING(ring, 0);
519 
520 	/* Set the save preemption record for the ring/command */
521 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
522 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id]));
523 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id]));
524 
525 	/* Turn back on protected mode */
526 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
527 	OUT_RING(ring, 1);
528 
529 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
530 	OUT_RING(ring, 0x00);
531 
532 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
533 	OUT_RING(ring, 0x01);
534 
535 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
536 	OUT_RING(ring, 0x01);
537 
538 	/* Yield the floor on command completion */
539 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
540 	OUT_RING(ring, 0x00);
541 	OUT_RING(ring, 0x00);
542 	OUT_RING(ring, 0x01);
543 	OUT_RING(ring, 0x01);
544 
545 	/* The WHERE_AMI_I packet is not needed after a YIELD is issued */
546 	a5xx_flush(gpu, ring, false);
547 
548 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
549 }
550 
551 static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu,
552 		struct drm_gem_object *obj)
553 {
554 	u32 *buf = msm_gem_get_vaddr(obj);
555 
556 	if (IS_ERR(buf))
557 		return;
558 
559 	/*
560 	 * If the lowest nibble is 0xa that is an indication that this microcode
561 	 * has been patched. The actual version is in dword [3] but we only care
562 	 * about the patchlevel which is the lowest nibble of dword [3]
563 	 */
564 	if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1)
565 		a5xx_gpu->has_whereami = true;
566 
567 	msm_gem_put_vaddr(obj);
568 }
569 
570 static int a5xx_ucode_load(struct msm_gpu *gpu)
571 {
572 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
573 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
574 	int ret;
575 
576 	if (!a5xx_gpu->pm4_bo) {
577 		a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu,
578 			adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova);
579 
580 
581 		if (IS_ERR(a5xx_gpu->pm4_bo)) {
582 			ret = PTR_ERR(a5xx_gpu->pm4_bo);
583 			a5xx_gpu->pm4_bo = NULL;
584 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n",
585 				ret);
586 			return ret;
587 		}
588 
589 		msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw");
590 	}
591 
592 	if (!a5xx_gpu->pfp_bo) {
593 		a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu,
594 			adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova);
595 
596 		if (IS_ERR(a5xx_gpu->pfp_bo)) {
597 			ret = PTR_ERR(a5xx_gpu->pfp_bo);
598 			a5xx_gpu->pfp_bo = NULL;
599 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n",
600 				ret);
601 			return ret;
602 		}
603 
604 		msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw");
605 		a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo);
606 	}
607 
608 	if (a5xx_gpu->has_whereami) {
609 		if (!a5xx_gpu->shadow_bo) {
610 			a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
611 				sizeof(u32) * gpu->nr_rings,
612 				MSM_BO_WC | MSM_BO_MAP_PRIV,
613 				gpu->aspace, &a5xx_gpu->shadow_bo,
614 				&a5xx_gpu->shadow_iova);
615 
616 			if (IS_ERR(a5xx_gpu->shadow))
617 				return PTR_ERR(a5xx_gpu->shadow);
618 
619 			msm_gem_object_set_name(a5xx_gpu->shadow_bo, "shadow");
620 		}
621 	} else if (gpu->nr_rings > 1) {
622 		/* Disable preemption if WHERE_AM_I isn't available */
623 		a5xx_preempt_fini(gpu);
624 		gpu->nr_rings = 1;
625 	}
626 
627 	return 0;
628 }
629 
630 #define SCM_GPU_ZAP_SHADER_RESUME 0
631 
632 static int a5xx_zap_shader_resume(struct msm_gpu *gpu)
633 {
634 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
635 	int ret;
636 
637 	/*
638 	 * Adreno 506 have CPZ Retention feature and doesn't require
639 	 * to resume zap shader
640 	 */
641 	if (adreno_is_a506(adreno_gpu))
642 		return 0;
643 
644 	ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID);
645 	if (ret)
646 		DRM_ERROR("%s: zap-shader resume failed: %d\n",
647 			gpu->name, ret);
648 
649 	return ret;
650 }
651 
652 static int a5xx_zap_shader_init(struct msm_gpu *gpu)
653 {
654 	static bool loaded;
655 	int ret;
656 
657 	/*
658 	 * If the zap shader is already loaded into memory we just need to kick
659 	 * the remote processor to reinitialize it
660 	 */
661 	if (loaded)
662 		return a5xx_zap_shader_resume(gpu);
663 
664 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
665 
666 	loaded = !ret;
667 	return ret;
668 }
669 
670 #define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
671 	  A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
672 	  A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
673 	  A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
674 	  A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
675 	  A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \
676 	  A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
677 	  A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \
678 	  A5XX_RBBM_INT_0_MASK_CP_SW | \
679 	  A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
680 	  A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
681 	  A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
682 
683 static int a5xx_hw_init(struct msm_gpu *gpu)
684 {
685 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
686 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
687 	u32 hbb;
688 	int ret;
689 
690 	gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003);
691 
692 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
693 	    adreno_is_a540(adreno_gpu))
694 		gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
695 
696 	/* Make all blocks contribute to the GPU BUSY perf counter */
697 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
698 
699 	/* Enable RBBM error reporting bits */
700 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001);
701 
702 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) {
703 		/*
704 		 * Mask out the activity signals from RB1-3 to avoid false
705 		 * positives
706 		 */
707 
708 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11,
709 			0xF0000000);
710 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12,
711 			0xFFFFFFFF);
712 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13,
713 			0xFFFFFFFF);
714 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14,
715 			0xFFFFFFFF);
716 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15,
717 			0xFFFFFFFF);
718 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16,
719 			0xFFFFFFFF);
720 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17,
721 			0xFFFFFFFF);
722 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18,
723 			0xFFFFFFFF);
724 	}
725 
726 	/* Enable fault detection */
727 	gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL,
728 		(1 << 30) | 0xFFFF);
729 
730 	/* Turn on performance counters */
731 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01);
732 
733 	/* Select CP0 to always count cycles */
734 	gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
735 
736 	/* Select RBBM0 to countable 6 to get the busy status for devfreq */
737 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6);
738 
739 	/* Increase VFD cache access so LRZ and other data gets evicted less */
740 	gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02);
741 
742 	/* Disable L2 bypass in the UCHE */
743 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000);
744 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF);
745 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000);
746 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF);
747 
748 	/* Set the GMEM VA range (0 to gpu->gmem) */
749 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
750 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000);
751 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO,
752 		0x00100000 + adreno_gpu->info->gmem - 1);
753 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000);
754 
755 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
756 	    adreno_is_a510(adreno_gpu)) {
757 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20);
758 		if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu))
759 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
760 		else
761 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20);
762 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030);
763 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A);
764 	} else {
765 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40);
766 		if (adreno_is_a530(adreno_gpu))
767 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40);
768 		else
769 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
770 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060);
771 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16);
772 	}
773 
774 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu))
775 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
776 			  (0x100 << 11 | 0x100 << 22));
777 	else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) ||
778 		 adreno_is_a512(adreno_gpu))
779 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
780 			  (0x200 << 11 | 0x200 << 22));
781 	else
782 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
783 			  (0x400 << 11 | 0x300 << 22));
784 
785 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI)
786 		gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
787 
788 	/*
789 	 * Disable the RB sampler datapath DP2 clock gating optimization
790 	 * for 1-SP GPUs, as it is enabled by default.
791 	 */
792 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
793 	    adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu))
794 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9));
795 
796 	/* Disable UCHE global filter as SP can invalidate/flush independently */
797 	gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29));
798 
799 	/* Enable USE_RETENTION_FLOPS */
800 	gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000);
801 
802 	/* Enable ME/PFP split notification */
803 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF);
804 
805 	/*
806 	 *  In A5x, CCU can send context_done event of a particular context to
807 	 *  UCHE which ultimately reaches CP even when there is valid
808 	 *  transaction of that context inside CCU. This can let CP to program
809 	 *  config registers, which will make the "valid transaction" inside
810 	 *  CCU to be interpreted differently. This can cause gpu fault. This
811 	 *  bug is fixed in latest A510 revision. To enable this bug fix -
812 	 *  bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1
813 	 *  (disable). For older A510 version this bit is unused.
814 	 */
815 	if (adreno_is_a510(adreno_gpu))
816 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0);
817 
818 	/* Enable HWCG */
819 	a5xx_set_hwcg(gpu, true);
820 
821 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F);
822 
823 	BUG_ON(adreno_gpu->ubwc_config.highest_bank_bit < 13);
824 	hbb = adreno_gpu->ubwc_config.highest_bank_bit - 13;
825 
826 	gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, hbb << 7);
827 	gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, hbb << 1);
828 
829 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
830 	    adreno_is_a540(adreno_gpu))
831 		gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, hbb);
832 
833 	/* Disable All flat shading optimization (ALLFLATOPTDIS) */
834 	gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10));
835 
836 	/* Protect registers from the CP */
837 	gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007);
838 
839 	/* RBBM */
840 	gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4));
841 	gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8));
842 	gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16));
843 	gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32));
844 	gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64));
845 	gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64));
846 
847 	/* Content protect */
848 	gpu_write(gpu, REG_A5XX_CP_PROTECT(6),
849 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
850 			16));
851 	gpu_write(gpu, REG_A5XX_CP_PROTECT(7),
852 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2));
853 
854 	/* CP */
855 	gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64));
856 	gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8));
857 	gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32));
858 	gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1));
859 
860 	/* RB */
861 	gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1));
862 	gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2));
863 
864 	/* VPC */
865 	gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8));
866 	gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16));
867 
868 	/* UCHE */
869 	gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16));
870 
871 	/* SMMU */
872 	gpu_write(gpu, REG_A5XX_CP_PROTECT(17),
873 			ADRENO_PROTECT_RW(0x10000, 0x8000));
874 
875 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0);
876 	/*
877 	 * Disable the trusted memory range - we don't actually supported secure
878 	 * memory rendering at this point in time and we don't want to block off
879 	 * part of the virtual memory space.
880 	 */
881 	gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO, 0x00000000);
882 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
883 
884 	/* Put the GPU into 64 bit by default */
885 	gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1);
886 	gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1);
887 	gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1);
888 	gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1);
889 	gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1);
890 	gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1);
891 	gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1);
892 	gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1);
893 	gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1);
894 	gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1);
895 	gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1);
896 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
897 
898 	/*
899 	 * VPC corner case with local memory load kill leads to corrupt
900 	 * internal state. Normal Disable does not work for all a5x chips.
901 	 * So do the following setting to disable it.
902 	 */
903 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) {
904 		gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23));
905 		gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0);
906 	}
907 
908 	ret = adreno_hw_init(gpu);
909 	if (ret)
910 		return ret;
911 
912 	if (adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))
913 		a5xx_gpmu_ucode_init(gpu);
914 
915 	gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO, a5xx_gpu->pm4_iova);
916 	gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO, a5xx_gpu->pfp_iova);
917 
918 	/* Set the ringbuffer address */
919 	gpu_write64(gpu, REG_A5XX_CP_RB_BASE, gpu->rb[0]->iova);
920 
921 	/*
922 	 * If the microcode supports the WHERE_AM_I opcode then we can use that
923 	 * in lieu of the RPTR shadow and enable preemption. Otherwise, we
924 	 * can't safely use the RPTR shadow or preemption. In either case, the
925 	 * RPTR shadow should be disabled in hardware.
926 	 */
927 	gpu_write(gpu, REG_A5XX_CP_RB_CNTL,
928 		MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
929 
930 	/* Configure the RPTR shadow if needed: */
931 	if (a5xx_gpu->shadow_bo) {
932 		gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR,
933 			    shadowptr(a5xx_gpu, gpu->rb[0]));
934 	}
935 
936 	a5xx_preempt_hw_init(gpu);
937 
938 	/* Disable the interrupts through the initial bringup stage */
939 	gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK);
940 
941 	/* Clear ME_HALT to start the micro engine */
942 	gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0);
943 	ret = a5xx_me_init(gpu);
944 	if (ret)
945 		return ret;
946 
947 	ret = a5xx_power_init(gpu);
948 	if (ret)
949 		return ret;
950 
951 	/*
952 	 * Send a pipeline event stat to get misbehaving counters to start
953 	 * ticking correctly
954 	 */
955 	if (adreno_is_a530(adreno_gpu)) {
956 		OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1);
957 		OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT));
958 
959 		a5xx_flush(gpu, gpu->rb[0], true);
960 		if (!a5xx_idle(gpu, gpu->rb[0]))
961 			return -EINVAL;
962 	}
963 
964 	/*
965 	 * If the chip that we are using does support loading one, then
966 	 * try to load a zap shader into the secure world. If successful
967 	 * we can use the CP to switch out of secure mode. If not then we
968 	 * have no resource but to try to switch ourselves out manually. If we
969 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
970 	 * be blocked and a permissions violation will soon follow.
971 	 */
972 	ret = a5xx_zap_shader_init(gpu);
973 	if (!ret) {
974 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
975 		OUT_RING(gpu->rb[0], 0x00000000);
976 
977 		a5xx_flush(gpu, gpu->rb[0], true);
978 		if (!a5xx_idle(gpu, gpu->rb[0]))
979 			return -EINVAL;
980 	} else if (ret == -ENODEV) {
981 		/*
982 		 * This device does not use zap shader (but print a warning
983 		 * just in case someone got their dt wrong.. hopefully they
984 		 * have a debug UART to realize the error of their ways...
985 		 * if you mess this up you are about to crash horribly)
986 		 */
987 		dev_warn_once(gpu->dev->dev,
988 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
989 		gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0);
990 	} else {
991 		return ret;
992 	}
993 
994 	/* Last step - yield the ringbuffer */
995 	a5xx_preempt_start(gpu);
996 
997 	return 0;
998 }
999 
1000 static void a5xx_recover(struct msm_gpu *gpu)
1001 {
1002 	int i;
1003 
1004 	adreno_dump_info(gpu);
1005 
1006 	for (i = 0; i < 8; i++) {
1007 		printk("CP_SCRATCH_REG%d: %u\n", i,
1008 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i)));
1009 	}
1010 
1011 	if (hang_debug)
1012 		a5xx_dump(gpu);
1013 
1014 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1);
1015 	gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD);
1016 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0);
1017 	adreno_recover(gpu);
1018 }
1019 
1020 static void a5xx_destroy(struct msm_gpu *gpu)
1021 {
1022 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1023 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1024 
1025 	DBG("%s", gpu->name);
1026 
1027 	a5xx_preempt_fini(gpu);
1028 
1029 	if (a5xx_gpu->pm4_bo) {
1030 		msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace);
1031 		drm_gem_object_put(a5xx_gpu->pm4_bo);
1032 	}
1033 
1034 	if (a5xx_gpu->pfp_bo) {
1035 		msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace);
1036 		drm_gem_object_put(a5xx_gpu->pfp_bo);
1037 	}
1038 
1039 	if (a5xx_gpu->gpmu_bo) {
1040 		msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace);
1041 		drm_gem_object_put(a5xx_gpu->gpmu_bo);
1042 	}
1043 
1044 	if (a5xx_gpu->shadow_bo) {
1045 		msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace);
1046 		drm_gem_object_put(a5xx_gpu->shadow_bo);
1047 	}
1048 
1049 	adreno_gpu_cleanup(adreno_gpu);
1050 	kfree(a5xx_gpu);
1051 }
1052 
1053 static inline bool _a5xx_check_idle(struct msm_gpu *gpu)
1054 {
1055 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY)
1056 		return false;
1057 
1058 	/*
1059 	 * Nearly every abnormality ends up pausing the GPU and triggering a
1060 	 * fault so we can safely just watch for this one interrupt to fire
1061 	 */
1062 	return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) &
1063 		A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT);
1064 }
1065 
1066 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1067 {
1068 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1069 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1070 
1071 	if (ring != a5xx_gpu->cur_ring) {
1072 		WARN(1, "Tried to idle a non-current ringbuffer\n");
1073 		return false;
1074 	}
1075 
1076 	/* wait for CP to drain ringbuffer: */
1077 	if (!adreno_idle(gpu, ring))
1078 		return false;
1079 
1080 	if (spin_until(_a5xx_check_idle(gpu))) {
1081 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
1082 			gpu->name, __builtin_return_address(0),
1083 			gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1084 			gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS),
1085 			gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1086 			gpu_read(gpu, REG_A5XX_CP_RB_WPTR));
1087 		return false;
1088 	}
1089 
1090 	return true;
1091 }
1092 
1093 static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1094 {
1095 	struct msm_gpu *gpu = arg;
1096 	struct adreno_smmu_fault_info *info = data;
1097 	char block[12] = "unknown";
1098 	u32 scratch[] = {
1099 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)),
1100 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)),
1101 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)),
1102 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)),
1103 	};
1104 
1105 	if (info)
1106 		snprintf(block, sizeof(block), "%x", info->fsynr1);
1107 
1108 	return adreno_fault_handler(gpu, iova, flags, info, block, scratch);
1109 }
1110 
1111 static void a5xx_cp_err_irq(struct msm_gpu *gpu)
1112 {
1113 	u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS);
1114 
1115 	if (status & A5XX_CP_INT_CP_OPCODE_ERROR) {
1116 		u32 val;
1117 
1118 		gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0);
1119 
1120 		/*
1121 		 * REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so
1122 		 * read it twice
1123 		 */
1124 
1125 		gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1126 		val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1127 
1128 		dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n",
1129 			val);
1130 	}
1131 
1132 	if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR)
1133 		dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n",
1134 			gpu_read(gpu, REG_A5XX_CP_HW_FAULT));
1135 
1136 	if (status & A5XX_CP_INT_CP_DMA_ERROR)
1137 		dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n");
1138 
1139 	if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1140 		u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS);
1141 
1142 		dev_err_ratelimited(gpu->dev->dev,
1143 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1144 			val & (1 << 24) ? "WRITE" : "READ",
1145 			(val & 0xFFFFF) >> 2, val);
1146 	}
1147 
1148 	if (status & A5XX_CP_INT_CP_AHB_ERROR) {
1149 		u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT);
1150 		const char *access[16] = { "reserved", "reserved",
1151 			"timestamp lo", "timestamp hi", "pfp read", "pfp write",
1152 			"", "", "me read", "me write", "", "", "crashdump read",
1153 			"crashdump write" };
1154 
1155 		dev_err_ratelimited(gpu->dev->dev,
1156 			"CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n",
1157 			status & 0xFFFFF, access[(status >> 24) & 0xF],
1158 			(status & (1 << 31)), status);
1159 	}
1160 }
1161 
1162 static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status)
1163 {
1164 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) {
1165 		u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS);
1166 
1167 		dev_err_ratelimited(gpu->dev->dev,
1168 			"RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n",
1169 			val & (1 << 28) ? "WRITE" : "READ",
1170 			(val & 0xFFFFF) >> 2, (val >> 20) & 0x3,
1171 			(val >> 24) & 0xF);
1172 
1173 		/* Clear the error */
1174 		gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4));
1175 
1176 		/* Clear the interrupt */
1177 		gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1178 			A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1179 	}
1180 
1181 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT)
1182 		dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n");
1183 
1184 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT)
1185 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n",
1186 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS));
1187 
1188 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT)
1189 		dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n",
1190 			gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS));
1191 
1192 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT)
1193 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n",
1194 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS));
1195 
1196 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1197 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n");
1198 
1199 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1200 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n");
1201 }
1202 
1203 static void a5xx_uche_err_irq(struct msm_gpu *gpu)
1204 {
1205 	uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI);
1206 
1207 	addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO);
1208 
1209 	dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n",
1210 		addr);
1211 }
1212 
1213 static void a5xx_gpmu_err_irq(struct msm_gpu *gpu)
1214 {
1215 	dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n");
1216 }
1217 
1218 static void a5xx_fault_detect_irq(struct msm_gpu *gpu)
1219 {
1220 	struct drm_device *dev = gpu->dev;
1221 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1222 
1223 	/*
1224 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1225 	 * but the fault handler will trigger the devcore dump, and we want
1226 	 * to otherwise resume normally rather than killing the submit, so
1227 	 * just bail.
1228 	 */
1229 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24))
1230 		return;
1231 
1232 	DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1233 		ring ? ring->id : -1, ring ? ring->fctx->last_fence : 0,
1234 		gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1235 		gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1236 		gpu_read(gpu, REG_A5XX_CP_RB_WPTR),
1237 		gpu_read64(gpu, REG_A5XX_CP_IB1_BASE),
1238 		gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ),
1239 		gpu_read64(gpu, REG_A5XX_CP_IB2_BASE),
1240 		gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ));
1241 
1242 	/* Turn off the hangcheck timer to keep it from bothering us */
1243 	del_timer(&gpu->hangcheck_timer);
1244 
1245 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1246 }
1247 
1248 #define RBBM_ERROR_MASK \
1249 	(A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
1250 	A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
1251 	A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
1252 	A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
1253 	A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
1254 	A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1255 
1256 static irqreturn_t a5xx_irq(struct msm_gpu *gpu)
1257 {
1258 	struct msm_drm_private *priv = gpu->dev->dev_private;
1259 	u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS);
1260 
1261 	/*
1262 	 * Clear all the interrupts except RBBM_AHB_ERROR - if we clear it
1263 	 * before the source is cleared the interrupt will storm.
1264 	 */
1265 	gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1266 		status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1267 
1268 	if (priv->disable_err_irq) {
1269 		status &= A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS |
1270 			  A5XX_RBBM_INT_0_MASK_CP_SW;
1271 	}
1272 
1273 	/* Pass status to a5xx_rbbm_err_irq because we've already cleared it */
1274 	if (status & RBBM_ERROR_MASK)
1275 		a5xx_rbbm_err_irq(gpu, status);
1276 
1277 	if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1278 		a5xx_cp_err_irq(gpu);
1279 
1280 	if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT)
1281 		a5xx_fault_detect_irq(gpu);
1282 
1283 	if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1284 		a5xx_uche_err_irq(gpu);
1285 
1286 	if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
1287 		a5xx_gpmu_err_irq(gpu);
1288 
1289 	if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
1290 		a5xx_preempt_trigger(gpu);
1291 		msm_gpu_retire(gpu);
1292 	}
1293 
1294 	if (status & A5XX_RBBM_INT_0_MASK_CP_SW)
1295 		a5xx_preempt_irq(gpu);
1296 
1297 	return IRQ_HANDLED;
1298 }
1299 
1300 static const u32 a5xx_registers[] = {
1301 	0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B,
1302 	0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095,
1303 	0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3,
1304 	0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841,
1305 	0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28,
1306 	0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53,
1307 	0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98,
1308 	0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585,
1309 	0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8,
1310 	0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E,
1311 	0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545,
1312 	0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0,
1313 	0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57,
1314 	0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8,
1315 	0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9,
1316 	0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201,
1317 	0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A,
1318 	0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F,
1319 	0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0,
1320 	0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947,
1321 	0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7,
1322 	0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68,
1323 	0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB,
1324 	0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05,
1325 	0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3,
1326 	0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D,
1327 	0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5,
1328 	0xAC60, 0xAC60, ~0,
1329 };
1330 
1331 static void a5xx_dump(struct msm_gpu *gpu)
1332 {
1333 	DRM_DEV_INFO(gpu->dev->dev, "status:   %08x\n",
1334 		gpu_read(gpu, REG_A5XX_RBBM_STATUS));
1335 	adreno_dump(gpu);
1336 }
1337 
1338 static int a5xx_pm_resume(struct msm_gpu *gpu)
1339 {
1340 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1341 	int ret;
1342 
1343 	/* Turn on the core power */
1344 	ret = msm_gpu_pm_resume(gpu);
1345 	if (ret)
1346 		return ret;
1347 
1348 	/* Adreno 506, 508, 509, 510, 512 needs manual RBBM sus/res control */
1349 	if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) {
1350 		/* Halt the sp_input_clk at HM level */
1351 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055);
1352 		a5xx_set_hwcg(gpu, true);
1353 		/* Turn on sp_input_clk at HM level */
1354 		gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0);
1355 		return 0;
1356 	}
1357 
1358 	/* Turn the RBCCU domain first to limit the chances of voltage droop */
1359 	gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000);
1360 
1361 	/* Wait 3 usecs before polling */
1362 	udelay(3);
1363 
1364 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS,
1365 		(1 << 20), (1 << 20));
1366 	if (ret) {
1367 		DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n",
1368 			gpu->name,
1369 			gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS));
1370 		return ret;
1371 	}
1372 
1373 	/* Turn on the SP domain */
1374 	gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000);
1375 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS,
1376 		(1 << 20), (1 << 20));
1377 	if (ret)
1378 		DRM_ERROR("%s: timeout waiting for SP GDSC enable\n",
1379 			gpu->name);
1380 
1381 	return ret;
1382 }
1383 
1384 static int a5xx_pm_suspend(struct msm_gpu *gpu)
1385 {
1386 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1387 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1388 	u32 mask = 0xf;
1389 	int i, ret;
1390 
1391 	/* A506, A508, A510 have 3 XIN ports in VBIF */
1392 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
1393 	    adreno_is_a510(adreno_gpu))
1394 		mask = 0x7;
1395 
1396 	/* Clear the VBIF pipe before shutting down */
1397 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask);
1398 	spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) &
1399 				mask) == mask);
1400 
1401 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0);
1402 
1403 	/*
1404 	 * Reset the VBIF before power collapse to avoid issue with FIFO
1405 	 * entries on Adreno A510 and A530 (the others will tend to lock up)
1406 	 */
1407 	if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
1408 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000);
1409 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000);
1410 	}
1411 
1412 	ret = msm_gpu_pm_suspend(gpu);
1413 	if (ret)
1414 		return ret;
1415 
1416 	if (a5xx_gpu->has_whereami)
1417 		for (i = 0; i < gpu->nr_rings; i++)
1418 			a5xx_gpu->shadow[i] = 0;
1419 
1420 	return 0;
1421 }
1422 
1423 static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1424 {
1425 	*value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO);
1426 
1427 	return 0;
1428 }
1429 
1430 struct a5xx_crashdumper {
1431 	void *ptr;
1432 	struct drm_gem_object *bo;
1433 	u64 iova;
1434 };
1435 
1436 struct a5xx_gpu_state {
1437 	struct msm_gpu_state base;
1438 	u32 *hlsqregs;
1439 };
1440 
1441 static int a5xx_crashdumper_init(struct msm_gpu *gpu,
1442 		struct a5xx_crashdumper *dumper)
1443 {
1444 	dumper->ptr = msm_gem_kernel_new(gpu->dev,
1445 		SZ_1M, MSM_BO_WC, gpu->aspace,
1446 		&dumper->bo, &dumper->iova);
1447 
1448 	if (!IS_ERR(dumper->ptr))
1449 		msm_gem_object_set_name(dumper->bo, "crashdump");
1450 
1451 	return PTR_ERR_OR_ZERO(dumper->ptr);
1452 }
1453 
1454 static int a5xx_crashdumper_run(struct msm_gpu *gpu,
1455 		struct a5xx_crashdumper *dumper)
1456 {
1457 	u32 val;
1458 
1459 	if (IS_ERR_OR_NULL(dumper->ptr))
1460 		return -EINVAL;
1461 
1462 	gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO, dumper->iova);
1463 
1464 	gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1);
1465 
1466 	return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val,
1467 		val & 0x04, 100, 10000);
1468 }
1469 
1470 /*
1471  * These are a list of the registers that need to be read through the HLSQ
1472  * aperture through the crashdumper.  These are not nominally accessible from
1473  * the CPU on a secure platform.
1474  */
1475 static const struct {
1476 	u32 type;
1477 	u32 regoffset;
1478 	u32 count;
1479 } a5xx_hlsq_aperture_regs[] = {
1480 	{ 0x35, 0xe00, 0x32 },   /* HSLQ non-context */
1481 	{ 0x31, 0x2080, 0x1 },   /* HLSQ 2D context 0 */
1482 	{ 0x33, 0x2480, 0x1 },   /* HLSQ 2D context 1 */
1483 	{ 0x32, 0xe780, 0x62 },  /* HLSQ 3D context 0 */
1484 	{ 0x34, 0xef80, 0x62 },  /* HLSQ 3D context 1 */
1485 	{ 0x3f, 0x0ec0, 0x40 },  /* SP non-context */
1486 	{ 0x3d, 0x2040, 0x1 },   /* SP 2D context 0 */
1487 	{ 0x3b, 0x2440, 0x1 },   /* SP 2D context 1 */
1488 	{ 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */
1489 	{ 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */
1490 	{ 0x3a, 0x0f00, 0x1c },  /* TP non-context */
1491 	{ 0x38, 0x2000, 0xa },   /* TP 2D context 0 */
1492 	{ 0x36, 0x2400, 0xa },   /* TP 2D context 1 */
1493 	{ 0x39, 0xe700, 0x80 },  /* TP 3D context 0 */
1494 	{ 0x37, 0xef00, 0x80 },  /* TP 3D context 1 */
1495 };
1496 
1497 static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu,
1498 		struct a5xx_gpu_state *a5xx_state)
1499 {
1500 	struct a5xx_crashdumper dumper = { 0 };
1501 	u32 offset, count = 0;
1502 	u64 *ptr;
1503 	int i;
1504 
1505 	if (a5xx_crashdumper_init(gpu, &dumper))
1506 		return;
1507 
1508 	/* The script will be written at offset 0 */
1509 	ptr = dumper.ptr;
1510 
1511 	/* Start writing the data at offset 256k */
1512 	offset = dumper.iova + (256 * SZ_1K);
1513 
1514 	/* Count how many additional registers to get from the HLSQ aperture */
1515 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++)
1516 		count += a5xx_hlsq_aperture_regs[i].count;
1517 
1518 	a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL);
1519 	if (!a5xx_state->hlsqregs)
1520 		return;
1521 
1522 	/* Build the crashdump script */
1523 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1524 		u32 type = a5xx_hlsq_aperture_regs[i].type;
1525 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1526 
1527 		/* Write the register to select the desired bank */
1528 		*ptr++ = ((u64) type << 8);
1529 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) |
1530 			(1 << 21) | 1;
1531 
1532 		*ptr++ = offset;
1533 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44)
1534 			| c;
1535 
1536 		offset += c * sizeof(u32);
1537 	}
1538 
1539 	/* Write two zeros to close off the script */
1540 	*ptr++ = 0;
1541 	*ptr++ = 0;
1542 
1543 	if (a5xx_crashdumper_run(gpu, &dumper)) {
1544 		kfree(a5xx_state->hlsqregs);
1545 		msm_gem_kernel_put(dumper.bo, gpu->aspace);
1546 		return;
1547 	}
1548 
1549 	/* Copy the data from the crashdumper to the state */
1550 	memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K),
1551 		count * sizeof(u32));
1552 
1553 	msm_gem_kernel_put(dumper.bo, gpu->aspace);
1554 }
1555 
1556 static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu)
1557 {
1558 	struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state),
1559 			GFP_KERNEL);
1560 	bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24));
1561 
1562 	if (!a5xx_state)
1563 		return ERR_PTR(-ENOMEM);
1564 
1565 	/* Temporarily disable hardware clock gating before reading the hw */
1566 	a5xx_set_hwcg(gpu, false);
1567 
1568 	/* First get the generic state from the adreno core */
1569 	adreno_gpu_state_get(gpu, &(a5xx_state->base));
1570 
1571 	a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS);
1572 
1573 	/*
1574 	 * Get the HLSQ regs with the help of the crashdumper, but only if
1575 	 * we are not stalled in an iommu fault (in which case the crashdumper
1576 	 * would not have access to memory)
1577 	 */
1578 	if (!stalled)
1579 		a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state);
1580 
1581 	a5xx_set_hwcg(gpu, true);
1582 
1583 	return &a5xx_state->base;
1584 }
1585 
1586 static void a5xx_gpu_state_destroy(struct kref *kref)
1587 {
1588 	struct msm_gpu_state *state = container_of(kref,
1589 		struct msm_gpu_state, ref);
1590 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1591 		struct a5xx_gpu_state, base);
1592 
1593 	kfree(a5xx_state->hlsqregs);
1594 
1595 	adreno_gpu_state_destroy(state);
1596 	kfree(a5xx_state);
1597 }
1598 
1599 static int a5xx_gpu_state_put(struct msm_gpu_state *state)
1600 {
1601 	if (IS_ERR_OR_NULL(state))
1602 		return 1;
1603 
1604 	return kref_put(&state->ref, a5xx_gpu_state_destroy);
1605 }
1606 
1607 
1608 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1609 static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
1610 		      struct drm_printer *p)
1611 {
1612 	int i, j;
1613 	u32 pos = 0;
1614 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1615 		struct a5xx_gpu_state, base);
1616 
1617 	if (IS_ERR_OR_NULL(state))
1618 		return;
1619 
1620 	adreno_show(gpu, state, p);
1621 
1622 	/* Dump the additional a5xx HLSQ registers */
1623 	if (!a5xx_state->hlsqregs)
1624 		return;
1625 
1626 	drm_printf(p, "registers-hlsq:\n");
1627 
1628 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1629 		u32 o = a5xx_hlsq_aperture_regs[i].regoffset;
1630 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1631 
1632 		for (j = 0; j < c; j++, pos++, o++) {
1633 			/*
1634 			 * To keep the crashdump simple we pull the entire range
1635 			 * for each register type but not all of the registers
1636 			 * in the range are valid. Fortunately invalid registers
1637 			 * stick out like a sore thumb with a value of
1638 			 * 0xdeadbeef
1639 			 */
1640 			if (a5xx_state->hlsqregs[pos] == 0xdeadbeef)
1641 				continue;
1642 
1643 			drm_printf(p, "  - { offset: 0x%04x, value: 0x%08x }\n",
1644 				o << 2, a5xx_state->hlsqregs[pos]);
1645 		}
1646 	}
1647 }
1648 #endif
1649 
1650 static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu)
1651 {
1652 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1653 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1654 
1655 	return a5xx_gpu->cur_ring;
1656 }
1657 
1658 static u64 a5xx_gpu_busy(struct msm_gpu *gpu, unsigned long *out_sample_rate)
1659 {
1660 	u64 busy_cycles;
1661 
1662 	busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO);
1663 	*out_sample_rate = clk_get_rate(gpu->core_clk);
1664 
1665 	return busy_cycles;
1666 }
1667 
1668 static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1669 {
1670 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1671 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1672 
1673 	if (a5xx_gpu->has_whereami)
1674 		return a5xx_gpu->shadow[ring->id];
1675 
1676 	return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR);
1677 }
1678 
1679 static const struct adreno_gpu_funcs funcs = {
1680 	.base = {
1681 		.get_param = adreno_get_param,
1682 		.set_param = adreno_set_param,
1683 		.hw_init = a5xx_hw_init,
1684 		.ucode_load = a5xx_ucode_load,
1685 		.pm_suspend = a5xx_pm_suspend,
1686 		.pm_resume = a5xx_pm_resume,
1687 		.recover = a5xx_recover,
1688 		.submit = a5xx_submit,
1689 		.active_ring = a5xx_active_ring,
1690 		.irq = a5xx_irq,
1691 		.destroy = a5xx_destroy,
1692 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1693 		.show = a5xx_show,
1694 #endif
1695 #if defined(CONFIG_DEBUG_FS)
1696 		.debugfs_init = a5xx_debugfs_init,
1697 #endif
1698 		.gpu_busy = a5xx_gpu_busy,
1699 		.gpu_state_get = a5xx_gpu_state_get,
1700 		.gpu_state_put = a5xx_gpu_state_put,
1701 		.create_address_space = adreno_create_address_space,
1702 		.get_rptr = a5xx_get_rptr,
1703 	},
1704 	.get_timestamp = a5xx_get_timestamp,
1705 };
1706 
1707 static void check_speed_bin(struct device *dev)
1708 {
1709 	struct nvmem_cell *cell;
1710 	u32 val;
1711 
1712 	/*
1713 	 * If the OPP table specifies a opp-supported-hw property then we have
1714 	 * to set something with dev_pm_opp_set_supported_hw() or the table
1715 	 * doesn't get populated so pick an arbitrary value that should
1716 	 * ensure the default frequencies are selected but not conflict with any
1717 	 * actual bins
1718 	 */
1719 	val = 0x80;
1720 
1721 	cell = nvmem_cell_get(dev, "speed_bin");
1722 
1723 	if (!IS_ERR(cell)) {
1724 		void *buf = nvmem_cell_read(cell, NULL);
1725 
1726 		if (!IS_ERR(buf)) {
1727 			u8 bin = *((u8 *) buf);
1728 
1729 			val = (1 << bin);
1730 			kfree(buf);
1731 		}
1732 
1733 		nvmem_cell_put(cell);
1734 	}
1735 
1736 	devm_pm_opp_set_supported_hw(dev, &val, 1);
1737 }
1738 
1739 struct msm_gpu *a5xx_gpu_init(struct drm_device *dev)
1740 {
1741 	struct msm_drm_private *priv = dev->dev_private;
1742 	struct platform_device *pdev = priv->gpu_pdev;
1743 	struct adreno_platform_config *config = pdev->dev.platform_data;
1744 	struct a5xx_gpu *a5xx_gpu = NULL;
1745 	struct adreno_gpu *adreno_gpu;
1746 	struct msm_gpu *gpu;
1747 	unsigned int nr_rings;
1748 	int ret;
1749 
1750 	if (!pdev) {
1751 		DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n");
1752 		return ERR_PTR(-ENXIO);
1753 	}
1754 
1755 	a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL);
1756 	if (!a5xx_gpu)
1757 		return ERR_PTR(-ENOMEM);
1758 
1759 	adreno_gpu = &a5xx_gpu->base;
1760 	gpu = &adreno_gpu->base;
1761 
1762 	adreno_gpu->registers = a5xx_registers;
1763 
1764 	a5xx_gpu->lm_leakage = 0x4E001A;
1765 
1766 	check_speed_bin(&pdev->dev);
1767 
1768 	nr_rings = 4;
1769 
1770 	if (config->info->revn == 510)
1771 		nr_rings = 1;
1772 
1773 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, nr_rings);
1774 	if (ret) {
1775 		a5xx_destroy(&(a5xx_gpu->base.base));
1776 		return ERR_PTR(ret);
1777 	}
1778 
1779 	if (gpu->aspace)
1780 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler);
1781 
1782 	/* Set up the preemption specific bits and pieces for each ringbuffer */
1783 	a5xx_preempt_init(gpu);
1784 
1785 	/* Set the highest bank bit */
1786 	if (adreno_is_a540(adreno_gpu) || adreno_is_a530(adreno_gpu))
1787 		adreno_gpu->ubwc_config.highest_bank_bit = 15;
1788 	else
1789 		adreno_gpu->ubwc_config.highest_bank_bit = 14;
1790 
1791 	return gpu;
1792 }
1793