xref: /linux/drivers/gpu/drm/mgag200/mgag200_mode.c (revision a33d42dd03352d2e9d3d2c00bfa435c7a5ebab25)
1 /*
2  * Copyright 2010 Matt Turner.
3  * Copyright 2012 Red Hat
4  *
5  * This file is subject to the terms and conditions of the GNU General
6  * Public License version 2. See the file COPYING in the main
7  * directory of this archive for more details.
8  *
9  * Authors: Matthew Garrett
10  *	    Matt Turner
11  *	    Dave Airlie
12  */
13 
14 #include <linux/delay.h>
15 
16 #include <drm/drmP.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <drm/drm_plane_helper.h>
19 
20 #include "mgag200_drv.h"
21 
22 #define MGAG200_LUT_SIZE 256
23 
24 /*
25  * This file contains setup code for the CRTC.
26  */
27 
28 static void mga_crtc_load_lut(struct drm_crtc *crtc)
29 {
30 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
31 	struct drm_device *dev = crtc->dev;
32 	struct mga_device *mdev = dev->dev_private;
33 	struct drm_framebuffer *fb = crtc->primary->fb;
34 	int i;
35 
36 	if (!crtc->enabled)
37 		return;
38 
39 	WREG8(DAC_INDEX + MGA1064_INDEX, 0);
40 
41 	if (fb && fb->format->cpp[0] * 8 == 16) {
42 		int inc = (fb->format->depth == 15) ? 8 : 4;
43 		u8 r, b;
44 		for (i = 0; i < MGAG200_LUT_SIZE; i += inc) {
45 			if (fb->format->depth == 16) {
46 				if (i > (MGAG200_LUT_SIZE >> 1)) {
47 					r = b = 0;
48 				} else {
49 					r = mga_crtc->lut_r[i << 1];
50 					b = mga_crtc->lut_b[i << 1];
51 				}
52 			} else {
53 				r = mga_crtc->lut_r[i];
54 				b = mga_crtc->lut_b[i];
55 			}
56 			/* VGA registers */
57 			WREG8(DAC_INDEX + MGA1064_COL_PAL, r);
58 			WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
59 			WREG8(DAC_INDEX + MGA1064_COL_PAL, b);
60 		}
61 		return;
62 	}
63 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
64 		/* VGA registers */
65 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]);
66 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]);
67 		WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]);
68 	}
69 }
70 
71 static inline void mga_wait_vsync(struct mga_device *mdev)
72 {
73 	unsigned long timeout = jiffies + HZ/10;
74 	unsigned int status = 0;
75 
76 	do {
77 		status = RREG32(MGAREG_Status);
78 	} while ((status & 0x08) && time_before(jiffies, timeout));
79 	timeout = jiffies + HZ/10;
80 	status = 0;
81 	do {
82 		status = RREG32(MGAREG_Status);
83 	} while (!(status & 0x08) && time_before(jiffies, timeout));
84 }
85 
86 static inline void mga_wait_busy(struct mga_device *mdev)
87 {
88 	unsigned long timeout = jiffies + HZ;
89 	unsigned int status = 0;
90 	do {
91 		status = RREG8(MGAREG_Status + 2);
92 	} while ((status & 0x01) && time_before(jiffies, timeout));
93 }
94 
95 #define P_ARRAY_SIZE 9
96 
97 static int mga_g200se_set_plls(struct mga_device *mdev, long clock)
98 {
99 	unsigned int vcomax, vcomin, pllreffreq;
100 	unsigned int delta, tmpdelta, permitteddelta;
101 	unsigned int testp, testm, testn;
102 	unsigned int p, m, n;
103 	unsigned int computed;
104 	unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1};
105 	unsigned int fvv;
106 	unsigned int i;
107 
108 	if (mdev->unique_rev_id <= 0x03) {
109 
110 		m = n = p = 0;
111 		vcomax = 320000;
112 		vcomin = 160000;
113 		pllreffreq = 25000;
114 
115 		delta = 0xffffffff;
116 		permitteddelta = clock * 5 / 1000;
117 
118 		for (testp = 8; testp > 0; testp /= 2) {
119 			if (clock * testp > vcomax)
120 				continue;
121 			if (clock * testp < vcomin)
122 				continue;
123 
124 			for (testn = 17; testn < 256; testn++) {
125 				for (testm = 1; testm < 32; testm++) {
126 					computed = (pllreffreq * testn) /
127 						(testm * testp);
128 					if (computed > clock)
129 						tmpdelta = computed - clock;
130 					else
131 						tmpdelta = clock - computed;
132 					if (tmpdelta < delta) {
133 						delta = tmpdelta;
134 						m = testm - 1;
135 						n = testn - 1;
136 						p = testp - 1;
137 					}
138 				}
139 			}
140 		}
141 	} else {
142 
143 
144 		m = n = p = 0;
145 		vcomax        = 1600000;
146 		vcomin        = 800000;
147 		pllreffreq    = 25000;
148 
149 		if (clock < 25000)
150 			clock = 25000;
151 
152 		clock = clock * 2;
153 
154 		delta = 0xFFFFFFFF;
155 		/* Permited delta is 0.5% as VESA Specification */
156 		permitteddelta = clock * 5 / 1000;
157 
158 		for (i = 0 ; i < P_ARRAY_SIZE ; i++) {
159 			testp = pvalues_e4[i];
160 
161 			if ((clock * testp) > vcomax)
162 				continue;
163 			if ((clock * testp) < vcomin)
164 				continue;
165 
166 			for (testn = 50; testn <= 256; testn++) {
167 				for (testm = 1; testm <= 32; testm++) {
168 					computed = (pllreffreq * testn) /
169 						(testm * testp);
170 					if (computed > clock)
171 						tmpdelta = computed - clock;
172 					else
173 						tmpdelta = clock - computed;
174 
175 					if (tmpdelta < delta) {
176 						delta = tmpdelta;
177 						m = testm - 1;
178 						n = testn - 1;
179 						p = testp - 1;
180 					}
181 				}
182 			}
183 		}
184 
185 		fvv = pllreffreq * (n + 1) / (m + 1);
186 		fvv = (fvv - 800000) / 50000;
187 
188 		if (fvv > 15)
189 			fvv = 15;
190 
191 		p |= (fvv << 4);
192 		m |= 0x80;
193 
194 		clock = clock / 2;
195 	}
196 
197 	if (delta > permitteddelta) {
198 		printk(KERN_WARNING "PLL delta too large\n");
199 		return 1;
200 	}
201 
202 	WREG_DAC(MGA1064_PIX_PLLC_M, m);
203 	WREG_DAC(MGA1064_PIX_PLLC_N, n);
204 	WREG_DAC(MGA1064_PIX_PLLC_P, p);
205 
206 	if (mdev->unique_rev_id >= 0x04) {
207 		WREG_DAC(0x1a, 0x09);
208 		msleep(20);
209 		WREG_DAC(0x1a, 0x01);
210 
211 	}
212 
213 	return 0;
214 }
215 
216 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock)
217 {
218 	unsigned int vcomax, vcomin, pllreffreq;
219 	unsigned int delta, tmpdelta;
220 	unsigned int testp, testm, testn, testp2;
221 	unsigned int p, m, n;
222 	unsigned int computed;
223 	int i, j, tmpcount, vcount;
224 	bool pll_locked = false;
225 	u8 tmp;
226 
227 	m = n = p = 0;
228 
229 	delta = 0xffffffff;
230 
231 	if (mdev->type == G200_EW3) {
232 
233 		vcomax = 800000;
234 		vcomin = 400000;
235 		pllreffreq = 25000;
236 
237 		for (testp = 1; testp < 8; testp++) {
238 			for (testp2 = 1; testp2 < 8; testp2++) {
239 				if (testp < testp2)
240 					continue;
241 				if ((clock * testp * testp2) > vcomax)
242 					continue;
243 				if ((clock * testp * testp2) < vcomin)
244 					continue;
245 				for (testm = 1; testm < 26; testm++) {
246 					for (testn = 32; testn < 2048 ; testn++) {
247 						computed = (pllreffreq * testn) /
248 							(testm * testp * testp2);
249 						if (computed > clock)
250 							tmpdelta = computed - clock;
251 						else
252 							tmpdelta = clock - computed;
253 						if (tmpdelta < delta) {
254 							delta = tmpdelta;
255 							m = ((testn & 0x100) >> 1) |
256 								(testm);
257 							n = (testn & 0xFF);
258 							p = ((testn & 0x600) >> 3) |
259 								(testp2 << 3) |
260 								(testp);
261 						}
262 					}
263 				}
264 			}
265 		}
266 	} else {
267 
268 		vcomax = 550000;
269 		vcomin = 150000;
270 		pllreffreq = 48000;
271 
272 		for (testp = 1; testp < 9; testp++) {
273 			if (clock * testp > vcomax)
274 				continue;
275 			if (clock * testp < vcomin)
276 				continue;
277 
278 			for (testm = 1; testm < 17; testm++) {
279 				for (testn = 1; testn < 151; testn++) {
280 					computed = (pllreffreq * testn) /
281 						(testm * testp);
282 					if (computed > clock)
283 						tmpdelta = computed - clock;
284 					else
285 						tmpdelta = clock - computed;
286 					if (tmpdelta < delta) {
287 						delta = tmpdelta;
288 						n = testn - 1;
289 						m = (testm - 1) |
290 							((n >> 1) & 0x80);
291 						p = testp - 1;
292 					}
293 				}
294 			}
295 		}
296 	}
297 
298 	for (i = 0; i <= 32 && pll_locked == false; i++) {
299 		if (i > 0) {
300 			WREG8(MGAREG_CRTC_INDEX, 0x1e);
301 			tmp = RREG8(MGAREG_CRTC_DATA);
302 			if (tmp < 0xff)
303 				WREG8(MGAREG_CRTC_DATA, tmp+1);
304 		}
305 
306 		/* set pixclkdis to 1 */
307 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
308 		tmp = RREG8(DAC_DATA);
309 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
310 		WREG8(DAC_DATA, tmp);
311 
312 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
313 		tmp = RREG8(DAC_DATA);
314 		tmp |= MGA1064_REMHEADCTL_CLKDIS;
315 		WREG8(DAC_DATA, tmp);
316 
317 		/* select PLL Set C */
318 		tmp = RREG8(MGAREG_MEM_MISC_READ);
319 		tmp |= 0x3 << 2;
320 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
321 
322 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
323 		tmp = RREG8(DAC_DATA);
324 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80;
325 		WREG8(DAC_DATA, tmp);
326 
327 		udelay(500);
328 
329 		/* reset the PLL */
330 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
331 		tmp = RREG8(DAC_DATA);
332 		tmp &= ~0x04;
333 		WREG8(DAC_DATA, tmp);
334 
335 		udelay(50);
336 
337 		/* program pixel pll register */
338 		WREG_DAC(MGA1064_WB_PIX_PLLC_N, n);
339 		WREG_DAC(MGA1064_WB_PIX_PLLC_M, m);
340 		WREG_DAC(MGA1064_WB_PIX_PLLC_P, p);
341 
342 		udelay(50);
343 
344 		/* turn pll on */
345 		WREG8(DAC_INDEX, MGA1064_VREF_CTL);
346 		tmp = RREG8(DAC_DATA);
347 		tmp |= 0x04;
348 		WREG_DAC(MGA1064_VREF_CTL, tmp);
349 
350 		udelay(500);
351 
352 		/* select the pixel pll */
353 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
354 		tmp = RREG8(DAC_DATA);
355 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
356 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
357 		WREG8(DAC_DATA, tmp);
358 
359 		WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
360 		tmp = RREG8(DAC_DATA);
361 		tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK;
362 		tmp |= MGA1064_REMHEADCTL_CLKSL_PLL;
363 		WREG8(DAC_DATA, tmp);
364 
365 		/* reset dotclock rate bit */
366 		WREG8(MGAREG_SEQ_INDEX, 1);
367 		tmp = RREG8(MGAREG_SEQ_DATA);
368 		tmp &= ~0x8;
369 		WREG8(MGAREG_SEQ_DATA, tmp);
370 
371 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
372 		tmp = RREG8(DAC_DATA);
373 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
374 		WREG8(DAC_DATA, tmp);
375 
376 		vcount = RREG8(MGAREG_VCOUNT);
377 
378 		for (j = 0; j < 30 && pll_locked == false; j++) {
379 			tmpcount = RREG8(MGAREG_VCOUNT);
380 			if (tmpcount < vcount)
381 				vcount = 0;
382 			if ((tmpcount - vcount) > 2)
383 				pll_locked = true;
384 			else
385 				udelay(5);
386 		}
387 	}
388 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
389 	tmp = RREG8(DAC_DATA);
390 	tmp &= ~MGA1064_REMHEADCTL_CLKDIS;
391 	WREG_DAC(MGA1064_REMHEADCTL, tmp);
392 	return 0;
393 }
394 
395 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock)
396 {
397 	unsigned int vcomax, vcomin, pllreffreq;
398 	unsigned int delta, tmpdelta;
399 	unsigned int testp, testm, testn;
400 	unsigned int p, m, n;
401 	unsigned int computed;
402 	u8 tmp;
403 
404 	m = n = p = 0;
405 	vcomax = 550000;
406 	vcomin = 150000;
407 	pllreffreq = 50000;
408 
409 	delta = 0xffffffff;
410 
411 	for (testp = 16; testp > 0; testp--) {
412 		if (clock * testp > vcomax)
413 			continue;
414 		if (clock * testp < vcomin)
415 			continue;
416 
417 		for (testn = 1; testn < 257; testn++) {
418 			for (testm = 1; testm < 17; testm++) {
419 				computed = (pllreffreq * testn) /
420 					(testm * testp);
421 				if (computed > clock)
422 					tmpdelta = computed - clock;
423 				else
424 					tmpdelta = clock - computed;
425 				if (tmpdelta < delta) {
426 					delta = tmpdelta;
427 					n = testn - 1;
428 					m = testm - 1;
429 					p = testp - 1;
430 				}
431 			}
432 		}
433 	}
434 
435 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
436 	tmp = RREG8(DAC_DATA);
437 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
438 	WREG8(DAC_DATA, tmp);
439 
440 	tmp = RREG8(MGAREG_MEM_MISC_READ);
441 	tmp |= 0x3 << 2;
442 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
443 
444 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
445 	tmp = RREG8(DAC_DATA);
446 	WREG8(DAC_DATA, tmp & ~0x40);
447 
448 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
449 	tmp = RREG8(DAC_DATA);
450 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
451 	WREG8(DAC_DATA, tmp);
452 
453 	WREG_DAC(MGA1064_EV_PIX_PLLC_M, m);
454 	WREG_DAC(MGA1064_EV_PIX_PLLC_N, n);
455 	WREG_DAC(MGA1064_EV_PIX_PLLC_P, p);
456 
457 	udelay(50);
458 
459 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
460 	tmp = RREG8(DAC_DATA);
461 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
462 	WREG8(DAC_DATA, tmp);
463 
464 	udelay(500);
465 
466 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
467 	tmp = RREG8(DAC_DATA);
468 	tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
469 	tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
470 	WREG8(DAC_DATA, tmp);
471 
472 	WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT);
473 	tmp = RREG8(DAC_DATA);
474 	WREG8(DAC_DATA, tmp | 0x40);
475 
476 	tmp = RREG8(MGAREG_MEM_MISC_READ);
477 	tmp |= (0x3 << 2);
478 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
479 
480 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
481 	tmp = RREG8(DAC_DATA);
482 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
483 	WREG8(DAC_DATA, tmp);
484 
485 	return 0;
486 }
487 
488 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock)
489 {
490 	unsigned int vcomax, vcomin, pllreffreq;
491 	unsigned int delta, tmpdelta;
492 	unsigned int testp, testm, testn;
493 	unsigned int p, m, n;
494 	unsigned int computed;
495 	int i, j, tmpcount, vcount;
496 	u8 tmp;
497 	bool pll_locked = false;
498 
499 	m = n = p = 0;
500 	vcomax = 800000;
501 	vcomin = 400000;
502 	pllreffreq = 33333;
503 
504 	delta = 0xffffffff;
505 
506 	for (testp = 16; testp > 0; testp >>= 1) {
507 		if (clock * testp > vcomax)
508 			continue;
509 		if (clock * testp < vcomin)
510 			continue;
511 
512 		for (testm = 1; testm < 33; testm++) {
513 			for (testn = 17; testn < 257; testn++) {
514 				computed = (pllreffreq * testn) /
515 					(testm * testp);
516 				if (computed > clock)
517 					tmpdelta = computed - clock;
518 				else
519 					tmpdelta = clock - computed;
520 				if (tmpdelta < delta) {
521 					delta = tmpdelta;
522 					n = testn - 1;
523 					m = (testm - 1);
524 					p = testp - 1;
525 				}
526 				if ((clock * testp) >= 600000)
527 					p |= 0x80;
528 			}
529 		}
530 	}
531 	for (i = 0; i <= 32 && pll_locked == false; i++) {
532 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
533 		tmp = RREG8(DAC_DATA);
534 		tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
535 		WREG8(DAC_DATA, tmp);
536 
537 		tmp = RREG8(MGAREG_MEM_MISC_READ);
538 		tmp |= 0x3 << 2;
539 		WREG8(MGAREG_MEM_MISC_WRITE, tmp);
540 
541 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
542 		tmp = RREG8(DAC_DATA);
543 		tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
544 		WREG8(DAC_DATA, tmp);
545 
546 		udelay(500);
547 
548 		WREG_DAC(MGA1064_EH_PIX_PLLC_M, m);
549 		WREG_DAC(MGA1064_EH_PIX_PLLC_N, n);
550 		WREG_DAC(MGA1064_EH_PIX_PLLC_P, p);
551 
552 		udelay(500);
553 
554 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
555 		tmp = RREG8(DAC_DATA);
556 		tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK;
557 		tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL;
558 		WREG8(DAC_DATA, tmp);
559 
560 		WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
561 		tmp = RREG8(DAC_DATA);
562 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
563 		tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
564 		WREG8(DAC_DATA, tmp);
565 
566 		vcount = RREG8(MGAREG_VCOUNT);
567 
568 		for (j = 0; j < 30 && pll_locked == false; j++) {
569 			tmpcount = RREG8(MGAREG_VCOUNT);
570 			if (tmpcount < vcount)
571 				vcount = 0;
572 			if ((tmpcount - vcount) > 2)
573 				pll_locked = true;
574 			else
575 				udelay(5);
576 		}
577 	}
578 
579 	return 0;
580 }
581 
582 static int mga_g200er_set_plls(struct mga_device *mdev, long clock)
583 {
584 	unsigned int vcomax, vcomin, pllreffreq;
585 	unsigned int delta, tmpdelta;
586 	int testr, testn, testm, testo;
587 	unsigned int p, m, n;
588 	unsigned int computed, vco;
589 	int tmp;
590 	const unsigned int m_div_val[] = { 1, 2, 4, 8 };
591 
592 	m = n = p = 0;
593 	vcomax = 1488000;
594 	vcomin = 1056000;
595 	pllreffreq = 48000;
596 
597 	delta = 0xffffffff;
598 
599 	for (testr = 0; testr < 4; testr++) {
600 		if (delta == 0)
601 			break;
602 		for (testn = 5; testn < 129; testn++) {
603 			if (delta == 0)
604 				break;
605 			for (testm = 3; testm >= 0; testm--) {
606 				if (delta == 0)
607 					break;
608 				for (testo = 5; testo < 33; testo++) {
609 					vco = pllreffreq * (testn + 1) /
610 						(testr + 1);
611 					if (vco < vcomin)
612 						continue;
613 					if (vco > vcomax)
614 						continue;
615 					computed = vco / (m_div_val[testm] * (testo + 1));
616 					if (computed > clock)
617 						tmpdelta = computed - clock;
618 					else
619 						tmpdelta = clock - computed;
620 					if (tmpdelta < delta) {
621 						delta = tmpdelta;
622 						m = testm | (testo << 3);
623 						n = testn;
624 						p = testr | (testr << 3);
625 					}
626 				}
627 			}
628 		}
629 	}
630 
631 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
632 	tmp = RREG8(DAC_DATA);
633 	tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS;
634 	WREG8(DAC_DATA, tmp);
635 
636 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL);
637 	tmp = RREG8(DAC_DATA);
638 	tmp |= MGA1064_REMHEADCTL_CLKDIS;
639 	WREG8(DAC_DATA, tmp);
640 
641 	tmp = RREG8(MGAREG_MEM_MISC_READ);
642 	tmp |= (0x3<<2) | 0xc0;
643 	WREG8(MGAREG_MEM_MISC_WRITE, tmp);
644 
645 	WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL);
646 	tmp = RREG8(DAC_DATA);
647 	tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS;
648 	tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN;
649 	WREG8(DAC_DATA, tmp);
650 
651 	udelay(500);
652 
653 	WREG_DAC(MGA1064_ER_PIX_PLLC_N, n);
654 	WREG_DAC(MGA1064_ER_PIX_PLLC_M, m);
655 	WREG_DAC(MGA1064_ER_PIX_PLLC_P, p);
656 
657 	udelay(50);
658 
659 	return 0;
660 }
661 
662 static int mga_crtc_set_plls(struct mga_device *mdev, long clock)
663 {
664 	switch(mdev->type) {
665 	case G200_SE_A:
666 	case G200_SE_B:
667 		return mga_g200se_set_plls(mdev, clock);
668 		break;
669 	case G200_WB:
670 	case G200_EW3:
671 		return mga_g200wb_set_plls(mdev, clock);
672 		break;
673 	case G200_EV:
674 		return mga_g200ev_set_plls(mdev, clock);
675 		break;
676 	case G200_EH:
677 		return mga_g200eh_set_plls(mdev, clock);
678 		break;
679 	case G200_ER:
680 		return mga_g200er_set_plls(mdev, clock);
681 		break;
682 	}
683 	return 0;
684 }
685 
686 static void mga_g200wb_prepare(struct drm_crtc *crtc)
687 {
688 	struct mga_device *mdev = crtc->dev->dev_private;
689 	u8 tmp;
690 	int iter_max;
691 
692 	/* 1- The first step is to warn the BMC of an upcoming mode change.
693 	 * We are putting the misc<0> to output.*/
694 
695 	WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL);
696 	tmp = RREG8(DAC_DATA);
697 	tmp |= 0x10;
698 	WREG_DAC(MGA1064_GEN_IO_CTL, tmp);
699 
700 	/* we are putting a 1 on the misc<0> line */
701 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
702 	tmp = RREG8(DAC_DATA);
703 	tmp |= 0x10;
704 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
705 
706 	/* 2- Second step to mask and further scan request
707 	 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>)
708 	 */
709 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
710 	tmp = RREG8(DAC_DATA);
711 	tmp |= 0x80;
712 	WREG_DAC(MGA1064_SPAREREG, tmp);
713 
714 	/* 3a- the third step is to verifu if there is an active scan
715 	 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>)
716 	 */
717 	iter_max = 300;
718 	while (!(tmp & 0x1) && iter_max) {
719 		WREG8(DAC_INDEX, MGA1064_SPAREREG);
720 		tmp = RREG8(DAC_DATA);
721 		udelay(1000);
722 		iter_max--;
723 	}
724 
725 	/* 3b- this step occurs only if the remove is actually scanning
726 	 * we are waiting for the end of the frame which is a 1 on
727 	 * remvsyncsts (XSPAREREG<1>)
728 	 */
729 	if (iter_max) {
730 		iter_max = 300;
731 		while ((tmp & 0x2) && iter_max) {
732 			WREG8(DAC_INDEX, MGA1064_SPAREREG);
733 			tmp = RREG8(DAC_DATA);
734 			udelay(1000);
735 			iter_max--;
736 		}
737 	}
738 }
739 
740 static void mga_g200wb_commit(struct drm_crtc *crtc)
741 {
742 	u8 tmp;
743 	struct mga_device *mdev = crtc->dev->dev_private;
744 
745 	/* 1- The first step is to ensure that the vrsten and hrsten are set */
746 	WREG8(MGAREG_CRTCEXT_INDEX, 1);
747 	tmp = RREG8(MGAREG_CRTCEXT_DATA);
748 	WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88);
749 
750 	/* 2- second step is to assert the rstlvl2 */
751 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
752 	tmp = RREG8(DAC_DATA);
753 	tmp |= 0x8;
754 	WREG8(DAC_DATA, tmp);
755 
756 	/* wait 10 us */
757 	udelay(10);
758 
759 	/* 3- deassert rstlvl2 */
760 	tmp &= ~0x08;
761 	WREG8(DAC_INDEX, MGA1064_REMHEADCTL2);
762 	WREG8(DAC_DATA, tmp);
763 
764 	/* 4- remove mask of scan request */
765 	WREG8(DAC_INDEX, MGA1064_SPAREREG);
766 	tmp = RREG8(DAC_DATA);
767 	tmp &= ~0x80;
768 	WREG8(DAC_DATA, tmp);
769 
770 	/* 5- put back a 0 on the misc<0> line */
771 	WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA);
772 	tmp = RREG8(DAC_DATA);
773 	tmp &= ~0x10;
774 	WREG_DAC(MGA1064_GEN_IO_DATA, tmp);
775 }
776 
777 /*
778    This is how the framebuffer base address is stored in g200 cards:
779    * Assume @offset is the gpu_addr variable of the framebuffer object
780    * Then addr is the number of _pixels_ (not bytes) from the start of
781      VRAM to the first pixel we want to display. (divided by 2 for 32bit
782      framebuffers)
783    * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
784    addr<20> -> CRTCEXT0<6>
785    addr<19-16> -> CRTCEXT0<3-0>
786    addr<15-8> -> CRTCC<7-0>
787    addr<7-0> -> CRTCD<7-0>
788    CRTCEXT0 has to be programmed last to trigger an update and make the
789    new addr variable take effect.
790  */
791 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset)
792 {
793 	struct mga_device *mdev = crtc->dev->dev_private;
794 	u32 addr;
795 	int count;
796 	u8 crtcext0;
797 
798 	while (RREG8(0x1fda) & 0x08);
799 	while (!(RREG8(0x1fda) & 0x08));
800 
801 	count = RREG8(MGAREG_VCOUNT) + 2;
802 	while (RREG8(MGAREG_VCOUNT) < count);
803 
804 	WREG8(MGAREG_CRTCEXT_INDEX, 0);
805 	crtcext0 = RREG8(MGAREG_CRTCEXT_DATA);
806 	crtcext0 &= 0xB0;
807 	addr = offset / 8;
808 	/* Can't store addresses any higher than that...
809 	   but we also don't have more than 16MB of memory, so it should be fine. */
810 	WARN_ON(addr > 0x1fffff);
811 	crtcext0 |= (!!(addr & (1<<20)))<<6;
812 	WREG_CRT(0x0d, (u8)(addr & 0xff));
813 	WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff);
814 	WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0);
815 }
816 
817 
818 /* ast is different - we will force move buffers out of VRAM */
819 static int mga_crtc_do_set_base(struct drm_crtc *crtc,
820 				struct drm_framebuffer *fb,
821 				int x, int y, int atomic)
822 {
823 	struct mga_device *mdev = crtc->dev->dev_private;
824 	struct drm_gem_object *obj;
825 	struct mga_framebuffer *mga_fb;
826 	struct mgag200_bo *bo;
827 	int ret;
828 	u64 gpu_addr;
829 
830 	/* push the previous fb to system ram */
831 	if (!atomic && fb) {
832 		mga_fb = to_mga_framebuffer(fb);
833 		obj = mga_fb->obj;
834 		bo = gem_to_mga_bo(obj);
835 		ret = mgag200_bo_reserve(bo, false);
836 		if (ret)
837 			return ret;
838 		mgag200_bo_push_sysram(bo);
839 		mgag200_bo_unreserve(bo);
840 	}
841 
842 	mga_fb = to_mga_framebuffer(crtc->primary->fb);
843 	obj = mga_fb->obj;
844 	bo = gem_to_mga_bo(obj);
845 
846 	ret = mgag200_bo_reserve(bo, false);
847 	if (ret)
848 		return ret;
849 
850 	ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr);
851 	if (ret) {
852 		mgag200_bo_unreserve(bo);
853 		return ret;
854 	}
855 
856 	if (&mdev->mfbdev->mfb == mga_fb) {
857 		/* if pushing console in kmap it */
858 		ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap);
859 		if (ret)
860 			DRM_ERROR("failed to kmap fbcon\n");
861 
862 	}
863 	mgag200_bo_unreserve(bo);
864 
865 	mga_set_start_address(crtc, (u32)gpu_addr);
866 
867 	return 0;
868 }
869 
870 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
871 				  struct drm_framebuffer *old_fb)
872 {
873 	return mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
874 }
875 
876 static int mga_crtc_mode_set(struct drm_crtc *crtc,
877 				struct drm_display_mode *mode,
878 				struct drm_display_mode *adjusted_mode,
879 				int x, int y, struct drm_framebuffer *old_fb)
880 {
881 	struct drm_device *dev = crtc->dev;
882 	struct mga_device *mdev = dev->dev_private;
883 	const struct drm_framebuffer *fb = crtc->primary->fb;
884 	int hdisplay, hsyncstart, hsyncend, htotal;
885 	int vdisplay, vsyncstart, vsyncend, vtotal;
886 	int pitch;
887 	int option = 0, option2 = 0;
888 	int i;
889 	unsigned char misc = 0;
890 	unsigned char ext_vga[6];
891 	u8 bppshift;
892 
893 	static unsigned char dacvalue[] = {
894 		/* 0x00: */        0,    0,    0,    0,    0,    0, 0x00,    0,
895 		/* 0x08: */        0,    0,    0,    0,    0,    0,    0,    0,
896 		/* 0x10: */        0,    0,    0,    0,    0,    0,    0,    0,
897 		/* 0x18: */     0x00,    0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20,
898 		/* 0x20: */     0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
899 		/* 0x28: */     0x00, 0x00, 0x00, 0x00,    0,    0,    0, 0x40,
900 		/* 0x30: */     0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83,
901 		/* 0x38: */     0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A,
902 		/* 0x40: */        0,    0,    0,    0,    0,    0,    0,    0,
903 		/* 0x48: */        0,    0,    0,    0,    0,    0,    0,    0
904 	};
905 
906 	bppshift = mdev->bpp_shifts[fb->format->cpp[0] - 1];
907 
908 	switch (mdev->type) {
909 	case G200_SE_A:
910 	case G200_SE_B:
911 		dacvalue[MGA1064_VREF_CTL] = 0x03;
912 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
913 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN |
914 					     MGA1064_MISC_CTL_VGA8 |
915 					     MGA1064_MISC_CTL_DAC_RAM_CS;
916 		if (mdev->has_sdram)
917 			option = 0x40049120;
918 		else
919 			option = 0x4004d120;
920 		option2 = 0x00008000;
921 		break;
922 	case G200_WB:
923 	case G200_EW3:
924 		dacvalue[MGA1064_VREF_CTL] = 0x07;
925 		option = 0x41049120;
926 		option2 = 0x0000b000;
927 		break;
928 	case G200_EV:
929 		dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL;
930 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
931 					     MGA1064_MISC_CTL_DAC_RAM_CS;
932 		option = 0x00000120;
933 		option2 = 0x0000b000;
934 		break;
935 	case G200_EH:
936 		dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 |
937 					     MGA1064_MISC_CTL_DAC_RAM_CS;
938 		option = 0x00000120;
939 		option2 = 0x0000b000;
940 		break;
941 	case G200_ER:
942 		break;
943 	}
944 
945 	switch (fb->format->cpp[0] * 8) {
946 	case 8:
947 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits;
948 		break;
949 	case 16:
950 		if (fb->format->depth == 15)
951 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits;
952 		else
953 			dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits;
954 		break;
955 	case 24:
956 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits;
957 		break;
958 	case 32:
959 		dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits;
960 		break;
961 	}
962 
963 	if (mode->flags & DRM_MODE_FLAG_NHSYNC)
964 		misc |= 0x40;
965 	if (mode->flags & DRM_MODE_FLAG_NVSYNC)
966 		misc |= 0x80;
967 
968 
969 	for (i = 0; i < sizeof(dacvalue); i++) {
970 		if ((i <= 0x17) ||
971 		    (i == 0x1b) ||
972 		    (i == 0x1c) ||
973 		    ((i >= 0x1f) && (i <= 0x29)) ||
974 		    ((i >= 0x30) && (i <= 0x37)))
975 			continue;
976 		if (IS_G200_SE(mdev) &&
977 		    ((i == 0x2c) || (i == 0x2d) || (i == 0x2e)))
978 			continue;
979 		if ((mdev->type == G200_EV ||
980 		    mdev->type == G200_WB ||
981 		    mdev->type == G200_EH ||
982 		    mdev->type == G200_EW3) &&
983 		    (i >= 0x44) && (i <= 0x4e))
984 			continue;
985 
986 		WREG_DAC(i, dacvalue[i]);
987 	}
988 
989 	if (mdev->type == G200_ER)
990 		WREG_DAC(0x90, 0);
991 
992 	if (option)
993 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option);
994 	if (option2)
995 		pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2);
996 
997 	WREG_SEQ(2, 0xf);
998 	WREG_SEQ(3, 0);
999 	WREG_SEQ(4, 0xe);
1000 
1001 	pitch = fb->pitches[0] / fb->format->cpp[0];
1002 	if (fb->format->cpp[0] * 8 == 24)
1003 		pitch = (pitch * 3) >> (4 - bppshift);
1004 	else
1005 		pitch = pitch >> (4 - bppshift);
1006 
1007 	hdisplay = mode->hdisplay / 8 - 1;
1008 	hsyncstart = mode->hsync_start / 8 - 1;
1009 	hsyncend = mode->hsync_end / 8 - 1;
1010 	htotal = mode->htotal / 8 - 1;
1011 
1012 	/* Work around hardware quirk */
1013 	if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
1014 		htotal++;
1015 
1016 	vdisplay = mode->vdisplay - 1;
1017 	vsyncstart = mode->vsync_start - 1;
1018 	vsyncend = mode->vsync_end - 1;
1019 	vtotal = mode->vtotal - 2;
1020 
1021 	WREG_GFX(0, 0);
1022 	WREG_GFX(1, 0);
1023 	WREG_GFX(2, 0);
1024 	WREG_GFX(3, 0);
1025 	WREG_GFX(4, 0);
1026 	WREG_GFX(5, 0x40);
1027 	WREG_GFX(6, 0x5);
1028 	WREG_GFX(7, 0xf);
1029 	WREG_GFX(8, 0xf);
1030 
1031 	WREG_CRT(0, htotal - 4);
1032 	WREG_CRT(1, hdisplay);
1033 	WREG_CRT(2, hdisplay);
1034 	WREG_CRT(3, (htotal & 0x1F) | 0x80);
1035 	WREG_CRT(4, hsyncstart);
1036 	WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
1037 	WREG_CRT(6, vtotal & 0xFF);
1038 	WREG_CRT(7, ((vtotal & 0x100) >> 8) |
1039 		 ((vdisplay & 0x100) >> 7) |
1040 		 ((vsyncstart & 0x100) >> 6) |
1041 		 ((vdisplay & 0x100) >> 5) |
1042 		 ((vdisplay & 0x100) >> 4) | /* linecomp */
1043 		 ((vtotal & 0x200) >> 4)|
1044 		 ((vdisplay & 0x200) >> 3) |
1045 		 ((vsyncstart & 0x200) >> 2));
1046 	WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
1047 		 ((vdisplay & 0x200) >> 3));
1048 	WREG_CRT(10, 0);
1049 	WREG_CRT(11, 0);
1050 	WREG_CRT(12, 0);
1051 	WREG_CRT(13, 0);
1052 	WREG_CRT(14, 0);
1053 	WREG_CRT(15, 0);
1054 	WREG_CRT(16, vsyncstart & 0xFF);
1055 	WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
1056 	WREG_CRT(18, vdisplay & 0xFF);
1057 	WREG_CRT(19, pitch & 0xFF);
1058 	WREG_CRT(20, 0);
1059 	WREG_CRT(21, vdisplay & 0xFF);
1060 	WREG_CRT(22, (vtotal + 1) & 0xFF);
1061 	WREG_CRT(23, 0xc3);
1062 	WREG_CRT(24, vdisplay & 0xFF);
1063 
1064 	ext_vga[0] = 0;
1065 	ext_vga[5] = 0;
1066 
1067 	/* TODO interlace */
1068 
1069 	ext_vga[0] |= (pitch & 0x300) >> 4;
1070 	ext_vga[1] = (((htotal - 4) & 0x100) >> 8) |
1071 		((hdisplay & 0x100) >> 7) |
1072 		((hsyncstart & 0x100) >> 6) |
1073 		(htotal & 0x40);
1074 	ext_vga[2] = ((vtotal & 0xc00) >> 10) |
1075 		((vdisplay & 0x400) >> 8) |
1076 		((vdisplay & 0xc00) >> 7) |
1077 		((vsyncstart & 0xc00) >> 5) |
1078 		((vdisplay & 0x400) >> 3);
1079 	if (fb->format->cpp[0] * 8 == 24)
1080 		ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80;
1081 	else
1082 		ext_vga[3] = ((1 << bppshift) - 1) | 0x80;
1083 	ext_vga[4] = 0;
1084 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1085 		ext_vga[1] |= 0x88;
1086 
1087 	/* Set pixel clocks */
1088 	misc = 0x2d;
1089 	WREG8(MGA_MISC_OUT, misc);
1090 
1091 	mga_crtc_set_plls(mdev, mode->clock);
1092 
1093 	for (i = 0; i < 6; i++) {
1094 		WREG_ECRT(i, ext_vga[i]);
1095 	}
1096 
1097 	if (mdev->type == G200_ER)
1098 		WREG_ECRT(0x24, 0x5);
1099 
1100 	if (mdev->type == G200_EW3)
1101 		WREG_ECRT(0x34, 0x5);
1102 
1103 	if (mdev->type == G200_EV) {
1104 		WREG_ECRT(6, 0);
1105 	}
1106 
1107 	WREG_ECRT(0, ext_vga[0]);
1108 	/* Enable mga pixel clock */
1109 	misc = 0x2d;
1110 
1111 	WREG8(MGA_MISC_OUT, misc);
1112 
1113 	if (adjusted_mode)
1114 		memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode));
1115 
1116 	mga_crtc_do_set_base(crtc, old_fb, x, y, 0);
1117 
1118 	/* reset tagfifo */
1119 	if (mdev->type == G200_ER) {
1120 		u32 mem_ctl = RREG32(MGAREG_MEMCTL);
1121 		u8 seq1;
1122 
1123 		/* screen off */
1124 		WREG8(MGAREG_SEQ_INDEX, 0x01);
1125 		seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20;
1126 		WREG8(MGAREG_SEQ_DATA, seq1);
1127 
1128 		WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000);
1129 		udelay(1000);
1130 		WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000);
1131 
1132 		WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20);
1133 	}
1134 
1135 
1136 	if (IS_G200_SE(mdev)) {
1137 		if (mdev->unique_rev_id >= 0x02) {
1138 			u8 hi_pri_lvl;
1139 			u32 bpp;
1140 			u32 mb;
1141 
1142 			if (fb->format->cpp[0] * 8 > 16)
1143 				bpp = 32;
1144 			else if (fb->format->cpp[0] * 8 > 8)
1145 				bpp = 16;
1146 			else
1147 				bpp = 8;
1148 
1149 			mb = (mode->clock * bpp) / 1000;
1150 			if (mb > 3100)
1151 				hi_pri_lvl = 0;
1152 			else if (mb > 2600)
1153 				hi_pri_lvl = 1;
1154 			else if (mb > 1900)
1155 				hi_pri_lvl = 2;
1156 			else if (mb > 1160)
1157 				hi_pri_lvl = 3;
1158 			else if (mb > 440)
1159 				hi_pri_lvl = 4;
1160 			else
1161 				hi_pri_lvl = 5;
1162 
1163 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1164 			WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl);
1165 		} else {
1166 			WREG8(MGAREG_CRTCEXT_INDEX, 0x06);
1167 			if (mdev->unique_rev_id >= 0x01)
1168 				WREG8(MGAREG_CRTCEXT_DATA, 0x03);
1169 			else
1170 				WREG8(MGAREG_CRTCEXT_DATA, 0x04);
1171 		}
1172 	}
1173 	return 0;
1174 }
1175 
1176 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */
1177 static int mga_suspend(struct drm_crtc *crtc)
1178 {
1179 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1180 	struct drm_device *dev = crtc->dev;
1181 	struct mga_device *mdev = dev->dev_private;
1182 	struct pci_dev *pdev = dev->pdev;
1183 	int option;
1184 
1185 	if (mdev->suspended)
1186 		return 0;
1187 
1188 	WREG_SEQ(1, 0x20);
1189 	WREG_ECRT(1, 0x30);
1190 	/* Disable the pixel clock */
1191 	WREG_DAC(0x1a, 0x05);
1192 	/* Power down the DAC */
1193 	WREG_DAC(0x1e, 0x18);
1194 	/* Power down the pixel PLL */
1195 	WREG_DAC(0x1a, 0x0d);
1196 
1197 	/* Disable PLLs and clocks */
1198 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1199 	option &= ~(0x1F8024);
1200 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1201 	pci_set_power_state(pdev, PCI_D3hot);
1202 	pci_disable_device(pdev);
1203 
1204 	mdev->suspended = true;
1205 
1206 	return 0;
1207 }
1208 
1209 static int mga_resume(struct drm_crtc *crtc)
1210 {
1211 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1212 	struct drm_device *dev = crtc->dev;
1213 	struct mga_device *mdev = dev->dev_private;
1214 	struct pci_dev *pdev = dev->pdev;
1215 	int option;
1216 
1217 	if (!mdev->suspended)
1218 		return 0;
1219 
1220 	pci_set_power_state(pdev, PCI_D0);
1221 	pci_enable_device(pdev);
1222 
1223 	/* Disable sysclk */
1224 	pci_read_config_dword(pdev, PCI_MGA_OPTION, &option);
1225 	option &= ~(0x4);
1226 	pci_write_config_dword(pdev, PCI_MGA_OPTION, option);
1227 
1228 	mdev->suspended = false;
1229 
1230 	return 0;
1231 }
1232 
1233 #endif
1234 
1235 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode)
1236 {
1237 	struct drm_device *dev = crtc->dev;
1238 	struct mga_device *mdev = dev->dev_private;
1239 	u8 seq1 = 0, crtcext1 = 0;
1240 
1241 	switch (mode) {
1242 	case DRM_MODE_DPMS_ON:
1243 		seq1 = 0;
1244 		crtcext1 = 0;
1245 		mga_crtc_load_lut(crtc);
1246 		break;
1247 	case DRM_MODE_DPMS_STANDBY:
1248 		seq1 = 0x20;
1249 		crtcext1 = 0x10;
1250 		break;
1251 	case DRM_MODE_DPMS_SUSPEND:
1252 		seq1 = 0x20;
1253 		crtcext1 = 0x20;
1254 		break;
1255 	case DRM_MODE_DPMS_OFF:
1256 		seq1 = 0x20;
1257 		crtcext1 = 0x30;
1258 		break;
1259 	}
1260 
1261 #if 0
1262 	if (mode == DRM_MODE_DPMS_OFF) {
1263 		mga_suspend(crtc);
1264 	}
1265 #endif
1266 	WREG8(MGAREG_SEQ_INDEX, 0x01);
1267 	seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20;
1268 	mga_wait_vsync(mdev);
1269 	mga_wait_busy(mdev);
1270 	WREG8(MGAREG_SEQ_DATA, seq1);
1271 	msleep(20);
1272 	WREG8(MGAREG_CRTCEXT_INDEX, 0x01);
1273 	crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30;
1274 	WREG8(MGAREG_CRTCEXT_DATA, crtcext1);
1275 
1276 #if 0
1277 	if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) {
1278 		mga_resume(crtc);
1279 		drm_helper_resume_force_mode(dev);
1280 	}
1281 #endif
1282 }
1283 
1284 /*
1285  * This is called before a mode is programmed. A typical use might be to
1286  * enable DPMS during the programming to avoid seeing intermediate stages,
1287  * but that's not relevant to us
1288  */
1289 static void mga_crtc_prepare(struct drm_crtc *crtc)
1290 {
1291 	struct drm_device *dev = crtc->dev;
1292 	struct mga_device *mdev = dev->dev_private;
1293 	u8 tmp;
1294 
1295 	/*	mga_resume(crtc);*/
1296 
1297 	WREG8(MGAREG_CRTC_INDEX, 0x11);
1298 	tmp = RREG8(MGAREG_CRTC_DATA);
1299 	WREG_CRT(0x11, tmp | 0x80);
1300 
1301 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1302 		WREG_SEQ(0, 1);
1303 		msleep(50);
1304 		WREG_SEQ(1, 0x20);
1305 		msleep(20);
1306 	} else {
1307 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1308 		tmp = RREG8(MGAREG_SEQ_DATA);
1309 
1310 		/* start sync reset */
1311 		WREG_SEQ(0, 1);
1312 		WREG_SEQ(1, tmp | 0x20);
1313 	}
1314 
1315 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1316 		mga_g200wb_prepare(crtc);
1317 
1318 	WREG_CRT(17, 0);
1319 }
1320 
1321 /*
1322  * This is called after a mode is programmed. It should reverse anything done
1323  * by the prepare function
1324  */
1325 static void mga_crtc_commit(struct drm_crtc *crtc)
1326 {
1327 	struct drm_device *dev = crtc->dev;
1328 	struct mga_device *mdev = dev->dev_private;
1329 	const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1330 	u8 tmp;
1331 
1332 	if (mdev->type == G200_WB || mdev->type == G200_EW3)
1333 		mga_g200wb_commit(crtc);
1334 
1335 	if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) {
1336 		msleep(50);
1337 		WREG_SEQ(1, 0x0);
1338 		msleep(20);
1339 		WREG_SEQ(0, 0x3);
1340 	} else {
1341 		WREG8(MGAREG_SEQ_INDEX, 0x1);
1342 		tmp = RREG8(MGAREG_SEQ_DATA);
1343 
1344 		tmp &= ~0x20;
1345 		WREG_SEQ(0x1, tmp);
1346 		WREG_SEQ(0, 3);
1347 	}
1348 	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1349 }
1350 
1351 /*
1352  * The core can pass us a set of gamma values to program. We actually only
1353  * use this for 8-bit mode so can't perform smooth fades on deeper modes,
1354  * but it's a requirement that we provide the function
1355  */
1356 static int mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
1357 			      u16 *blue, uint32_t size)
1358 {
1359 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1360 	int i;
1361 
1362 	for (i = 0; i < size; i++) {
1363 		mga_crtc->lut_r[i] = red[i] >> 8;
1364 		mga_crtc->lut_g[i] = green[i] >> 8;
1365 		mga_crtc->lut_b[i] = blue[i] >> 8;
1366 	}
1367 	mga_crtc_load_lut(crtc);
1368 
1369 	return 0;
1370 }
1371 
1372 /* Simple cleanup function */
1373 static void mga_crtc_destroy(struct drm_crtc *crtc)
1374 {
1375 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1376 
1377 	drm_crtc_cleanup(crtc);
1378 	kfree(mga_crtc);
1379 }
1380 
1381 static void mga_crtc_disable(struct drm_crtc *crtc)
1382 {
1383 	int ret;
1384 	DRM_DEBUG_KMS("\n");
1385 	mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
1386 	if (crtc->primary->fb) {
1387 		struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb);
1388 		struct drm_gem_object *obj = mga_fb->obj;
1389 		struct mgag200_bo *bo = gem_to_mga_bo(obj);
1390 		ret = mgag200_bo_reserve(bo, false);
1391 		if (ret)
1392 			return;
1393 		mgag200_bo_push_sysram(bo);
1394 		mgag200_bo_unreserve(bo);
1395 	}
1396 	crtc->primary->fb = NULL;
1397 }
1398 
1399 /* These provide the minimum set of functions required to handle a CRTC */
1400 static const struct drm_crtc_funcs mga_crtc_funcs = {
1401 	.cursor_set = mga_crtc_cursor_set,
1402 	.cursor_move = mga_crtc_cursor_move,
1403 	.gamma_set = mga_crtc_gamma_set,
1404 	.set_config = drm_crtc_helper_set_config,
1405 	.destroy = mga_crtc_destroy,
1406 };
1407 
1408 static const struct drm_crtc_helper_funcs mga_helper_funcs = {
1409 	.disable = mga_crtc_disable,
1410 	.dpms = mga_crtc_dpms,
1411 	.mode_set = mga_crtc_mode_set,
1412 	.mode_set_base = mga_crtc_mode_set_base,
1413 	.prepare = mga_crtc_prepare,
1414 	.commit = mga_crtc_commit,
1415 	.load_lut = mga_crtc_load_lut,
1416 };
1417 
1418 /* CRTC setup */
1419 static void mga_crtc_init(struct mga_device *mdev)
1420 {
1421 	struct mga_crtc *mga_crtc;
1422 	int i;
1423 
1424 	mga_crtc = kzalloc(sizeof(struct mga_crtc) +
1425 			      (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)),
1426 			      GFP_KERNEL);
1427 
1428 	if (mga_crtc == NULL)
1429 		return;
1430 
1431 	drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs);
1432 
1433 	drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE);
1434 	mdev->mode_info.crtc = mga_crtc;
1435 
1436 	for (i = 0; i < MGAG200_LUT_SIZE; i++) {
1437 		mga_crtc->lut_r[i] = i;
1438 		mga_crtc->lut_g[i] = i;
1439 		mga_crtc->lut_b[i] = i;
1440 	}
1441 
1442 	drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs);
1443 }
1444 
1445 /** Sets the color ramps on behalf of fbcon */
1446 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
1447 			      u16 blue, int regno)
1448 {
1449 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1450 
1451 	mga_crtc->lut_r[regno] = red >> 8;
1452 	mga_crtc->lut_g[regno] = green >> 8;
1453 	mga_crtc->lut_b[regno] = blue >> 8;
1454 }
1455 
1456 /** Gets the color ramps on behalf of fbcon */
1457 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
1458 			      u16 *blue, int regno)
1459 {
1460 	struct mga_crtc *mga_crtc = to_mga_crtc(crtc);
1461 
1462 	*red = (u16)mga_crtc->lut_r[regno] << 8;
1463 	*green = (u16)mga_crtc->lut_g[regno] << 8;
1464 	*blue = (u16)mga_crtc->lut_b[regno] << 8;
1465 }
1466 
1467 /*
1468  * The encoder comes after the CRTC in the output pipeline, but before
1469  * the connector. It's responsible for ensuring that the digital
1470  * stream is appropriately converted into the output format. Setup is
1471  * very simple in this case - all we have to do is inform qemu of the
1472  * colour depth in order to ensure that it displays appropriately
1473  */
1474 
1475 /*
1476  * These functions are analagous to those in the CRTC code, but are intended
1477  * to handle any encoder-specific limitations
1478  */
1479 static void mga_encoder_mode_set(struct drm_encoder *encoder,
1480 				struct drm_display_mode *mode,
1481 				struct drm_display_mode *adjusted_mode)
1482 {
1483 
1484 }
1485 
1486 static void mga_encoder_dpms(struct drm_encoder *encoder, int state)
1487 {
1488 	return;
1489 }
1490 
1491 static void mga_encoder_prepare(struct drm_encoder *encoder)
1492 {
1493 }
1494 
1495 static void mga_encoder_commit(struct drm_encoder *encoder)
1496 {
1497 }
1498 
1499 static void mga_encoder_destroy(struct drm_encoder *encoder)
1500 {
1501 	struct mga_encoder *mga_encoder = to_mga_encoder(encoder);
1502 	drm_encoder_cleanup(encoder);
1503 	kfree(mga_encoder);
1504 }
1505 
1506 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = {
1507 	.dpms = mga_encoder_dpms,
1508 	.mode_set = mga_encoder_mode_set,
1509 	.prepare = mga_encoder_prepare,
1510 	.commit = mga_encoder_commit,
1511 };
1512 
1513 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = {
1514 	.destroy = mga_encoder_destroy,
1515 };
1516 
1517 static struct drm_encoder *mga_encoder_init(struct drm_device *dev)
1518 {
1519 	struct drm_encoder *encoder;
1520 	struct mga_encoder *mga_encoder;
1521 
1522 	mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL);
1523 	if (!mga_encoder)
1524 		return NULL;
1525 
1526 	encoder = &mga_encoder->base;
1527 	encoder->possible_crtcs = 0x1;
1528 
1529 	drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs,
1530 			 DRM_MODE_ENCODER_DAC, NULL);
1531 	drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs);
1532 
1533 	return encoder;
1534 }
1535 
1536 
1537 static int mga_vga_get_modes(struct drm_connector *connector)
1538 {
1539 	struct mga_connector *mga_connector = to_mga_connector(connector);
1540 	struct edid *edid;
1541 	int ret = 0;
1542 
1543 	edid = drm_get_edid(connector, &mga_connector->i2c->adapter);
1544 	if (edid) {
1545 		drm_mode_connector_update_edid_property(connector, edid);
1546 		ret = drm_add_edid_modes(connector, edid);
1547 		kfree(edid);
1548 	}
1549 	return ret;
1550 }
1551 
1552 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode,
1553 							int bits_per_pixel)
1554 {
1555 	uint32_t total_area, divisor;
1556 	uint64_t active_area, pixels_per_second, bandwidth;
1557 	uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
1558 
1559 	divisor = 1024;
1560 
1561 	if (!mode->htotal || !mode->vtotal || !mode->clock)
1562 		return 0;
1563 
1564 	active_area = mode->hdisplay * mode->vdisplay;
1565 	total_area = mode->htotal * mode->vtotal;
1566 
1567 	pixels_per_second = active_area * mode->clock * 1000;
1568 	do_div(pixels_per_second, total_area);
1569 
1570 	bandwidth = pixels_per_second * bytes_per_pixel * 100;
1571 	do_div(bandwidth, divisor);
1572 
1573 	return (uint32_t)(bandwidth);
1574 }
1575 
1576 #define MODE_BANDWIDTH	MODE_BAD
1577 
1578 static int mga_vga_mode_valid(struct drm_connector *connector,
1579 				 struct drm_display_mode *mode)
1580 {
1581 	struct drm_device *dev = connector->dev;
1582 	struct mga_device *mdev = (struct mga_device*)dev->dev_private;
1583 	int bpp = 32;
1584 
1585 	if (IS_G200_SE(mdev)) {
1586 		if (mdev->unique_rev_id == 0x01) {
1587 			if (mode->hdisplay > 1600)
1588 				return MODE_VIRTUAL_X;
1589 			if (mode->vdisplay > 1200)
1590 				return MODE_VIRTUAL_Y;
1591 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1592 				> (24400 * 1024))
1593 				return MODE_BANDWIDTH;
1594 		} else if (mdev->unique_rev_id == 0x02) {
1595 			if (mode->hdisplay > 1920)
1596 				return MODE_VIRTUAL_X;
1597 			if (mode->vdisplay > 1200)
1598 				return MODE_VIRTUAL_Y;
1599 			if (mga_vga_calculate_mode_bandwidth(mode, bpp)
1600 				> (30100 * 1024))
1601 				return MODE_BANDWIDTH;
1602 		}
1603 	} else if (mdev->type == G200_WB) {
1604 		if (mode->hdisplay > 1280)
1605 			return MODE_VIRTUAL_X;
1606 		if (mode->vdisplay > 1024)
1607 			return MODE_VIRTUAL_Y;
1608 		if (mga_vga_calculate_mode_bandwidth(mode,
1609 			bpp > (31877 * 1024)))
1610 			return MODE_BANDWIDTH;
1611 	} else if (mdev->type == G200_EV &&
1612 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1613 			> (32700 * 1024))) {
1614 		return MODE_BANDWIDTH;
1615 	} else if (mdev->type == G200_EH &&
1616 		(mga_vga_calculate_mode_bandwidth(mode, bpp)
1617 			> (37500 * 1024))) {
1618 		return MODE_BANDWIDTH;
1619 	} else if (mdev->type == G200_ER &&
1620 		(mga_vga_calculate_mode_bandwidth(mode,
1621 			bpp) > (55000 * 1024))) {
1622 		return MODE_BANDWIDTH;
1623 	}
1624 
1625 	if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
1626 	    (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
1627 		return MODE_H_ILLEGAL;
1628 	}
1629 
1630 	if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
1631 	    mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
1632 	    mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
1633 	    mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
1634 		return MODE_BAD;
1635 	}
1636 
1637 	/* Validate the mode input by the user */
1638 	if (connector->cmdline_mode.specified) {
1639 		if (connector->cmdline_mode.bpp_specified)
1640 			bpp = connector->cmdline_mode.bpp;
1641 	}
1642 
1643 	if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) {
1644 		if (connector->cmdline_mode.specified)
1645 			connector->cmdline_mode.specified = false;
1646 		return MODE_BAD;
1647 	}
1648 
1649 	return MODE_OK;
1650 }
1651 
1652 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector
1653 						  *connector)
1654 {
1655 	int enc_id = connector->encoder_ids[0];
1656 	/* pick the encoder ids */
1657 	if (enc_id)
1658 		return drm_encoder_find(connector->dev, enc_id);
1659 	return NULL;
1660 }
1661 
1662 static void mga_connector_destroy(struct drm_connector *connector)
1663 {
1664 	struct mga_connector *mga_connector = to_mga_connector(connector);
1665 	mgag200_i2c_destroy(mga_connector->i2c);
1666 	drm_connector_cleanup(connector);
1667 	kfree(connector);
1668 }
1669 
1670 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = {
1671 	.get_modes = mga_vga_get_modes,
1672 	.mode_valid = mga_vga_mode_valid,
1673 	.best_encoder = mga_connector_best_encoder,
1674 };
1675 
1676 static const struct drm_connector_funcs mga_vga_connector_funcs = {
1677 	.dpms = drm_helper_connector_dpms,
1678 	.fill_modes = drm_helper_probe_single_connector_modes,
1679 	.destroy = mga_connector_destroy,
1680 };
1681 
1682 static struct drm_connector *mga_vga_init(struct drm_device *dev)
1683 {
1684 	struct drm_connector *connector;
1685 	struct mga_connector *mga_connector;
1686 
1687 	mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL);
1688 	if (!mga_connector)
1689 		return NULL;
1690 
1691 	connector = &mga_connector->base;
1692 
1693 	drm_connector_init(dev, connector,
1694 			   &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA);
1695 
1696 	drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs);
1697 
1698 	drm_connector_register(connector);
1699 
1700 	mga_connector->i2c = mgag200_i2c_create(dev);
1701 	if (!mga_connector->i2c)
1702 		DRM_ERROR("failed to add ddc bus\n");
1703 
1704 	return connector;
1705 }
1706 
1707 
1708 int mgag200_modeset_init(struct mga_device *mdev)
1709 {
1710 	struct drm_encoder *encoder;
1711 	struct drm_connector *connector;
1712 	int ret;
1713 
1714 	mdev->mode_info.mode_config_initialized = true;
1715 
1716 	mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
1717 	mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
1718 
1719 	mdev->dev->mode_config.fb_base = mdev->mc.vram_base;
1720 
1721 	mga_crtc_init(mdev);
1722 
1723 	encoder = mga_encoder_init(mdev->dev);
1724 	if (!encoder) {
1725 		DRM_ERROR("mga_encoder_init failed\n");
1726 		return -1;
1727 	}
1728 
1729 	connector = mga_vga_init(mdev->dev);
1730 	if (!connector) {
1731 		DRM_ERROR("mga_vga_init failed\n");
1732 		return -1;
1733 	}
1734 
1735 	drm_mode_connector_attach_encoder(connector, encoder);
1736 
1737 	ret = mgag200_fbdev_init(mdev);
1738 	if (ret) {
1739 		DRM_ERROR("mga_fbdev_init failed\n");
1740 		return ret;
1741 	}
1742 
1743 	return 0;
1744 }
1745 
1746 void mgag200_modeset_fini(struct mga_device *mdev)
1747 {
1748 
1749 }
1750