1 /* 2 * Copyright 2010 Matt Turner. 3 * Copyright 2012 Red Hat 4 * 5 * This file is subject to the terms and conditions of the GNU General 6 * Public License version 2. See the file COPYING in the main 7 * directory of this archive for more details. 8 * 9 * Authors: Matthew Garrett 10 * Matt Turner 11 * Dave Airlie 12 */ 13 14 #include <linux/delay.h> 15 16 #include <drm/drmP.h> 17 #include <drm/drm_crtc_helper.h> 18 #include <drm/drm_plane_helper.h> 19 20 #include "mgag200_drv.h" 21 22 #define MGAG200_LUT_SIZE 256 23 24 /* 25 * This file contains setup code for the CRTC. 26 */ 27 28 static void mga_crtc_load_lut(struct drm_crtc *crtc) 29 { 30 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 31 struct drm_device *dev = crtc->dev; 32 struct mga_device *mdev = dev->dev_private; 33 struct drm_framebuffer *fb = crtc->primary->fb; 34 int i; 35 36 if (!crtc->enabled) 37 return; 38 39 WREG8(DAC_INDEX + MGA1064_INDEX, 0); 40 41 if (fb && fb->bits_per_pixel == 16) { 42 int inc = (fb->depth == 15) ? 8 : 4; 43 u8 r, b; 44 for (i = 0; i < MGAG200_LUT_SIZE; i += inc) { 45 if (fb->depth == 16) { 46 if (i > (MGAG200_LUT_SIZE >> 1)) { 47 r = b = 0; 48 } else { 49 r = mga_crtc->lut_r[i << 1]; 50 b = mga_crtc->lut_b[i << 1]; 51 } 52 } else { 53 r = mga_crtc->lut_r[i]; 54 b = mga_crtc->lut_b[i]; 55 } 56 /* VGA registers */ 57 WREG8(DAC_INDEX + MGA1064_COL_PAL, r); 58 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); 59 WREG8(DAC_INDEX + MGA1064_COL_PAL, b); 60 } 61 return; 62 } 63 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 64 /* VGA registers */ 65 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_r[i]); 66 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_g[i]); 67 WREG8(DAC_INDEX + MGA1064_COL_PAL, mga_crtc->lut_b[i]); 68 } 69 } 70 71 static inline void mga_wait_vsync(struct mga_device *mdev) 72 { 73 unsigned long timeout = jiffies + HZ/10; 74 unsigned int status = 0; 75 76 do { 77 status = RREG32(MGAREG_Status); 78 } while ((status & 0x08) && time_before(jiffies, timeout)); 79 timeout = jiffies + HZ/10; 80 status = 0; 81 do { 82 status = RREG32(MGAREG_Status); 83 } while (!(status & 0x08) && time_before(jiffies, timeout)); 84 } 85 86 static inline void mga_wait_busy(struct mga_device *mdev) 87 { 88 unsigned long timeout = jiffies + HZ; 89 unsigned int status = 0; 90 do { 91 status = RREG8(MGAREG_Status + 2); 92 } while ((status & 0x01) && time_before(jiffies, timeout)); 93 } 94 95 #define P_ARRAY_SIZE 9 96 97 static int mga_g200se_set_plls(struct mga_device *mdev, long clock) 98 { 99 unsigned int vcomax, vcomin, pllreffreq; 100 unsigned int delta, tmpdelta, permitteddelta; 101 unsigned int testp, testm, testn; 102 unsigned int p, m, n; 103 unsigned int computed; 104 unsigned int pvalues_e4[P_ARRAY_SIZE] = {16, 14, 12, 10, 8, 6, 4, 2, 1}; 105 unsigned int fvv; 106 unsigned int i; 107 108 if (mdev->unique_rev_id <= 0x03) { 109 110 m = n = p = 0; 111 vcomax = 320000; 112 vcomin = 160000; 113 pllreffreq = 25000; 114 115 delta = 0xffffffff; 116 permitteddelta = clock * 5 / 1000; 117 118 for (testp = 8; testp > 0; testp /= 2) { 119 if (clock * testp > vcomax) 120 continue; 121 if (clock * testp < vcomin) 122 continue; 123 124 for (testn = 17; testn < 256; testn++) { 125 for (testm = 1; testm < 32; testm++) { 126 computed = (pllreffreq * testn) / 127 (testm * testp); 128 if (computed > clock) 129 tmpdelta = computed - clock; 130 else 131 tmpdelta = clock - computed; 132 if (tmpdelta < delta) { 133 delta = tmpdelta; 134 m = testm - 1; 135 n = testn - 1; 136 p = testp - 1; 137 } 138 } 139 } 140 } 141 } else { 142 143 144 m = n = p = 0; 145 vcomax = 1600000; 146 vcomin = 800000; 147 pllreffreq = 25000; 148 149 if (clock < 25000) 150 clock = 25000; 151 152 clock = clock * 2; 153 154 delta = 0xFFFFFFFF; 155 /* Permited delta is 0.5% as VESA Specification */ 156 permitteddelta = clock * 5 / 1000; 157 158 for (i = 0 ; i < P_ARRAY_SIZE ; i++) { 159 testp = pvalues_e4[i]; 160 161 if ((clock * testp) > vcomax) 162 continue; 163 if ((clock * testp) < vcomin) 164 continue; 165 166 for (testn = 50; testn <= 256; testn++) { 167 for (testm = 1; testm <= 32; testm++) { 168 computed = (pllreffreq * testn) / 169 (testm * testp); 170 if (computed > clock) 171 tmpdelta = computed - clock; 172 else 173 tmpdelta = clock - computed; 174 175 if (tmpdelta < delta) { 176 delta = tmpdelta; 177 m = testm - 1; 178 n = testn - 1; 179 p = testp - 1; 180 } 181 } 182 } 183 } 184 185 fvv = pllreffreq * (n + 1) / (m + 1); 186 fvv = (fvv - 800000) / 50000; 187 188 if (fvv > 15) 189 fvv = 15; 190 191 p |= (fvv << 4); 192 m |= 0x80; 193 194 clock = clock / 2; 195 } 196 197 if (delta > permitteddelta) { 198 printk(KERN_WARNING "PLL delta too large\n"); 199 return 1; 200 } 201 202 WREG_DAC(MGA1064_PIX_PLLC_M, m); 203 WREG_DAC(MGA1064_PIX_PLLC_N, n); 204 WREG_DAC(MGA1064_PIX_PLLC_P, p); 205 206 if (mdev->unique_rev_id >= 0x04) { 207 WREG_DAC(0x1a, 0x09); 208 msleep(20); 209 WREG_DAC(0x1a, 0x01); 210 211 } 212 213 return 0; 214 } 215 216 static int mga_g200wb_set_plls(struct mga_device *mdev, long clock) 217 { 218 unsigned int vcomax, vcomin, pllreffreq; 219 unsigned int delta, tmpdelta; 220 unsigned int testp, testm, testn, testp2; 221 unsigned int p, m, n; 222 unsigned int computed; 223 int i, j, tmpcount, vcount; 224 bool pll_locked = false; 225 u8 tmp; 226 227 m = n = p = 0; 228 229 delta = 0xffffffff; 230 231 if (mdev->type == G200_EW3) { 232 233 vcomax = 800000; 234 vcomin = 400000; 235 pllreffreq = 25000; 236 237 for (testp = 1; testp < 8; testp++) { 238 for (testp2 = 1; testp2 < 8; testp2++) { 239 if (testp < testp2) 240 continue; 241 if ((clock * testp * testp2) > vcomax) 242 continue; 243 if ((clock * testp * testp2) < vcomin) 244 continue; 245 for (testm = 1; testm < 26; testm++) { 246 for (testn = 32; testn < 2048 ; testn++) { 247 computed = (pllreffreq * testn) / 248 (testm * testp * testp2); 249 if (computed > clock) 250 tmpdelta = computed - clock; 251 else 252 tmpdelta = clock - computed; 253 if (tmpdelta < delta) { 254 delta = tmpdelta; 255 m = ((testn & 0x100) >> 1) | 256 (testm); 257 n = (testn & 0xFF); 258 p = ((testn & 0x600) >> 3) | 259 (testp2 << 3) | 260 (testp); 261 } 262 } 263 } 264 } 265 } 266 } else { 267 268 vcomax = 550000; 269 vcomin = 150000; 270 pllreffreq = 48000; 271 272 for (testp = 1; testp < 9; testp++) { 273 if (clock * testp > vcomax) 274 continue; 275 if (clock * testp < vcomin) 276 continue; 277 278 for (testm = 1; testm < 17; testm++) { 279 for (testn = 1; testn < 151; testn++) { 280 computed = (pllreffreq * testn) / 281 (testm * testp); 282 if (computed > clock) 283 tmpdelta = computed - clock; 284 else 285 tmpdelta = clock - computed; 286 if (tmpdelta < delta) { 287 delta = tmpdelta; 288 n = testn - 1; 289 m = (testm - 1) | 290 ((n >> 1) & 0x80); 291 p = testp - 1; 292 } 293 } 294 } 295 } 296 } 297 298 for (i = 0; i <= 32 && pll_locked == false; i++) { 299 if (i > 0) { 300 WREG8(MGAREG_CRTC_INDEX, 0x1e); 301 tmp = RREG8(MGAREG_CRTC_DATA); 302 if (tmp < 0xff) 303 WREG8(MGAREG_CRTC_DATA, tmp+1); 304 } 305 306 /* set pixclkdis to 1 */ 307 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 308 tmp = RREG8(DAC_DATA); 309 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 310 WREG8(DAC_DATA, tmp); 311 312 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 313 tmp = RREG8(DAC_DATA); 314 tmp |= MGA1064_REMHEADCTL_CLKDIS; 315 WREG8(DAC_DATA, tmp); 316 317 /* select PLL Set C */ 318 tmp = RREG8(MGAREG_MEM_MISC_READ); 319 tmp |= 0x3 << 2; 320 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 321 322 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 323 tmp = RREG8(DAC_DATA); 324 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN | 0x80; 325 WREG8(DAC_DATA, tmp); 326 327 udelay(500); 328 329 /* reset the PLL */ 330 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 331 tmp = RREG8(DAC_DATA); 332 tmp &= ~0x04; 333 WREG8(DAC_DATA, tmp); 334 335 udelay(50); 336 337 /* program pixel pll register */ 338 WREG_DAC(MGA1064_WB_PIX_PLLC_N, n); 339 WREG_DAC(MGA1064_WB_PIX_PLLC_M, m); 340 WREG_DAC(MGA1064_WB_PIX_PLLC_P, p); 341 342 udelay(50); 343 344 /* turn pll on */ 345 WREG8(DAC_INDEX, MGA1064_VREF_CTL); 346 tmp = RREG8(DAC_DATA); 347 tmp |= 0x04; 348 WREG_DAC(MGA1064_VREF_CTL, tmp); 349 350 udelay(500); 351 352 /* select the pixel pll */ 353 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 354 tmp = RREG8(DAC_DATA); 355 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 356 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 357 WREG8(DAC_DATA, tmp); 358 359 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 360 tmp = RREG8(DAC_DATA); 361 tmp &= ~MGA1064_REMHEADCTL_CLKSL_MSK; 362 tmp |= MGA1064_REMHEADCTL_CLKSL_PLL; 363 WREG8(DAC_DATA, tmp); 364 365 /* reset dotclock rate bit */ 366 WREG8(MGAREG_SEQ_INDEX, 1); 367 tmp = RREG8(MGAREG_SEQ_DATA); 368 tmp &= ~0x8; 369 WREG8(MGAREG_SEQ_DATA, tmp); 370 371 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 372 tmp = RREG8(DAC_DATA); 373 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 374 WREG8(DAC_DATA, tmp); 375 376 vcount = RREG8(MGAREG_VCOUNT); 377 378 for (j = 0; j < 30 && pll_locked == false; j++) { 379 tmpcount = RREG8(MGAREG_VCOUNT); 380 if (tmpcount < vcount) 381 vcount = 0; 382 if ((tmpcount - vcount) > 2) 383 pll_locked = true; 384 else 385 udelay(5); 386 } 387 } 388 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 389 tmp = RREG8(DAC_DATA); 390 tmp &= ~MGA1064_REMHEADCTL_CLKDIS; 391 WREG_DAC(MGA1064_REMHEADCTL, tmp); 392 return 0; 393 } 394 395 static int mga_g200ev_set_plls(struct mga_device *mdev, long clock) 396 { 397 unsigned int vcomax, vcomin, pllreffreq; 398 unsigned int delta, tmpdelta; 399 unsigned int testp, testm, testn; 400 unsigned int p, m, n; 401 unsigned int computed; 402 u8 tmp; 403 404 m = n = p = 0; 405 vcomax = 550000; 406 vcomin = 150000; 407 pllreffreq = 50000; 408 409 delta = 0xffffffff; 410 411 for (testp = 16; testp > 0; testp--) { 412 if (clock * testp > vcomax) 413 continue; 414 if (clock * testp < vcomin) 415 continue; 416 417 for (testn = 1; testn < 257; testn++) { 418 for (testm = 1; testm < 17; testm++) { 419 computed = (pllreffreq * testn) / 420 (testm * testp); 421 if (computed > clock) 422 tmpdelta = computed - clock; 423 else 424 tmpdelta = clock - computed; 425 if (tmpdelta < delta) { 426 delta = tmpdelta; 427 n = testn - 1; 428 m = testm - 1; 429 p = testp - 1; 430 } 431 } 432 } 433 } 434 435 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 436 tmp = RREG8(DAC_DATA); 437 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 438 WREG8(DAC_DATA, tmp); 439 440 tmp = RREG8(MGAREG_MEM_MISC_READ); 441 tmp |= 0x3 << 2; 442 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 443 444 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 445 tmp = RREG8(DAC_DATA); 446 WREG8(DAC_DATA, tmp & ~0x40); 447 448 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 449 tmp = RREG8(DAC_DATA); 450 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 451 WREG8(DAC_DATA, tmp); 452 453 WREG_DAC(MGA1064_EV_PIX_PLLC_M, m); 454 WREG_DAC(MGA1064_EV_PIX_PLLC_N, n); 455 WREG_DAC(MGA1064_EV_PIX_PLLC_P, p); 456 457 udelay(50); 458 459 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 460 tmp = RREG8(DAC_DATA); 461 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 462 WREG8(DAC_DATA, tmp); 463 464 udelay(500); 465 466 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 467 tmp = RREG8(DAC_DATA); 468 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 469 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 470 WREG8(DAC_DATA, tmp); 471 472 WREG8(DAC_INDEX, MGA1064_PIX_PLL_STAT); 473 tmp = RREG8(DAC_DATA); 474 WREG8(DAC_DATA, tmp | 0x40); 475 476 tmp = RREG8(MGAREG_MEM_MISC_READ); 477 tmp |= (0x3 << 2); 478 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 479 480 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 481 tmp = RREG8(DAC_DATA); 482 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 483 WREG8(DAC_DATA, tmp); 484 485 return 0; 486 } 487 488 static int mga_g200eh_set_plls(struct mga_device *mdev, long clock) 489 { 490 unsigned int vcomax, vcomin, pllreffreq; 491 unsigned int delta, tmpdelta; 492 unsigned int testp, testm, testn; 493 unsigned int p, m, n; 494 unsigned int computed; 495 int i, j, tmpcount, vcount; 496 u8 tmp; 497 bool pll_locked = false; 498 499 m = n = p = 0; 500 vcomax = 800000; 501 vcomin = 400000; 502 pllreffreq = 33333; 503 504 delta = 0xffffffff; 505 506 for (testp = 16; testp > 0; testp >>= 1) { 507 if (clock * testp > vcomax) 508 continue; 509 if (clock * testp < vcomin) 510 continue; 511 512 for (testm = 1; testm < 33; testm++) { 513 for (testn = 17; testn < 257; testn++) { 514 computed = (pllreffreq * testn) / 515 (testm * testp); 516 if (computed > clock) 517 tmpdelta = computed - clock; 518 else 519 tmpdelta = clock - computed; 520 if (tmpdelta < delta) { 521 delta = tmpdelta; 522 n = testn - 1; 523 m = (testm - 1); 524 p = testp - 1; 525 } 526 if ((clock * testp) >= 600000) 527 p |= 0x80; 528 } 529 } 530 } 531 for (i = 0; i <= 32 && pll_locked == false; i++) { 532 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 533 tmp = RREG8(DAC_DATA); 534 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 535 WREG8(DAC_DATA, tmp); 536 537 tmp = RREG8(MGAREG_MEM_MISC_READ); 538 tmp |= 0x3 << 2; 539 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 540 541 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 542 tmp = RREG8(DAC_DATA); 543 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 544 WREG8(DAC_DATA, tmp); 545 546 udelay(500); 547 548 WREG_DAC(MGA1064_EH_PIX_PLLC_M, m); 549 WREG_DAC(MGA1064_EH_PIX_PLLC_N, n); 550 WREG_DAC(MGA1064_EH_PIX_PLLC_P, p); 551 552 udelay(500); 553 554 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 555 tmp = RREG8(DAC_DATA); 556 tmp &= ~MGA1064_PIX_CLK_CTL_SEL_MSK; 557 tmp |= MGA1064_PIX_CLK_CTL_SEL_PLL; 558 WREG8(DAC_DATA, tmp); 559 560 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 561 tmp = RREG8(DAC_DATA); 562 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 563 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 564 WREG8(DAC_DATA, tmp); 565 566 vcount = RREG8(MGAREG_VCOUNT); 567 568 for (j = 0; j < 30 && pll_locked == false; j++) { 569 tmpcount = RREG8(MGAREG_VCOUNT); 570 if (tmpcount < vcount) 571 vcount = 0; 572 if ((tmpcount - vcount) > 2) 573 pll_locked = true; 574 else 575 udelay(5); 576 } 577 } 578 579 return 0; 580 } 581 582 static int mga_g200er_set_plls(struct mga_device *mdev, long clock) 583 { 584 unsigned int vcomax, vcomin, pllreffreq; 585 unsigned int delta, tmpdelta; 586 int testr, testn, testm, testo; 587 unsigned int p, m, n; 588 unsigned int computed, vco; 589 int tmp; 590 const unsigned int m_div_val[] = { 1, 2, 4, 8 }; 591 592 m = n = p = 0; 593 vcomax = 1488000; 594 vcomin = 1056000; 595 pllreffreq = 48000; 596 597 delta = 0xffffffff; 598 599 for (testr = 0; testr < 4; testr++) { 600 if (delta == 0) 601 break; 602 for (testn = 5; testn < 129; testn++) { 603 if (delta == 0) 604 break; 605 for (testm = 3; testm >= 0; testm--) { 606 if (delta == 0) 607 break; 608 for (testo = 5; testo < 33; testo++) { 609 vco = pllreffreq * (testn + 1) / 610 (testr + 1); 611 if (vco < vcomin) 612 continue; 613 if (vco > vcomax) 614 continue; 615 computed = vco / (m_div_val[testm] * (testo + 1)); 616 if (computed > clock) 617 tmpdelta = computed - clock; 618 else 619 tmpdelta = clock - computed; 620 if (tmpdelta < delta) { 621 delta = tmpdelta; 622 m = testm | (testo << 3); 623 n = testn; 624 p = testr | (testr << 3); 625 } 626 } 627 } 628 } 629 } 630 631 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 632 tmp = RREG8(DAC_DATA); 633 tmp |= MGA1064_PIX_CLK_CTL_CLK_DIS; 634 WREG8(DAC_DATA, tmp); 635 636 WREG8(DAC_INDEX, MGA1064_REMHEADCTL); 637 tmp = RREG8(DAC_DATA); 638 tmp |= MGA1064_REMHEADCTL_CLKDIS; 639 WREG8(DAC_DATA, tmp); 640 641 tmp = RREG8(MGAREG_MEM_MISC_READ); 642 tmp |= (0x3<<2) | 0xc0; 643 WREG8(MGAREG_MEM_MISC_WRITE, tmp); 644 645 WREG8(DAC_INDEX, MGA1064_PIX_CLK_CTL); 646 tmp = RREG8(DAC_DATA); 647 tmp &= ~MGA1064_PIX_CLK_CTL_CLK_DIS; 648 tmp |= MGA1064_PIX_CLK_CTL_CLK_POW_DOWN; 649 WREG8(DAC_DATA, tmp); 650 651 udelay(500); 652 653 WREG_DAC(MGA1064_ER_PIX_PLLC_N, n); 654 WREG_DAC(MGA1064_ER_PIX_PLLC_M, m); 655 WREG_DAC(MGA1064_ER_PIX_PLLC_P, p); 656 657 udelay(50); 658 659 return 0; 660 } 661 662 static int mga_crtc_set_plls(struct mga_device *mdev, long clock) 663 { 664 switch(mdev->type) { 665 case G200_SE_A: 666 case G200_SE_B: 667 return mga_g200se_set_plls(mdev, clock); 668 break; 669 case G200_WB: 670 case G200_EW3: 671 return mga_g200wb_set_plls(mdev, clock); 672 break; 673 case G200_EV: 674 return mga_g200ev_set_plls(mdev, clock); 675 break; 676 case G200_EH: 677 return mga_g200eh_set_plls(mdev, clock); 678 break; 679 case G200_ER: 680 return mga_g200er_set_plls(mdev, clock); 681 break; 682 } 683 return 0; 684 } 685 686 static void mga_g200wb_prepare(struct drm_crtc *crtc) 687 { 688 struct mga_device *mdev = crtc->dev->dev_private; 689 u8 tmp; 690 int iter_max; 691 692 /* 1- The first step is to warn the BMC of an upcoming mode change. 693 * We are putting the misc<0> to output.*/ 694 695 WREG8(DAC_INDEX, MGA1064_GEN_IO_CTL); 696 tmp = RREG8(DAC_DATA); 697 tmp |= 0x10; 698 WREG_DAC(MGA1064_GEN_IO_CTL, tmp); 699 700 /* we are putting a 1 on the misc<0> line */ 701 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 702 tmp = RREG8(DAC_DATA); 703 tmp |= 0x10; 704 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 705 706 /* 2- Second step to mask and further scan request 707 * This will be done by asserting the remfreqmsk bit (XSPAREREG<7>) 708 */ 709 WREG8(DAC_INDEX, MGA1064_SPAREREG); 710 tmp = RREG8(DAC_DATA); 711 tmp |= 0x80; 712 WREG_DAC(MGA1064_SPAREREG, tmp); 713 714 /* 3a- the third step is to verifu if there is an active scan 715 * We are searching for a 0 on remhsyncsts <XSPAREREG<0>) 716 */ 717 iter_max = 300; 718 while (!(tmp & 0x1) && iter_max) { 719 WREG8(DAC_INDEX, MGA1064_SPAREREG); 720 tmp = RREG8(DAC_DATA); 721 udelay(1000); 722 iter_max--; 723 } 724 725 /* 3b- this step occurs only if the remove is actually scanning 726 * we are waiting for the end of the frame which is a 1 on 727 * remvsyncsts (XSPAREREG<1>) 728 */ 729 if (iter_max) { 730 iter_max = 300; 731 while ((tmp & 0x2) && iter_max) { 732 WREG8(DAC_INDEX, MGA1064_SPAREREG); 733 tmp = RREG8(DAC_DATA); 734 udelay(1000); 735 iter_max--; 736 } 737 } 738 } 739 740 static void mga_g200wb_commit(struct drm_crtc *crtc) 741 { 742 u8 tmp; 743 struct mga_device *mdev = crtc->dev->dev_private; 744 745 /* 1- The first step is to ensure that the vrsten and hrsten are set */ 746 WREG8(MGAREG_CRTCEXT_INDEX, 1); 747 tmp = RREG8(MGAREG_CRTCEXT_DATA); 748 WREG8(MGAREG_CRTCEXT_DATA, tmp | 0x88); 749 750 /* 2- second step is to assert the rstlvl2 */ 751 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 752 tmp = RREG8(DAC_DATA); 753 tmp |= 0x8; 754 WREG8(DAC_DATA, tmp); 755 756 /* wait 10 us */ 757 udelay(10); 758 759 /* 3- deassert rstlvl2 */ 760 tmp &= ~0x08; 761 WREG8(DAC_INDEX, MGA1064_REMHEADCTL2); 762 WREG8(DAC_DATA, tmp); 763 764 /* 4- remove mask of scan request */ 765 WREG8(DAC_INDEX, MGA1064_SPAREREG); 766 tmp = RREG8(DAC_DATA); 767 tmp &= ~0x80; 768 WREG8(DAC_DATA, tmp); 769 770 /* 5- put back a 0 on the misc<0> line */ 771 WREG8(DAC_INDEX, MGA1064_GEN_IO_DATA); 772 tmp = RREG8(DAC_DATA); 773 tmp &= ~0x10; 774 WREG_DAC(MGA1064_GEN_IO_DATA, tmp); 775 } 776 777 /* 778 This is how the framebuffer base address is stored in g200 cards: 779 * Assume @offset is the gpu_addr variable of the framebuffer object 780 * Then addr is the number of _pixels_ (not bytes) from the start of 781 VRAM to the first pixel we want to display. (divided by 2 for 32bit 782 framebuffers) 783 * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers 784 addr<20> -> CRTCEXT0<6> 785 addr<19-16> -> CRTCEXT0<3-0> 786 addr<15-8> -> CRTCC<7-0> 787 addr<7-0> -> CRTCD<7-0> 788 CRTCEXT0 has to be programmed last to trigger an update and make the 789 new addr variable take effect. 790 */ 791 static void mga_set_start_address(struct drm_crtc *crtc, unsigned offset) 792 { 793 struct mga_device *mdev = crtc->dev->dev_private; 794 u32 addr; 795 int count; 796 u8 crtcext0; 797 798 while (RREG8(0x1fda) & 0x08); 799 while (!(RREG8(0x1fda) & 0x08)); 800 801 count = RREG8(MGAREG_VCOUNT) + 2; 802 while (RREG8(MGAREG_VCOUNT) < count); 803 804 WREG8(MGAREG_CRTCEXT_INDEX, 0); 805 crtcext0 = RREG8(MGAREG_CRTCEXT_DATA); 806 crtcext0 &= 0xB0; 807 addr = offset / 8; 808 /* Can't store addresses any higher than that... 809 but we also don't have more than 16MB of memory, so it should be fine. */ 810 WARN_ON(addr > 0x1fffff); 811 crtcext0 |= (!!(addr & (1<<20)))<<6; 812 WREG_CRT(0x0d, (u8)(addr & 0xff)); 813 WREG_CRT(0x0c, (u8)(addr >> 8) & 0xff); 814 WREG_ECRT(0x0, ((u8)(addr >> 16) & 0xf) | crtcext0); 815 } 816 817 818 /* ast is different - we will force move buffers out of VRAM */ 819 static int mga_crtc_do_set_base(struct drm_crtc *crtc, 820 struct drm_framebuffer *fb, 821 int x, int y, int atomic) 822 { 823 struct mga_device *mdev = crtc->dev->dev_private; 824 struct drm_gem_object *obj; 825 struct mga_framebuffer *mga_fb; 826 struct mgag200_bo *bo; 827 int ret; 828 u64 gpu_addr; 829 830 /* push the previous fb to system ram */ 831 if (!atomic && fb) { 832 mga_fb = to_mga_framebuffer(fb); 833 obj = mga_fb->obj; 834 bo = gem_to_mga_bo(obj); 835 ret = mgag200_bo_reserve(bo, false); 836 if (ret) 837 return ret; 838 mgag200_bo_push_sysram(bo); 839 mgag200_bo_unreserve(bo); 840 } 841 842 mga_fb = to_mga_framebuffer(crtc->primary->fb); 843 obj = mga_fb->obj; 844 bo = gem_to_mga_bo(obj); 845 846 ret = mgag200_bo_reserve(bo, false); 847 if (ret) 848 return ret; 849 850 ret = mgag200_bo_pin(bo, TTM_PL_FLAG_VRAM, &gpu_addr); 851 if (ret) { 852 mgag200_bo_unreserve(bo); 853 return ret; 854 } 855 856 if (&mdev->mfbdev->mfb == mga_fb) { 857 /* if pushing console in kmap it */ 858 ret = ttm_bo_kmap(&bo->bo, 0, bo->bo.num_pages, &bo->kmap); 859 if (ret) 860 DRM_ERROR("failed to kmap fbcon\n"); 861 862 } 863 mgag200_bo_unreserve(bo); 864 865 mga_set_start_address(crtc, (u32)gpu_addr); 866 867 return 0; 868 } 869 870 static int mga_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, 871 struct drm_framebuffer *old_fb) 872 { 873 return mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 874 } 875 876 static int mga_crtc_mode_set(struct drm_crtc *crtc, 877 struct drm_display_mode *mode, 878 struct drm_display_mode *adjusted_mode, 879 int x, int y, struct drm_framebuffer *old_fb) 880 { 881 struct drm_device *dev = crtc->dev; 882 struct mga_device *mdev = dev->dev_private; 883 int hdisplay, hsyncstart, hsyncend, htotal; 884 int vdisplay, vsyncstart, vsyncend, vtotal; 885 int pitch; 886 int option = 0, option2 = 0; 887 int i; 888 unsigned char misc = 0; 889 unsigned char ext_vga[6]; 890 u8 bppshift; 891 892 static unsigned char dacvalue[] = { 893 /* 0x00: */ 0, 0, 0, 0, 0, 0, 0x00, 0, 894 /* 0x08: */ 0, 0, 0, 0, 0, 0, 0, 0, 895 /* 0x10: */ 0, 0, 0, 0, 0, 0, 0, 0, 896 /* 0x18: */ 0x00, 0, 0xC9, 0xFF, 0xBF, 0x20, 0x1F, 0x20, 897 /* 0x20: */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 898 /* 0x28: */ 0x00, 0x00, 0x00, 0x00, 0, 0, 0, 0x40, 899 /* 0x30: */ 0x00, 0xB0, 0x00, 0xC2, 0x34, 0x14, 0x02, 0x83, 900 /* 0x38: */ 0x00, 0x93, 0x00, 0x77, 0x00, 0x00, 0x00, 0x3A, 901 /* 0x40: */ 0, 0, 0, 0, 0, 0, 0, 0, 902 /* 0x48: */ 0, 0, 0, 0, 0, 0, 0, 0 903 }; 904 905 bppshift = mdev->bpp_shifts[(crtc->primary->fb->bits_per_pixel >> 3) - 1]; 906 907 switch (mdev->type) { 908 case G200_SE_A: 909 case G200_SE_B: 910 dacvalue[MGA1064_VREF_CTL] = 0x03; 911 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 912 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_DAC_EN | 913 MGA1064_MISC_CTL_VGA8 | 914 MGA1064_MISC_CTL_DAC_RAM_CS; 915 if (mdev->has_sdram) 916 option = 0x40049120; 917 else 918 option = 0x4004d120; 919 option2 = 0x00008000; 920 break; 921 case G200_WB: 922 case G200_EW3: 923 dacvalue[MGA1064_VREF_CTL] = 0x07; 924 option = 0x41049120; 925 option2 = 0x0000b000; 926 break; 927 case G200_EV: 928 dacvalue[MGA1064_PIX_CLK_CTL] = MGA1064_PIX_CLK_CTL_SEL_PLL; 929 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 930 MGA1064_MISC_CTL_DAC_RAM_CS; 931 option = 0x00000120; 932 option2 = 0x0000b000; 933 break; 934 case G200_EH: 935 dacvalue[MGA1064_MISC_CTL] = MGA1064_MISC_CTL_VGA8 | 936 MGA1064_MISC_CTL_DAC_RAM_CS; 937 option = 0x00000120; 938 option2 = 0x0000b000; 939 break; 940 case G200_ER: 941 break; 942 } 943 944 switch (crtc->primary->fb->bits_per_pixel) { 945 case 8: 946 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_8bits; 947 break; 948 case 16: 949 if (crtc->primary->fb->depth == 15) 950 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_15bits; 951 else 952 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_16bits; 953 break; 954 case 24: 955 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_24bits; 956 break; 957 case 32: 958 dacvalue[MGA1064_MUL_CTL] = MGA1064_MUL_CTL_32_24bits; 959 break; 960 } 961 962 if (mode->flags & DRM_MODE_FLAG_NHSYNC) 963 misc |= 0x40; 964 if (mode->flags & DRM_MODE_FLAG_NVSYNC) 965 misc |= 0x80; 966 967 968 for (i = 0; i < sizeof(dacvalue); i++) { 969 if ((i <= 0x17) || 970 (i == 0x1b) || 971 (i == 0x1c) || 972 ((i >= 0x1f) && (i <= 0x29)) || 973 ((i >= 0x30) && (i <= 0x37))) 974 continue; 975 if (IS_G200_SE(mdev) && 976 ((i == 0x2c) || (i == 0x2d) || (i == 0x2e))) 977 continue; 978 if ((mdev->type == G200_EV || 979 mdev->type == G200_WB || 980 mdev->type == G200_EH || 981 mdev->type == G200_EW3) && 982 (i >= 0x44) && (i <= 0x4e)) 983 continue; 984 985 WREG_DAC(i, dacvalue[i]); 986 } 987 988 if (mdev->type == G200_ER) 989 WREG_DAC(0x90, 0); 990 991 if (option) 992 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION, option); 993 if (option2) 994 pci_write_config_dword(dev->pdev, PCI_MGA_OPTION2, option2); 995 996 WREG_SEQ(2, 0xf); 997 WREG_SEQ(3, 0); 998 WREG_SEQ(4, 0xe); 999 1000 pitch = crtc->primary->fb->pitches[0] / (crtc->primary->fb->bits_per_pixel / 8); 1001 if (crtc->primary->fb->bits_per_pixel == 24) 1002 pitch = (pitch * 3) >> (4 - bppshift); 1003 else 1004 pitch = pitch >> (4 - bppshift); 1005 1006 hdisplay = mode->hdisplay / 8 - 1; 1007 hsyncstart = mode->hsync_start / 8 - 1; 1008 hsyncend = mode->hsync_end / 8 - 1; 1009 htotal = mode->htotal / 8 - 1; 1010 1011 /* Work around hardware quirk */ 1012 if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04) 1013 htotal++; 1014 1015 vdisplay = mode->vdisplay - 1; 1016 vsyncstart = mode->vsync_start - 1; 1017 vsyncend = mode->vsync_end - 1; 1018 vtotal = mode->vtotal - 2; 1019 1020 WREG_GFX(0, 0); 1021 WREG_GFX(1, 0); 1022 WREG_GFX(2, 0); 1023 WREG_GFX(3, 0); 1024 WREG_GFX(4, 0); 1025 WREG_GFX(5, 0x40); 1026 WREG_GFX(6, 0x5); 1027 WREG_GFX(7, 0xf); 1028 WREG_GFX(8, 0xf); 1029 1030 WREG_CRT(0, htotal - 4); 1031 WREG_CRT(1, hdisplay); 1032 WREG_CRT(2, hdisplay); 1033 WREG_CRT(3, (htotal & 0x1F) | 0x80); 1034 WREG_CRT(4, hsyncstart); 1035 WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F)); 1036 WREG_CRT(6, vtotal & 0xFF); 1037 WREG_CRT(7, ((vtotal & 0x100) >> 8) | 1038 ((vdisplay & 0x100) >> 7) | 1039 ((vsyncstart & 0x100) >> 6) | 1040 ((vdisplay & 0x100) >> 5) | 1041 ((vdisplay & 0x100) >> 4) | /* linecomp */ 1042 ((vtotal & 0x200) >> 4)| 1043 ((vdisplay & 0x200) >> 3) | 1044 ((vsyncstart & 0x200) >> 2)); 1045 WREG_CRT(9, ((vdisplay & 0x200) >> 4) | 1046 ((vdisplay & 0x200) >> 3)); 1047 WREG_CRT(10, 0); 1048 WREG_CRT(11, 0); 1049 WREG_CRT(12, 0); 1050 WREG_CRT(13, 0); 1051 WREG_CRT(14, 0); 1052 WREG_CRT(15, 0); 1053 WREG_CRT(16, vsyncstart & 0xFF); 1054 WREG_CRT(17, (vsyncend & 0x0F) | 0x20); 1055 WREG_CRT(18, vdisplay & 0xFF); 1056 WREG_CRT(19, pitch & 0xFF); 1057 WREG_CRT(20, 0); 1058 WREG_CRT(21, vdisplay & 0xFF); 1059 WREG_CRT(22, (vtotal + 1) & 0xFF); 1060 WREG_CRT(23, 0xc3); 1061 WREG_CRT(24, vdisplay & 0xFF); 1062 1063 ext_vga[0] = 0; 1064 ext_vga[5] = 0; 1065 1066 /* TODO interlace */ 1067 1068 ext_vga[0] |= (pitch & 0x300) >> 4; 1069 ext_vga[1] = (((htotal - 4) & 0x100) >> 8) | 1070 ((hdisplay & 0x100) >> 7) | 1071 ((hsyncstart & 0x100) >> 6) | 1072 (htotal & 0x40); 1073 ext_vga[2] = ((vtotal & 0xc00) >> 10) | 1074 ((vdisplay & 0x400) >> 8) | 1075 ((vdisplay & 0xc00) >> 7) | 1076 ((vsyncstart & 0xc00) >> 5) | 1077 ((vdisplay & 0x400) >> 3); 1078 if (crtc->primary->fb->bits_per_pixel == 24) 1079 ext_vga[3] = (((1 << bppshift) * 3) - 1) | 0x80; 1080 else 1081 ext_vga[3] = ((1 << bppshift) - 1) | 0x80; 1082 ext_vga[4] = 0; 1083 if (mdev->type == G200_WB || mdev->type == G200_EW3) 1084 ext_vga[1] |= 0x88; 1085 1086 /* Set pixel clocks */ 1087 misc = 0x2d; 1088 WREG8(MGA_MISC_OUT, misc); 1089 1090 mga_crtc_set_plls(mdev, mode->clock); 1091 1092 for (i = 0; i < 6; i++) { 1093 WREG_ECRT(i, ext_vga[i]); 1094 } 1095 1096 if (mdev->type == G200_ER) 1097 WREG_ECRT(0x24, 0x5); 1098 1099 if (mdev->type == G200_EW3) 1100 WREG_ECRT(0x34, 0x5); 1101 1102 if (mdev->type == G200_EV) { 1103 WREG_ECRT(6, 0); 1104 } 1105 1106 WREG_ECRT(0, ext_vga[0]); 1107 /* Enable mga pixel clock */ 1108 misc = 0x2d; 1109 1110 WREG8(MGA_MISC_OUT, misc); 1111 1112 if (adjusted_mode) 1113 memcpy(&mdev->mode, mode, sizeof(struct drm_display_mode)); 1114 1115 mga_crtc_do_set_base(crtc, old_fb, x, y, 0); 1116 1117 /* reset tagfifo */ 1118 if (mdev->type == G200_ER) { 1119 u32 mem_ctl = RREG32(MGAREG_MEMCTL); 1120 u8 seq1; 1121 1122 /* screen off */ 1123 WREG8(MGAREG_SEQ_INDEX, 0x01); 1124 seq1 = RREG8(MGAREG_SEQ_DATA) | 0x20; 1125 WREG8(MGAREG_SEQ_DATA, seq1); 1126 1127 WREG32(MGAREG_MEMCTL, mem_ctl | 0x00200000); 1128 udelay(1000); 1129 WREG32(MGAREG_MEMCTL, mem_ctl & ~0x00200000); 1130 1131 WREG8(MGAREG_SEQ_DATA, seq1 & ~0x20); 1132 } 1133 1134 1135 if (IS_G200_SE(mdev)) { 1136 if (mdev->unique_rev_id >= 0x02) { 1137 u8 hi_pri_lvl; 1138 u32 bpp; 1139 u32 mb; 1140 1141 if (crtc->primary->fb->bits_per_pixel > 16) 1142 bpp = 32; 1143 else if (crtc->primary->fb->bits_per_pixel > 8) 1144 bpp = 16; 1145 else 1146 bpp = 8; 1147 1148 mb = (mode->clock * bpp) / 1000; 1149 if (mb > 3100) 1150 hi_pri_lvl = 0; 1151 else if (mb > 2600) 1152 hi_pri_lvl = 1; 1153 else if (mb > 1900) 1154 hi_pri_lvl = 2; 1155 else if (mb > 1160) 1156 hi_pri_lvl = 3; 1157 else if (mb > 440) 1158 hi_pri_lvl = 4; 1159 else 1160 hi_pri_lvl = 5; 1161 1162 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1163 WREG8(MGAREG_CRTCEXT_DATA, hi_pri_lvl); 1164 } else { 1165 WREG8(MGAREG_CRTCEXT_INDEX, 0x06); 1166 if (mdev->unique_rev_id >= 0x01) 1167 WREG8(MGAREG_CRTCEXT_DATA, 0x03); 1168 else 1169 WREG8(MGAREG_CRTCEXT_DATA, 0x04); 1170 } 1171 } 1172 return 0; 1173 } 1174 1175 #if 0 /* code from mjg to attempt D3 on crtc dpms off - revisit later */ 1176 static int mga_suspend(struct drm_crtc *crtc) 1177 { 1178 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1179 struct drm_device *dev = crtc->dev; 1180 struct mga_device *mdev = dev->dev_private; 1181 struct pci_dev *pdev = dev->pdev; 1182 int option; 1183 1184 if (mdev->suspended) 1185 return 0; 1186 1187 WREG_SEQ(1, 0x20); 1188 WREG_ECRT(1, 0x30); 1189 /* Disable the pixel clock */ 1190 WREG_DAC(0x1a, 0x05); 1191 /* Power down the DAC */ 1192 WREG_DAC(0x1e, 0x18); 1193 /* Power down the pixel PLL */ 1194 WREG_DAC(0x1a, 0x0d); 1195 1196 /* Disable PLLs and clocks */ 1197 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1198 option &= ~(0x1F8024); 1199 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1200 pci_set_power_state(pdev, PCI_D3hot); 1201 pci_disable_device(pdev); 1202 1203 mdev->suspended = true; 1204 1205 return 0; 1206 } 1207 1208 static int mga_resume(struct drm_crtc *crtc) 1209 { 1210 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1211 struct drm_device *dev = crtc->dev; 1212 struct mga_device *mdev = dev->dev_private; 1213 struct pci_dev *pdev = dev->pdev; 1214 int option; 1215 1216 if (!mdev->suspended) 1217 return 0; 1218 1219 pci_set_power_state(pdev, PCI_D0); 1220 pci_enable_device(pdev); 1221 1222 /* Disable sysclk */ 1223 pci_read_config_dword(pdev, PCI_MGA_OPTION, &option); 1224 option &= ~(0x4); 1225 pci_write_config_dword(pdev, PCI_MGA_OPTION, option); 1226 1227 mdev->suspended = false; 1228 1229 return 0; 1230 } 1231 1232 #endif 1233 1234 static void mga_crtc_dpms(struct drm_crtc *crtc, int mode) 1235 { 1236 struct drm_device *dev = crtc->dev; 1237 struct mga_device *mdev = dev->dev_private; 1238 u8 seq1 = 0, crtcext1 = 0; 1239 1240 switch (mode) { 1241 case DRM_MODE_DPMS_ON: 1242 seq1 = 0; 1243 crtcext1 = 0; 1244 mga_crtc_load_lut(crtc); 1245 break; 1246 case DRM_MODE_DPMS_STANDBY: 1247 seq1 = 0x20; 1248 crtcext1 = 0x10; 1249 break; 1250 case DRM_MODE_DPMS_SUSPEND: 1251 seq1 = 0x20; 1252 crtcext1 = 0x20; 1253 break; 1254 case DRM_MODE_DPMS_OFF: 1255 seq1 = 0x20; 1256 crtcext1 = 0x30; 1257 break; 1258 } 1259 1260 #if 0 1261 if (mode == DRM_MODE_DPMS_OFF) { 1262 mga_suspend(crtc); 1263 } 1264 #endif 1265 WREG8(MGAREG_SEQ_INDEX, 0x01); 1266 seq1 |= RREG8(MGAREG_SEQ_DATA) & ~0x20; 1267 mga_wait_vsync(mdev); 1268 mga_wait_busy(mdev); 1269 WREG8(MGAREG_SEQ_DATA, seq1); 1270 msleep(20); 1271 WREG8(MGAREG_CRTCEXT_INDEX, 0x01); 1272 crtcext1 |= RREG8(MGAREG_CRTCEXT_DATA) & ~0x30; 1273 WREG8(MGAREG_CRTCEXT_DATA, crtcext1); 1274 1275 #if 0 1276 if (mode == DRM_MODE_DPMS_ON && mdev->suspended == true) { 1277 mga_resume(crtc); 1278 drm_helper_resume_force_mode(dev); 1279 } 1280 #endif 1281 } 1282 1283 /* 1284 * This is called before a mode is programmed. A typical use might be to 1285 * enable DPMS during the programming to avoid seeing intermediate stages, 1286 * but that's not relevant to us 1287 */ 1288 static void mga_crtc_prepare(struct drm_crtc *crtc) 1289 { 1290 struct drm_device *dev = crtc->dev; 1291 struct mga_device *mdev = dev->dev_private; 1292 u8 tmp; 1293 1294 /* mga_resume(crtc);*/ 1295 1296 WREG8(MGAREG_CRTC_INDEX, 0x11); 1297 tmp = RREG8(MGAREG_CRTC_DATA); 1298 WREG_CRT(0x11, tmp | 0x80); 1299 1300 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1301 WREG_SEQ(0, 1); 1302 msleep(50); 1303 WREG_SEQ(1, 0x20); 1304 msleep(20); 1305 } else { 1306 WREG8(MGAREG_SEQ_INDEX, 0x1); 1307 tmp = RREG8(MGAREG_SEQ_DATA); 1308 1309 /* start sync reset */ 1310 WREG_SEQ(0, 1); 1311 WREG_SEQ(1, tmp | 0x20); 1312 } 1313 1314 if (mdev->type == G200_WB || mdev->type == G200_EW3) 1315 mga_g200wb_prepare(crtc); 1316 1317 WREG_CRT(17, 0); 1318 } 1319 1320 /* 1321 * This is called after a mode is programmed. It should reverse anything done 1322 * by the prepare function 1323 */ 1324 static void mga_crtc_commit(struct drm_crtc *crtc) 1325 { 1326 struct drm_device *dev = crtc->dev; 1327 struct mga_device *mdev = dev->dev_private; 1328 const struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private; 1329 u8 tmp; 1330 1331 if (mdev->type == G200_WB || mdev->type == G200_EW3) 1332 mga_g200wb_commit(crtc); 1333 1334 if (mdev->type == G200_SE_A || mdev->type == G200_SE_B) { 1335 msleep(50); 1336 WREG_SEQ(1, 0x0); 1337 msleep(20); 1338 WREG_SEQ(0, 0x3); 1339 } else { 1340 WREG8(MGAREG_SEQ_INDEX, 0x1); 1341 tmp = RREG8(MGAREG_SEQ_DATA); 1342 1343 tmp &= ~0x20; 1344 WREG_SEQ(0x1, tmp); 1345 WREG_SEQ(0, 3); 1346 } 1347 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON); 1348 } 1349 1350 /* 1351 * The core can pass us a set of gamma values to program. We actually only 1352 * use this for 8-bit mode so can't perform smooth fades on deeper modes, 1353 * but it's a requirement that we provide the function 1354 */ 1355 static void mga_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green, 1356 u16 *blue, uint32_t start, uint32_t size) 1357 { 1358 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1359 int end = (start + size > MGAG200_LUT_SIZE) ? MGAG200_LUT_SIZE : start + size; 1360 int i; 1361 1362 for (i = start; i < end; i++) { 1363 mga_crtc->lut_r[i] = red[i] >> 8; 1364 mga_crtc->lut_g[i] = green[i] >> 8; 1365 mga_crtc->lut_b[i] = blue[i] >> 8; 1366 } 1367 mga_crtc_load_lut(crtc); 1368 } 1369 1370 /* Simple cleanup function */ 1371 static void mga_crtc_destroy(struct drm_crtc *crtc) 1372 { 1373 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1374 1375 drm_crtc_cleanup(crtc); 1376 kfree(mga_crtc); 1377 } 1378 1379 static void mga_crtc_disable(struct drm_crtc *crtc) 1380 { 1381 int ret; 1382 DRM_DEBUG_KMS("\n"); 1383 mga_crtc_dpms(crtc, DRM_MODE_DPMS_OFF); 1384 if (crtc->primary->fb) { 1385 struct mga_framebuffer *mga_fb = to_mga_framebuffer(crtc->primary->fb); 1386 struct drm_gem_object *obj = mga_fb->obj; 1387 struct mgag200_bo *bo = gem_to_mga_bo(obj); 1388 ret = mgag200_bo_reserve(bo, false); 1389 if (ret) 1390 return; 1391 mgag200_bo_push_sysram(bo); 1392 mgag200_bo_unreserve(bo); 1393 } 1394 crtc->primary->fb = NULL; 1395 } 1396 1397 /* These provide the minimum set of functions required to handle a CRTC */ 1398 static const struct drm_crtc_funcs mga_crtc_funcs = { 1399 .cursor_set = mga_crtc_cursor_set, 1400 .cursor_move = mga_crtc_cursor_move, 1401 .gamma_set = mga_crtc_gamma_set, 1402 .set_config = drm_crtc_helper_set_config, 1403 .destroy = mga_crtc_destroy, 1404 }; 1405 1406 static const struct drm_crtc_helper_funcs mga_helper_funcs = { 1407 .disable = mga_crtc_disable, 1408 .dpms = mga_crtc_dpms, 1409 .mode_set = mga_crtc_mode_set, 1410 .mode_set_base = mga_crtc_mode_set_base, 1411 .prepare = mga_crtc_prepare, 1412 .commit = mga_crtc_commit, 1413 .load_lut = mga_crtc_load_lut, 1414 }; 1415 1416 /* CRTC setup */ 1417 static void mga_crtc_init(struct mga_device *mdev) 1418 { 1419 struct mga_crtc *mga_crtc; 1420 int i; 1421 1422 mga_crtc = kzalloc(sizeof(struct mga_crtc) + 1423 (MGAG200FB_CONN_LIMIT * sizeof(struct drm_connector *)), 1424 GFP_KERNEL); 1425 1426 if (mga_crtc == NULL) 1427 return; 1428 1429 drm_crtc_init(mdev->dev, &mga_crtc->base, &mga_crtc_funcs); 1430 1431 drm_mode_crtc_set_gamma_size(&mga_crtc->base, MGAG200_LUT_SIZE); 1432 mdev->mode_info.crtc = mga_crtc; 1433 1434 for (i = 0; i < MGAG200_LUT_SIZE; i++) { 1435 mga_crtc->lut_r[i] = i; 1436 mga_crtc->lut_g[i] = i; 1437 mga_crtc->lut_b[i] = i; 1438 } 1439 1440 drm_crtc_helper_add(&mga_crtc->base, &mga_helper_funcs); 1441 } 1442 1443 /** Sets the color ramps on behalf of fbcon */ 1444 void mga_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green, 1445 u16 blue, int regno) 1446 { 1447 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1448 1449 mga_crtc->lut_r[regno] = red >> 8; 1450 mga_crtc->lut_g[regno] = green >> 8; 1451 mga_crtc->lut_b[regno] = blue >> 8; 1452 } 1453 1454 /** Gets the color ramps on behalf of fbcon */ 1455 void mga_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green, 1456 u16 *blue, int regno) 1457 { 1458 struct mga_crtc *mga_crtc = to_mga_crtc(crtc); 1459 1460 *red = (u16)mga_crtc->lut_r[regno] << 8; 1461 *green = (u16)mga_crtc->lut_g[regno] << 8; 1462 *blue = (u16)mga_crtc->lut_b[regno] << 8; 1463 } 1464 1465 /* 1466 * The encoder comes after the CRTC in the output pipeline, but before 1467 * the connector. It's responsible for ensuring that the digital 1468 * stream is appropriately converted into the output format. Setup is 1469 * very simple in this case - all we have to do is inform qemu of the 1470 * colour depth in order to ensure that it displays appropriately 1471 */ 1472 1473 /* 1474 * These functions are analagous to those in the CRTC code, but are intended 1475 * to handle any encoder-specific limitations 1476 */ 1477 static void mga_encoder_mode_set(struct drm_encoder *encoder, 1478 struct drm_display_mode *mode, 1479 struct drm_display_mode *adjusted_mode) 1480 { 1481 1482 } 1483 1484 static void mga_encoder_dpms(struct drm_encoder *encoder, int state) 1485 { 1486 return; 1487 } 1488 1489 static void mga_encoder_prepare(struct drm_encoder *encoder) 1490 { 1491 } 1492 1493 static void mga_encoder_commit(struct drm_encoder *encoder) 1494 { 1495 } 1496 1497 static void mga_encoder_destroy(struct drm_encoder *encoder) 1498 { 1499 struct mga_encoder *mga_encoder = to_mga_encoder(encoder); 1500 drm_encoder_cleanup(encoder); 1501 kfree(mga_encoder); 1502 } 1503 1504 static const struct drm_encoder_helper_funcs mga_encoder_helper_funcs = { 1505 .dpms = mga_encoder_dpms, 1506 .mode_set = mga_encoder_mode_set, 1507 .prepare = mga_encoder_prepare, 1508 .commit = mga_encoder_commit, 1509 }; 1510 1511 static const struct drm_encoder_funcs mga_encoder_encoder_funcs = { 1512 .destroy = mga_encoder_destroy, 1513 }; 1514 1515 static struct drm_encoder *mga_encoder_init(struct drm_device *dev) 1516 { 1517 struct drm_encoder *encoder; 1518 struct mga_encoder *mga_encoder; 1519 1520 mga_encoder = kzalloc(sizeof(struct mga_encoder), GFP_KERNEL); 1521 if (!mga_encoder) 1522 return NULL; 1523 1524 encoder = &mga_encoder->base; 1525 encoder->possible_crtcs = 0x1; 1526 1527 drm_encoder_init(dev, encoder, &mga_encoder_encoder_funcs, 1528 DRM_MODE_ENCODER_DAC, NULL); 1529 drm_encoder_helper_add(encoder, &mga_encoder_helper_funcs); 1530 1531 return encoder; 1532 } 1533 1534 1535 static int mga_vga_get_modes(struct drm_connector *connector) 1536 { 1537 struct mga_connector *mga_connector = to_mga_connector(connector); 1538 struct edid *edid; 1539 int ret = 0; 1540 1541 edid = drm_get_edid(connector, &mga_connector->i2c->adapter); 1542 if (edid) { 1543 drm_mode_connector_update_edid_property(connector, edid); 1544 ret = drm_add_edid_modes(connector, edid); 1545 kfree(edid); 1546 } 1547 return ret; 1548 } 1549 1550 static uint32_t mga_vga_calculate_mode_bandwidth(struct drm_display_mode *mode, 1551 int bits_per_pixel) 1552 { 1553 uint32_t total_area, divisor; 1554 uint64_t active_area, pixels_per_second, bandwidth; 1555 uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8; 1556 1557 divisor = 1024; 1558 1559 if (!mode->htotal || !mode->vtotal || !mode->clock) 1560 return 0; 1561 1562 active_area = mode->hdisplay * mode->vdisplay; 1563 total_area = mode->htotal * mode->vtotal; 1564 1565 pixels_per_second = active_area * mode->clock * 1000; 1566 do_div(pixels_per_second, total_area); 1567 1568 bandwidth = pixels_per_second * bytes_per_pixel * 100; 1569 do_div(bandwidth, divisor); 1570 1571 return (uint32_t)(bandwidth); 1572 } 1573 1574 #define MODE_BANDWIDTH MODE_BAD 1575 1576 static int mga_vga_mode_valid(struct drm_connector *connector, 1577 struct drm_display_mode *mode) 1578 { 1579 struct drm_device *dev = connector->dev; 1580 struct mga_device *mdev = (struct mga_device*)dev->dev_private; 1581 int bpp = 32; 1582 1583 if (IS_G200_SE(mdev)) { 1584 if (mdev->unique_rev_id == 0x01) { 1585 if (mode->hdisplay > 1600) 1586 return MODE_VIRTUAL_X; 1587 if (mode->vdisplay > 1200) 1588 return MODE_VIRTUAL_Y; 1589 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1590 > (24400 * 1024)) 1591 return MODE_BANDWIDTH; 1592 } else if (mdev->unique_rev_id == 0x02) { 1593 if (mode->hdisplay > 1920) 1594 return MODE_VIRTUAL_X; 1595 if (mode->vdisplay > 1200) 1596 return MODE_VIRTUAL_Y; 1597 if (mga_vga_calculate_mode_bandwidth(mode, bpp) 1598 > (30100 * 1024)) 1599 return MODE_BANDWIDTH; 1600 } 1601 } else if (mdev->type == G200_WB) { 1602 if (mode->hdisplay > 1280) 1603 return MODE_VIRTUAL_X; 1604 if (mode->vdisplay > 1024) 1605 return MODE_VIRTUAL_Y; 1606 if (mga_vga_calculate_mode_bandwidth(mode, 1607 bpp > (31877 * 1024))) 1608 return MODE_BANDWIDTH; 1609 } else if (mdev->type == G200_EV && 1610 (mga_vga_calculate_mode_bandwidth(mode, bpp) 1611 > (32700 * 1024))) { 1612 return MODE_BANDWIDTH; 1613 } else if (mdev->type == G200_EH && 1614 (mga_vga_calculate_mode_bandwidth(mode, bpp) 1615 > (37500 * 1024))) { 1616 return MODE_BANDWIDTH; 1617 } else if (mdev->type == G200_ER && 1618 (mga_vga_calculate_mode_bandwidth(mode, 1619 bpp) > (55000 * 1024))) { 1620 return MODE_BANDWIDTH; 1621 } 1622 1623 if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 || 1624 (mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) { 1625 return MODE_H_ILLEGAL; 1626 } 1627 1628 if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 || 1629 mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 || 1630 mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 || 1631 mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) { 1632 return MODE_BAD; 1633 } 1634 1635 /* Validate the mode input by the user */ 1636 if (connector->cmdline_mode.specified) { 1637 if (connector->cmdline_mode.bpp_specified) 1638 bpp = connector->cmdline_mode.bpp; 1639 } 1640 1641 if ((mode->hdisplay * mode->vdisplay * (bpp/8)) > mdev->mc.vram_size) { 1642 if (connector->cmdline_mode.specified) 1643 connector->cmdline_mode.specified = false; 1644 return MODE_BAD; 1645 } 1646 1647 return MODE_OK; 1648 } 1649 1650 static struct drm_encoder *mga_connector_best_encoder(struct drm_connector 1651 *connector) 1652 { 1653 int enc_id = connector->encoder_ids[0]; 1654 /* pick the encoder ids */ 1655 if (enc_id) 1656 return drm_encoder_find(connector->dev, enc_id); 1657 return NULL; 1658 } 1659 1660 static enum drm_connector_status mga_vga_detect(struct drm_connector 1661 *connector, bool force) 1662 { 1663 return connector_status_connected; 1664 } 1665 1666 static void mga_connector_destroy(struct drm_connector *connector) 1667 { 1668 struct mga_connector *mga_connector = to_mga_connector(connector); 1669 mgag200_i2c_destroy(mga_connector->i2c); 1670 drm_connector_cleanup(connector); 1671 kfree(connector); 1672 } 1673 1674 static const struct drm_connector_helper_funcs mga_vga_connector_helper_funcs = { 1675 .get_modes = mga_vga_get_modes, 1676 .mode_valid = mga_vga_mode_valid, 1677 .best_encoder = mga_connector_best_encoder, 1678 }; 1679 1680 static const struct drm_connector_funcs mga_vga_connector_funcs = { 1681 .dpms = drm_helper_connector_dpms, 1682 .detect = mga_vga_detect, 1683 .fill_modes = drm_helper_probe_single_connector_modes, 1684 .destroy = mga_connector_destroy, 1685 }; 1686 1687 static struct drm_connector *mga_vga_init(struct drm_device *dev) 1688 { 1689 struct drm_connector *connector; 1690 struct mga_connector *mga_connector; 1691 1692 mga_connector = kzalloc(sizeof(struct mga_connector), GFP_KERNEL); 1693 if (!mga_connector) 1694 return NULL; 1695 1696 connector = &mga_connector->base; 1697 1698 drm_connector_init(dev, connector, 1699 &mga_vga_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1700 1701 drm_connector_helper_add(connector, &mga_vga_connector_helper_funcs); 1702 1703 drm_connector_register(connector); 1704 1705 mga_connector->i2c = mgag200_i2c_create(dev); 1706 if (!mga_connector->i2c) 1707 DRM_ERROR("failed to add ddc bus\n"); 1708 1709 return connector; 1710 } 1711 1712 1713 int mgag200_modeset_init(struct mga_device *mdev) 1714 { 1715 struct drm_encoder *encoder; 1716 struct drm_connector *connector; 1717 int ret; 1718 1719 mdev->mode_info.mode_config_initialized = true; 1720 1721 mdev->dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH; 1722 mdev->dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT; 1723 1724 mdev->dev->mode_config.fb_base = mdev->mc.vram_base; 1725 1726 mga_crtc_init(mdev); 1727 1728 encoder = mga_encoder_init(mdev->dev); 1729 if (!encoder) { 1730 DRM_ERROR("mga_encoder_init failed\n"); 1731 return -1; 1732 } 1733 1734 connector = mga_vga_init(mdev->dev); 1735 if (!connector) { 1736 DRM_ERROR("mga_vga_init failed\n"); 1737 return -1; 1738 } 1739 1740 drm_mode_connector_attach_encoder(connector, encoder); 1741 1742 ret = mgag200_fbdev_init(mdev); 1743 if (ret) { 1744 DRM_ERROR("mga_fbdev_init failed\n"); 1745 return ret; 1746 } 1747 1748 return 0; 1749 } 1750 1751 void mgag200_modeset_fini(struct mga_device *mdev) 1752 { 1753 1754 } 1755