1 // SPDX-License-Identifier: GPL-2.0-only OR MIT 2 /* Copyright (c) 2023 Imagination Technologies Ltd. */ 3 4 #include "pvr_vm.h" 5 6 #include "pvr_device.h" 7 #include "pvr_drv.h" 8 #include "pvr_gem.h" 9 #include "pvr_mmu.h" 10 #include "pvr_rogue_fwif.h" 11 #include "pvr_rogue_heap_config.h" 12 13 #include <drm/drm_exec.h> 14 #include <drm/drm_gem.h> 15 #include <drm/drm_gpuvm.h> 16 17 #include <linux/bug.h> 18 #include <linux/container_of.h> 19 #include <linux/err.h> 20 #include <linux/errno.h> 21 #include <linux/gfp_types.h> 22 #include <linux/kref.h> 23 #include <linux/mutex.h> 24 #include <linux/stddef.h> 25 26 /** 27 * DOC: Memory context 28 * 29 * This is the "top level" datatype in the VM code. It's exposed in the public 30 * API as an opaque handle. 31 */ 32 33 /** 34 * struct pvr_vm_context - Context type used to represent a single VM. 35 */ 36 struct pvr_vm_context { 37 /** 38 * @pvr_dev: The PowerVR device to which this context is bound. 39 * This binding is immutable for the life of the context. 40 */ 41 struct pvr_device *pvr_dev; 42 43 /** @mmu_ctx: The context for binding to physical memory. */ 44 struct pvr_mmu_context *mmu_ctx; 45 46 /** @gpuvm_mgr: GPUVM object associated with this context. */ 47 struct drm_gpuvm gpuvm_mgr; 48 49 /** @lock: Global lock on this VM. */ 50 struct mutex lock; 51 52 /** 53 * @fw_mem_ctx_obj: Firmware object representing firmware memory 54 * context. 55 */ 56 struct pvr_fw_object *fw_mem_ctx_obj; 57 58 /** @ref_count: Reference count of object. */ 59 struct kref ref_count; 60 61 /** 62 * @dummy_gem: GEM object to enable VM reservation. All private BOs 63 * should use the @dummy_gem.resv and not their own _resv field. 64 */ 65 struct drm_gem_object dummy_gem; 66 }; 67 68 static inline 69 struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm) 70 { 71 return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr); 72 } 73 74 struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx) 75 { 76 if (vm_ctx) 77 kref_get(&vm_ctx->ref_count); 78 79 return vm_ctx; 80 } 81 82 /** 83 * pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the 84 * page table structure behind a VM context. 85 * @vm_ctx: Target VM context. 86 */ 87 dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx) 88 { 89 return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx); 90 } 91 92 /** 93 * pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context. 94 * @vm_ctx: Target VM context. 95 * 96 * This is used to allow private BOs to share a dma_resv for faster fence 97 * updates. 98 * 99 * Returns: The dma_resv pointer. 100 */ 101 struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx) 102 { 103 return vm_ctx->dummy_gem.resv; 104 } 105 106 /** 107 * DOC: Memory mappings 108 */ 109 110 /** 111 * struct pvr_vm_gpuva - Wrapper type representing a single VM mapping. 112 */ 113 struct pvr_vm_gpuva { 114 /** @base: The wrapped drm_gpuva object. */ 115 struct drm_gpuva base; 116 }; 117 118 #define to_pvr_vm_gpuva(va) container_of_const(va, struct pvr_vm_gpuva, base) 119 120 enum pvr_vm_bind_type { 121 PVR_VM_BIND_TYPE_MAP, 122 PVR_VM_BIND_TYPE_UNMAP, 123 }; 124 125 /** 126 * struct pvr_vm_bind_op - Context of a map/unmap operation. 127 */ 128 struct pvr_vm_bind_op { 129 /** @type: Map or unmap. */ 130 enum pvr_vm_bind_type type; 131 132 /** @pvr_obj: Object associated with mapping (map only). */ 133 struct pvr_gem_object *pvr_obj; 134 135 /** 136 * @vm_ctx: VM context where the mapping will be created or destroyed. 137 */ 138 struct pvr_vm_context *vm_ctx; 139 140 /** @mmu_op_ctx: MMU op context. */ 141 struct pvr_mmu_op_context *mmu_op_ctx; 142 143 /** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */ 144 struct drm_gpuvm_bo *gpuvm_bo; 145 146 /** 147 * @new_va: Prealloced VA mapping object (init in callback). 148 * Used when creating a mapping. 149 */ 150 struct pvr_vm_gpuva *new_va; 151 152 /** 153 * @prev_va: Prealloced VA mapping object (init in callback). 154 * Used when a mapping or unmapping operation overlaps an existing 155 * mapping and splits away the beginning into a new mapping. 156 */ 157 struct pvr_vm_gpuva *prev_va; 158 159 /** 160 * @next_va: Prealloced VA mapping object (init in callback). 161 * Used when a mapping or unmapping operation overlaps an existing 162 * mapping and splits away the end into a new mapping. 163 */ 164 struct pvr_vm_gpuva *next_va; 165 166 /** @offset: Offset into @pvr_obj to begin mapping from. */ 167 u64 offset; 168 169 /** @device_addr: Device-virtual address at the start of the mapping. */ 170 u64 device_addr; 171 172 /** @size: Size of the desired mapping. */ 173 u64 size; 174 }; 175 176 /** 177 * pvr_vm_bind_op_exec() - Execute a single bind op. 178 * @bind_op: Bind op context. 179 * 180 * Returns: 181 * * 0 on success, 182 * * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or 183 * a callback function. 184 */ 185 static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op) 186 { 187 switch (bind_op->type) { 188 case PVR_VM_BIND_TYPE_MAP: 189 return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr, 190 bind_op, bind_op->device_addr, 191 bind_op->size, 192 gem_from_pvr_gem(bind_op->pvr_obj), 193 bind_op->offset); 194 195 case PVR_VM_BIND_TYPE_UNMAP: 196 return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr, 197 bind_op, bind_op->device_addr, 198 bind_op->size); 199 } 200 201 /* 202 * This shouldn't happen unless something went wrong 203 * in drm_sched. 204 */ 205 WARN_ON(1); 206 return -EINVAL; 207 } 208 209 static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op) 210 { 211 drm_gpuvm_bo_put(bind_op->gpuvm_bo); 212 213 kfree(bind_op->new_va); 214 kfree(bind_op->prev_va); 215 kfree(bind_op->next_va); 216 217 if (bind_op->pvr_obj) 218 pvr_gem_object_put(bind_op->pvr_obj); 219 220 if (bind_op->mmu_op_ctx) 221 pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx); 222 } 223 224 static int 225 pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op, 226 struct pvr_vm_context *vm_ctx, 227 struct pvr_gem_object *pvr_obj, u64 offset, 228 u64 device_addr, u64 size) 229 { 230 struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj); 231 const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx; 232 const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj); 233 struct sg_table *sgt; 234 u64 offset_plus_size; 235 int err; 236 237 if (check_add_overflow(offset, size, &offset_plus_size)) 238 return -EINVAL; 239 240 if (is_user && 241 !pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) { 242 return -EINVAL; 243 } 244 245 if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) || 246 offset & ~PAGE_MASK || size & ~PAGE_MASK || 247 offset >= pvr_obj_size || offset_plus_size > pvr_obj_size) 248 return -EINVAL; 249 250 bind_op->type = PVR_VM_BIND_TYPE_MAP; 251 252 dma_resv_lock(obj->resv, NULL); 253 bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj); 254 dma_resv_unlock(obj->resv); 255 if (IS_ERR(bind_op->gpuvm_bo)) 256 return PTR_ERR(bind_op->gpuvm_bo); 257 258 bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL); 259 bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL); 260 bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL); 261 if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) { 262 err = -ENOMEM; 263 goto err_bind_op_fini; 264 } 265 266 /* Pin pages so they're ready for use. */ 267 sgt = pvr_gem_object_get_pages_sgt(pvr_obj); 268 err = PTR_ERR_OR_ZERO(sgt); 269 if (err) 270 goto err_bind_op_fini; 271 272 bind_op->mmu_op_ctx = 273 pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size); 274 err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx); 275 if (err) { 276 bind_op->mmu_op_ctx = NULL; 277 goto err_bind_op_fini; 278 } 279 280 bind_op->pvr_obj = pvr_obj; 281 bind_op->vm_ctx = vm_ctx; 282 bind_op->device_addr = device_addr; 283 bind_op->size = size; 284 bind_op->offset = offset; 285 286 return 0; 287 288 err_bind_op_fini: 289 pvr_vm_bind_op_fini(bind_op); 290 291 return err; 292 } 293 294 static int 295 pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op, 296 struct pvr_vm_context *vm_ctx, u64 device_addr, 297 u64 size) 298 { 299 int err; 300 301 if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size)) 302 return -EINVAL; 303 304 bind_op->type = PVR_VM_BIND_TYPE_UNMAP; 305 306 bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL); 307 bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL); 308 if (!bind_op->prev_va || !bind_op->next_va) { 309 err = -ENOMEM; 310 goto err_bind_op_fini; 311 } 312 313 bind_op->mmu_op_ctx = 314 pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0); 315 err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx); 316 if (err) { 317 bind_op->mmu_op_ctx = NULL; 318 goto err_bind_op_fini; 319 } 320 321 bind_op->vm_ctx = vm_ctx; 322 bind_op->device_addr = device_addr; 323 bind_op->size = size; 324 325 return 0; 326 327 err_bind_op_fini: 328 pvr_vm_bind_op_fini(bind_op); 329 330 return err; 331 } 332 333 /** 334 * pvr_vm_gpuva_map() - Insert a mapping into a memory context. 335 * @op: gpuva op containing the remap details. 336 * @op_ctx: Operation context. 337 * 338 * Context: Called by drm_gpuvm_sm_map following a successful mapping while 339 * @op_ctx.vm_ctx mutex is held. 340 * 341 * Return: 342 * * 0 on success, or 343 * * Any error returned by pvr_mmu_map(). 344 */ 345 static int 346 pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx) 347 { 348 struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj); 349 struct pvr_vm_bind_op *ctx = op_ctx; 350 int err; 351 352 if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK) 353 return -EINVAL; 354 355 err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags, 356 op->map.va.addr); 357 if (err) 358 return err; 359 360 drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map); 361 drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo); 362 ctx->new_va = NULL; 363 364 return 0; 365 } 366 367 /** 368 * pvr_vm_gpuva_unmap() - Remove a mapping from a memory context. 369 * @op: gpuva op containing the unmap details. 370 * @op_ctx: Operation context. 371 * 372 * Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while 373 * @op_ctx.vm_ctx mutex is held. 374 * 375 * Return: 376 * * 0 on success, or 377 * * Any error returned by pvr_mmu_unmap(). 378 */ 379 static int 380 pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx) 381 { 382 struct pvr_vm_bind_op *ctx = op_ctx; 383 384 int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr, 385 op->unmap.va->va.range); 386 387 if (err) 388 return err; 389 390 drm_gpuva_unmap(&op->unmap); 391 drm_gpuva_unlink(op->unmap.va); 392 kfree(to_pvr_vm_gpuva(op->unmap.va)); 393 394 return 0; 395 } 396 397 /** 398 * pvr_vm_gpuva_remap() - Remap a mapping within a memory context. 399 * @op: gpuva op containing the remap details. 400 * @op_ctx: Operation context. 401 * 402 * Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a 403 * mapping or unmapping operation causes a region to be split. The 404 * @op_ctx.vm_ctx mutex is held. 405 * 406 * Return: 407 * * 0 on success, or 408 * * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap(). 409 */ 410 static int 411 pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx) 412 { 413 struct pvr_vm_bind_op *ctx = op_ctx; 414 u64 va_start = 0, va_range = 0; 415 int err; 416 417 drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range); 418 err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range); 419 if (err) 420 return err; 421 422 /* No actual remap required: the page table tree depth is fixed to 3, 423 * and we use 4k page table entries only for now. 424 */ 425 drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap); 426 427 if (op->remap.prev) { 428 pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj)); 429 drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo); 430 ctx->prev_va = NULL; 431 } 432 433 if (op->remap.next) { 434 pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj)); 435 drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo); 436 ctx->next_va = NULL; 437 } 438 439 drm_gpuva_unlink(op->remap.unmap->va); 440 kfree(to_pvr_vm_gpuva(op->remap.unmap->va)); 441 442 return 0; 443 } 444 445 /* 446 * Public API 447 * 448 * For an overview of these functions, see *DOC: Public API* in "pvr_vm.h". 449 */ 450 451 /** 452 * pvr_device_addr_is_valid() - Tests whether a device-virtual address 453 * is valid. 454 * @device_addr: Virtual device address to test. 455 * 456 * Return: 457 * * %true if @device_addr is within the valid range for a device page 458 * table and is aligned to the device page size, or 459 * * %false otherwise. 460 */ 461 bool 462 pvr_device_addr_is_valid(u64 device_addr) 463 { 464 return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 && 465 (device_addr & ~PVR_DEVICE_PAGE_MASK) == 0; 466 } 467 468 /** 469 * pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual 470 * address and associated size are both valid. 471 * @vm_ctx: Target VM context. 472 * @device_addr: Virtual device address to test. 473 * @size: Size of the range based at @device_addr to test. 474 * 475 * Calling pvr_device_addr_is_valid() twice (once on @size, and again on 476 * @device_addr + @size) to verify a device-virtual address range initially 477 * seems intuitive, but it produces a false-negative when the address range 478 * is right at the end of device-virtual address space. 479 * 480 * This function catches that corner case, as well as checking that 481 * @size is non-zero. 482 * 483 * Return: 484 * * %true if @device_addr is device page aligned; @size is device page 485 * aligned; the range specified by @device_addr and @size is within the 486 * bounds of the device-virtual address space, and @size is non-zero, or 487 * * %false otherwise. 488 */ 489 bool 490 pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx, 491 u64 device_addr, u64 size) 492 { 493 return pvr_device_addr_is_valid(device_addr) && 494 drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) && 495 size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 && 496 (device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE); 497 } 498 499 static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm) 500 { 501 kfree(to_pvr_vm_context(gpuvm)); 502 } 503 504 static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = { 505 .vm_free = pvr_gpuvm_free, 506 .sm_step_map = pvr_vm_gpuva_map, 507 .sm_step_remap = pvr_vm_gpuva_remap, 508 .sm_step_unmap = pvr_vm_gpuva_unmap, 509 }; 510 511 static void 512 fw_mem_context_init(void *cpu_ptr, void *priv) 513 { 514 struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr; 515 struct pvr_vm_context *vm_ctx = priv; 516 517 fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx); 518 fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET; 519 } 520 521 /** 522 * pvr_vm_create_context() - Create a new VM context. 523 * @pvr_dev: Target PowerVR device. 524 * @is_userspace_context: %true if this context is for userspace. This will 525 * create a firmware memory context for the VM context 526 * and disable warnings when tearing down mappings. 527 * 528 * Return: 529 * * A handle to the newly-minted VM context on success, 530 * * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is 531 * missing or has an unsupported value, 532 * * -%ENOMEM if allocation of the structure behind the opaque handle fails, 533 * or 534 * * Any error encountered while setting up internal structures. 535 */ 536 struct pvr_vm_context * 537 pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context) 538 { 539 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 540 541 struct pvr_vm_context *vm_ctx; 542 u16 device_addr_bits; 543 544 int err; 545 546 err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits, 547 &device_addr_bits); 548 if (err) { 549 drm_err(drm_dev, 550 "Failed to get device virtual address space bits\n"); 551 return ERR_PTR(err); 552 } 553 554 if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) { 555 drm_err(drm_dev, 556 "Device has unsupported virtual address space size\n"); 557 return ERR_PTR(-EINVAL); 558 } 559 560 vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL); 561 if (!vm_ctx) 562 return ERR_PTR(-ENOMEM); 563 564 vm_ctx->pvr_dev = pvr_dev; 565 566 vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev); 567 err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx); 568 if (err) 569 goto err_free; 570 571 if (is_userspace_context) { 572 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext), 573 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 574 fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj); 575 576 if (err) 577 goto err_page_table_destroy; 578 } 579 580 drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0); 581 drm_gpuvm_init(&vm_ctx->gpuvm_mgr, 582 is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM", 583 0, &pvr_dev->base, &vm_ctx->dummy_gem, 584 0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops); 585 586 mutex_init(&vm_ctx->lock); 587 kref_init(&vm_ctx->ref_count); 588 589 return vm_ctx; 590 591 err_page_table_destroy: 592 pvr_mmu_context_destroy(vm_ctx->mmu_ctx); 593 594 err_free: 595 kfree(vm_ctx); 596 597 return ERR_PTR(err); 598 } 599 600 /** 601 * pvr_vm_unmap_all() - Unmap all mappings associated with a VM context. 602 * @vm_ctx: Target VM context. 603 * 604 * This function ensures that no mappings are left dangling by unmapping them 605 * all in order of ascending device-virtual address. 606 */ 607 void 608 pvr_vm_unmap_all(struct pvr_vm_context *vm_ctx) 609 { 610 WARN_ON(pvr_vm_unmap(vm_ctx, vm_ctx->gpuvm_mgr.mm_start, 611 vm_ctx->gpuvm_mgr.mm_range)); 612 } 613 614 /** 615 * pvr_vm_context_release() - Teardown a VM context. 616 * @ref_count: Pointer to reference counter of the VM context. 617 * 618 * This function also ensures that no mappings are left dangling by calling 619 * pvr_vm_unmap_all. 620 */ 621 static void 622 pvr_vm_context_release(struct kref *ref_count) 623 { 624 struct pvr_vm_context *vm_ctx = 625 container_of(ref_count, struct pvr_vm_context, ref_count); 626 627 if (vm_ctx->fw_mem_ctx_obj) 628 pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj); 629 630 pvr_vm_unmap_all(vm_ctx); 631 632 pvr_mmu_context_destroy(vm_ctx->mmu_ctx); 633 drm_gem_private_object_fini(&vm_ctx->dummy_gem); 634 mutex_destroy(&vm_ctx->lock); 635 636 drm_gpuvm_put(&vm_ctx->gpuvm_mgr); 637 } 638 639 /** 640 * pvr_vm_context_lookup() - Look up VM context from handle 641 * @pvr_file: Pointer to pvr_file structure. 642 * @handle: Object handle. 643 * 644 * Takes reference on VM context object. Call pvr_vm_context_put() to release. 645 * 646 * Returns: 647 * * The requested object on success, or 648 * * %NULL on failure (object does not exist in list, or is not a VM context) 649 */ 650 struct pvr_vm_context * 651 pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle) 652 { 653 struct pvr_vm_context *vm_ctx; 654 655 xa_lock(&pvr_file->vm_ctx_handles); 656 vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle); 657 pvr_vm_context_get(vm_ctx); 658 xa_unlock(&pvr_file->vm_ctx_handles); 659 660 return vm_ctx; 661 } 662 663 /** 664 * pvr_vm_context_put() - Release a reference on a VM context 665 * @vm_ctx: Target VM context. 666 * 667 * Returns: 668 * * %true if the VM context was destroyed, or 669 * * %false if there are any references still remaining. 670 */ 671 bool 672 pvr_vm_context_put(struct pvr_vm_context *vm_ctx) 673 { 674 if (vm_ctx) 675 return kref_put(&vm_ctx->ref_count, pvr_vm_context_release); 676 677 return true; 678 } 679 680 /** 681 * pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the 682 * given file. 683 * @pvr_file: Pointer to pvr_file structure. 684 * 685 * Removes all vm_contexts associated with @pvr_file from the device VM context 686 * list and drops initial references. vm_contexts will then be destroyed once 687 * all outstanding references are dropped. 688 */ 689 void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file) 690 { 691 struct pvr_vm_context *vm_ctx; 692 unsigned long handle; 693 694 xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) { 695 /* vm_ctx is not used here because that would create a race with xa_erase */ 696 pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle)); 697 } 698 } 699 700 static int 701 pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec) 702 { 703 struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv; 704 struct pvr_gem_object *pvr_obj = bind_op->pvr_obj; 705 706 /* Unmap operations don't have an object to lock. */ 707 if (!pvr_obj) 708 return 0; 709 710 /* Acquire lock on the GEM being mapped. */ 711 return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj)); 712 } 713 714 /** 715 * pvr_vm_map() - Map a section of physical memory into a section of 716 * device-virtual memory. 717 * @vm_ctx: Target VM context. 718 * @pvr_obj: Target PowerVR memory object. 719 * @pvr_obj_offset: Offset into @pvr_obj to map from. 720 * @device_addr: Virtual device address at the start of the requested mapping. 721 * @size: Size of the requested mapping. 722 * 723 * No handle is returned to represent the mapping. Instead, callers should 724 * remember @device_addr and use that as a handle. 725 * 726 * Return: 727 * * 0 on success, 728 * * -%EINVAL if @device_addr is not a valid page-aligned device-virtual 729 * address; the region specified by @pvr_obj_offset and @size does not fall 730 * entirely within @pvr_obj, or any part of the specified region of @pvr_obj 731 * is not device-virtual page-aligned, 732 * * Any error encountered while performing internal operations required to 733 * destroy the mapping (returned from pvr_vm_gpuva_map or 734 * pvr_vm_gpuva_remap). 735 */ 736 int 737 pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj, 738 u64 pvr_obj_offset, u64 device_addr, u64 size) 739 { 740 struct pvr_vm_bind_op bind_op = {0}; 741 struct drm_gpuvm_exec vm_exec = { 742 .vm = &vm_ctx->gpuvm_mgr, 743 .flags = DRM_EXEC_INTERRUPTIBLE_WAIT | 744 DRM_EXEC_IGNORE_DUPLICATES, 745 .extra = { 746 .fn = pvr_vm_lock_extra, 747 .priv = &bind_op, 748 }, 749 }; 750 751 int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj, 752 pvr_obj_offset, device_addr, 753 size); 754 755 if (err) 756 return err; 757 758 pvr_gem_object_get(pvr_obj); 759 760 err = drm_gpuvm_exec_lock(&vm_exec); 761 if (err) 762 goto err_cleanup; 763 764 err = pvr_vm_bind_op_exec(&bind_op); 765 766 drm_gpuvm_exec_unlock(&vm_exec); 767 768 err_cleanup: 769 pvr_vm_bind_op_fini(&bind_op); 770 771 return err; 772 } 773 774 /** 775 * pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory. 776 * @vm_ctx: Target VM context. 777 * @device_addr: Virtual device address at the start of the target mapping. 778 * @size: Size of the target mapping. 779 * 780 * Return: 781 * * 0 on success, 782 * * -%EINVAL if @device_addr is not a valid page-aligned device-virtual 783 * address, 784 * * Any error encountered while performing internal operations required to 785 * destroy the mapping (returned from pvr_vm_gpuva_unmap or 786 * pvr_vm_gpuva_remap). 787 */ 788 int 789 pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size) 790 { 791 struct pvr_vm_bind_op bind_op = {0}; 792 struct drm_gpuvm_exec vm_exec = { 793 .vm = &vm_ctx->gpuvm_mgr, 794 .flags = DRM_EXEC_INTERRUPTIBLE_WAIT | 795 DRM_EXEC_IGNORE_DUPLICATES, 796 .extra = { 797 .fn = pvr_vm_lock_extra, 798 .priv = &bind_op, 799 }, 800 }; 801 802 int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, device_addr, 803 size); 804 if (err) 805 return err; 806 807 err = drm_gpuvm_exec_lock(&vm_exec); 808 if (err) 809 goto err_cleanup; 810 811 err = pvr_vm_bind_op_exec(&bind_op); 812 813 drm_gpuvm_exec_unlock(&vm_exec); 814 815 err_cleanup: 816 pvr_vm_bind_op_fini(&bind_op); 817 818 return err; 819 } 820 821 /* Static data areas are determined by firmware. */ 822 static const struct drm_pvr_static_data_area static_data_areas[] = { 823 { 824 .area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE, 825 .location_heap_id = DRM_PVR_HEAP_GENERAL, 826 .offset = 0, 827 .size = 128, 828 }, 829 { 830 .area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC, 831 .location_heap_id = DRM_PVR_HEAP_GENERAL, 832 .offset = 128, 833 .size = 1024, 834 }, 835 { 836 .area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC, 837 .location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA, 838 .offset = 0, 839 .size = 128, 840 }, 841 { 842 .area_usage = DRM_PVR_STATIC_DATA_AREA_EOT, 843 .location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA, 844 .offset = 128, 845 .size = 128, 846 }, 847 { 848 .area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC, 849 .location_heap_id = DRM_PVR_HEAP_USC_CODE, 850 .offset = 0, 851 .size = 128, 852 }, 853 }; 854 855 #define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE) 856 857 /* 858 * The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding 859 * static data area for each heap. 860 */ 861 static const struct drm_pvr_heap pvr_heaps[] = { 862 [DRM_PVR_HEAP_GENERAL] = { 863 .base = ROGUE_GENERAL_HEAP_BASE, 864 .size = ROGUE_GENERAL_HEAP_SIZE, 865 .flags = 0, 866 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT, 867 }, 868 [DRM_PVR_HEAP_PDS_CODE_DATA] = { 869 .base = ROGUE_PDSCODEDATA_HEAP_BASE, 870 .size = ROGUE_PDSCODEDATA_HEAP_SIZE, 871 .flags = 0, 872 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT, 873 }, 874 [DRM_PVR_HEAP_USC_CODE] = { 875 .base = ROGUE_USCCODE_HEAP_BASE, 876 .size = ROGUE_USCCODE_HEAP_SIZE, 877 .flags = 0, 878 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT, 879 }, 880 [DRM_PVR_HEAP_RGNHDR] = { 881 .base = ROGUE_RGNHDR_HEAP_BASE, 882 .size = ROGUE_RGNHDR_HEAP_SIZE, 883 .flags = 0, 884 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT, 885 }, 886 [DRM_PVR_HEAP_VIS_TEST] = { 887 .base = ROGUE_VISTEST_HEAP_BASE, 888 .size = ROGUE_VISTEST_HEAP_SIZE, 889 .flags = 0, 890 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT, 891 }, 892 [DRM_PVR_HEAP_TRANSFER_FRAG] = { 893 .base = ROGUE_TRANSFER_FRAG_HEAP_BASE, 894 .size = ROGUE_TRANSFER_FRAG_HEAP_SIZE, 895 .flags = 0, 896 .page_size_log2 = PVR_DEVICE_PAGE_SHIFT, 897 }, 898 }; 899 900 int 901 pvr_static_data_areas_get(const struct pvr_device *pvr_dev, 902 struct drm_pvr_ioctl_dev_query_args *args) 903 { 904 struct drm_pvr_dev_query_static_data_areas query = {0}; 905 int err; 906 907 if (!args->pointer) { 908 args->size = sizeof(struct drm_pvr_dev_query_static_data_areas); 909 return 0; 910 } 911 912 err = PVR_UOBJ_GET(query, args->size, args->pointer); 913 if (err < 0) 914 return err; 915 916 if (!query.static_data_areas.array) { 917 query.static_data_areas.count = ARRAY_SIZE(static_data_areas); 918 query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area); 919 goto copy_out; 920 } 921 922 if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas)) 923 query.static_data_areas.count = ARRAY_SIZE(static_data_areas); 924 925 err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas); 926 if (err < 0) 927 return err; 928 929 copy_out: 930 err = PVR_UOBJ_SET(args->pointer, args->size, query); 931 if (err < 0) 932 return err; 933 934 args->size = sizeof(query); 935 return 0; 936 } 937 938 int 939 pvr_heap_info_get(const struct pvr_device *pvr_dev, 940 struct drm_pvr_ioctl_dev_query_args *args) 941 { 942 struct drm_pvr_dev_query_heap_info query = {0}; 943 u64 dest; 944 int err; 945 946 if (!args->pointer) { 947 args->size = sizeof(struct drm_pvr_dev_query_heap_info); 948 return 0; 949 } 950 951 err = PVR_UOBJ_GET(query, args->size, args->pointer); 952 if (err < 0) 953 return err; 954 955 if (!query.heaps.array) { 956 query.heaps.count = ARRAY_SIZE(pvr_heaps); 957 query.heaps.stride = sizeof(struct drm_pvr_heap); 958 goto copy_out; 959 } 960 961 if (query.heaps.count > ARRAY_SIZE(pvr_heaps)) 962 query.heaps.count = ARRAY_SIZE(pvr_heaps); 963 964 /* Region header heap is only present if BRN63142 is present. */ 965 dest = query.heaps.array; 966 for (size_t i = 0; i < query.heaps.count; i++) { 967 struct drm_pvr_heap heap = pvr_heaps[i]; 968 969 if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142)) 970 heap.size = 0; 971 972 err = PVR_UOBJ_SET(dest, query.heaps.stride, heap); 973 if (err < 0) 974 return err; 975 976 dest += query.heaps.stride; 977 } 978 979 copy_out: 980 err = PVR_UOBJ_SET(args->pointer, args->size, query); 981 if (err < 0) 982 return err; 983 984 args->size = sizeof(query); 985 return 0; 986 } 987 988 /** 989 * pvr_heap_contains_range() - Determine if a given heap contains the specified 990 * device-virtual address range. 991 * @pvr_heap: Target heap. 992 * @start: Inclusive start of the target range. 993 * @end: Inclusive end of the target range. 994 * 995 * It is an error to call this function with values of @start and @end that do 996 * not satisfy the condition @start <= @end. 997 */ 998 static __always_inline bool 999 pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end) 1000 { 1001 return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size; 1002 } 1003 1004 /** 1005 * pvr_find_heap_containing() - Find a heap which contains the specified 1006 * device-virtual address range. 1007 * @pvr_dev: Target PowerVR device. 1008 * @start: Start of the target range. 1009 * @size: Size of the target range. 1010 * 1011 * Return: 1012 * * A pointer to a constant instance of struct drm_pvr_heap representing the 1013 * heap containing the entire range specified by @start and @size on 1014 * success, or 1015 * * %NULL if no such heap exists. 1016 */ 1017 const struct drm_pvr_heap * 1018 pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size) 1019 { 1020 u64 end; 1021 1022 if (check_add_overflow(start, size - 1, &end)) 1023 return NULL; 1024 1025 /* 1026 * There are no guarantees about the order of address ranges in 1027 * &pvr_heaps, so iterate over the entire array for a heap whose 1028 * range completely encompasses the given range. 1029 */ 1030 for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) { 1031 /* Filter heaps that present only with an associated quirk */ 1032 if (heap_id == DRM_PVR_HEAP_RGNHDR && 1033 !PVR_HAS_QUIRK(pvr_dev, 63142)) { 1034 continue; 1035 } 1036 1037 if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end)) 1038 return &pvr_heaps[heap_id]; 1039 } 1040 1041 return NULL; 1042 } 1043 1044 /** 1045 * pvr_vm_find_gem_object() - Look up a buffer object from a given 1046 * device-virtual address. 1047 * @vm_ctx: [IN] Target VM context. 1048 * @device_addr: [IN] Virtual device address at the start of the required 1049 * object. 1050 * @mapped_offset_out: [OUT] Pointer to location to write offset of the start 1051 * of the mapped region within the buffer object. May be 1052 * %NULL if this information is not required. 1053 * @mapped_size_out: [OUT] Pointer to location to write size of the mapped 1054 * region. May be %NULL if this information is not required. 1055 * 1056 * If successful, a reference will be taken on the buffer object. The caller 1057 * must drop the reference with pvr_gem_object_put(). 1058 * 1059 * Return: 1060 * * The PowerVR buffer object mapped at @device_addr if one exists, or 1061 * * %NULL otherwise. 1062 */ 1063 struct pvr_gem_object * 1064 pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr, 1065 u64 *mapped_offset_out, u64 *mapped_size_out) 1066 { 1067 struct pvr_gem_object *pvr_obj; 1068 struct drm_gpuva *va; 1069 1070 mutex_lock(&vm_ctx->lock); 1071 1072 va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1); 1073 if (!va) 1074 goto err_unlock; 1075 1076 pvr_obj = gem_to_pvr_gem(va->gem.obj); 1077 pvr_gem_object_get(pvr_obj); 1078 1079 if (mapped_offset_out) 1080 *mapped_offset_out = va->gem.offset; 1081 if (mapped_size_out) 1082 *mapped_size_out = va->va.range; 1083 1084 mutex_unlock(&vm_ctx->lock); 1085 1086 return pvr_obj; 1087 1088 err_unlock: 1089 mutex_unlock(&vm_ctx->lock); 1090 1091 return NULL; 1092 } 1093 1094 /** 1095 * pvr_vm_get_fw_mem_context: Get object representing firmware memory context 1096 * @vm_ctx: Target VM context. 1097 * 1098 * Returns: 1099 * * FW object representing firmware memory context, or 1100 * * %NULL if this VM context does not have a firmware memory context. 1101 */ 1102 struct pvr_fw_object * 1103 pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx) 1104 { 1105 return vm_ctx->fw_mem_ctx_obj; 1106 } 1107