xref: /linux/drivers/gpu/drm/imagination/pvr_vm.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3 
4 #include "pvr_vm.h"
5 
6 #include "pvr_device.h"
7 #include "pvr_drv.h"
8 #include "pvr_gem.h"
9 #include "pvr_mmu.h"
10 #include "pvr_rogue_fwif.h"
11 #include "pvr_rogue_heap_config.h"
12 
13 #include <drm/drm_exec.h>
14 #include <drm/drm_gem.h>
15 #include <drm/drm_gpuvm.h>
16 
17 #include <linux/bug.h>
18 #include <linux/container_of.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/gfp_types.h>
22 #include <linux/kref.h>
23 #include <linux/mutex.h>
24 #include <linux/stddef.h>
25 
26 /**
27  * DOC: Memory context
28  *
29  * This is the "top level" datatype in the VM code. It's exposed in the public
30  * API as an opaque handle.
31  */
32 
33 /**
34  * struct pvr_vm_context - Context type used to represent a single VM.
35  */
36 struct pvr_vm_context {
37 	/**
38 	 * @pvr_dev: The PowerVR device to which this context is bound.
39 	 * This binding is immutable for the life of the context.
40 	 */
41 	struct pvr_device *pvr_dev;
42 
43 	/** @mmu_ctx: The context for binding to physical memory. */
44 	struct pvr_mmu_context *mmu_ctx;
45 
46 	/** @gpuvm_mgr: GPUVM object associated with this context. */
47 	struct drm_gpuvm gpuvm_mgr;
48 
49 	/** @lock: Global lock on this VM. */
50 	struct mutex lock;
51 
52 	/**
53 	 * @fw_mem_ctx_obj: Firmware object representing firmware memory
54 	 * context.
55 	 */
56 	struct pvr_fw_object *fw_mem_ctx_obj;
57 
58 	/** @ref_count: Reference count of object. */
59 	struct kref ref_count;
60 
61 	/**
62 	 * @dummy_gem: GEM object to enable VM reservation. All private BOs
63 	 * should use the @dummy_gem.resv and not their own _resv field.
64 	 */
65 	struct drm_gem_object dummy_gem;
66 };
67 
68 static inline
69 struct pvr_vm_context *to_pvr_vm_context(struct drm_gpuvm *gpuvm)
70 {
71 	return container_of(gpuvm, struct pvr_vm_context, gpuvm_mgr);
72 }
73 
74 struct pvr_vm_context *pvr_vm_context_get(struct pvr_vm_context *vm_ctx)
75 {
76 	if (vm_ctx)
77 		kref_get(&vm_ctx->ref_count);
78 
79 	return vm_ctx;
80 }
81 
82 /**
83  * pvr_vm_get_page_table_root_addr() - Get the DMA address of the root of the
84  *                                     page table structure behind a VM context.
85  * @vm_ctx: Target VM context.
86  */
87 dma_addr_t pvr_vm_get_page_table_root_addr(struct pvr_vm_context *vm_ctx)
88 {
89 	return pvr_mmu_get_root_table_dma_addr(vm_ctx->mmu_ctx);
90 }
91 
92 /**
93  * pvr_vm_get_dma_resv() - Expose the dma_resv owned by the VM context.
94  * @vm_ctx: Target VM context.
95  *
96  * This is used to allow private BOs to share a dma_resv for faster fence
97  * updates.
98  *
99  * Returns: The dma_resv pointer.
100  */
101 struct dma_resv *pvr_vm_get_dma_resv(struct pvr_vm_context *vm_ctx)
102 {
103 	return vm_ctx->dummy_gem.resv;
104 }
105 
106 /**
107  * DOC: Memory mappings
108  */
109 
110 /**
111  * struct pvr_vm_gpuva - Wrapper type representing a single VM mapping.
112  */
113 struct pvr_vm_gpuva {
114 	/** @base: The wrapped drm_gpuva object. */
115 	struct drm_gpuva base;
116 };
117 
118 #define to_pvr_vm_gpuva(va) container_of_const(va, struct pvr_vm_gpuva, base)
119 
120 enum pvr_vm_bind_type {
121 	PVR_VM_BIND_TYPE_MAP,
122 	PVR_VM_BIND_TYPE_UNMAP,
123 };
124 
125 /**
126  * struct pvr_vm_bind_op - Context of a map/unmap operation.
127  */
128 struct pvr_vm_bind_op {
129 	/** @type: Map or unmap. */
130 	enum pvr_vm_bind_type type;
131 
132 	/** @pvr_obj: Object associated with mapping (map only). */
133 	struct pvr_gem_object *pvr_obj;
134 
135 	/**
136 	 * @vm_ctx: VM context where the mapping will be created or destroyed.
137 	 */
138 	struct pvr_vm_context *vm_ctx;
139 
140 	/** @mmu_op_ctx: MMU op context. */
141 	struct pvr_mmu_op_context *mmu_op_ctx;
142 
143 	/** @gpuvm_bo: Prealloced wrapped BO for attaching to the gpuvm. */
144 	struct drm_gpuvm_bo *gpuvm_bo;
145 
146 	/**
147 	 * @new_va: Prealloced VA mapping object (init in callback).
148 	 * Used when creating a mapping.
149 	 */
150 	struct pvr_vm_gpuva *new_va;
151 
152 	/**
153 	 * @prev_va: Prealloced VA mapping object (init in callback).
154 	 * Used when a mapping or unmapping operation overlaps an existing
155 	 * mapping and splits away the beginning into a new mapping.
156 	 */
157 	struct pvr_vm_gpuva *prev_va;
158 
159 	/**
160 	 * @next_va: Prealloced VA mapping object (init in callback).
161 	 * Used when a mapping or unmapping operation overlaps an existing
162 	 * mapping and splits away the end into a new mapping.
163 	 */
164 	struct pvr_vm_gpuva *next_va;
165 
166 	/** @offset: Offset into @pvr_obj to begin mapping from. */
167 	u64 offset;
168 
169 	/** @device_addr: Device-virtual address at the start of the mapping. */
170 	u64 device_addr;
171 
172 	/** @size: Size of the desired mapping. */
173 	u64 size;
174 };
175 
176 /**
177  * pvr_vm_bind_op_exec() - Execute a single bind op.
178  * @bind_op: Bind op context.
179  *
180  * Returns:
181  *  * 0 on success,
182  *  * Any error code returned by drm_gpuva_sm_map(), drm_gpuva_sm_unmap(), or
183  *    a callback function.
184  */
185 static int pvr_vm_bind_op_exec(struct pvr_vm_bind_op *bind_op)
186 {
187 	switch (bind_op->type) {
188 	case PVR_VM_BIND_TYPE_MAP: {
189 		const struct drm_gpuvm_map_req map_req = {
190 			.map.va.addr = bind_op->device_addr,
191 			.map.va.range = bind_op->size,
192 			.map.gem.obj = gem_from_pvr_gem(bind_op->pvr_obj),
193 			.map.gem.offset = bind_op->offset,
194 		};
195 
196 		return drm_gpuvm_sm_map(&bind_op->vm_ctx->gpuvm_mgr,
197 					bind_op, &map_req);
198 	}
199 
200 	case PVR_VM_BIND_TYPE_UNMAP:
201 		return drm_gpuvm_sm_unmap(&bind_op->vm_ctx->gpuvm_mgr,
202 					  bind_op, bind_op->device_addr,
203 					  bind_op->size);
204 	}
205 
206 	/*
207 	 * This shouldn't happen unless something went wrong
208 	 * in drm_sched.
209 	 */
210 	WARN_ON(1);
211 	return -EINVAL;
212 }
213 
214 static void pvr_vm_bind_op_fini(struct pvr_vm_bind_op *bind_op)
215 {
216 	drm_gpuvm_bo_put(bind_op->gpuvm_bo);
217 
218 	kfree(bind_op->new_va);
219 	kfree(bind_op->prev_va);
220 	kfree(bind_op->next_va);
221 
222 	if (bind_op->pvr_obj)
223 		pvr_gem_object_put(bind_op->pvr_obj);
224 
225 	if (bind_op->mmu_op_ctx)
226 		pvr_mmu_op_context_destroy(bind_op->mmu_op_ctx);
227 }
228 
229 static int
230 pvr_vm_bind_op_map_init(struct pvr_vm_bind_op *bind_op,
231 			struct pvr_vm_context *vm_ctx,
232 			struct pvr_gem_object *pvr_obj, u64 offset,
233 			u64 device_addr, u64 size)
234 {
235 	struct drm_gem_object *obj = gem_from_pvr_gem(pvr_obj);
236 	const bool is_user = vm_ctx != vm_ctx->pvr_dev->kernel_vm_ctx;
237 	const u64 pvr_obj_size = pvr_gem_object_size(pvr_obj);
238 	struct sg_table *sgt;
239 	u64 offset_plus_size;
240 	int err;
241 
242 	if (check_add_overflow(offset, size, &offset_plus_size))
243 		return -EINVAL;
244 
245 	if (is_user &&
246 	    !pvr_find_heap_containing(vm_ctx->pvr_dev, device_addr, size)) {
247 		return -EINVAL;
248 	}
249 
250 	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size) ||
251 	    offset & ~PAGE_MASK || size & ~PAGE_MASK ||
252 	    offset >= pvr_obj_size || offset_plus_size > pvr_obj_size)
253 		return -EINVAL;
254 
255 	bind_op->type = PVR_VM_BIND_TYPE_MAP;
256 
257 	dma_resv_lock(obj->resv, NULL);
258 	bind_op->gpuvm_bo = drm_gpuvm_bo_obtain(&vm_ctx->gpuvm_mgr, obj);
259 	dma_resv_unlock(obj->resv);
260 	if (IS_ERR(bind_op->gpuvm_bo))
261 		return PTR_ERR(bind_op->gpuvm_bo);
262 
263 	bind_op->new_va = kzalloc(sizeof(*bind_op->new_va), GFP_KERNEL);
264 	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
265 	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
266 	if (!bind_op->new_va || !bind_op->prev_va || !bind_op->next_va) {
267 		err = -ENOMEM;
268 		goto err_bind_op_fini;
269 	}
270 
271 	/* Pin pages so they're ready for use. */
272 	sgt = pvr_gem_object_get_pages_sgt(pvr_obj);
273 	err = PTR_ERR_OR_ZERO(sgt);
274 	if (err)
275 		goto err_bind_op_fini;
276 
277 	bind_op->mmu_op_ctx =
278 		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, sgt, offset, size);
279 	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
280 	if (err) {
281 		bind_op->mmu_op_ctx = NULL;
282 		goto err_bind_op_fini;
283 	}
284 
285 	bind_op->pvr_obj = pvr_obj;
286 	bind_op->vm_ctx = vm_ctx;
287 	bind_op->device_addr = device_addr;
288 	bind_op->size = size;
289 	bind_op->offset = offset;
290 
291 	return 0;
292 
293 err_bind_op_fini:
294 	pvr_vm_bind_op_fini(bind_op);
295 
296 	return err;
297 }
298 
299 static int
300 pvr_vm_bind_op_unmap_init(struct pvr_vm_bind_op *bind_op,
301 			  struct pvr_vm_context *vm_ctx,
302 			  struct pvr_gem_object *pvr_obj,
303 			  u64 device_addr, u64 size)
304 {
305 	int err;
306 
307 	if (!pvr_device_addr_and_size_are_valid(vm_ctx, device_addr, size))
308 		return -EINVAL;
309 
310 	bind_op->type = PVR_VM_BIND_TYPE_UNMAP;
311 
312 	bind_op->prev_va = kzalloc(sizeof(*bind_op->prev_va), GFP_KERNEL);
313 	bind_op->next_va = kzalloc(sizeof(*bind_op->next_va), GFP_KERNEL);
314 	if (!bind_op->prev_va || !bind_op->next_va) {
315 		err = -ENOMEM;
316 		goto err_bind_op_fini;
317 	}
318 
319 	bind_op->mmu_op_ctx =
320 		pvr_mmu_op_context_create(vm_ctx->mmu_ctx, NULL, 0, 0);
321 	err = PTR_ERR_OR_ZERO(bind_op->mmu_op_ctx);
322 	if (err) {
323 		bind_op->mmu_op_ctx = NULL;
324 		goto err_bind_op_fini;
325 	}
326 
327 	bind_op->pvr_obj = pvr_obj;
328 	bind_op->vm_ctx = vm_ctx;
329 	bind_op->device_addr = device_addr;
330 	bind_op->size = size;
331 
332 	return 0;
333 
334 err_bind_op_fini:
335 	pvr_vm_bind_op_fini(bind_op);
336 
337 	return err;
338 }
339 
340 /**
341  * pvr_vm_gpuva_map() - Insert a mapping into a memory context.
342  * @op: gpuva op containing the remap details.
343  * @op_ctx: Operation context.
344  *
345  * Context: Called by drm_gpuvm_sm_map following a successful mapping while
346  * @op_ctx.vm_ctx mutex is held.
347  *
348  * Return:
349  *  * 0 on success, or
350  *  * Any error returned by pvr_mmu_map().
351  */
352 static int
353 pvr_vm_gpuva_map(struct drm_gpuva_op *op, void *op_ctx)
354 {
355 	struct pvr_gem_object *pvr_gem = gem_to_pvr_gem(op->map.gem.obj);
356 	struct pvr_vm_bind_op *ctx = op_ctx;
357 	int err;
358 
359 	if ((op->map.gem.offset | op->map.va.range) & ~PVR_DEVICE_PAGE_MASK)
360 		return -EINVAL;
361 
362 	err = pvr_mmu_map(ctx->mmu_op_ctx, op->map.va.range, pvr_gem->flags,
363 			  op->map.va.addr);
364 	if (err)
365 		return err;
366 
367 	drm_gpuva_map(&ctx->vm_ctx->gpuvm_mgr, &ctx->new_va->base, &op->map);
368 	drm_gpuva_link(&ctx->new_va->base, ctx->gpuvm_bo);
369 	ctx->new_va = NULL;
370 
371 	return 0;
372 }
373 
374 /**
375  * pvr_vm_gpuva_unmap() - Remove a mapping from a memory context.
376  * @op: gpuva op containing the unmap details.
377  * @op_ctx: Operation context.
378  *
379  * Context: Called by drm_gpuvm_sm_unmap following a successful unmapping while
380  * @op_ctx.vm_ctx mutex is held.
381  *
382  * Return:
383  *  * 0 on success, or
384  *  * Any error returned by pvr_mmu_unmap().
385  */
386 static int
387 pvr_vm_gpuva_unmap(struct drm_gpuva_op *op, void *op_ctx)
388 {
389 	struct pvr_vm_bind_op *ctx = op_ctx;
390 
391 	int err = pvr_mmu_unmap(ctx->mmu_op_ctx, op->unmap.va->va.addr,
392 				op->unmap.va->va.range);
393 
394 	if (err)
395 		return err;
396 
397 	drm_gpuva_unmap(&op->unmap);
398 	drm_gpuva_unlink(op->unmap.va);
399 	kfree(to_pvr_vm_gpuva(op->unmap.va));
400 
401 	return 0;
402 }
403 
404 /**
405  * pvr_vm_gpuva_remap() - Remap a mapping within a memory context.
406  * @op: gpuva op containing the remap details.
407  * @op_ctx: Operation context.
408  *
409  * Context: Called by either drm_gpuvm_sm_map or drm_gpuvm_sm_unmap when a
410  * mapping or unmapping operation causes a region to be split. The
411  * @op_ctx.vm_ctx mutex is held.
412  *
413  * Return:
414  *  * 0 on success, or
415  *  * Any error returned by pvr_vm_gpuva_unmap() or pvr_vm_gpuva_unmap().
416  */
417 static int
418 pvr_vm_gpuva_remap(struct drm_gpuva_op *op, void *op_ctx)
419 {
420 	struct pvr_vm_bind_op *ctx = op_ctx;
421 	u64 va_start = 0, va_range = 0;
422 	int err;
423 
424 	drm_gpuva_op_remap_to_unmap_range(&op->remap, &va_start, &va_range);
425 	err = pvr_mmu_unmap(ctx->mmu_op_ctx, va_start, va_range);
426 	if (err)
427 		return err;
428 
429 	/* No actual remap required: the page table tree depth is fixed to 3,
430 	 * and we use 4k page table entries only for now.
431 	 */
432 	drm_gpuva_remap(&ctx->prev_va->base, &ctx->next_va->base, &op->remap);
433 
434 	if (op->remap.prev) {
435 		pvr_gem_object_get(gem_to_pvr_gem(ctx->prev_va->base.gem.obj));
436 		drm_gpuva_link(&ctx->prev_va->base, ctx->gpuvm_bo);
437 		ctx->prev_va = NULL;
438 	}
439 
440 	if (op->remap.next) {
441 		pvr_gem_object_get(gem_to_pvr_gem(ctx->next_va->base.gem.obj));
442 		drm_gpuva_link(&ctx->next_va->base, ctx->gpuvm_bo);
443 		ctx->next_va = NULL;
444 	}
445 
446 	drm_gpuva_unlink(op->remap.unmap->va);
447 	kfree(to_pvr_vm_gpuva(op->remap.unmap->va));
448 
449 	return 0;
450 }
451 
452 /*
453  * Public API
454  *
455  * For an overview of these functions, see *DOC: Public API* in "pvr_vm.h".
456  */
457 
458 /**
459  * pvr_device_addr_is_valid() - Tests whether a device-virtual address
460  *                              is valid.
461  * @device_addr: Virtual device address to test.
462  *
463  * Return:
464  *  * %true if @device_addr is within the valid range for a device page
465  *    table and is aligned to the device page size, or
466  *  * %false otherwise.
467  */
468 bool
469 pvr_device_addr_is_valid(u64 device_addr)
470 {
471 	return (device_addr & ~PVR_PAGE_TABLE_ADDR_MASK) == 0 &&
472 	       (device_addr & ~PVR_DEVICE_PAGE_MASK) == 0;
473 }
474 
475 /**
476  * pvr_device_addr_and_size_are_valid() - Tests whether a device-virtual
477  * address and associated size are both valid.
478  * @vm_ctx: Target VM context.
479  * @device_addr: Virtual device address to test.
480  * @size: Size of the range based at @device_addr to test.
481  *
482  * Calling pvr_device_addr_is_valid() twice (once on @size, and again on
483  * @device_addr + @size) to verify a device-virtual address range initially
484  * seems intuitive, but it produces a false-negative when the address range
485  * is right at the end of device-virtual address space.
486  *
487  * This function catches that corner case, as well as checking that
488  * @size is non-zero.
489  *
490  * Return:
491  *  * %true if @device_addr is device page aligned; @size is device page
492  *    aligned; the range specified by @device_addr and @size is within the
493  *    bounds of the device-virtual address space, and @size is non-zero, or
494  *  * %false otherwise.
495  */
496 bool
497 pvr_device_addr_and_size_are_valid(struct pvr_vm_context *vm_ctx,
498 				   u64 device_addr, u64 size)
499 {
500 	return pvr_device_addr_is_valid(device_addr) &&
501 	       drm_gpuvm_range_valid(&vm_ctx->gpuvm_mgr, device_addr, size) &&
502 	       size != 0 && (size & ~PVR_DEVICE_PAGE_MASK) == 0 &&
503 	       (device_addr + size <= PVR_PAGE_TABLE_ADDR_SPACE_SIZE);
504 }
505 
506 static void pvr_gpuvm_free(struct drm_gpuvm *gpuvm)
507 {
508 	kfree(to_pvr_vm_context(gpuvm));
509 }
510 
511 static const struct drm_gpuvm_ops pvr_vm_gpuva_ops = {
512 	.vm_free = pvr_gpuvm_free,
513 	.sm_step_map = pvr_vm_gpuva_map,
514 	.sm_step_remap = pvr_vm_gpuva_remap,
515 	.sm_step_unmap = pvr_vm_gpuva_unmap,
516 };
517 
518 static void
519 fw_mem_context_init(void *cpu_ptr, void *priv)
520 {
521 	struct rogue_fwif_fwmemcontext *fw_mem_ctx = cpu_ptr;
522 	struct pvr_vm_context *vm_ctx = priv;
523 
524 	fw_mem_ctx->pc_dev_paddr = pvr_vm_get_page_table_root_addr(vm_ctx);
525 	fw_mem_ctx->page_cat_base_reg_set = ROGUE_FW_BIF_INVALID_PCSET;
526 }
527 
528 /**
529  * pvr_vm_create_context() - Create a new VM context.
530  * @pvr_dev: Target PowerVR device.
531  * @is_userspace_context: %true if this context is for userspace. This will
532  *                        create a firmware memory context for the VM context
533  *                        and disable warnings when tearing down mappings.
534  *
535  * Return:
536  *  * A handle to the newly-minted VM context on success,
537  *  * -%EINVAL if the feature "virtual address space bits" on @pvr_dev is
538  *    missing or has an unsupported value,
539  *  * -%ENOMEM if allocation of the structure behind the opaque handle fails,
540  *    or
541  *  * Any error encountered while setting up internal structures.
542  */
543 struct pvr_vm_context *
544 pvr_vm_create_context(struct pvr_device *pvr_dev, bool is_userspace_context)
545 {
546 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
547 
548 	struct pvr_vm_context *vm_ctx;
549 	u16 device_addr_bits;
550 
551 	int err;
552 
553 	err = PVR_FEATURE_VALUE(pvr_dev, virtual_address_space_bits,
554 				&device_addr_bits);
555 	if (err) {
556 		drm_err(drm_dev,
557 			"Failed to get device virtual address space bits\n");
558 		return ERR_PTR(err);
559 	}
560 
561 	if (device_addr_bits != PVR_PAGE_TABLE_ADDR_BITS) {
562 		drm_err(drm_dev,
563 			"Device has unsupported virtual address space size\n");
564 		return ERR_PTR(-EINVAL);
565 	}
566 
567 	vm_ctx = kzalloc(sizeof(*vm_ctx), GFP_KERNEL);
568 	if (!vm_ctx)
569 		return ERR_PTR(-ENOMEM);
570 
571 	vm_ctx->pvr_dev = pvr_dev;
572 
573 	vm_ctx->mmu_ctx = pvr_mmu_context_create(pvr_dev);
574 	err = PTR_ERR_OR_ZERO(vm_ctx->mmu_ctx);
575 	if (err)
576 		goto err_free;
577 
578 	if (is_userspace_context) {
579 		err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_fwmemcontext),
580 					   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
581 					   fw_mem_context_init, vm_ctx, &vm_ctx->fw_mem_ctx_obj);
582 
583 		if (err)
584 			goto err_page_table_destroy;
585 	}
586 
587 	drm_gem_private_object_init(&pvr_dev->base, &vm_ctx->dummy_gem, 0);
588 	drm_gpuvm_init(&vm_ctx->gpuvm_mgr,
589 		       is_userspace_context ? "PowerVR-user-VM" : "PowerVR-FW-VM",
590 		       0, &pvr_dev->base, &vm_ctx->dummy_gem,
591 		       0, 1ULL << device_addr_bits, 0, 0, &pvr_vm_gpuva_ops);
592 
593 	mutex_init(&vm_ctx->lock);
594 	kref_init(&vm_ctx->ref_count);
595 
596 	return vm_ctx;
597 
598 err_page_table_destroy:
599 	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
600 
601 err_free:
602 	kfree(vm_ctx);
603 
604 	return ERR_PTR(err);
605 }
606 
607 /**
608  * pvr_vm_context_release() - Teardown a VM context.
609  * @ref_count: Pointer to reference counter of the VM context.
610  *
611  * This function also ensures that no mappings are left dangling by calling
612  * pvr_vm_unmap_all.
613  */
614 static void
615 pvr_vm_context_release(struct kref *ref_count)
616 {
617 	struct pvr_vm_context *vm_ctx =
618 		container_of(ref_count, struct pvr_vm_context, ref_count);
619 
620 	if (vm_ctx->fw_mem_ctx_obj)
621 		pvr_fw_object_destroy(vm_ctx->fw_mem_ctx_obj);
622 
623 	pvr_vm_unmap_all(vm_ctx);
624 
625 	pvr_mmu_context_destroy(vm_ctx->mmu_ctx);
626 	drm_gem_private_object_fini(&vm_ctx->dummy_gem);
627 	mutex_destroy(&vm_ctx->lock);
628 
629 	drm_gpuvm_put(&vm_ctx->gpuvm_mgr);
630 }
631 
632 /**
633  * pvr_vm_context_lookup() - Look up VM context from handle
634  * @pvr_file: Pointer to pvr_file structure.
635  * @handle: Object handle.
636  *
637  * Takes reference on VM context object. Call pvr_vm_context_put() to release.
638  *
639  * Returns:
640  *  * The requested object on success, or
641  *  * %NULL on failure (object does not exist in list, or is not a VM context)
642  */
643 struct pvr_vm_context *
644 pvr_vm_context_lookup(struct pvr_file *pvr_file, u32 handle)
645 {
646 	struct pvr_vm_context *vm_ctx;
647 
648 	xa_lock(&pvr_file->vm_ctx_handles);
649 	vm_ctx = xa_load(&pvr_file->vm_ctx_handles, handle);
650 	pvr_vm_context_get(vm_ctx);
651 	xa_unlock(&pvr_file->vm_ctx_handles);
652 
653 	return vm_ctx;
654 }
655 
656 /**
657  * pvr_vm_context_put() - Release a reference on a VM context
658  * @vm_ctx: Target VM context.
659  *
660  * Returns:
661  *  * %true if the VM context was destroyed, or
662  *  * %false if there are any references still remaining.
663  */
664 bool
665 pvr_vm_context_put(struct pvr_vm_context *vm_ctx)
666 {
667 	if (vm_ctx)
668 		return kref_put(&vm_ctx->ref_count, pvr_vm_context_release);
669 
670 	return true;
671 }
672 
673 /**
674  * pvr_destroy_vm_contexts_for_file: Destroy any VM contexts associated with the
675  * given file.
676  * @pvr_file: Pointer to pvr_file structure.
677  *
678  * Removes all vm_contexts associated with @pvr_file from the device VM context
679  * list and drops initial references. vm_contexts will then be destroyed once
680  * all outstanding references are dropped.
681  */
682 void pvr_destroy_vm_contexts_for_file(struct pvr_file *pvr_file)
683 {
684 	struct pvr_vm_context *vm_ctx;
685 	unsigned long handle;
686 
687 	xa_for_each(&pvr_file->vm_ctx_handles, handle, vm_ctx) {
688 		/* vm_ctx is not used here because that would create a race with xa_erase */
689 		pvr_vm_context_put(xa_erase(&pvr_file->vm_ctx_handles, handle));
690 	}
691 }
692 
693 static int
694 pvr_vm_lock_extra(struct drm_gpuvm_exec *vm_exec)
695 {
696 	struct pvr_vm_bind_op *bind_op = vm_exec->extra.priv;
697 	struct pvr_gem_object *pvr_obj = bind_op->pvr_obj;
698 
699 	/* Acquire lock on the GEM object being mapped/unmapped. */
700 	return drm_exec_lock_obj(&vm_exec->exec, gem_from_pvr_gem(pvr_obj));
701 }
702 
703 /**
704  * pvr_vm_map() - Map a section of physical memory into a section of
705  * device-virtual memory.
706  * @vm_ctx: Target VM context.
707  * @pvr_obj: Target PowerVR memory object.
708  * @pvr_obj_offset: Offset into @pvr_obj to map from.
709  * @device_addr: Virtual device address at the start of the requested mapping.
710  * @size: Size of the requested mapping.
711  *
712  * No handle is returned to represent the mapping. Instead, callers should
713  * remember @device_addr and use that as a handle.
714  *
715  * Return:
716  *  * 0 on success,
717  *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
718  *    address; the region specified by @pvr_obj_offset and @size does not fall
719  *    entirely within @pvr_obj, or any part of the specified region of @pvr_obj
720  *    is not device-virtual page-aligned,
721  *  * Any error encountered while performing internal operations required to
722  *    destroy the mapping (returned from pvr_vm_gpuva_map or
723  *    pvr_vm_gpuva_remap).
724  */
725 int
726 pvr_vm_map(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
727 	   u64 pvr_obj_offset, u64 device_addr, u64 size)
728 {
729 	struct pvr_vm_bind_op bind_op = {0};
730 	struct drm_gpuvm_exec vm_exec = {
731 		.vm = &vm_ctx->gpuvm_mgr,
732 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
733 			 DRM_EXEC_IGNORE_DUPLICATES,
734 		.extra = {
735 			.fn = pvr_vm_lock_extra,
736 			.priv = &bind_op,
737 		},
738 	};
739 
740 	int err = pvr_vm_bind_op_map_init(&bind_op, vm_ctx, pvr_obj,
741 					  pvr_obj_offset, device_addr,
742 					  size);
743 
744 	if (err)
745 		return err;
746 
747 	pvr_gem_object_get(pvr_obj);
748 
749 	err = drm_gpuvm_exec_lock(&vm_exec);
750 	if (err)
751 		goto err_cleanup;
752 
753 	err = pvr_vm_bind_op_exec(&bind_op);
754 
755 	drm_gpuvm_exec_unlock(&vm_exec);
756 
757 err_cleanup:
758 	pvr_vm_bind_op_fini(&bind_op);
759 
760 	return err;
761 }
762 
763 /**
764  * pvr_vm_unmap_obj_locked() - Unmap an already mapped section of device-virtual
765  * memory.
766  * @vm_ctx: Target VM context.
767  * @pvr_obj: Target PowerVR memory object.
768  * @device_addr: Virtual device address at the start of the target mapping.
769  * @size: Size of the target mapping.
770  *
771  * Return:
772  *  * 0 on success,
773  *  * -%EINVAL if @device_addr is not a valid page-aligned device-virtual
774  *    address,
775  *  * Any error encountered while performing internal operations required to
776  *    destroy the mapping (returned from pvr_vm_gpuva_unmap or
777  *    pvr_vm_gpuva_remap).
778  *
779  * The vm_ctx->lock must be held when calling this function.
780  */
781 static int
782 pvr_vm_unmap_obj_locked(struct pvr_vm_context *vm_ctx,
783 			struct pvr_gem_object *pvr_obj,
784 			u64 device_addr, u64 size)
785 {
786 	struct pvr_vm_bind_op bind_op = {0};
787 	struct drm_gpuvm_exec vm_exec = {
788 		.vm = &vm_ctx->gpuvm_mgr,
789 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT |
790 			 DRM_EXEC_IGNORE_DUPLICATES,
791 		.extra = {
792 			.fn = pvr_vm_lock_extra,
793 			.priv = &bind_op,
794 		},
795 	};
796 
797 	int err = pvr_vm_bind_op_unmap_init(&bind_op, vm_ctx, pvr_obj,
798 					    device_addr, size);
799 	if (err)
800 		return err;
801 
802 	pvr_gem_object_get(pvr_obj);
803 
804 	err = drm_gpuvm_exec_lock(&vm_exec);
805 	if (err)
806 		goto err_cleanup;
807 
808 	err = pvr_vm_bind_op_exec(&bind_op);
809 
810 	drm_gpuvm_exec_unlock(&vm_exec);
811 
812 err_cleanup:
813 	pvr_vm_bind_op_fini(&bind_op);
814 
815 	return err;
816 }
817 
818 /**
819  * pvr_vm_unmap_obj() - Unmap an already mapped section of device-virtual
820  * memory.
821  * @vm_ctx: Target VM context.
822  * @pvr_obj: Target PowerVR memory object.
823  * @device_addr: Virtual device address at the start of the target mapping.
824  * @size: Size of the target mapping.
825  *
826  * Return:
827  *  * 0 on success,
828  *  * Any error encountered by pvr_vm_unmap_obj_locked.
829  */
830 int
831 pvr_vm_unmap_obj(struct pvr_vm_context *vm_ctx, struct pvr_gem_object *pvr_obj,
832 		 u64 device_addr, u64 size)
833 {
834 	int err;
835 
836 	mutex_lock(&vm_ctx->lock);
837 	err = pvr_vm_unmap_obj_locked(vm_ctx, pvr_obj, device_addr, size);
838 	mutex_unlock(&vm_ctx->lock);
839 
840 	return err;
841 }
842 
843 /**
844  * pvr_vm_unmap() - Unmap an already mapped section of device-virtual memory.
845  * @vm_ctx: Target VM context.
846  * @device_addr: Virtual device address at the start of the target mapping.
847  * @size: Size of the target mapping.
848  *
849  * Return:
850  *  * 0 on success,
851  *  * Any error encountered by drm_gpuva_find,
852  *  * Any error encountered by pvr_vm_unmap_obj_locked.
853  */
854 int
855 pvr_vm_unmap(struct pvr_vm_context *vm_ctx, u64 device_addr, u64 size)
856 {
857 	struct pvr_gem_object *pvr_obj;
858 	struct drm_gpuva *va;
859 	int err;
860 
861 	mutex_lock(&vm_ctx->lock);
862 
863 	va = drm_gpuva_find(&vm_ctx->gpuvm_mgr, device_addr, size);
864 	if (va) {
865 		pvr_obj = gem_to_pvr_gem(va->gem.obj);
866 		err = pvr_vm_unmap_obj_locked(vm_ctx, pvr_obj,
867 					      va->va.addr, va->va.range);
868 	} else {
869 		err = -ENOENT;
870 	}
871 
872 	mutex_unlock(&vm_ctx->lock);
873 
874 	return err;
875 }
876 
877 /**
878  * pvr_vm_unmap_all() - Unmap all mappings associated with a VM context.
879  * @vm_ctx: Target VM context.
880  *
881  * This function ensures that no mappings are left dangling by unmapping them
882  * all in order of ascending device-virtual address.
883  */
884 void
885 pvr_vm_unmap_all(struct pvr_vm_context *vm_ctx)
886 {
887 	mutex_lock(&vm_ctx->lock);
888 
889 	for (;;) {
890 		struct pvr_gem_object *pvr_obj;
891 		struct drm_gpuva *va;
892 
893 		va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr,
894 					  vm_ctx->gpuvm_mgr.mm_start,
895 					  vm_ctx->gpuvm_mgr.mm_range);
896 		if (!va)
897 			break;
898 
899 		pvr_obj = gem_to_pvr_gem(va->gem.obj);
900 
901 		WARN_ON(pvr_vm_unmap_obj_locked(vm_ctx, pvr_obj,
902 						va->va.addr, va->va.range));
903 	}
904 
905 	mutex_unlock(&vm_ctx->lock);
906 }
907 
908 /* Static data areas are determined by firmware. */
909 static const struct drm_pvr_static_data_area static_data_areas[] = {
910 	{
911 		.area_usage = DRM_PVR_STATIC_DATA_AREA_FENCE,
912 		.location_heap_id = DRM_PVR_HEAP_GENERAL,
913 		.offset = 0,
914 		.size = 128,
915 	},
916 	{
917 		.area_usage = DRM_PVR_STATIC_DATA_AREA_YUV_CSC,
918 		.location_heap_id = DRM_PVR_HEAP_GENERAL,
919 		.offset = 128,
920 		.size = 1024,
921 	},
922 	{
923 		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
924 		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
925 		.offset = 0,
926 		.size = 128,
927 	},
928 	{
929 		.area_usage = DRM_PVR_STATIC_DATA_AREA_EOT,
930 		.location_heap_id = DRM_PVR_HEAP_PDS_CODE_DATA,
931 		.offset = 128,
932 		.size = 128,
933 	},
934 	{
935 		.area_usage = DRM_PVR_STATIC_DATA_AREA_VDM_SYNC,
936 		.location_heap_id = DRM_PVR_HEAP_USC_CODE,
937 		.offset = 0,
938 		.size = 128,
939 	},
940 };
941 
942 #define GET_RESERVED_SIZE(last_offset, last_size) round_up((last_offset) + (last_size), PAGE_SIZE)
943 
944 /*
945  * The values given to GET_RESERVED_SIZE() are taken from the last entry in the corresponding
946  * static data area for each heap.
947  */
948 static const struct drm_pvr_heap pvr_heaps[] = {
949 	[DRM_PVR_HEAP_GENERAL] = {
950 		.base = ROGUE_GENERAL_HEAP_BASE,
951 		.size = ROGUE_GENERAL_HEAP_SIZE,
952 		.flags = 0,
953 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
954 	},
955 	[DRM_PVR_HEAP_PDS_CODE_DATA] = {
956 		.base = ROGUE_PDSCODEDATA_HEAP_BASE,
957 		.size = ROGUE_PDSCODEDATA_HEAP_SIZE,
958 		.flags = 0,
959 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
960 	},
961 	[DRM_PVR_HEAP_USC_CODE] = {
962 		.base = ROGUE_USCCODE_HEAP_BASE,
963 		.size = ROGUE_USCCODE_HEAP_SIZE,
964 		.flags = 0,
965 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
966 	},
967 	[DRM_PVR_HEAP_RGNHDR] = {
968 		.base = ROGUE_RGNHDR_HEAP_BASE,
969 		.size = ROGUE_RGNHDR_HEAP_SIZE,
970 		.flags = 0,
971 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
972 	},
973 	[DRM_PVR_HEAP_VIS_TEST] = {
974 		.base = ROGUE_VISTEST_HEAP_BASE,
975 		.size = ROGUE_VISTEST_HEAP_SIZE,
976 		.flags = 0,
977 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
978 	},
979 	[DRM_PVR_HEAP_TRANSFER_FRAG] = {
980 		.base = ROGUE_TRANSFER_FRAG_HEAP_BASE,
981 		.size = ROGUE_TRANSFER_FRAG_HEAP_SIZE,
982 		.flags = 0,
983 		.page_size_log2 = PVR_DEVICE_PAGE_SHIFT,
984 	},
985 };
986 
987 int
988 pvr_static_data_areas_get(const struct pvr_device *pvr_dev,
989 			  struct drm_pvr_ioctl_dev_query_args *args)
990 {
991 	struct drm_pvr_dev_query_static_data_areas query = {0};
992 	int err;
993 
994 	if (!args->pointer) {
995 		args->size = sizeof(struct drm_pvr_dev_query_static_data_areas);
996 		return 0;
997 	}
998 
999 	err = PVR_UOBJ_GET(query, args->size, args->pointer);
1000 	if (err < 0)
1001 		return err;
1002 
1003 	if (!query.static_data_areas.array) {
1004 		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
1005 		query.static_data_areas.stride = sizeof(struct drm_pvr_static_data_area);
1006 		goto copy_out;
1007 	}
1008 
1009 	if (query.static_data_areas.count > ARRAY_SIZE(static_data_areas))
1010 		query.static_data_areas.count = ARRAY_SIZE(static_data_areas);
1011 
1012 	err = PVR_UOBJ_SET_ARRAY(&query.static_data_areas, static_data_areas);
1013 	if (err < 0)
1014 		return err;
1015 
1016 copy_out:
1017 	err = PVR_UOBJ_SET(args->pointer, args->size, query);
1018 	if (err < 0)
1019 		return err;
1020 
1021 	args->size = sizeof(query);
1022 	return 0;
1023 }
1024 
1025 int
1026 pvr_heap_info_get(const struct pvr_device *pvr_dev,
1027 		  struct drm_pvr_ioctl_dev_query_args *args)
1028 {
1029 	struct drm_pvr_dev_query_heap_info query = {0};
1030 	u64 dest;
1031 	int err;
1032 
1033 	if (!args->pointer) {
1034 		args->size = sizeof(struct drm_pvr_dev_query_heap_info);
1035 		return 0;
1036 	}
1037 
1038 	err = PVR_UOBJ_GET(query, args->size, args->pointer);
1039 	if (err < 0)
1040 		return err;
1041 
1042 	if (!query.heaps.array) {
1043 		query.heaps.count = ARRAY_SIZE(pvr_heaps);
1044 		query.heaps.stride = sizeof(struct drm_pvr_heap);
1045 		goto copy_out;
1046 	}
1047 
1048 	if (query.heaps.count > ARRAY_SIZE(pvr_heaps))
1049 		query.heaps.count = ARRAY_SIZE(pvr_heaps);
1050 
1051 	/* Region header heap is only present if BRN63142 is present. */
1052 	dest = query.heaps.array;
1053 	for (size_t i = 0; i < query.heaps.count; i++) {
1054 		struct drm_pvr_heap heap = pvr_heaps[i];
1055 
1056 		if (i == DRM_PVR_HEAP_RGNHDR && !PVR_HAS_QUIRK(pvr_dev, 63142))
1057 			heap.size = 0;
1058 
1059 		err = PVR_UOBJ_SET(dest, query.heaps.stride, heap);
1060 		if (err < 0)
1061 			return err;
1062 
1063 		dest += query.heaps.stride;
1064 	}
1065 
1066 copy_out:
1067 	err = PVR_UOBJ_SET(args->pointer, args->size, query);
1068 	if (err < 0)
1069 		return err;
1070 
1071 	args->size = sizeof(query);
1072 	return 0;
1073 }
1074 
1075 /**
1076  * pvr_heap_contains_range() - Determine if a given heap contains the specified
1077  *                             device-virtual address range.
1078  * @pvr_heap: Target heap.
1079  * @start: Inclusive start of the target range.
1080  * @end: Inclusive end of the target range.
1081  *
1082  * It is an error to call this function with values of @start and @end that do
1083  * not satisfy the condition @start <= @end.
1084  */
1085 static __always_inline bool
1086 pvr_heap_contains_range(const struct drm_pvr_heap *pvr_heap, u64 start, u64 end)
1087 {
1088 	return pvr_heap->base <= start && end < pvr_heap->base + pvr_heap->size;
1089 }
1090 
1091 /**
1092  * pvr_find_heap_containing() - Find a heap which contains the specified
1093  *                              device-virtual address range.
1094  * @pvr_dev: Target PowerVR device.
1095  * @start: Start of the target range.
1096  * @size: Size of the target range.
1097  *
1098  * Return:
1099  *  * A pointer to a constant instance of struct drm_pvr_heap representing the
1100  *    heap containing the entire range specified by @start and @size on
1101  *    success, or
1102  *  * %NULL if no such heap exists.
1103  */
1104 const struct drm_pvr_heap *
1105 pvr_find_heap_containing(struct pvr_device *pvr_dev, u64 start, u64 size)
1106 {
1107 	u64 end;
1108 
1109 	if (check_add_overflow(start, size - 1, &end))
1110 		return NULL;
1111 
1112 	/*
1113 	 * There are no guarantees about the order of address ranges in
1114 	 * &pvr_heaps, so iterate over the entire array for a heap whose
1115 	 * range completely encompasses the given range.
1116 	 */
1117 	for (u32 heap_id = 0; heap_id < ARRAY_SIZE(pvr_heaps); heap_id++) {
1118 		/* Filter heaps that present only with an associated quirk */
1119 		if (heap_id == DRM_PVR_HEAP_RGNHDR &&
1120 		    !PVR_HAS_QUIRK(pvr_dev, 63142)) {
1121 			continue;
1122 		}
1123 
1124 		if (pvr_heap_contains_range(&pvr_heaps[heap_id], start, end))
1125 			return &pvr_heaps[heap_id];
1126 	}
1127 
1128 	return NULL;
1129 }
1130 
1131 /**
1132  * pvr_vm_find_gem_object() - Look up a buffer object from a given
1133  *                            device-virtual address.
1134  * @vm_ctx: [IN] Target VM context.
1135  * @device_addr: [IN] Virtual device address at the start of the required
1136  *               object.
1137  * @mapped_offset_out: [OUT] Pointer to location to write offset of the start
1138  *                     of the mapped region within the buffer object. May be
1139  *                     %NULL if this information is not required.
1140  * @mapped_size_out: [OUT] Pointer to location to write size of the mapped
1141  *                   region. May be %NULL if this information is not required.
1142  *
1143  * If successful, a reference will be taken on the buffer object. The caller
1144  * must drop the reference with pvr_gem_object_put().
1145  *
1146  * Return:
1147  *  * The PowerVR buffer object mapped at @device_addr if one exists, or
1148  *  * %NULL otherwise.
1149  */
1150 struct pvr_gem_object *
1151 pvr_vm_find_gem_object(struct pvr_vm_context *vm_ctx, u64 device_addr,
1152 		       u64 *mapped_offset_out, u64 *mapped_size_out)
1153 {
1154 	struct pvr_gem_object *pvr_obj;
1155 	struct drm_gpuva *va;
1156 
1157 	mutex_lock(&vm_ctx->lock);
1158 
1159 	va = drm_gpuva_find_first(&vm_ctx->gpuvm_mgr, device_addr, 1);
1160 	if (!va)
1161 		goto err_unlock;
1162 
1163 	pvr_obj = gem_to_pvr_gem(va->gem.obj);
1164 	pvr_gem_object_get(pvr_obj);
1165 
1166 	if (mapped_offset_out)
1167 		*mapped_offset_out = va->gem.offset;
1168 	if (mapped_size_out)
1169 		*mapped_size_out = va->va.range;
1170 
1171 	mutex_unlock(&vm_ctx->lock);
1172 
1173 	return pvr_obj;
1174 
1175 err_unlock:
1176 	mutex_unlock(&vm_ctx->lock);
1177 
1178 	return NULL;
1179 }
1180 
1181 /**
1182  * pvr_vm_get_fw_mem_context: Get object representing firmware memory context
1183  * @vm_ctx: Target VM context.
1184  *
1185  * Returns:
1186  *  * FW object representing firmware memory context, or
1187  *  * %NULL if this VM context does not have a firmware memory context.
1188  */
1189 struct pvr_fw_object *
1190 pvr_vm_get_fw_mem_context(struct pvr_vm_context *vm_ctx)
1191 {
1192 	return vm_ctx->fw_mem_ctx_obj;
1193 }
1194