xref: /linux/drivers/gpu/drm/imagination/pvr_fw.c (revision f6e8dc9edf963dbc99085e54f6ced6da9daa6100)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3 
4 #include "pvr_ccb.h"
5 #include "pvr_device.h"
6 #include "pvr_device_info.h"
7 #include "pvr_fw.h"
8 #include "pvr_fw_info.h"
9 #include "pvr_fw_startstop.h"
10 #include "pvr_fw_trace.h"
11 #include "pvr_gem.h"
12 #include "pvr_power.h"
13 #include "pvr_rogue_fwif_dev_info.h"
14 #include "pvr_rogue_heap_config.h"
15 #include "pvr_vm.h"
16 
17 #include <drm/drm_drv.h>
18 #include <drm/drm_managed.h>
19 #include <drm/drm_mm.h>
20 #include <drm/drm_print.h>
21 #include <linux/clk.h>
22 #include <linux/firmware.h>
23 #include <linux/math.h>
24 #include <linux/minmax.h>
25 #include <linux/sizes.h>
26 
27 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1
28 
29 #define FW_BOOT_TIMEOUT_USEC 5000000
30 
31 /* Config heap occupies top 192k of the firmware heap. */
32 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
33 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
34 
35 /* Main firmware allocations should come from the remainder of the heap. */
36 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
37 
38 /* Offsets from start of configuration area of FW heap. */
39 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
40 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \
41 	(PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
42 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
43 	(PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
44 
45 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
46 
47 #define PVR_SYNC_OBJ_SIZE sizeof(u32)
48 
49 const struct pvr_fw_layout_entry *
50 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
51 {
52 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
53 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
54 
55 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
56 		if (layout_entries[entry].id == id)
57 			return &layout_entries[entry];
58 	}
59 
60 	return NULL;
61 }
62 
63 static const struct pvr_fw_layout_entry *
64 pvr_fw_find_private_data(struct pvr_device *pvr_dev)
65 {
66 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
67 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
68 
69 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
70 		if (layout_entries[entry].id == META_PRIVATE_DATA ||
71 		    layout_entries[entry].id == MIPS_PRIVATE_DATA ||
72 		    layout_entries[entry].id == RISCV_PRIVATE_DATA)
73 			return &layout_entries[entry];
74 	}
75 
76 	return NULL;
77 }
78 
79 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
80 
81 /**
82  * pvr_fw_validate() - Parse firmware header and check compatibility
83  * @pvr_dev: Device pointer.
84  *
85  * Returns:
86  *  * 0 on success, or
87  *  * -EINVAL if firmware is incompatible.
88  */
89 static int
90 pvr_fw_validate(struct pvr_device *pvr_dev)
91 {
92 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
93 	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
94 	const struct pvr_fw_layout_entry *layout_entries;
95 	const struct pvr_fw_info_header *header;
96 	const u8 *fw = firmware->data;
97 	u32 fw_offset = firmware->size - SZ_4K;
98 	u32 layout_table_size;
99 
100 	if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
101 		return -EINVAL;
102 
103 	header = (const struct pvr_fw_info_header *)&fw[fw_offset];
104 
105 	if (header->info_version != PVR_FW_INFO_VERSION) {
106 		drm_err(drm_dev, "Unsupported fw info version %u\n",
107 			header->info_version);
108 		return -EINVAL;
109 	}
110 
111 	if (header->header_len != sizeof(struct pvr_fw_info_header) ||
112 	    header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
113 	    header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
114 		drm_err(drm_dev, "FW info format mismatch\n");
115 		return -EINVAL;
116 	}
117 
118 	if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
119 	    header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
120 	    header->fw_version_major == 0) {
121 		drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
122 			header->fw_version_major, header->fw_version_minor,
123 			header->fw_version_build,
124 			(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
125 		return -EINVAL;
126 	}
127 
128 	if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
129 		struct pvr_gpu_id fw_gpu_id;
130 
131 		packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
132 		drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
133 			fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
134 			pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
135 		return -EINVAL;
136 	}
137 
138 	fw_offset += header->header_len;
139 	layout_table_size =
140 		header->layout_entry_size * header->layout_entry_num;
141 	if ((fw_offset + layout_table_size) > firmware->size)
142 		return -EINVAL;
143 
144 	layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
145 	for (u32 entry = 0; entry < header->layout_entry_num; entry++) {
146 		u32 start_addr = layout_entries[entry].base_addr;
147 		u32 end_addr = start_addr + layout_entries[entry].alloc_size;
148 
149 		if (start_addr >= end_addr)
150 			return -EINVAL;
151 	}
152 
153 	fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
154 
155 	drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
156 		 header->fw_version_minor, header->fw_version_build);
157 
158 	pvr_dev->fw_version.major = header->fw_version_major;
159 	pvr_dev->fw_version.minor = header->fw_version_minor;
160 
161 	pvr_dev->fw_dev.header = header;
162 	pvr_dev->fw_dev.layout_entries = layout_entries;
163 
164 	return 0;
165 }
166 
167 static int
168 pvr_fw_get_device_info(struct pvr_device *pvr_dev)
169 {
170 	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
171 	struct pvr_fw_device_info_header *header;
172 	const u8 *fw = firmware->data;
173 	const u64 *dev_info;
174 	u32 fw_offset;
175 
176 	fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
177 
178 	header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
179 	dev_info = (u64 *)(header + 1);
180 
181 	pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
182 	dev_info += header->brn_mask_size;
183 
184 	pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
185 	dev_info += header->ern_mask_size;
186 
187 	return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
188 					    header->feature_param_size);
189 }
190 
191 static void
192 layout_get_sizes(struct pvr_device *pvr_dev)
193 {
194 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
195 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
196 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
197 
198 	fw_mem->code_alloc_size = 0;
199 	fw_mem->data_alloc_size = 0;
200 	fw_mem->core_code_alloc_size = 0;
201 	fw_mem->core_data_alloc_size = 0;
202 
203 	/* Extract section sizes from FW layout table. */
204 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
205 		switch (layout_entries[entry].type) {
206 		case FW_CODE:
207 			fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
208 			break;
209 		case FW_DATA:
210 			fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
211 			break;
212 		case FW_COREMEM_CODE:
213 			fw_mem->core_code_alloc_size +=
214 				layout_entries[entry].alloc_size;
215 			break;
216 		case FW_COREMEM_DATA:
217 			fw_mem->core_data_alloc_size +=
218 				layout_entries[entry].alloc_size;
219 			break;
220 		case NONE:
221 			break;
222 		}
223 	}
224 }
225 
226 int
227 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
228 			void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
229 			void **host_addr_out)
230 {
231 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
232 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
233 	u32 end_addr = addr + size;
234 
235 	/* Ensure requested range is not zero, and size is not causing addr to overflow. */
236 	if (end_addr <= addr)
237 		return -EINVAL;
238 
239 	for (int entry = 0; entry < num_layout_entries; entry++) {
240 		u32 entry_start_addr = layout_entries[entry].base_addr;
241 		u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
242 
243 		if (addr >= entry_start_addr && addr < entry_end_addr &&
244 		    end_addr > entry_start_addr && end_addr <= entry_end_addr) {
245 			switch (layout_entries[entry].type) {
246 			case FW_CODE:
247 				*host_addr_out = fw_code_ptr;
248 				break;
249 
250 			case FW_DATA:
251 				*host_addr_out = fw_data_ptr;
252 				break;
253 
254 			case FW_COREMEM_CODE:
255 				*host_addr_out = fw_core_code_ptr;
256 				break;
257 
258 			case FW_COREMEM_DATA:
259 				*host_addr_out = fw_core_data_ptr;
260 				break;
261 
262 			default:
263 				return -EINVAL;
264 			}
265 			/* Direct Mem write to mapped memory */
266 			addr -= layout_entries[entry].base_addr;
267 			addr += layout_entries[entry].alloc_offset;
268 
269 			/*
270 			 * Add offset to pointer to FW allocation only if that
271 			 * allocation is available
272 			 */
273 			*(u8 **)host_addr_out += addr;
274 			return 0;
275 		}
276 	}
277 
278 	return -EINVAL;
279 }
280 
281 static int
282 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
283 {
284 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
285 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
286 
287 	fw_dev->fwif_connection_ctl =
288 		pvr_fw_object_create_and_map_offset(pvr_dev,
289 						    fw_dev->fw_heap_info.config_offset +
290 						    PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
291 						    sizeof(*fw_dev->fwif_connection_ctl),
292 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
293 						    NULL, NULL,
294 						    &fw_dev->mem.fwif_connection_ctl_obj);
295 	if (IS_ERR(fw_dev->fwif_connection_ctl)) {
296 		drm_err(drm_dev,
297 			"Unable to allocate FWIF connection control memory\n");
298 		return PTR_ERR(fw_dev->fwif_connection_ctl);
299 	}
300 
301 	return 0;
302 }
303 
304 static void
305 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
306 {
307 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
308 
309 	pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
310 }
311 
312 static void
313 fw_osinit_init(void *cpu_ptr, void *priv)
314 {
315 	struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
316 	struct pvr_device *pvr_dev = priv;
317 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
318 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
319 
320 	fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
321 	fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
322 	pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
323 				  &fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
324 
325 	fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
326 	fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
327 
328 	fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
329 	fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
330 
331 	pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
332 				  &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
333 	pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
334 
335 	fwif_osinit->hwr_debug_dump_limit = 0;
336 
337 	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
338 	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
339 }
340 
341 static void
342 fw_osdata_init(void *cpu_ptr, void *priv)
343 {
344 	struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
345 	struct pvr_device *pvr_dev = priv;
346 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
347 
348 	pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
349 }
350 
351 static void
352 fw_fault_page_init(void *cpu_ptr, void *priv)
353 {
354 	u32 *fault_page = cpu_ptr;
355 
356 	for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
357 		fault_page[i] = 0xdeadbee0;
358 }
359 
360 static void
361 fw_sysinit_init(void *cpu_ptr, void *priv)
362 {
363 	struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
364 	struct pvr_device *pvr_dev = priv;
365 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
366 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
367 	dma_addr_t fault_dma_addr = 0;
368 	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
369 
370 	WARN_ON(!clock_speed_hz);
371 
372 	WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
373 	fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
374 
375 	fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
376 	fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
377 
378 	pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
379 	pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
380 				  &fwif_sysinit->trace_buf_ctl_fw_addr);
381 	pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
382 	pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
383 				  &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
384 	if (fw_mem->core_data_obj) {
385 		pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
386 					  &fwif_sysinit->coremem_data_store.fw_addr);
387 	}
388 
389 	/* Currently unsupported. */
390 	fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
391 	fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
392 
393 	/* Skip alignment checks. */
394 	fwif_sysinit->align_checks = 0;
395 
396 	fwif_sysinit->filter_flags = 0;
397 	fwif_sysinit->hw_perf_filter = 0;
398 	fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
399 	fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
400 	fwif_sysinit->active_pm_latency_ms = 0;
401 	fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
402 	fwif_sysinit->firmware_started = false;
403 	fwif_sysinit->marker_val = 1;
404 
405 	memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
406 	       sizeof(fwif_sysinit->bvnc_km_feature_flags));
407 }
408 
409 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
410 
411 static void
412 fw_sysdata_init(void *cpu_ptr, void *priv)
413 {
414 	struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
415 	struct pvr_device *pvr_dev = priv;
416 	u32 slc_size_in_kilobytes = 0;
417 	u32 config_flags = 0;
418 
419 	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
420 
421 	if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
422 		config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
423 
424 	fwif_sysdata->config_flags = config_flags;
425 }
426 
427 static void
428 fw_runtime_cfg_init(void *cpu_ptr, void *priv)
429 {
430 	struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
431 	struct pvr_device *pvr_dev = priv;
432 	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
433 
434 	WARN_ON(!clock_speed_hz);
435 
436 	runtime_cfg->core_clock_speed = clock_speed_hz;
437 	runtime_cfg->active_pm_latency_ms = 0;
438 	runtime_cfg->active_pm_latency_persistant = true;
439 	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
440 				  &runtime_cfg->default_dusts_num_init) != 0);
441 
442 	/* Keep watchdog timer disabled. */
443 	runtime_cfg->wdg_period_us = 0;
444 }
445 
446 static void
447 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
448 {
449 	struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
450 
451 	gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
452 }
453 
454 static int
455 pvr_fw_create_structures(struct pvr_device *pvr_dev)
456 {
457 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
458 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
459 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
460 	int err;
461 
462 	fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
463 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
464 							  NULL, NULL, &fw_mem->power_sync_obj);
465 	if (IS_ERR(fw_dev->power_sync)) {
466 		drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
467 		return PTR_ERR(fw_dev->power_sync);
468 	}
469 
470 	fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
471 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
472 							  NULL, NULL, &fw_mem->hwrinfobuf_obj);
473 	if (IS_ERR(fw_dev->hwrinfobuf)) {
474 		drm_err(drm_dev,
475 			"Unable to allocate FW hwrinfobuf structure\n");
476 		err = PTR_ERR(fw_dev->hwrinfobuf);
477 		goto err_release_power_sync;
478 	}
479 
480 	err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
481 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
482 				   NULL, NULL, &fw_mem->mmucache_sync_obj);
483 	if (err) {
484 		drm_err(drm_dev,
485 			"Unable to allocate MMU cache sync object\n");
486 		goto err_release_hwrinfobuf;
487 	}
488 
489 	fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
490 							    sizeof(*fw_dev->fwif_sysdata),
491 							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
492 							    fw_sysdata_init, pvr_dev,
493 							    &fw_mem->sysdata_obj);
494 	if (IS_ERR(fw_dev->fwif_sysdata)) {
495 		drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
496 		err = PTR_ERR(fw_dev->fwif_sysdata);
497 		goto err_release_mmucache_sync_obj;
498 	}
499 
500 	err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
501 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
502 				   fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
503 	if (err) {
504 		drm_err(drm_dev, "Unable to allocate FW fault page\n");
505 		goto err_release_sysdata;
506 	}
507 
508 	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
509 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
510 				   fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
511 	if (err) {
512 		drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
513 		goto err_release_fault_page;
514 	}
515 
516 	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
517 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
518 				   fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
519 	if (err) {
520 		drm_err(drm_dev, "Unable to allocate FW runtime config\n");
521 		goto err_release_gpu_util_fwcb;
522 	}
523 
524 	err = pvr_fw_trace_init(pvr_dev);
525 	if (err)
526 		goto err_release_runtime_cfg;
527 
528 	fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
529 							   sizeof(*fw_dev->fwif_osdata),
530 							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
531 							   fw_osdata_init, pvr_dev,
532 							   &fw_mem->osdata_obj);
533 	if (IS_ERR(fw_dev->fwif_osdata)) {
534 		drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
535 		err = PTR_ERR(fw_dev->fwif_osdata);
536 		goto err_fw_trace_fini;
537 	}
538 
539 	fw_dev->fwif_osinit =
540 		pvr_fw_object_create_and_map_offset(pvr_dev,
541 						    fw_dev->fw_heap_info.config_offset +
542 						    PVR_ROGUE_FWIF_OSINIT_OFFSET,
543 						    sizeof(*fw_dev->fwif_osinit),
544 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
545 						    fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
546 	if (IS_ERR(fw_dev->fwif_osinit)) {
547 		drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
548 		err = PTR_ERR(fw_dev->fwif_osinit);
549 		goto err_release_osdata;
550 	}
551 
552 	fw_dev->fwif_sysinit =
553 		pvr_fw_object_create_and_map_offset(pvr_dev,
554 						    fw_dev->fw_heap_info.config_offset +
555 						    PVR_ROGUE_FWIF_SYSINIT_OFFSET,
556 						    sizeof(*fw_dev->fwif_sysinit),
557 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
558 						    fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
559 	if (IS_ERR(fw_dev->fwif_sysinit)) {
560 		drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
561 		err = PTR_ERR(fw_dev->fwif_sysinit);
562 		goto err_release_osinit;
563 	}
564 
565 	return 0;
566 
567 err_release_osinit:
568 	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
569 
570 err_release_osdata:
571 	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
572 
573 err_fw_trace_fini:
574 	pvr_fw_trace_fini(pvr_dev);
575 
576 err_release_runtime_cfg:
577 	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
578 
579 err_release_gpu_util_fwcb:
580 	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
581 
582 err_release_fault_page:
583 	pvr_fw_object_destroy(fw_mem->fault_page_obj);
584 
585 err_release_sysdata:
586 	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
587 
588 err_release_mmucache_sync_obj:
589 	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
590 
591 err_release_hwrinfobuf:
592 	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
593 
594 err_release_power_sync:
595 	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
596 
597 	return err;
598 }
599 
600 static void
601 pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
602 {
603 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
604 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
605 
606 	pvr_fw_trace_fini(pvr_dev);
607 	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
608 	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
609 	pvr_fw_object_destroy(fw_mem->fault_page_obj);
610 	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
611 	pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
612 
613 	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
614 	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
615 	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
616 	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
617 	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
618 }
619 
620 /**
621  * pvr_fw_process() - Process firmware image, allocate FW memory and create boot
622  *                    arguments
623  * @pvr_dev: Device pointer.
624  *
625  * Returns:
626  *  * 0 on success, or
627  *  * Any error returned by pvr_fw_object_create_and_map_offset(), or
628  *  * Any error returned by pvr_fw_object_create_and_map().
629  */
630 static int
631 pvr_fw_process(struct pvr_device *pvr_dev)
632 {
633 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
634 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
635 	const u8 *fw = pvr_dev->fw_dev.firmware->data;
636 	const struct pvr_fw_layout_entry *private_data;
637 	u8 *fw_code_ptr;
638 	u8 *fw_data_ptr;
639 	u8 *fw_core_code_ptr;
640 	u8 *fw_core_data_ptr;
641 	int err;
642 
643 	layout_get_sizes(pvr_dev);
644 
645 	private_data = pvr_fw_find_private_data(pvr_dev);
646 	if (!private_data)
647 		return -EINVAL;
648 
649 	/* Allocate and map memory for firmware sections. */
650 
651 	/*
652 	 * Code allocation must be at the start of the firmware heap, otherwise
653 	 * firmware processor will be unable to boot.
654 	 *
655 	 * This has the useful side-effect that for every other object in the
656 	 * driver, a firmware address of 0 is invalid.
657 	 */
658 	fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
659 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
660 							  NULL, NULL, &fw_mem->code_obj);
661 	if (IS_ERR(fw_code_ptr)) {
662 		drm_err(drm_dev, "Unable to allocate FW code memory\n");
663 		return PTR_ERR(fw_code_ptr);
664 	}
665 
666 	if (pvr_dev->fw_dev.defs->has_fixed_data_addr) {
667 		u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
668 
669 		fw_data_ptr =
670 			pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
671 							    fw_mem->data_alloc_size,
672 							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
673 							    NULL, NULL, &fw_mem->data_obj);
674 	} else {
675 		fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
676 							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
677 							   NULL, NULL, &fw_mem->data_obj);
678 	}
679 	if (IS_ERR(fw_data_ptr)) {
680 		drm_err(drm_dev, "Unable to allocate FW data memory\n");
681 		err = PTR_ERR(fw_data_ptr);
682 		goto err_free_fw_code_obj;
683 	}
684 
685 	/* Core code and data sections are optional. */
686 	if (fw_mem->core_code_alloc_size) {
687 		fw_core_code_ptr =
688 			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
689 						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
690 						     NULL, NULL, &fw_mem->core_code_obj);
691 		if (IS_ERR(fw_core_code_ptr)) {
692 			drm_err(drm_dev,
693 				"Unable to allocate FW core code memory\n");
694 			err = PTR_ERR(fw_core_code_ptr);
695 			goto err_free_fw_data_obj;
696 		}
697 	} else {
698 		fw_core_code_ptr = NULL;
699 	}
700 
701 	if (fw_mem->core_data_alloc_size) {
702 		fw_core_data_ptr =
703 			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
704 						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
705 						     NULL, NULL, &fw_mem->core_data_obj);
706 		if (IS_ERR(fw_core_data_ptr)) {
707 			drm_err(drm_dev,
708 				"Unable to allocate FW core data memory\n");
709 			err = PTR_ERR(fw_core_data_ptr);
710 			goto err_free_fw_core_code_obj;
711 		}
712 	} else {
713 		fw_core_data_ptr = NULL;
714 	}
715 
716 	fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
717 	fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
718 	if (fw_mem->core_code_alloc_size)
719 		fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
720 	if (fw_mem->core_data_alloc_size)
721 		fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
722 
723 	if (!fw_mem->code || !fw_mem->data ||
724 	    (!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
725 	    (!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
726 		err = -ENOMEM;
727 		goto err_free_kdata;
728 	}
729 
730 	err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
731 					       fw_mem->code, fw_mem->data, fw_mem->core_code,
732 					       fw_mem->core_data, fw_mem->core_code_alloc_size);
733 
734 	if (err)
735 		goto err_free_kdata;
736 
737 	memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
738 	memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
739 	if (fw_mem->core_code)
740 		memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
741 	if (fw_mem->core_data)
742 		memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
743 
744 	/* We're finished with the firmware section memory on the CPU, unmap. */
745 	if (fw_core_data_ptr) {
746 		pvr_fw_object_vunmap(fw_mem->core_data_obj);
747 		fw_core_data_ptr = NULL;
748 	}
749 	if (fw_core_code_ptr) {
750 		pvr_fw_object_vunmap(fw_mem->core_code_obj);
751 		fw_core_code_ptr = NULL;
752 	}
753 	pvr_fw_object_vunmap(fw_mem->data_obj);
754 	fw_data_ptr = NULL;
755 	pvr_fw_object_vunmap(fw_mem->code_obj);
756 	fw_code_ptr = NULL;
757 
758 	err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
759 	if (err)
760 		goto err_free_kdata;
761 
762 	return 0;
763 
764 err_free_kdata:
765 	kfree(fw_mem->core_data);
766 	kfree(fw_mem->core_code);
767 	kfree(fw_mem->data);
768 	kfree(fw_mem->code);
769 
770 	if (fw_core_data_ptr)
771 		pvr_fw_object_vunmap(fw_mem->core_data_obj);
772 	if (fw_mem->core_data_obj)
773 		pvr_fw_object_destroy(fw_mem->core_data_obj);
774 
775 err_free_fw_core_code_obj:
776 	if (fw_core_code_ptr)
777 		pvr_fw_object_vunmap(fw_mem->core_code_obj);
778 	if (fw_mem->core_code_obj)
779 		pvr_fw_object_destroy(fw_mem->core_code_obj);
780 
781 err_free_fw_data_obj:
782 	if (fw_data_ptr)
783 		pvr_fw_object_vunmap(fw_mem->data_obj);
784 	pvr_fw_object_destroy(fw_mem->data_obj);
785 
786 err_free_fw_code_obj:
787 	if (fw_code_ptr)
788 		pvr_fw_object_vunmap(fw_mem->code_obj);
789 	pvr_fw_object_destroy(fw_mem->code_obj);
790 
791 	return err;
792 }
793 
794 static int
795 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
796 {
797 	u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
798 
799 	if (IS_ERR(dest_ptr))
800 		return PTR_ERR(dest_ptr);
801 
802 	memcpy(dest_ptr, src_ptr, size);
803 
804 	pvr_fw_object_vunmap(dest_obj);
805 
806 	return 0;
807 }
808 
809 static int
810 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
811 {
812 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
813 	int err;
814 
815 	err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
816 	if (err)
817 		return err;
818 
819 	err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
820 	if (err)
821 		return err;
822 
823 	if (fw_mem->core_code) {
824 		err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
825 				     fw_mem->core_code_alloc_size);
826 		if (err)
827 			return err;
828 	}
829 
830 	if (fw_mem->core_data) {
831 		err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
832 				     fw_mem->core_data_alloc_size);
833 		if (err)
834 			return err;
835 	}
836 
837 	return 0;
838 }
839 
840 static void
841 pvr_fw_cleanup(struct pvr_device *pvr_dev)
842 {
843 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
844 
845 	pvr_fw_fini_fwif_connection_ctl(pvr_dev);
846 
847 	kfree(fw_mem->core_data);
848 	kfree(fw_mem->core_code);
849 	kfree(fw_mem->data);
850 	kfree(fw_mem->code);
851 
852 	if (fw_mem->core_code_obj)
853 		pvr_fw_object_destroy(fw_mem->core_code_obj);
854 	if (fw_mem->core_data_obj)
855 		pvr_fw_object_destroy(fw_mem->core_data_obj);
856 	pvr_fw_object_destroy(fw_mem->code_obj);
857 	pvr_fw_object_destroy(fw_mem->data_obj);
858 }
859 
860 /**
861  * pvr_wait_for_fw_boot() - Wait for firmware to finish booting
862  * @pvr_dev: Target PowerVR device.
863  *
864  * Returns:
865  *  * 0 on success, or
866  *  * -%ETIMEDOUT if firmware fails to boot within timeout.
867  */
868 int
869 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
870 {
871 	ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
872 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
873 
874 	while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
875 		if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
876 			return 0;
877 	}
878 
879 	return -ETIMEDOUT;
880 }
881 
882 /*
883  * pvr_fw_heap_info_init() - Calculate size and masks for FW heap
884  * @pvr_dev: Target PowerVR device.
885  * @log2_size: Log2 of raw heap size.
886  * @reserved_size: Size of reserved area of heap, in bytes. May be zero.
887  */
888 void
889 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
890 {
891 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
892 
893 	fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
894 	fw_dev->fw_heap_info.log2_size = log2_size;
895 	fw_dev->fw_heap_info.reserved_size = reserved_size;
896 	fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
897 	fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
898 	fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
899 					     PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
900 	fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
901 				    (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
902 }
903 
904 /**
905  * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
906  * @pvr_dev: Target PowerVR device.
907  *
908  * This function must be called before querying device information.
909  *
910  * Returns:
911  *  * 0 on success, or
912  *  * -%EINVAL if firmware validation fails.
913  */
914 int
915 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
916 {
917 	int err;
918 
919 	err = pvr_fw_validate(pvr_dev);
920 	if (err)
921 		return err;
922 
923 	return pvr_fw_get_device_info(pvr_dev);
924 }
925 
926 /**
927  * pvr_fw_init() - Initialise and boot firmware
928  * @pvr_dev: Target PowerVR device
929  *
930  * On successful completion of the function the PowerVR device will be
931  * initialised and ready to use.
932  *
933  * Returns:
934  *  * 0 on success,
935  *  * -%EINVAL on invalid firmware image,
936  *  * -%ENOMEM on out of memory, or
937  *  * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
938  */
939 int
940 pvr_fw_init(struct pvr_device *pvr_dev)
941 {
942 	static const struct pvr_fw_defs *fw_defs[PVR_FW_PROCESSOR_TYPE_COUNT] = {
943 		[PVR_FW_PROCESSOR_TYPE_META] = &pvr_fw_defs_meta,
944 		[PVR_FW_PROCESSOR_TYPE_MIPS] = &pvr_fw_defs_mips,
945 		[PVR_FW_PROCESSOR_TYPE_RISCV] = &pvr_fw_defs_riscv,
946 	};
947 
948 	u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
949 	u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
950 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
951 	int err;
952 
953 	if (fw_dev->processor_type >= PVR_FW_PROCESSOR_TYPE_COUNT)
954 		return -EINVAL;
955 
956 	fw_dev->defs = fw_defs[fw_dev->processor_type];
957 
958 	err = fw_dev->defs->init(pvr_dev);
959 	if (err)
960 		return err;
961 
962 	drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
963 	fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
964 	spin_lock_init(&fw_dev->fw_mm_lock);
965 
966 	INIT_LIST_HEAD(&fw_dev->fw_objs.list);
967 	err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
968 	if (err)
969 		goto err_mm_takedown;
970 
971 	err = pvr_fw_process(pvr_dev);
972 	if (err)
973 		goto err_mm_takedown;
974 
975 	/* Initialise KCCB and FWCCB. */
976 	err = pvr_kccb_init(pvr_dev);
977 	if (err)
978 		goto err_fw_cleanup;
979 
980 	err = pvr_fwccb_init(pvr_dev);
981 	if (err)
982 		goto err_kccb_fini;
983 
984 	/* Allocate memory for KCCB return slots. */
985 	pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
986 							 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
987 							 NULL, NULL, &pvr_dev->kccb.rtn_obj);
988 	if (IS_ERR(pvr_dev->kccb.rtn)) {
989 		err = PTR_ERR(pvr_dev->kccb.rtn);
990 		goto err_fwccb_fini;
991 	}
992 
993 	err = pvr_fw_create_structures(pvr_dev);
994 	if (err)
995 		goto err_kccb_rtn_release;
996 
997 	err = pvr_fw_start(pvr_dev);
998 	if (err)
999 		goto err_destroy_structures;
1000 
1001 	err = pvr_wait_for_fw_boot(pvr_dev);
1002 	if (err) {
1003 		drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
1004 		goto err_fw_stop;
1005 	}
1006 
1007 	fw_dev->booted = true;
1008 
1009 	return 0;
1010 
1011 err_fw_stop:
1012 	pvr_fw_stop(pvr_dev);
1013 
1014 err_destroy_structures:
1015 	pvr_fw_destroy_structures(pvr_dev);
1016 
1017 err_kccb_rtn_release:
1018 	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1019 
1020 err_fwccb_fini:
1021 	pvr_ccb_fini(&pvr_dev->fwccb);
1022 
1023 err_kccb_fini:
1024 	pvr_kccb_fini(pvr_dev);
1025 
1026 err_fw_cleanup:
1027 	pvr_fw_cleanup(pvr_dev);
1028 
1029 err_mm_takedown:
1030 	drm_mm_takedown(&fw_dev->fw_mm);
1031 
1032 	if (fw_dev->defs->fini)
1033 		fw_dev->defs->fini(pvr_dev);
1034 
1035 	return err;
1036 }
1037 
1038 /**
1039  * pvr_fw_fini() - Shutdown firmware processor and free associated memory
1040  * @pvr_dev: Target PowerVR device
1041  */
1042 void
1043 pvr_fw_fini(struct pvr_device *pvr_dev)
1044 {
1045 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1046 
1047 	fw_dev->booted = false;
1048 
1049 	pvr_fw_destroy_structures(pvr_dev);
1050 	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1051 
1052 	/*
1053 	 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
1054 	 * been unregistered at this point so no new work should be being submitted.
1055 	 */
1056 	pvr_ccb_fini(&pvr_dev->fwccb);
1057 	pvr_kccb_fini(pvr_dev);
1058 	pvr_fw_cleanup(pvr_dev);
1059 
1060 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1061 	WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
1062 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1063 
1064 	drm_mm_takedown(&fw_dev->fw_mm);
1065 
1066 	if (fw_dev->defs->fini)
1067 		fw_dev->defs->fini(pvr_dev);
1068 }
1069 
1070 /**
1071  * pvr_fw_mts_schedule() - Schedule work via an MTS kick
1072  * @pvr_dev: Target PowerVR device
1073  * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
1074  */
1075 void
1076 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
1077 {
1078 	/* Ensure memory is flushed before kicking MTS. */
1079 	wmb();
1080 
1081 	pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
1082 
1083 	/* Ensure the MTS kick goes through before continuing. */
1084 	mb();
1085 }
1086 
1087 /**
1088  * pvr_fw_structure_cleanup() - Send FW cleanup request for an object
1089  * @pvr_dev: Target PowerVR device.
1090  * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
1091  * @fw_obj: Pointer to FW object containing object to cleanup.
1092  * @offset: Offset within FW object of object to cleanup.
1093  *
1094  * Returns:
1095  *  * 0 on success,
1096  *  * -EBUSY if object is busy,
1097  *  * -ETIMEDOUT on timeout, or
1098  *  * -EIO if device is lost.
1099  */
1100 int
1101 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
1102 			 u32 offset)
1103 {
1104 	struct rogue_fwif_kccb_cmd cmd;
1105 	int slot_nr;
1106 	int idx;
1107 	int err;
1108 	u32 rtn;
1109 
1110 	struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
1111 
1112 	down_read(&pvr_dev->reset_sem);
1113 
1114 	if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
1115 		err = -EIO;
1116 		goto err_up_read;
1117 	}
1118 
1119 	cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
1120 	cmd.kccb_flags = 0;
1121 	cleanup_req->cleanup_type = type;
1122 
1123 	switch (type) {
1124 	case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
1125 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1126 						 &cleanup_req->cleanup_data.context_fw_addr);
1127 		break;
1128 	case ROGUE_FWIF_CLEANUP_HWRTDATA:
1129 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1130 						 &cleanup_req->cleanup_data.hwrt_data_fw_addr);
1131 		break;
1132 	case ROGUE_FWIF_CLEANUP_FREELIST:
1133 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1134 						 &cleanup_req->cleanup_data.freelist_fw_addr);
1135 		break;
1136 	default:
1137 		err = -EINVAL;
1138 		goto err_drm_dev_exit;
1139 	}
1140 
1141 	err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
1142 	if (err)
1143 		goto err_drm_dev_exit;
1144 
1145 	err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
1146 	if (err)
1147 		goto err_drm_dev_exit;
1148 
1149 	if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
1150 		err = -EBUSY;
1151 
1152 err_drm_dev_exit:
1153 	drm_dev_exit(idx);
1154 
1155 err_up_read:
1156 	up_read(&pvr_dev->reset_sem);
1157 
1158 	return err;
1159 }
1160 
1161 /**
1162  * pvr_fw_object_fw_map() - Map a FW object in firmware address space
1163  * @pvr_dev: Device pointer.
1164  * @fw_obj: FW object to map.
1165  * @dev_addr: Desired address in device space, if a specific address is
1166  *            required. 0 otherwise.
1167  *
1168  * Returns:
1169  *  * 0 on success, or
1170  *  * -%EINVAL if @fw_obj is already mapped but has no references, or
1171  *  * Any error returned by DRM.
1172  */
1173 static int
1174 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
1175 {
1176 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1177 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1178 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1179 
1180 	int err;
1181 
1182 	spin_lock(&fw_dev->fw_mm_lock);
1183 
1184 	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1185 		err = -EINVAL;
1186 		goto err_unlock;
1187 	}
1188 
1189 	if (!dev_addr) {
1190 		/*
1191 		 * Allocate from the main heap only (firmware heap minus
1192 		 * config space).
1193 		 */
1194 		err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
1195 						  gem_obj->size, 0, 0,
1196 						  fw_dev->fw_heap_info.gpu_addr,
1197 						  fw_dev->fw_heap_info.gpu_addr +
1198 						  fw_dev->fw_heap_info.size, 0);
1199 		if (err)
1200 			goto err_unlock;
1201 	} else {
1202 		fw_obj->fw_mm_node.start = dev_addr;
1203 		fw_obj->fw_mm_node.size = gem_obj->size;
1204 		err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
1205 		if (err)
1206 			goto err_unlock;
1207 	}
1208 
1209 	spin_unlock(&fw_dev->fw_mm_lock);
1210 
1211 	/* Map object on GPU. */
1212 	err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
1213 	if (err)
1214 		goto err_remove_node;
1215 
1216 	fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
1217 
1218 	return 0;
1219 
1220 err_remove_node:
1221 	spin_lock(&fw_dev->fw_mm_lock);
1222 	drm_mm_remove_node(&fw_obj->fw_mm_node);
1223 
1224 err_unlock:
1225 	spin_unlock(&fw_dev->fw_mm_lock);
1226 
1227 	return err;
1228 }
1229 
1230 /**
1231  * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
1232  * @fw_obj: FW object to unmap.
1233  *
1234  * Returns:
1235  *  * 0 on success, or
1236  *  * -%EINVAL if object is not currently mapped.
1237  */
1238 static int
1239 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
1240 {
1241 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1242 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1243 	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1244 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1245 
1246 	fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
1247 
1248 	spin_lock(&fw_dev->fw_mm_lock);
1249 
1250 	if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1251 		spin_unlock(&fw_dev->fw_mm_lock);
1252 		return -EINVAL;
1253 	}
1254 
1255 	drm_mm_remove_node(&fw_obj->fw_mm_node);
1256 
1257 	spin_unlock(&fw_dev->fw_mm_lock);
1258 
1259 	return 0;
1260 }
1261 
1262 static void *
1263 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
1264 				    u64 flags, u64 dev_addr,
1265 				    void (*init)(void *cpu_ptr, void *priv),
1266 				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1267 {
1268 	struct pvr_fw_object *fw_obj;
1269 	void *cpu_ptr;
1270 	int err;
1271 
1272 	/* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
1273 	flags |= DRM_PVR_BO_PM_FW_PROTECT;
1274 
1275 	fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
1276 	if (!fw_obj)
1277 		return ERR_PTR(-ENOMEM);
1278 
1279 	INIT_LIST_HEAD(&fw_obj->node);
1280 	fw_obj->init = init;
1281 	fw_obj->init_priv = init_priv;
1282 
1283 	fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
1284 	if (IS_ERR(fw_obj->gem)) {
1285 		err = PTR_ERR(fw_obj->gem);
1286 		fw_obj->gem = NULL;
1287 		goto err_put_object;
1288 	}
1289 
1290 	err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
1291 	if (err)
1292 		goto err_put_object;
1293 
1294 	cpu_ptr = pvr_fw_object_vmap(fw_obj);
1295 	if (IS_ERR(cpu_ptr)) {
1296 		err = PTR_ERR(cpu_ptr);
1297 		goto err_put_object;
1298 	}
1299 
1300 	*fw_obj_out = fw_obj;
1301 
1302 	if (fw_obj->init)
1303 		fw_obj->init(cpu_ptr, fw_obj->init_priv);
1304 
1305 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1306 	list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
1307 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1308 
1309 	return cpu_ptr;
1310 
1311 err_put_object:
1312 	pvr_fw_object_destroy(fw_obj);
1313 
1314 	return ERR_PTR(err);
1315 }
1316 
1317 /**
1318  * pvr_fw_object_create() - Create a FW object and map to firmware
1319  * @pvr_dev: PowerVR device pointer.
1320  * @size: Size of object, in bytes.
1321  * @flags: Options which affect both this operation and future mapping
1322  * operations performed on the returned object. Must be a combination of
1323  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1324  * @init: Initialisation callback.
1325  * @init_priv: Private pointer to pass to initialisation callback.
1326  * @fw_obj_out: Pointer to location to store created object pointer.
1327  *
1328  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1329  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1330  * set.
1331  *
1332  * Returns:
1333  *  * 0 on success, or
1334  *  * Any error returned by pvr_fw_object_create_common().
1335  */
1336 int
1337 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
1338 		     void (*init)(void *cpu_ptr, void *priv), void *init_priv,
1339 		     struct pvr_fw_object **fw_obj_out)
1340 {
1341 	void *cpu_ptr;
1342 
1343 	cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1344 						      fw_obj_out);
1345 	if (IS_ERR(cpu_ptr))
1346 		return PTR_ERR(cpu_ptr);
1347 
1348 	pvr_fw_object_vunmap(*fw_obj_out);
1349 
1350 	return 0;
1351 }
1352 
1353 /**
1354  * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
1355  * @pvr_dev: PowerVR device pointer.
1356  * @size: Size of object, in bytes.
1357  * @flags: Options which affect both this operation and future mapping
1358  * operations performed on the returned object. Must be a combination of
1359  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1360  * @init: Initialisation callback.
1361  * @init_priv: Private pointer to pass to initialisation callback.
1362  * @fw_obj_out: Pointer to location to store created object pointer.
1363  *
1364  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1365  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1366  * set.
1367  *
1368  * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1369  * mapping.
1370  *
1371  * Returns:
1372  *  * Pointer to CPU mapping of newly created object, or
1373  *  * Any error returned by pvr_fw_object_create(), or
1374  *  * Any error returned by pvr_fw_object_vmap().
1375  */
1376 void *
1377 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
1378 			     void (*init)(void *cpu_ptr, void *priv),
1379 			     void *init_priv, struct pvr_fw_object **fw_obj_out)
1380 {
1381 	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1382 						   fw_obj_out);
1383 }
1384 
1385 /**
1386  * pvr_fw_object_create_and_map_offset() - Create a FW object and map to
1387  * firmware at the provided offset and to the CPU.
1388  * @pvr_dev: PowerVR device pointer.
1389  * @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
1390  * @size: Size of object, in bytes.
1391  * @flags: Options which affect both this operation and future mapping
1392  * operations performed on the returned object. Must be a combination of
1393  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1394  * @init: Initialisation callback.
1395  * @init_priv: Private pointer to pass to initialisation callback.
1396  * @fw_obj_out: Pointer to location to store created object pointer.
1397  *
1398  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1399  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1400  * set.
1401  *
1402  * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1403  * mapping.
1404  *
1405  * Returns:
1406  *  * Pointer to CPU mapping of newly created object, or
1407  *  * Any error returned by pvr_fw_object_create(), or
1408  *  * Any error returned by pvr_fw_object_vmap().
1409  */
1410 void *
1411 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
1412 				    u32 dev_offset, size_t size, u64 flags,
1413 				    void (*init)(void *cpu_ptr, void *priv),
1414 				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1415 {
1416 	u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
1417 
1418 	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
1419 						   fw_obj_out);
1420 }
1421 
1422 /**
1423  * pvr_fw_object_destroy() - Destroy a pvr_fw_object
1424  * @fw_obj: Pointer to object to destroy.
1425  */
1426 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
1427 {
1428 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1429 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1430 	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1431 
1432 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1433 	list_del(&fw_obj->node);
1434 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1435 
1436 	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1437 		/* If we can't unmap, leak the memory. */
1438 		if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
1439 			return;
1440 	}
1441 
1442 	if (fw_obj->gem)
1443 		pvr_gem_object_put(fw_obj->gem);
1444 
1445 	kfree(fw_obj);
1446 }
1447 
1448 /**
1449  * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
1450  * given offset.
1451  * @fw_obj: Pointer to object.
1452  * @offset: Desired offset from start of object.
1453  * @fw_addr_out: Location to store address to.
1454  */
1455 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
1456 {
1457 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1458 	struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
1459 
1460 	*fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
1461 }
1462 
1463 u64
1464 pvr_fw_obj_get_gpu_addr(struct pvr_fw_object *fw_obj)
1465 {
1466 	struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(fw_obj->gem)->dev);
1467 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1468 
1469 	return fw_dev->fw_heap_info.gpu_addr + fw_obj->fw_addr_offset;
1470 }
1471 
1472 /*
1473  * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
1474  *                       structures
1475  * @pvr_dev: Device pointer
1476  *
1477  * If this function returns an error then the caller must regard the device as lost.
1478  *
1479  * Returns:
1480  *  * 0 on success, or
1481  *  * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
1482  */
1483 int
1484 pvr_fw_hard_reset(struct pvr_device *pvr_dev)
1485 {
1486 	struct list_head *pos;
1487 	int err;
1488 
1489 	/* Reset all FW objects */
1490 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1491 
1492 	list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
1493 		struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
1494 		void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
1495 
1496 		WARN_ON(IS_ERR(cpu_ptr));
1497 
1498 		if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
1499 			memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
1500 
1501 			if (fw_obj->init)
1502 				fw_obj->init(cpu_ptr, fw_obj->init_priv);
1503 		}
1504 
1505 		pvr_fw_object_vunmap(fw_obj);
1506 	}
1507 
1508 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1509 
1510 	err = pvr_fw_reinit_code_data(pvr_dev);
1511 	if (err)
1512 		return err;
1513 
1514 	return 0;
1515 }
1516