xref: /linux/drivers/gpu/drm/imagination/pvr_fw.c (revision d231cde7c84359fb18fb268cf6cff03b5bce48ff)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3 
4 #include "pvr_ccb.h"
5 #include "pvr_device.h"
6 #include "pvr_device_info.h"
7 #include "pvr_fw.h"
8 #include "pvr_fw_info.h"
9 #include "pvr_fw_startstop.h"
10 #include "pvr_fw_trace.h"
11 #include "pvr_gem.h"
12 #include "pvr_power.h"
13 #include "pvr_rogue_fwif_dev_info.h"
14 #include "pvr_rogue_heap_config.h"
15 #include "pvr_vm.h"
16 
17 #include <drm/drm_drv.h>
18 #include <drm/drm_managed.h>
19 #include <drm/drm_mm.h>
20 #include <linux/clk.h>
21 #include <linux/firmware.h>
22 #include <linux/math.h>
23 #include <linux/minmax.h>
24 #include <linux/sizes.h>
25 
26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1
27 
28 #define FW_BOOT_TIMEOUT_USEC 5000000
29 
30 /* Config heap occupies top 192k of the firmware heap. */
31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
33 
34 /* Main firmware allocations should come from the remainder of the heap. */
35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
36 
37 /* Offsets from start of configuration area of FW heap. */
38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \
40 	(PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
42 	(PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
43 
44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
45 
46 #define PVR_SYNC_OBJ_SIZE sizeof(u32)
47 
48 const struct pvr_fw_layout_entry *
49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
50 {
51 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
52 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
53 
54 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
55 		if (layout_entries[entry].id == id)
56 			return &layout_entries[entry];
57 	}
58 
59 	return NULL;
60 }
61 
62 static const struct pvr_fw_layout_entry *
63 pvr_fw_find_private_data(struct pvr_device *pvr_dev)
64 {
65 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
66 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
67 
68 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
69 		if (layout_entries[entry].id == META_PRIVATE_DATA ||
70 		    layout_entries[entry].id == MIPS_PRIVATE_DATA ||
71 		    layout_entries[entry].id == RISCV_PRIVATE_DATA)
72 			return &layout_entries[entry];
73 	}
74 
75 	return NULL;
76 }
77 
78 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
79 
80 /**
81  * pvr_fw_validate() - Parse firmware header and check compatibility
82  * @pvr_dev: Device pointer.
83  *
84  * Returns:
85  *  * 0 on success, or
86  *  * -EINVAL if firmware is incompatible.
87  */
88 static int
89 pvr_fw_validate(struct pvr_device *pvr_dev)
90 {
91 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
92 	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
93 	const struct pvr_fw_layout_entry *layout_entries;
94 	const struct pvr_fw_info_header *header;
95 	const u8 *fw = firmware->data;
96 	u32 fw_offset = firmware->size - SZ_4K;
97 	u32 layout_table_size;
98 
99 	if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
100 		return -EINVAL;
101 
102 	header = (const struct pvr_fw_info_header *)&fw[fw_offset];
103 
104 	if (header->info_version != PVR_FW_INFO_VERSION) {
105 		drm_err(drm_dev, "Unsupported fw info version %u\n",
106 			header->info_version);
107 		return -EINVAL;
108 	}
109 
110 	if (header->header_len != sizeof(struct pvr_fw_info_header) ||
111 	    header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
112 	    header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
113 		drm_err(drm_dev, "FW info format mismatch\n");
114 		return -EINVAL;
115 	}
116 
117 	if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
118 	    header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
119 	    header->fw_version_major == 0) {
120 		drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
121 			header->fw_version_major, header->fw_version_minor,
122 			header->fw_version_build,
123 			(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
124 		return -EINVAL;
125 	}
126 
127 	if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
128 		struct pvr_gpu_id fw_gpu_id;
129 
130 		packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
131 		drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
132 			fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
133 			pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
134 		return -EINVAL;
135 	}
136 
137 	fw_offset += header->header_len;
138 	layout_table_size =
139 		header->layout_entry_size * header->layout_entry_num;
140 	if ((fw_offset + layout_table_size) > firmware->size)
141 		return -EINVAL;
142 
143 	layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
144 	for (u32 entry = 0; entry < header->layout_entry_num; entry++) {
145 		u32 start_addr = layout_entries[entry].base_addr;
146 		u32 end_addr = start_addr + layout_entries[entry].alloc_size;
147 
148 		if (start_addr >= end_addr)
149 			return -EINVAL;
150 	}
151 
152 	fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
153 
154 	drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
155 		 header->fw_version_minor, header->fw_version_build);
156 
157 	pvr_dev->fw_version.major = header->fw_version_major;
158 	pvr_dev->fw_version.minor = header->fw_version_minor;
159 
160 	pvr_dev->fw_dev.header = header;
161 	pvr_dev->fw_dev.layout_entries = layout_entries;
162 
163 	return 0;
164 }
165 
166 static int
167 pvr_fw_get_device_info(struct pvr_device *pvr_dev)
168 {
169 	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
170 	struct pvr_fw_device_info_header *header;
171 	const u8 *fw = firmware->data;
172 	const u64 *dev_info;
173 	u32 fw_offset;
174 
175 	fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
176 
177 	header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
178 	dev_info = (u64 *)(header + 1);
179 
180 	pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
181 	dev_info += header->brn_mask_size;
182 
183 	pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
184 	dev_info += header->ern_mask_size;
185 
186 	return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
187 					    header->feature_param_size);
188 }
189 
190 static void
191 layout_get_sizes(struct pvr_device *pvr_dev)
192 {
193 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
194 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
195 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
196 
197 	fw_mem->code_alloc_size = 0;
198 	fw_mem->data_alloc_size = 0;
199 	fw_mem->core_code_alloc_size = 0;
200 	fw_mem->core_data_alloc_size = 0;
201 
202 	/* Extract section sizes from FW layout table. */
203 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
204 		switch (layout_entries[entry].type) {
205 		case FW_CODE:
206 			fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
207 			break;
208 		case FW_DATA:
209 			fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
210 			break;
211 		case FW_COREMEM_CODE:
212 			fw_mem->core_code_alloc_size +=
213 				layout_entries[entry].alloc_size;
214 			break;
215 		case FW_COREMEM_DATA:
216 			fw_mem->core_data_alloc_size +=
217 				layout_entries[entry].alloc_size;
218 			break;
219 		case NONE:
220 			break;
221 		}
222 	}
223 }
224 
225 int
226 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
227 			void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
228 			void **host_addr_out)
229 {
230 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
231 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
232 	u32 end_addr = addr + size;
233 
234 	/* Ensure requested range is not zero, and size is not causing addr to overflow. */
235 	if (end_addr <= addr)
236 		return -EINVAL;
237 
238 	for (int entry = 0; entry < num_layout_entries; entry++) {
239 		u32 entry_start_addr = layout_entries[entry].base_addr;
240 		u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
241 
242 		if (addr >= entry_start_addr && addr < entry_end_addr &&
243 		    end_addr > entry_start_addr && end_addr <= entry_end_addr) {
244 			switch (layout_entries[entry].type) {
245 			case FW_CODE:
246 				*host_addr_out = fw_code_ptr;
247 				break;
248 
249 			case FW_DATA:
250 				*host_addr_out = fw_data_ptr;
251 				break;
252 
253 			case FW_COREMEM_CODE:
254 				*host_addr_out = fw_core_code_ptr;
255 				break;
256 
257 			case FW_COREMEM_DATA:
258 				*host_addr_out = fw_core_data_ptr;
259 				break;
260 
261 			default:
262 				return -EINVAL;
263 			}
264 			/* Direct Mem write to mapped memory */
265 			addr -= layout_entries[entry].base_addr;
266 			addr += layout_entries[entry].alloc_offset;
267 
268 			/*
269 			 * Add offset to pointer to FW allocation only if that
270 			 * allocation is available
271 			 */
272 			*(u8 **)host_addr_out += addr;
273 			return 0;
274 		}
275 	}
276 
277 	return -EINVAL;
278 }
279 
280 static int
281 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
282 {
283 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
284 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
285 
286 	fw_dev->fwif_connection_ctl =
287 		pvr_fw_object_create_and_map_offset(pvr_dev,
288 						    fw_dev->fw_heap_info.config_offset +
289 						    PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
290 						    sizeof(*fw_dev->fwif_connection_ctl),
291 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
292 						    NULL, NULL,
293 						    &fw_dev->mem.fwif_connection_ctl_obj);
294 	if (IS_ERR(fw_dev->fwif_connection_ctl)) {
295 		drm_err(drm_dev,
296 			"Unable to allocate FWIF connection control memory\n");
297 		return PTR_ERR(fw_dev->fwif_connection_ctl);
298 	}
299 
300 	return 0;
301 }
302 
303 static void
304 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
305 {
306 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
307 
308 	pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
309 }
310 
311 static void
312 fw_osinit_init(void *cpu_ptr, void *priv)
313 {
314 	struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
315 	struct pvr_device *pvr_dev = priv;
316 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
317 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
318 
319 	fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
320 	fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
321 	pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
322 				  &fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
323 
324 	fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
325 	fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
326 
327 	fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
328 	fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
329 
330 	pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
331 				  &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
332 	pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
333 
334 	fwif_osinit->hwr_debug_dump_limit = 0;
335 
336 	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
337 	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
338 }
339 
340 static void
341 fw_osdata_init(void *cpu_ptr, void *priv)
342 {
343 	struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
344 	struct pvr_device *pvr_dev = priv;
345 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
346 
347 	pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
348 }
349 
350 static void
351 fw_fault_page_init(void *cpu_ptr, void *priv)
352 {
353 	u32 *fault_page = cpu_ptr;
354 
355 	for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
356 		fault_page[i] = 0xdeadbee0;
357 }
358 
359 static void
360 fw_sysinit_init(void *cpu_ptr, void *priv)
361 {
362 	struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
363 	struct pvr_device *pvr_dev = priv;
364 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
365 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
366 	dma_addr_t fault_dma_addr = 0;
367 	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
368 
369 	WARN_ON(!clock_speed_hz);
370 
371 	WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
372 	fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
373 
374 	fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
375 	fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
376 
377 	pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
378 	pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
379 				  &fwif_sysinit->trace_buf_ctl_fw_addr);
380 	pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
381 	pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
382 				  &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
383 	if (fw_mem->core_data_obj) {
384 		pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
385 					  &fwif_sysinit->coremem_data_store.fw_addr);
386 	}
387 
388 	/* Currently unsupported. */
389 	fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
390 	fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
391 
392 	/* Skip alignment checks. */
393 	fwif_sysinit->align_checks = 0;
394 
395 	fwif_sysinit->filter_flags = 0;
396 	fwif_sysinit->hw_perf_filter = 0;
397 	fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
398 	fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
399 	fwif_sysinit->active_pm_latency_ms = 0;
400 	fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
401 	fwif_sysinit->firmware_started = false;
402 	fwif_sysinit->marker_val = 1;
403 
404 	memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
405 	       sizeof(fwif_sysinit->bvnc_km_feature_flags));
406 }
407 
408 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
409 
410 static void
411 fw_sysdata_init(void *cpu_ptr, void *priv)
412 {
413 	struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
414 	struct pvr_device *pvr_dev = priv;
415 	u32 slc_size_in_kilobytes = 0;
416 	u32 config_flags = 0;
417 
418 	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
419 
420 	if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
421 		config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
422 
423 	fwif_sysdata->config_flags = config_flags;
424 }
425 
426 static void
427 fw_runtime_cfg_init(void *cpu_ptr, void *priv)
428 {
429 	struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
430 	struct pvr_device *pvr_dev = priv;
431 	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
432 
433 	WARN_ON(!clock_speed_hz);
434 
435 	runtime_cfg->core_clock_speed = clock_speed_hz;
436 	runtime_cfg->active_pm_latency_ms = 0;
437 	runtime_cfg->active_pm_latency_persistant = true;
438 	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
439 				  &runtime_cfg->default_dusts_num_init) != 0);
440 }
441 
442 static void
443 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
444 {
445 	struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
446 
447 	gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
448 }
449 
450 static int
451 pvr_fw_create_structures(struct pvr_device *pvr_dev)
452 {
453 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
454 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
455 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
456 	int err;
457 
458 	fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
459 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
460 							  NULL, NULL, &fw_mem->power_sync_obj);
461 	if (IS_ERR(fw_dev->power_sync)) {
462 		drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
463 		return PTR_ERR(fw_dev->power_sync);
464 	}
465 
466 	fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
467 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
468 							  NULL, NULL, &fw_mem->hwrinfobuf_obj);
469 	if (IS_ERR(fw_dev->hwrinfobuf)) {
470 		drm_err(drm_dev,
471 			"Unable to allocate FW hwrinfobuf structure\n");
472 		err = PTR_ERR(fw_dev->hwrinfobuf);
473 		goto err_release_power_sync;
474 	}
475 
476 	err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
477 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
478 				   NULL, NULL, &fw_mem->mmucache_sync_obj);
479 	if (err) {
480 		drm_err(drm_dev,
481 			"Unable to allocate MMU cache sync object\n");
482 		goto err_release_hwrinfobuf;
483 	}
484 
485 	fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
486 							    sizeof(*fw_dev->fwif_sysdata),
487 							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
488 							    fw_sysdata_init, pvr_dev,
489 							    &fw_mem->sysdata_obj);
490 	if (IS_ERR(fw_dev->fwif_sysdata)) {
491 		drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
492 		err = PTR_ERR(fw_dev->fwif_sysdata);
493 		goto err_release_mmucache_sync_obj;
494 	}
495 
496 	err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
497 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
498 				   fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
499 	if (err) {
500 		drm_err(drm_dev, "Unable to allocate FW fault page\n");
501 		goto err_release_sysdata;
502 	}
503 
504 	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
505 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
506 				   fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
507 	if (err) {
508 		drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
509 		goto err_release_fault_page;
510 	}
511 
512 	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
513 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
514 				   fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
515 	if (err) {
516 		drm_err(drm_dev, "Unable to allocate FW runtime config\n");
517 		goto err_release_gpu_util_fwcb;
518 	}
519 
520 	err = pvr_fw_trace_init(pvr_dev);
521 	if (err)
522 		goto err_release_runtime_cfg;
523 
524 	fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
525 							   sizeof(*fw_dev->fwif_osdata),
526 							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
527 							   fw_osdata_init, pvr_dev,
528 							   &fw_mem->osdata_obj);
529 	if (IS_ERR(fw_dev->fwif_osdata)) {
530 		drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
531 		err = PTR_ERR(fw_dev->fwif_osdata);
532 		goto err_fw_trace_fini;
533 	}
534 
535 	fw_dev->fwif_osinit =
536 		pvr_fw_object_create_and_map_offset(pvr_dev,
537 						    fw_dev->fw_heap_info.config_offset +
538 						    PVR_ROGUE_FWIF_OSINIT_OFFSET,
539 						    sizeof(*fw_dev->fwif_osinit),
540 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
541 						    fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
542 	if (IS_ERR(fw_dev->fwif_osinit)) {
543 		drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
544 		err = PTR_ERR(fw_dev->fwif_osinit);
545 		goto err_release_osdata;
546 	}
547 
548 	fw_dev->fwif_sysinit =
549 		pvr_fw_object_create_and_map_offset(pvr_dev,
550 						    fw_dev->fw_heap_info.config_offset +
551 						    PVR_ROGUE_FWIF_SYSINIT_OFFSET,
552 						    sizeof(*fw_dev->fwif_sysinit),
553 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
554 						    fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
555 	if (IS_ERR(fw_dev->fwif_sysinit)) {
556 		drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
557 		err = PTR_ERR(fw_dev->fwif_sysinit);
558 		goto err_release_osinit;
559 	}
560 
561 	return 0;
562 
563 err_release_osinit:
564 	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
565 
566 err_release_osdata:
567 	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
568 
569 err_fw_trace_fini:
570 	pvr_fw_trace_fini(pvr_dev);
571 
572 err_release_runtime_cfg:
573 	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
574 
575 err_release_gpu_util_fwcb:
576 	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
577 
578 err_release_fault_page:
579 	pvr_fw_object_destroy(fw_mem->fault_page_obj);
580 
581 err_release_sysdata:
582 	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
583 
584 err_release_mmucache_sync_obj:
585 	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
586 
587 err_release_hwrinfobuf:
588 	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
589 
590 err_release_power_sync:
591 	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
592 
593 	return err;
594 }
595 
596 static void
597 pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
598 {
599 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
600 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
601 
602 	pvr_fw_trace_fini(pvr_dev);
603 	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
604 	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
605 	pvr_fw_object_destroy(fw_mem->fault_page_obj);
606 	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
607 	pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
608 
609 	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
610 	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
611 	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
612 	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
613 	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
614 }
615 
616 /**
617  * pvr_fw_process() - Process firmware image, allocate FW memory and create boot
618  *                    arguments
619  * @pvr_dev: Device pointer.
620  *
621  * Returns:
622  *  * 0 on success, or
623  *  * Any error returned by pvr_fw_object_create_and_map_offset(), or
624  *  * Any error returned by pvr_fw_object_create_and_map().
625  */
626 static int
627 pvr_fw_process(struct pvr_device *pvr_dev)
628 {
629 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
630 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
631 	const u8 *fw = pvr_dev->fw_dev.firmware->data;
632 	const struct pvr_fw_layout_entry *private_data;
633 	u8 *fw_code_ptr;
634 	u8 *fw_data_ptr;
635 	u8 *fw_core_code_ptr;
636 	u8 *fw_core_data_ptr;
637 	int err;
638 
639 	layout_get_sizes(pvr_dev);
640 
641 	private_data = pvr_fw_find_private_data(pvr_dev);
642 	if (!private_data)
643 		return -EINVAL;
644 
645 	/* Allocate and map memory for firmware sections. */
646 
647 	/*
648 	 * Code allocation must be at the start of the firmware heap, otherwise
649 	 * firmware processor will be unable to boot.
650 	 *
651 	 * This has the useful side-effect that for every other object in the
652 	 * driver, a firmware address of 0 is invalid.
653 	 */
654 	fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
655 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
656 							  NULL, NULL, &fw_mem->code_obj);
657 	if (IS_ERR(fw_code_ptr)) {
658 		drm_err(drm_dev, "Unable to allocate FW code memory\n");
659 		return PTR_ERR(fw_code_ptr);
660 	}
661 
662 	if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
663 		u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
664 
665 		fw_data_ptr =
666 			pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
667 							    fw_mem->data_alloc_size,
668 							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
669 							    NULL, NULL, &fw_mem->data_obj);
670 	} else {
671 		fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
672 							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
673 							   NULL, NULL, &fw_mem->data_obj);
674 	}
675 	if (IS_ERR(fw_data_ptr)) {
676 		drm_err(drm_dev, "Unable to allocate FW data memory\n");
677 		err = PTR_ERR(fw_data_ptr);
678 		goto err_free_fw_code_obj;
679 	}
680 
681 	/* Core code and data sections are optional. */
682 	if (fw_mem->core_code_alloc_size) {
683 		fw_core_code_ptr =
684 			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
685 						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
686 						     NULL, NULL, &fw_mem->core_code_obj);
687 		if (IS_ERR(fw_core_code_ptr)) {
688 			drm_err(drm_dev,
689 				"Unable to allocate FW core code memory\n");
690 			err = PTR_ERR(fw_core_code_ptr);
691 			goto err_free_fw_data_obj;
692 		}
693 	} else {
694 		fw_core_code_ptr = NULL;
695 	}
696 
697 	if (fw_mem->core_data_alloc_size) {
698 		fw_core_data_ptr =
699 			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
700 						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
701 						     NULL, NULL, &fw_mem->core_data_obj);
702 		if (IS_ERR(fw_core_data_ptr)) {
703 			drm_err(drm_dev,
704 				"Unable to allocate FW core data memory\n");
705 			err = PTR_ERR(fw_core_data_ptr);
706 			goto err_free_fw_core_code_obj;
707 		}
708 	} else {
709 		fw_core_data_ptr = NULL;
710 	}
711 
712 	fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
713 	fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
714 	if (fw_mem->core_code_alloc_size)
715 		fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
716 	if (fw_mem->core_data_alloc_size)
717 		fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
718 
719 	if (!fw_mem->code || !fw_mem->data ||
720 	    (!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
721 	    (!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
722 		err = -ENOMEM;
723 		goto err_free_kdata;
724 	}
725 
726 	err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
727 					       fw_mem->code, fw_mem->data, fw_mem->core_code,
728 					       fw_mem->core_data, fw_mem->core_code_alloc_size);
729 
730 	if (err)
731 		goto err_free_fw_core_data_obj;
732 
733 	memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
734 	memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
735 	if (fw_mem->core_code)
736 		memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
737 	if (fw_mem->core_data)
738 		memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
739 
740 	/* We're finished with the firmware section memory on the CPU, unmap. */
741 	if (fw_core_data_ptr)
742 		pvr_fw_object_vunmap(fw_mem->core_data_obj);
743 	if (fw_core_code_ptr)
744 		pvr_fw_object_vunmap(fw_mem->core_code_obj);
745 	pvr_fw_object_vunmap(fw_mem->data_obj);
746 	fw_data_ptr = NULL;
747 	pvr_fw_object_vunmap(fw_mem->code_obj);
748 	fw_code_ptr = NULL;
749 
750 	err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
751 	if (err)
752 		goto err_free_fw_core_data_obj;
753 
754 	return 0;
755 
756 err_free_kdata:
757 	kfree(fw_mem->core_data);
758 	kfree(fw_mem->core_code);
759 	kfree(fw_mem->data);
760 	kfree(fw_mem->code);
761 
762 err_free_fw_core_data_obj:
763 	if (fw_core_data_ptr)
764 		pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj);
765 
766 err_free_fw_core_code_obj:
767 	if (fw_core_code_ptr)
768 		pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj);
769 
770 err_free_fw_data_obj:
771 	if (fw_data_ptr)
772 		pvr_fw_object_vunmap(fw_mem->data_obj);
773 	pvr_fw_object_destroy(fw_mem->data_obj);
774 
775 err_free_fw_code_obj:
776 	if (fw_code_ptr)
777 		pvr_fw_object_vunmap(fw_mem->code_obj);
778 	pvr_fw_object_destroy(fw_mem->code_obj);
779 
780 	return err;
781 }
782 
783 static int
784 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
785 {
786 	u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
787 
788 	if (IS_ERR(dest_ptr))
789 		return PTR_ERR(dest_ptr);
790 
791 	memcpy(dest_ptr, src_ptr, size);
792 
793 	pvr_fw_object_vunmap(dest_obj);
794 
795 	return 0;
796 }
797 
798 static int
799 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
800 {
801 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
802 	int err;
803 
804 	err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
805 	if (err)
806 		return err;
807 
808 	err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
809 	if (err)
810 		return err;
811 
812 	if (fw_mem->core_code) {
813 		err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
814 				     fw_mem->core_code_alloc_size);
815 		if (err)
816 			return err;
817 	}
818 
819 	if (fw_mem->core_data) {
820 		err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
821 				     fw_mem->core_data_alloc_size);
822 		if (err)
823 			return err;
824 	}
825 
826 	return 0;
827 }
828 
829 static void
830 pvr_fw_cleanup(struct pvr_device *pvr_dev)
831 {
832 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
833 
834 	pvr_fw_fini_fwif_connection_ctl(pvr_dev);
835 	if (fw_mem->core_code_obj)
836 		pvr_fw_object_destroy(fw_mem->core_code_obj);
837 	if (fw_mem->core_data_obj)
838 		pvr_fw_object_destroy(fw_mem->core_data_obj);
839 	pvr_fw_object_destroy(fw_mem->code_obj);
840 	pvr_fw_object_destroy(fw_mem->data_obj);
841 }
842 
843 /**
844  * pvr_wait_for_fw_boot() - Wait for firmware to finish booting
845  * @pvr_dev: Target PowerVR device.
846  *
847  * Returns:
848  *  * 0 on success, or
849  *  * -%ETIMEDOUT if firmware fails to boot within timeout.
850  */
851 int
852 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
853 {
854 	ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
855 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
856 
857 	while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
858 		if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
859 			return 0;
860 	}
861 
862 	return -ETIMEDOUT;
863 }
864 
865 /*
866  * pvr_fw_heap_info_init() - Calculate size and masks for FW heap
867  * @pvr_dev: Target PowerVR device.
868  * @log2_size: Log2 of raw heap size.
869  * @reserved_size: Size of reserved area of heap, in bytes. May be zero.
870  */
871 void
872 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
873 {
874 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
875 
876 	fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
877 	fw_dev->fw_heap_info.log2_size = log2_size;
878 	fw_dev->fw_heap_info.reserved_size = reserved_size;
879 	fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
880 	fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
881 	fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
882 					     PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
883 	fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
884 				    (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
885 }
886 
887 /**
888  * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
889  * @pvr_dev: Target PowerVR device.
890  *
891  * This function must be called before querying device information.
892  *
893  * Returns:
894  *  * 0 on success, or
895  *  * -%EINVAL if firmware validation fails.
896  */
897 int
898 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
899 {
900 	int err;
901 
902 	err = pvr_fw_validate(pvr_dev);
903 	if (err)
904 		return err;
905 
906 	return pvr_fw_get_device_info(pvr_dev);
907 }
908 
909 /**
910  * pvr_fw_init() - Initialise and boot firmware
911  * @pvr_dev: Target PowerVR device
912  *
913  * On successful completion of the function the PowerVR device will be
914  * initialised and ready to use.
915  *
916  * Returns:
917  *  * 0 on success,
918  *  * -%EINVAL on invalid firmware image,
919  *  * -%ENOMEM on out of memory, or
920  *  * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
921  */
922 int
923 pvr_fw_init(struct pvr_device *pvr_dev)
924 {
925 	u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
926 	u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
927 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
928 	int err;
929 
930 	if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
931 		fw_dev->defs = &pvr_fw_defs_meta;
932 	else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS)
933 		fw_dev->defs = &pvr_fw_defs_mips;
934 	else
935 		return -EINVAL;
936 
937 	err = fw_dev->defs->init(pvr_dev);
938 	if (err)
939 		return err;
940 
941 	drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
942 	fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
943 	spin_lock_init(&fw_dev->fw_mm_lock);
944 
945 	INIT_LIST_HEAD(&fw_dev->fw_objs.list);
946 	err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
947 	if (err)
948 		goto err_mm_takedown;
949 
950 	err = pvr_fw_process(pvr_dev);
951 	if (err)
952 		goto err_mm_takedown;
953 
954 	/* Initialise KCCB and FWCCB. */
955 	err = pvr_kccb_init(pvr_dev);
956 	if (err)
957 		goto err_fw_cleanup;
958 
959 	err = pvr_fwccb_init(pvr_dev);
960 	if (err)
961 		goto err_kccb_fini;
962 
963 	/* Allocate memory for KCCB return slots. */
964 	pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
965 							 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
966 							 NULL, NULL, &pvr_dev->kccb.rtn_obj);
967 	if (IS_ERR(pvr_dev->kccb.rtn)) {
968 		err = PTR_ERR(pvr_dev->kccb.rtn);
969 		goto err_fwccb_fini;
970 	}
971 
972 	err = pvr_fw_create_structures(pvr_dev);
973 	if (err)
974 		goto err_kccb_rtn_release;
975 
976 	err = pvr_fw_start(pvr_dev);
977 	if (err)
978 		goto err_destroy_structures;
979 
980 	err = pvr_wait_for_fw_boot(pvr_dev);
981 	if (err) {
982 		drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
983 		goto err_fw_stop;
984 	}
985 
986 	fw_dev->booted = true;
987 
988 	return 0;
989 
990 err_fw_stop:
991 	pvr_fw_stop(pvr_dev);
992 
993 err_destroy_structures:
994 	pvr_fw_destroy_structures(pvr_dev);
995 
996 err_kccb_rtn_release:
997 	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
998 
999 err_fwccb_fini:
1000 	pvr_ccb_fini(&pvr_dev->fwccb);
1001 
1002 err_kccb_fini:
1003 	pvr_kccb_fini(pvr_dev);
1004 
1005 err_fw_cleanup:
1006 	pvr_fw_cleanup(pvr_dev);
1007 
1008 err_mm_takedown:
1009 	drm_mm_takedown(&fw_dev->fw_mm);
1010 
1011 	if (fw_dev->defs->fini)
1012 		fw_dev->defs->fini(pvr_dev);
1013 
1014 	return err;
1015 }
1016 
1017 /**
1018  * pvr_fw_fini() - Shutdown firmware processor and free associated memory
1019  * @pvr_dev: Target PowerVR device
1020  */
1021 void
1022 pvr_fw_fini(struct pvr_device *pvr_dev)
1023 {
1024 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1025 
1026 	fw_dev->booted = false;
1027 
1028 	pvr_fw_destroy_structures(pvr_dev);
1029 	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1030 
1031 	/*
1032 	 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
1033 	 * been unregistered at this point so no new work should be being submitted.
1034 	 */
1035 	pvr_ccb_fini(&pvr_dev->fwccb);
1036 	pvr_kccb_fini(pvr_dev);
1037 	pvr_fw_cleanup(pvr_dev);
1038 
1039 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1040 	WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
1041 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1042 
1043 	drm_mm_takedown(&fw_dev->fw_mm);
1044 
1045 	if (fw_dev->defs->fini)
1046 		fw_dev->defs->fini(pvr_dev);
1047 }
1048 
1049 /**
1050  * pvr_fw_mts_schedule() - Schedule work via an MTS kick
1051  * @pvr_dev: Target PowerVR device
1052  * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
1053  */
1054 void
1055 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
1056 {
1057 	/* Ensure memory is flushed before kicking MTS. */
1058 	wmb();
1059 
1060 	pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
1061 
1062 	/* Ensure the MTS kick goes through before continuing. */
1063 	mb();
1064 }
1065 
1066 /**
1067  * pvr_fw_structure_cleanup() - Send FW cleanup request for an object
1068  * @pvr_dev: Target PowerVR device.
1069  * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
1070  * @fw_obj: Pointer to FW object containing object to cleanup.
1071  * @offset: Offset within FW object of object to cleanup.
1072  *
1073  * Returns:
1074  *  * 0 on success,
1075  *  * -EBUSY if object is busy,
1076  *  * -ETIMEDOUT on timeout, or
1077  *  * -EIO if device is lost.
1078  */
1079 int
1080 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
1081 			 u32 offset)
1082 {
1083 	struct rogue_fwif_kccb_cmd cmd;
1084 	int slot_nr;
1085 	int idx;
1086 	int err;
1087 	u32 rtn;
1088 
1089 	struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
1090 
1091 	down_read(&pvr_dev->reset_sem);
1092 
1093 	if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
1094 		err = -EIO;
1095 		goto err_up_read;
1096 	}
1097 
1098 	cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
1099 	cmd.kccb_flags = 0;
1100 	cleanup_req->cleanup_type = type;
1101 
1102 	switch (type) {
1103 	case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
1104 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1105 						 &cleanup_req->cleanup_data.context_fw_addr);
1106 		break;
1107 	case ROGUE_FWIF_CLEANUP_HWRTDATA:
1108 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1109 						 &cleanup_req->cleanup_data.hwrt_data_fw_addr);
1110 		break;
1111 	case ROGUE_FWIF_CLEANUP_FREELIST:
1112 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1113 						 &cleanup_req->cleanup_data.freelist_fw_addr);
1114 		break;
1115 	default:
1116 		err = -EINVAL;
1117 		goto err_drm_dev_exit;
1118 	}
1119 
1120 	err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
1121 	if (err)
1122 		goto err_drm_dev_exit;
1123 
1124 	err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
1125 	if (err)
1126 		goto err_drm_dev_exit;
1127 
1128 	if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
1129 		err = -EBUSY;
1130 
1131 err_drm_dev_exit:
1132 	drm_dev_exit(idx);
1133 
1134 err_up_read:
1135 	up_read(&pvr_dev->reset_sem);
1136 
1137 	return err;
1138 }
1139 
1140 /**
1141  * pvr_fw_object_fw_map() - Map a FW object in firmware address space
1142  * @pvr_dev: Device pointer.
1143  * @fw_obj: FW object to map.
1144  * @dev_addr: Desired address in device space, if a specific address is
1145  *            required. 0 otherwise.
1146  *
1147  * Returns:
1148  *  * 0 on success, or
1149  *  * -%EINVAL if @fw_obj is already mapped but has no references, or
1150  *  * Any error returned by DRM.
1151  */
1152 static int
1153 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
1154 {
1155 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1156 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1157 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1158 
1159 	int err;
1160 
1161 	spin_lock(&fw_dev->fw_mm_lock);
1162 
1163 	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1164 		err = -EINVAL;
1165 		goto err_unlock;
1166 	}
1167 
1168 	if (!dev_addr) {
1169 		/*
1170 		 * Allocate from the main heap only (firmware heap minus
1171 		 * config space).
1172 		 */
1173 		err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
1174 						  gem_obj->size, 0, 0,
1175 						  fw_dev->fw_heap_info.gpu_addr,
1176 						  fw_dev->fw_heap_info.gpu_addr +
1177 						  fw_dev->fw_heap_info.size, 0);
1178 		if (err)
1179 			goto err_unlock;
1180 	} else {
1181 		fw_obj->fw_mm_node.start = dev_addr;
1182 		fw_obj->fw_mm_node.size = gem_obj->size;
1183 		err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
1184 		if (err)
1185 			goto err_unlock;
1186 	}
1187 
1188 	spin_unlock(&fw_dev->fw_mm_lock);
1189 
1190 	/* Map object on GPU. */
1191 	err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
1192 	if (err)
1193 		goto err_remove_node;
1194 
1195 	fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
1196 
1197 	return 0;
1198 
1199 err_remove_node:
1200 	spin_lock(&fw_dev->fw_mm_lock);
1201 	drm_mm_remove_node(&fw_obj->fw_mm_node);
1202 
1203 err_unlock:
1204 	spin_unlock(&fw_dev->fw_mm_lock);
1205 
1206 	return err;
1207 }
1208 
1209 /**
1210  * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
1211  * @fw_obj: FW object to unmap.
1212  *
1213  * Returns:
1214  *  * 0 on success, or
1215  *  * -%EINVAL if object is not currently mapped.
1216  */
1217 static int
1218 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
1219 {
1220 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1221 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1222 	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1223 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1224 
1225 	fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
1226 
1227 	spin_lock(&fw_dev->fw_mm_lock);
1228 
1229 	if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1230 		spin_unlock(&fw_dev->fw_mm_lock);
1231 		return -EINVAL;
1232 	}
1233 
1234 	drm_mm_remove_node(&fw_obj->fw_mm_node);
1235 
1236 	spin_unlock(&fw_dev->fw_mm_lock);
1237 
1238 	return 0;
1239 }
1240 
1241 static void *
1242 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
1243 				    u64 flags, u64 dev_addr,
1244 				    void (*init)(void *cpu_ptr, void *priv),
1245 				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1246 {
1247 	struct pvr_fw_object *fw_obj;
1248 	void *cpu_ptr;
1249 	int err;
1250 
1251 	/* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
1252 	flags |= DRM_PVR_BO_PM_FW_PROTECT;
1253 
1254 	fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
1255 	if (!fw_obj)
1256 		return ERR_PTR(-ENOMEM);
1257 
1258 	INIT_LIST_HEAD(&fw_obj->node);
1259 	fw_obj->init = init;
1260 	fw_obj->init_priv = init_priv;
1261 
1262 	fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
1263 	if (IS_ERR(fw_obj->gem)) {
1264 		err = PTR_ERR(fw_obj->gem);
1265 		fw_obj->gem = NULL;
1266 		goto err_put_object;
1267 	}
1268 
1269 	err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
1270 	if (err)
1271 		goto err_put_object;
1272 
1273 	cpu_ptr = pvr_fw_object_vmap(fw_obj);
1274 	if (IS_ERR(cpu_ptr)) {
1275 		err = PTR_ERR(cpu_ptr);
1276 		goto err_put_object;
1277 	}
1278 
1279 	*fw_obj_out = fw_obj;
1280 
1281 	if (fw_obj->init)
1282 		fw_obj->init(cpu_ptr, fw_obj->init_priv);
1283 
1284 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1285 	list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
1286 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1287 
1288 	return cpu_ptr;
1289 
1290 err_put_object:
1291 	pvr_fw_object_destroy(fw_obj);
1292 
1293 	return ERR_PTR(err);
1294 }
1295 
1296 /**
1297  * pvr_fw_object_create() - Create a FW object and map to firmware
1298  * @pvr_dev: PowerVR device pointer.
1299  * @size: Size of object, in bytes.
1300  * @flags: Options which affect both this operation and future mapping
1301  * operations performed on the returned object. Must be a combination of
1302  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1303  * @init: Initialisation callback.
1304  * @init_priv: Private pointer to pass to initialisation callback.
1305  * @fw_obj_out: Pointer to location to store created object pointer.
1306  *
1307  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1308  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1309  * set.
1310  *
1311  * Returns:
1312  *  * 0 on success, or
1313  *  * Any error returned by pvr_fw_object_create_common().
1314  */
1315 int
1316 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
1317 		     void (*init)(void *cpu_ptr, void *priv), void *init_priv,
1318 		     struct pvr_fw_object **fw_obj_out)
1319 {
1320 	void *cpu_ptr;
1321 
1322 	cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1323 						      fw_obj_out);
1324 	if (IS_ERR(cpu_ptr))
1325 		return PTR_ERR(cpu_ptr);
1326 
1327 	pvr_fw_object_vunmap(*fw_obj_out);
1328 
1329 	return 0;
1330 }
1331 
1332 /**
1333  * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
1334  * @pvr_dev: PowerVR device pointer.
1335  * @size: Size of object, in bytes.
1336  * @flags: Options which affect both this operation and future mapping
1337  * operations performed on the returned object. Must be a combination of
1338  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1339  * @init: Initialisation callback.
1340  * @init_priv: Private pointer to pass to initialisation callback.
1341  * @fw_obj_out: Pointer to location to store created object pointer.
1342  *
1343  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1344  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1345  * set.
1346  *
1347  * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1348  * mapping.
1349  *
1350  * Returns:
1351  *  * Pointer to CPU mapping of newly created object, or
1352  *  * Any error returned by pvr_fw_object_create(), or
1353  *  * Any error returned by pvr_fw_object_vmap().
1354  */
1355 void *
1356 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
1357 			     void (*init)(void *cpu_ptr, void *priv),
1358 			     void *init_priv, struct pvr_fw_object **fw_obj_out)
1359 {
1360 	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1361 						   fw_obj_out);
1362 }
1363 
1364 /**
1365  * pvr_fw_object_create_and_map_offset() - Create a FW object and map to
1366  * firmware at the provided offset and to the CPU.
1367  * @pvr_dev: PowerVR device pointer.
1368  * @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
1369  * @size: Size of object, in bytes.
1370  * @flags: Options which affect both this operation and future mapping
1371  * operations performed on the returned object. Must be a combination of
1372  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1373  * @init: Initialisation callback.
1374  * @init_priv: Private pointer to pass to initialisation callback.
1375  * @fw_obj_out: Pointer to location to store created object pointer.
1376  *
1377  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1378  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1379  * set.
1380  *
1381  * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1382  * mapping.
1383  *
1384  * Returns:
1385  *  * Pointer to CPU mapping of newly created object, or
1386  *  * Any error returned by pvr_fw_object_create(), or
1387  *  * Any error returned by pvr_fw_object_vmap().
1388  */
1389 void *
1390 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
1391 				    u32 dev_offset, size_t size, u64 flags,
1392 				    void (*init)(void *cpu_ptr, void *priv),
1393 				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1394 {
1395 	u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
1396 
1397 	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
1398 						   fw_obj_out);
1399 }
1400 
1401 /**
1402  * pvr_fw_object_destroy() - Destroy a pvr_fw_object
1403  * @fw_obj: Pointer to object to destroy.
1404  */
1405 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
1406 {
1407 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1408 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1409 	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1410 
1411 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1412 	list_del(&fw_obj->node);
1413 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1414 
1415 	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1416 		/* If we can't unmap, leak the memory. */
1417 		if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
1418 			return;
1419 	}
1420 
1421 	if (fw_obj->gem)
1422 		pvr_gem_object_put(fw_obj->gem);
1423 
1424 	kfree(fw_obj);
1425 }
1426 
1427 /**
1428  * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
1429  * given offset.
1430  * @fw_obj: Pointer to object.
1431  * @offset: Desired offset from start of object.
1432  * @fw_addr_out: Location to store address to.
1433  */
1434 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
1435 {
1436 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1437 	struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
1438 
1439 	*fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
1440 }
1441 
1442 /*
1443  * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
1444  *                       structures
1445  * @pvr_dev: Device pointer
1446  *
1447  * If this function returns an error then the caller must regard the device as lost.
1448  *
1449  * Returns:
1450  *  * 0 on success, or
1451  *  * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
1452  */
1453 int
1454 pvr_fw_hard_reset(struct pvr_device *pvr_dev)
1455 {
1456 	struct list_head *pos;
1457 	int err;
1458 
1459 	/* Reset all FW objects */
1460 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1461 
1462 	list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
1463 		struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
1464 		void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
1465 
1466 		WARN_ON(IS_ERR(cpu_ptr));
1467 
1468 		if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
1469 			memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
1470 
1471 			if (fw_obj->init)
1472 				fw_obj->init(cpu_ptr, fw_obj->init_priv);
1473 		}
1474 
1475 		pvr_fw_object_vunmap(fw_obj);
1476 	}
1477 
1478 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1479 
1480 	err = pvr_fw_reinit_code_data(pvr_dev);
1481 	if (err)
1482 		return err;
1483 
1484 	return 0;
1485 }
1486