1 // SPDX-License-Identifier: GPL-2.0-only OR MIT 2 /* Copyright (c) 2023 Imagination Technologies Ltd. */ 3 4 #include "pvr_ccb.h" 5 #include "pvr_device.h" 6 #include "pvr_device_info.h" 7 #include "pvr_fw.h" 8 #include "pvr_fw_info.h" 9 #include "pvr_fw_startstop.h" 10 #include "pvr_fw_trace.h" 11 #include "pvr_gem.h" 12 #include "pvr_power.h" 13 #include "pvr_rogue_fwif_dev_info.h" 14 #include "pvr_rogue_heap_config.h" 15 #include "pvr_vm.h" 16 17 #include <drm/drm_drv.h> 18 #include <drm/drm_managed.h> 19 #include <drm/drm_mm.h> 20 #include <linux/clk.h> 21 #include <linux/firmware.h> 22 #include <linux/math.h> 23 #include <linux/minmax.h> 24 #include <linux/sizes.h> 25 26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1 27 28 #define FW_BOOT_TIMEOUT_USEC 5000000 29 30 /* Config heap occupies top 192k of the firmware heap. */ 31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K 32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 33 34 /* Main firmware allocations should come from the remainder of the heap. */ 35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE 36 37 /* Offsets from start of configuration area of FW heap. */ 38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0 39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \ 40 (PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \ 42 (PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 43 44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K 45 46 #define PVR_SYNC_OBJ_SIZE sizeof(u32) 47 48 const struct pvr_fw_layout_entry * 49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id) 50 { 51 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 52 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 53 54 for (u32 entry = 0; entry < num_layout_entries; entry++) { 55 if (layout_entries[entry].id == id) 56 return &layout_entries[entry]; 57 } 58 59 return NULL; 60 } 61 62 static const struct pvr_fw_layout_entry * 63 pvr_fw_find_private_data(struct pvr_device *pvr_dev) 64 { 65 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 66 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 67 68 for (u32 entry = 0; entry < num_layout_entries; entry++) { 69 if (layout_entries[entry].id == META_PRIVATE_DATA || 70 layout_entries[entry].id == MIPS_PRIVATE_DATA || 71 layout_entries[entry].id == RISCV_PRIVATE_DATA) 72 return &layout_entries[entry]; 73 } 74 75 return NULL; 76 } 77 78 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64) 79 80 /** 81 * pvr_fw_validate() - Parse firmware header and check compatibility 82 * @pvr_dev: Device pointer. 83 * 84 * Returns: 85 * * 0 on success, or 86 * * -EINVAL if firmware is incompatible. 87 */ 88 static int 89 pvr_fw_validate(struct pvr_device *pvr_dev) 90 { 91 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 92 const struct firmware *firmware = pvr_dev->fw_dev.firmware; 93 const struct pvr_fw_layout_entry *layout_entries; 94 const struct pvr_fw_info_header *header; 95 const u8 *fw = firmware->data; 96 u32 fw_offset = firmware->size - SZ_4K; 97 u32 layout_table_size; 98 99 if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE)) 100 return -EINVAL; 101 102 header = (const struct pvr_fw_info_header *)&fw[fw_offset]; 103 104 if (header->info_version != PVR_FW_INFO_VERSION) { 105 drm_err(drm_dev, "Unsupported fw info version %u\n", 106 header->info_version); 107 return -EINVAL; 108 } 109 110 if (header->header_len != sizeof(struct pvr_fw_info_header) || 111 header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) || 112 header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) { 113 drm_err(drm_dev, "FW info format mismatch\n"); 114 return -EINVAL; 115 } 116 117 if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) || 118 header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION || 119 header->fw_version_major == 0) { 120 drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n", 121 header->fw_version_major, header->fw_version_minor, 122 header->fw_version_build, 123 (header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : ""); 124 return -EINVAL; 125 } 126 127 if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) { 128 struct pvr_gpu_id fw_gpu_id; 129 130 packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id); 131 drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n", 132 fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c, 133 pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c); 134 return -EINVAL; 135 } 136 137 fw_offset += header->header_len; 138 layout_table_size = 139 header->layout_entry_size * header->layout_entry_num; 140 if ((fw_offset + layout_table_size) > firmware->size) 141 return -EINVAL; 142 143 layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset]; 144 for (u32 entry = 0; entry < header->layout_entry_num; entry++) { 145 u32 start_addr = layout_entries[entry].base_addr; 146 u32 end_addr = start_addr + layout_entries[entry].alloc_size; 147 148 if (start_addr >= end_addr) 149 return -EINVAL; 150 } 151 152 fw_offset = (firmware->size - SZ_4K) - header->device_info_size; 153 154 drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major, 155 header->fw_version_minor, header->fw_version_build); 156 157 pvr_dev->fw_version.major = header->fw_version_major; 158 pvr_dev->fw_version.minor = header->fw_version_minor; 159 160 pvr_dev->fw_dev.header = header; 161 pvr_dev->fw_dev.layout_entries = layout_entries; 162 163 return 0; 164 } 165 166 static int 167 pvr_fw_get_device_info(struct pvr_device *pvr_dev) 168 { 169 const struct firmware *firmware = pvr_dev->fw_dev.firmware; 170 struct pvr_fw_device_info_header *header; 171 const u8 *fw = firmware->data; 172 const u64 *dev_info; 173 u32 fw_offset; 174 175 fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size; 176 177 header = (struct pvr_fw_device_info_header *)&fw[fw_offset]; 178 dev_info = (u64 *)(header + 1); 179 180 pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size); 181 dev_info += header->brn_mask_size; 182 183 pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size); 184 dev_info += header->ern_mask_size; 185 186 return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size, 187 header->feature_param_size); 188 } 189 190 static void 191 layout_get_sizes(struct pvr_device *pvr_dev) 192 { 193 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 194 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 195 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 196 197 fw_mem->code_alloc_size = 0; 198 fw_mem->data_alloc_size = 0; 199 fw_mem->core_code_alloc_size = 0; 200 fw_mem->core_data_alloc_size = 0; 201 202 /* Extract section sizes from FW layout table. */ 203 for (u32 entry = 0; entry < num_layout_entries; entry++) { 204 switch (layout_entries[entry].type) { 205 case FW_CODE: 206 fw_mem->code_alloc_size += layout_entries[entry].alloc_size; 207 break; 208 case FW_DATA: 209 fw_mem->data_alloc_size += layout_entries[entry].alloc_size; 210 break; 211 case FW_COREMEM_CODE: 212 fw_mem->core_code_alloc_size += 213 layout_entries[entry].alloc_size; 214 break; 215 case FW_COREMEM_DATA: 216 fw_mem->core_data_alloc_size += 217 layout_entries[entry].alloc_size; 218 break; 219 case NONE: 220 break; 221 } 222 } 223 } 224 225 int 226 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr, 227 void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr, 228 void **host_addr_out) 229 { 230 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 231 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 232 u32 end_addr = addr + size; 233 234 /* Ensure requested range is not zero, and size is not causing addr to overflow. */ 235 if (end_addr <= addr) 236 return -EINVAL; 237 238 for (int entry = 0; entry < num_layout_entries; entry++) { 239 u32 entry_start_addr = layout_entries[entry].base_addr; 240 u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size; 241 242 if (addr >= entry_start_addr && addr < entry_end_addr && 243 end_addr > entry_start_addr && end_addr <= entry_end_addr) { 244 switch (layout_entries[entry].type) { 245 case FW_CODE: 246 *host_addr_out = fw_code_ptr; 247 break; 248 249 case FW_DATA: 250 *host_addr_out = fw_data_ptr; 251 break; 252 253 case FW_COREMEM_CODE: 254 *host_addr_out = fw_core_code_ptr; 255 break; 256 257 case FW_COREMEM_DATA: 258 *host_addr_out = fw_core_data_ptr; 259 break; 260 261 default: 262 return -EINVAL; 263 } 264 /* Direct Mem write to mapped memory */ 265 addr -= layout_entries[entry].base_addr; 266 addr += layout_entries[entry].alloc_offset; 267 268 /* 269 * Add offset to pointer to FW allocation only if that 270 * allocation is available 271 */ 272 *(u8 **)host_addr_out += addr; 273 return 0; 274 } 275 } 276 277 return -EINVAL; 278 } 279 280 static int 281 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev) 282 { 283 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 284 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 285 286 fw_dev->fwif_connection_ctl = 287 pvr_fw_object_create_and_map_offset(pvr_dev, 288 fw_dev->fw_heap_info.config_offset + 289 PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET, 290 sizeof(*fw_dev->fwif_connection_ctl), 291 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 292 NULL, NULL, 293 &fw_dev->mem.fwif_connection_ctl_obj); 294 if (IS_ERR(fw_dev->fwif_connection_ctl)) { 295 drm_err(drm_dev, 296 "Unable to allocate FWIF connection control memory\n"); 297 return PTR_ERR(fw_dev->fwif_connection_ctl); 298 } 299 300 return 0; 301 } 302 303 static void 304 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev) 305 { 306 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 307 308 pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj); 309 } 310 311 static void 312 fw_osinit_init(void *cpu_ptr, void *priv) 313 { 314 struct rogue_fwif_osinit *fwif_osinit = cpu_ptr; 315 struct pvr_device *pvr_dev = priv; 316 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 317 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 318 319 fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr; 320 fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr; 321 pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj, 322 &fwif_osinit->kernel_ccb_rtn_slots_fw_addr); 323 324 fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr; 325 fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr; 326 327 fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0; 328 fwif_osinit->work_est_firmware_ccb_fw_addr = 0; 329 330 pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj, 331 &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr); 332 pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr); 333 334 fwif_osinit->hwr_debug_dump_limit = 0; 335 336 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc); 337 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc); 338 } 339 340 static void 341 fw_osdata_init(void *cpu_ptr, void *priv) 342 { 343 struct rogue_fwif_osdata *fwif_osdata = cpu_ptr; 344 struct pvr_device *pvr_dev = priv; 345 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 346 347 pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr); 348 } 349 350 static void 351 fw_fault_page_init(void *cpu_ptr, void *priv) 352 { 353 u32 *fault_page = cpu_ptr; 354 355 for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++) 356 fault_page[i] = 0xdeadbee0; 357 } 358 359 static void 360 fw_sysinit_init(void *cpu_ptr, void *priv) 361 { 362 struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr; 363 struct pvr_device *pvr_dev = priv; 364 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 365 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 366 dma_addr_t fault_dma_addr = 0; 367 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); 368 369 WARN_ON(!clock_speed_hz); 370 371 WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr)); 372 fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr; 373 374 fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE; 375 fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE; 376 377 pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr); 378 pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj, 379 &fwif_sysinit->trace_buf_ctl_fw_addr); 380 pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr); 381 pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj, 382 &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr); 383 if (fw_mem->core_data_obj) { 384 pvr_fw_object_get_fw_addr(fw_mem->core_data_obj, 385 &fwif_sysinit->coremem_data_store.fw_addr); 386 } 387 388 /* Currently unsupported. */ 389 fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0; 390 fwif_sysinit->counter_dump_ctl.size_in_dwords = 0; 391 392 /* Skip alignment checks. */ 393 fwif_sysinit->align_checks = 0; 394 395 fwif_sysinit->filter_flags = 0; 396 fwif_sysinit->hw_perf_filter = 0; 397 fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE; 398 fwif_sysinit->initial_core_clock_speed = clock_speed_hz; 399 fwif_sysinit->active_pm_latency_ms = 0; 400 fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF; 401 fwif_sysinit->firmware_started = false; 402 fwif_sysinit->marker_val = 1; 403 404 memset(&fwif_sysinit->bvnc_km_feature_flags, 0, 405 sizeof(fwif_sysinit->bvnc_km_feature_flags)); 406 } 407 408 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4 409 410 static void 411 fw_sysdata_init(void *cpu_ptr, void *priv) 412 { 413 struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr; 414 struct pvr_device *pvr_dev = priv; 415 u32 slc_size_in_kilobytes = 0; 416 u32 config_flags = 0; 417 418 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes)); 419 420 if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB) 421 config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP; 422 423 fwif_sysdata->config_flags = config_flags; 424 } 425 426 static void 427 fw_runtime_cfg_init(void *cpu_ptr, void *priv) 428 { 429 struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr; 430 struct pvr_device *pvr_dev = priv; 431 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); 432 433 WARN_ON(!clock_speed_hz); 434 435 runtime_cfg->core_clock_speed = clock_speed_hz; 436 runtime_cfg->active_pm_latency_ms = 0; 437 runtime_cfg->active_pm_latency_persistant = true; 438 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters, 439 &runtime_cfg->default_dusts_num_init) != 0); 440 } 441 442 static void 443 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv) 444 { 445 struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr; 446 447 gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE; 448 } 449 450 static int 451 pvr_fw_create_structures(struct pvr_device *pvr_dev) 452 { 453 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 454 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 455 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 456 int err; 457 458 fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync), 459 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 460 NULL, NULL, &fw_mem->power_sync_obj); 461 if (IS_ERR(fw_dev->power_sync)) { 462 drm_err(drm_dev, "Unable to allocate FW power_sync structure\n"); 463 return PTR_ERR(fw_dev->power_sync); 464 } 465 466 fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf), 467 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 468 NULL, NULL, &fw_mem->hwrinfobuf_obj); 469 if (IS_ERR(fw_dev->hwrinfobuf)) { 470 drm_err(drm_dev, 471 "Unable to allocate FW hwrinfobuf structure\n"); 472 err = PTR_ERR(fw_dev->hwrinfobuf); 473 goto err_release_power_sync; 474 } 475 476 err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE, 477 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 478 NULL, NULL, &fw_mem->mmucache_sync_obj); 479 if (err) { 480 drm_err(drm_dev, 481 "Unable to allocate MMU cache sync object\n"); 482 goto err_release_hwrinfobuf; 483 } 484 485 fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev, 486 sizeof(*fw_dev->fwif_sysdata), 487 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 488 fw_sysdata_init, pvr_dev, 489 &fw_mem->sysdata_obj); 490 if (IS_ERR(fw_dev->fwif_sysdata)) { 491 drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n"); 492 err = PTR_ERR(fw_dev->fwif_sysdata); 493 goto err_release_mmucache_sync_obj; 494 } 495 496 err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE, 497 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 498 fw_fault_page_init, NULL, &fw_mem->fault_page_obj); 499 if (err) { 500 drm_err(drm_dev, "Unable to allocate FW fault page\n"); 501 goto err_release_sysdata; 502 } 503 504 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb), 505 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 506 fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj); 507 if (err) { 508 drm_err(drm_dev, "Unable to allocate GPU util FWCB\n"); 509 goto err_release_fault_page; 510 } 511 512 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg), 513 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 514 fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj); 515 if (err) { 516 drm_err(drm_dev, "Unable to allocate FW runtime config\n"); 517 goto err_release_gpu_util_fwcb; 518 } 519 520 err = pvr_fw_trace_init(pvr_dev); 521 if (err) 522 goto err_release_runtime_cfg; 523 524 fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev, 525 sizeof(*fw_dev->fwif_osdata), 526 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 527 fw_osdata_init, pvr_dev, 528 &fw_mem->osdata_obj); 529 if (IS_ERR(fw_dev->fwif_osdata)) { 530 drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n"); 531 err = PTR_ERR(fw_dev->fwif_osdata); 532 goto err_fw_trace_fini; 533 } 534 535 fw_dev->fwif_osinit = 536 pvr_fw_object_create_and_map_offset(pvr_dev, 537 fw_dev->fw_heap_info.config_offset + 538 PVR_ROGUE_FWIF_OSINIT_OFFSET, 539 sizeof(*fw_dev->fwif_osinit), 540 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 541 fw_osinit_init, pvr_dev, &fw_mem->osinit_obj); 542 if (IS_ERR(fw_dev->fwif_osinit)) { 543 drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n"); 544 err = PTR_ERR(fw_dev->fwif_osinit); 545 goto err_release_osdata; 546 } 547 548 fw_dev->fwif_sysinit = 549 pvr_fw_object_create_and_map_offset(pvr_dev, 550 fw_dev->fw_heap_info.config_offset + 551 PVR_ROGUE_FWIF_SYSINIT_OFFSET, 552 sizeof(*fw_dev->fwif_sysinit), 553 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 554 fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj); 555 if (IS_ERR(fw_dev->fwif_sysinit)) { 556 drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n"); 557 err = PTR_ERR(fw_dev->fwif_sysinit); 558 goto err_release_osinit; 559 } 560 561 return 0; 562 563 err_release_osinit: 564 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); 565 566 err_release_osdata: 567 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); 568 569 err_fw_trace_fini: 570 pvr_fw_trace_fini(pvr_dev); 571 572 err_release_runtime_cfg: 573 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); 574 575 err_release_gpu_util_fwcb: 576 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); 577 578 err_release_fault_page: 579 pvr_fw_object_destroy(fw_mem->fault_page_obj); 580 581 err_release_sysdata: 582 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); 583 584 err_release_mmucache_sync_obj: 585 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); 586 587 err_release_hwrinfobuf: 588 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); 589 590 err_release_power_sync: 591 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); 592 593 return err; 594 } 595 596 static void 597 pvr_fw_destroy_structures(struct pvr_device *pvr_dev) 598 { 599 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 600 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 601 602 pvr_fw_trace_fini(pvr_dev); 603 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); 604 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); 605 pvr_fw_object_destroy(fw_mem->fault_page_obj); 606 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); 607 pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj); 608 609 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); 610 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); 611 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); 612 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); 613 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); 614 } 615 616 /** 617 * pvr_fw_process() - Process firmware image, allocate FW memory and create boot 618 * arguments 619 * @pvr_dev: Device pointer. 620 * 621 * Returns: 622 * * 0 on success, or 623 * * Any error returned by pvr_fw_object_create_and_map_offset(), or 624 * * Any error returned by pvr_fw_object_create_and_map(). 625 */ 626 static int 627 pvr_fw_process(struct pvr_device *pvr_dev) 628 { 629 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 630 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 631 const u8 *fw = pvr_dev->fw_dev.firmware->data; 632 const struct pvr_fw_layout_entry *private_data; 633 u8 *fw_code_ptr; 634 u8 *fw_data_ptr; 635 u8 *fw_core_code_ptr; 636 u8 *fw_core_data_ptr; 637 int err; 638 639 layout_get_sizes(pvr_dev); 640 641 private_data = pvr_fw_find_private_data(pvr_dev); 642 if (!private_data) 643 return -EINVAL; 644 645 /* Allocate and map memory for firmware sections. */ 646 647 /* 648 * Code allocation must be at the start of the firmware heap, otherwise 649 * firmware processor will be unable to boot. 650 * 651 * This has the useful side-effect that for every other object in the 652 * driver, a firmware address of 0 is invalid. 653 */ 654 fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size, 655 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 656 NULL, NULL, &fw_mem->code_obj); 657 if (IS_ERR(fw_code_ptr)) { 658 drm_err(drm_dev, "Unable to allocate FW code memory\n"); 659 return PTR_ERR(fw_code_ptr); 660 } 661 662 if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) { 663 u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask; 664 665 fw_data_ptr = 666 pvr_fw_object_create_and_map_offset(pvr_dev, base_addr, 667 fw_mem->data_alloc_size, 668 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 669 NULL, NULL, &fw_mem->data_obj); 670 } else { 671 fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size, 672 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 673 NULL, NULL, &fw_mem->data_obj); 674 } 675 if (IS_ERR(fw_data_ptr)) { 676 drm_err(drm_dev, "Unable to allocate FW data memory\n"); 677 err = PTR_ERR(fw_data_ptr); 678 goto err_free_fw_code_obj; 679 } 680 681 /* Core code and data sections are optional. */ 682 if (fw_mem->core_code_alloc_size) { 683 fw_core_code_ptr = 684 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size, 685 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 686 NULL, NULL, &fw_mem->core_code_obj); 687 if (IS_ERR(fw_core_code_ptr)) { 688 drm_err(drm_dev, 689 "Unable to allocate FW core code memory\n"); 690 err = PTR_ERR(fw_core_code_ptr); 691 goto err_free_fw_data_obj; 692 } 693 } else { 694 fw_core_code_ptr = NULL; 695 } 696 697 if (fw_mem->core_data_alloc_size) { 698 fw_core_data_ptr = 699 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size, 700 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 701 NULL, NULL, &fw_mem->core_data_obj); 702 if (IS_ERR(fw_core_data_ptr)) { 703 drm_err(drm_dev, 704 "Unable to allocate FW core data memory\n"); 705 err = PTR_ERR(fw_core_data_ptr); 706 goto err_free_fw_core_code_obj; 707 } 708 } else { 709 fw_core_data_ptr = NULL; 710 } 711 712 fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL); 713 fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL); 714 if (fw_mem->core_code_alloc_size) 715 fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL); 716 if (fw_mem->core_data_alloc_size) 717 fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL); 718 719 if (!fw_mem->code || !fw_mem->data || 720 (!fw_mem->core_code && fw_mem->core_code_alloc_size) || 721 (!fw_mem->core_data && fw_mem->core_data_alloc_size)) { 722 err = -ENOMEM; 723 goto err_free_kdata; 724 } 725 726 err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw, 727 fw_mem->code, fw_mem->data, fw_mem->core_code, 728 fw_mem->core_data, fw_mem->core_code_alloc_size); 729 730 if (err) 731 goto err_free_fw_core_data_obj; 732 733 memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size); 734 memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size); 735 if (fw_mem->core_code) 736 memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size); 737 if (fw_mem->core_data) 738 memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size); 739 740 /* We're finished with the firmware section memory on the CPU, unmap. */ 741 if (fw_core_data_ptr) 742 pvr_fw_object_vunmap(fw_mem->core_data_obj); 743 if (fw_core_code_ptr) 744 pvr_fw_object_vunmap(fw_mem->core_code_obj); 745 pvr_fw_object_vunmap(fw_mem->data_obj); 746 fw_data_ptr = NULL; 747 pvr_fw_object_vunmap(fw_mem->code_obj); 748 fw_code_ptr = NULL; 749 750 err = pvr_fw_create_fwif_connection_ctl(pvr_dev); 751 if (err) 752 goto err_free_fw_core_data_obj; 753 754 return 0; 755 756 err_free_kdata: 757 kfree(fw_mem->core_data); 758 kfree(fw_mem->core_code); 759 kfree(fw_mem->data); 760 kfree(fw_mem->code); 761 762 err_free_fw_core_data_obj: 763 if (fw_core_data_ptr) 764 pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj); 765 766 err_free_fw_core_code_obj: 767 if (fw_core_code_ptr) 768 pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj); 769 770 err_free_fw_data_obj: 771 if (fw_data_ptr) 772 pvr_fw_object_vunmap(fw_mem->data_obj); 773 pvr_fw_object_destroy(fw_mem->data_obj); 774 775 err_free_fw_code_obj: 776 if (fw_code_ptr) 777 pvr_fw_object_vunmap(fw_mem->code_obj); 778 pvr_fw_object_destroy(fw_mem->code_obj); 779 780 return err; 781 } 782 783 static int 784 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size) 785 { 786 u8 *dest_ptr = pvr_fw_object_vmap(dest_obj); 787 788 if (IS_ERR(dest_ptr)) 789 return PTR_ERR(dest_ptr); 790 791 memcpy(dest_ptr, src_ptr, size); 792 793 pvr_fw_object_vunmap(dest_obj); 794 795 return 0; 796 } 797 798 static int 799 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev) 800 { 801 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 802 int err; 803 804 err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size); 805 if (err) 806 return err; 807 808 err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size); 809 if (err) 810 return err; 811 812 if (fw_mem->core_code) { 813 err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code, 814 fw_mem->core_code_alloc_size); 815 if (err) 816 return err; 817 } 818 819 if (fw_mem->core_data) { 820 err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data, 821 fw_mem->core_data_alloc_size); 822 if (err) 823 return err; 824 } 825 826 return 0; 827 } 828 829 static void 830 pvr_fw_cleanup(struct pvr_device *pvr_dev) 831 { 832 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 833 834 pvr_fw_fini_fwif_connection_ctl(pvr_dev); 835 if (fw_mem->core_code_obj) 836 pvr_fw_object_destroy(fw_mem->core_code_obj); 837 if (fw_mem->core_data_obj) 838 pvr_fw_object_destroy(fw_mem->core_data_obj); 839 pvr_fw_object_destroy(fw_mem->code_obj); 840 pvr_fw_object_destroy(fw_mem->data_obj); 841 } 842 843 /** 844 * pvr_wait_for_fw_boot() - Wait for firmware to finish booting 845 * @pvr_dev: Target PowerVR device. 846 * 847 * Returns: 848 * * 0 on success, or 849 * * -%ETIMEDOUT if firmware fails to boot within timeout. 850 */ 851 int 852 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev) 853 { 854 ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC); 855 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 856 857 while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) { 858 if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started)) 859 return 0; 860 } 861 862 return -ETIMEDOUT; 863 } 864 865 /* 866 * pvr_fw_heap_info_init() - Calculate size and masks for FW heap 867 * @pvr_dev: Target PowerVR device. 868 * @log2_size: Log2 of raw heap size. 869 * @reserved_size: Size of reserved area of heap, in bytes. May be zero. 870 */ 871 void 872 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size) 873 { 874 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 875 876 fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE; 877 fw_dev->fw_heap_info.log2_size = log2_size; 878 fw_dev->fw_heap_info.reserved_size = reserved_size; 879 fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size; 880 fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1; 881 fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size - 882 PVR_ROGUE_FW_CONFIG_HEAP_SIZE; 883 fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size - 884 (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size); 885 } 886 887 /** 888 * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information 889 * @pvr_dev: Target PowerVR device. 890 * 891 * This function must be called before querying device information. 892 * 893 * Returns: 894 * * 0 on success, or 895 * * -%EINVAL if firmware validation fails. 896 */ 897 int 898 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev) 899 { 900 int err; 901 902 err = pvr_fw_validate(pvr_dev); 903 if (err) 904 return err; 905 906 return pvr_fw_get_device_info(pvr_dev); 907 } 908 909 /** 910 * pvr_fw_init() - Initialise and boot firmware 911 * @pvr_dev: Target PowerVR device 912 * 913 * On successful completion of the function the PowerVR device will be 914 * initialised and ready to use. 915 * 916 * Returns: 917 * * 0 on success, 918 * * -%EINVAL on invalid firmware image, 919 * * -%ENOMEM on out of memory, or 920 * * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout. 921 */ 922 int 923 pvr_fw_init(struct pvr_device *pvr_dev) 924 { 925 u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT; 926 u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn); 927 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 928 int err; 929 930 if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META) 931 fw_dev->defs = &pvr_fw_defs_meta; 932 else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS) 933 fw_dev->defs = &pvr_fw_defs_mips; 934 else 935 return -EINVAL; 936 937 err = fw_dev->defs->init(pvr_dev); 938 if (err) 939 return err; 940 941 drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size); 942 fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE; 943 spin_lock_init(&fw_dev->fw_mm_lock); 944 945 INIT_LIST_HEAD(&fw_dev->fw_objs.list); 946 err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock); 947 if (err) 948 goto err_mm_takedown; 949 950 err = pvr_fw_process(pvr_dev); 951 if (err) 952 goto err_mm_takedown; 953 954 /* Initialise KCCB and FWCCB. */ 955 err = pvr_kccb_init(pvr_dev); 956 if (err) 957 goto err_fw_cleanup; 958 959 err = pvr_fwccb_init(pvr_dev); 960 if (err) 961 goto err_kccb_fini; 962 963 /* Allocate memory for KCCB return slots. */ 964 pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size, 965 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 966 NULL, NULL, &pvr_dev->kccb.rtn_obj); 967 if (IS_ERR(pvr_dev->kccb.rtn)) { 968 err = PTR_ERR(pvr_dev->kccb.rtn); 969 goto err_fwccb_fini; 970 } 971 972 err = pvr_fw_create_structures(pvr_dev); 973 if (err) 974 goto err_kccb_rtn_release; 975 976 err = pvr_fw_start(pvr_dev); 977 if (err) 978 goto err_destroy_structures; 979 980 err = pvr_wait_for_fw_boot(pvr_dev); 981 if (err) { 982 drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n"); 983 goto err_fw_stop; 984 } 985 986 fw_dev->booted = true; 987 988 return 0; 989 990 err_fw_stop: 991 pvr_fw_stop(pvr_dev); 992 993 err_destroy_structures: 994 pvr_fw_destroy_structures(pvr_dev); 995 996 err_kccb_rtn_release: 997 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); 998 999 err_fwccb_fini: 1000 pvr_ccb_fini(&pvr_dev->fwccb); 1001 1002 err_kccb_fini: 1003 pvr_kccb_fini(pvr_dev); 1004 1005 err_fw_cleanup: 1006 pvr_fw_cleanup(pvr_dev); 1007 1008 err_mm_takedown: 1009 drm_mm_takedown(&fw_dev->fw_mm); 1010 1011 if (fw_dev->defs->fini) 1012 fw_dev->defs->fini(pvr_dev); 1013 1014 return err; 1015 } 1016 1017 /** 1018 * pvr_fw_fini() - Shutdown firmware processor and free associated memory 1019 * @pvr_dev: Target PowerVR device 1020 */ 1021 void 1022 pvr_fw_fini(struct pvr_device *pvr_dev) 1023 { 1024 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1025 1026 fw_dev->booted = false; 1027 1028 pvr_fw_destroy_structures(pvr_dev); 1029 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); 1030 1031 /* 1032 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has 1033 * been unregistered at this point so no new work should be being submitted. 1034 */ 1035 pvr_ccb_fini(&pvr_dev->fwccb); 1036 pvr_kccb_fini(pvr_dev); 1037 pvr_fw_cleanup(pvr_dev); 1038 1039 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1040 WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list)); 1041 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1042 1043 drm_mm_takedown(&fw_dev->fw_mm); 1044 1045 if (fw_dev->defs->fini) 1046 fw_dev->defs->fini(pvr_dev); 1047 } 1048 1049 /** 1050 * pvr_fw_mts_schedule() - Schedule work via an MTS kick 1051 * @pvr_dev: Target PowerVR device 1052 * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_* 1053 */ 1054 void 1055 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val) 1056 { 1057 /* Ensure memory is flushed before kicking MTS. */ 1058 wmb(); 1059 1060 pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val); 1061 1062 /* Ensure the MTS kick goes through before continuing. */ 1063 mb(); 1064 } 1065 1066 /** 1067 * pvr_fw_structure_cleanup() - Send FW cleanup request for an object 1068 * @pvr_dev: Target PowerVR device. 1069 * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type. 1070 * @fw_obj: Pointer to FW object containing object to cleanup. 1071 * @offset: Offset within FW object of object to cleanup. 1072 * 1073 * Returns: 1074 * * 0 on success, 1075 * * -EBUSY if object is busy, 1076 * * -ETIMEDOUT on timeout, or 1077 * * -EIO if device is lost. 1078 */ 1079 int 1080 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj, 1081 u32 offset) 1082 { 1083 struct rogue_fwif_kccb_cmd cmd; 1084 int slot_nr; 1085 int idx; 1086 int err; 1087 u32 rtn; 1088 1089 struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data; 1090 1091 down_read(&pvr_dev->reset_sem); 1092 1093 if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) { 1094 err = -EIO; 1095 goto err_up_read; 1096 } 1097 1098 cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP; 1099 cmd.kccb_flags = 0; 1100 cleanup_req->cleanup_type = type; 1101 1102 switch (type) { 1103 case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT: 1104 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1105 &cleanup_req->cleanup_data.context_fw_addr); 1106 break; 1107 case ROGUE_FWIF_CLEANUP_HWRTDATA: 1108 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1109 &cleanup_req->cleanup_data.hwrt_data_fw_addr); 1110 break; 1111 case ROGUE_FWIF_CLEANUP_FREELIST: 1112 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1113 &cleanup_req->cleanup_data.freelist_fw_addr); 1114 break; 1115 default: 1116 err = -EINVAL; 1117 goto err_drm_dev_exit; 1118 } 1119 1120 err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr); 1121 if (err) 1122 goto err_drm_dev_exit; 1123 1124 err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn); 1125 if (err) 1126 goto err_drm_dev_exit; 1127 1128 if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY) 1129 err = -EBUSY; 1130 1131 err_drm_dev_exit: 1132 drm_dev_exit(idx); 1133 1134 err_up_read: 1135 up_read(&pvr_dev->reset_sem); 1136 1137 return err; 1138 } 1139 1140 /** 1141 * pvr_fw_object_fw_map() - Map a FW object in firmware address space 1142 * @pvr_dev: Device pointer. 1143 * @fw_obj: FW object to map. 1144 * @dev_addr: Desired address in device space, if a specific address is 1145 * required. 0 otherwise. 1146 * 1147 * Returns: 1148 * * 0 on success, or 1149 * * -%EINVAL if @fw_obj is already mapped but has no references, or 1150 * * Any error returned by DRM. 1151 */ 1152 static int 1153 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr) 1154 { 1155 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1156 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1157 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1158 1159 int err; 1160 1161 spin_lock(&fw_dev->fw_mm_lock); 1162 1163 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1164 err = -EINVAL; 1165 goto err_unlock; 1166 } 1167 1168 if (!dev_addr) { 1169 /* 1170 * Allocate from the main heap only (firmware heap minus 1171 * config space). 1172 */ 1173 err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node, 1174 gem_obj->size, 0, 0, 1175 fw_dev->fw_heap_info.gpu_addr, 1176 fw_dev->fw_heap_info.gpu_addr + 1177 fw_dev->fw_heap_info.size, 0); 1178 if (err) 1179 goto err_unlock; 1180 } else { 1181 fw_obj->fw_mm_node.start = dev_addr; 1182 fw_obj->fw_mm_node.size = gem_obj->size; 1183 err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node); 1184 if (err) 1185 goto err_unlock; 1186 } 1187 1188 spin_unlock(&fw_dev->fw_mm_lock); 1189 1190 /* Map object on GPU. */ 1191 err = fw_dev->defs->vm_map(pvr_dev, fw_obj); 1192 if (err) 1193 goto err_remove_node; 1194 1195 fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base); 1196 1197 return 0; 1198 1199 err_remove_node: 1200 spin_lock(&fw_dev->fw_mm_lock); 1201 drm_mm_remove_node(&fw_obj->fw_mm_node); 1202 1203 err_unlock: 1204 spin_unlock(&fw_dev->fw_mm_lock); 1205 1206 return err; 1207 } 1208 1209 /** 1210 * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object 1211 * @fw_obj: FW object to unmap. 1212 * 1213 * Returns: 1214 * * 0 on success, or 1215 * * -%EINVAL if object is not currently mapped. 1216 */ 1217 static int 1218 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj) 1219 { 1220 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1221 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1222 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); 1223 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1224 1225 fw_dev->defs->vm_unmap(pvr_dev, fw_obj); 1226 1227 spin_lock(&fw_dev->fw_mm_lock); 1228 1229 if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1230 spin_unlock(&fw_dev->fw_mm_lock); 1231 return -EINVAL; 1232 } 1233 1234 drm_mm_remove_node(&fw_obj->fw_mm_node); 1235 1236 spin_unlock(&fw_dev->fw_mm_lock); 1237 1238 return 0; 1239 } 1240 1241 static void * 1242 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size, 1243 u64 flags, u64 dev_addr, 1244 void (*init)(void *cpu_ptr, void *priv), 1245 void *init_priv, struct pvr_fw_object **fw_obj_out) 1246 { 1247 struct pvr_fw_object *fw_obj; 1248 void *cpu_ptr; 1249 int err; 1250 1251 /* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */ 1252 flags |= DRM_PVR_BO_PM_FW_PROTECT; 1253 1254 fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL); 1255 if (!fw_obj) 1256 return ERR_PTR(-ENOMEM); 1257 1258 INIT_LIST_HEAD(&fw_obj->node); 1259 fw_obj->init = init; 1260 fw_obj->init_priv = init_priv; 1261 1262 fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags); 1263 if (IS_ERR(fw_obj->gem)) { 1264 err = PTR_ERR(fw_obj->gem); 1265 fw_obj->gem = NULL; 1266 goto err_put_object; 1267 } 1268 1269 err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr); 1270 if (err) 1271 goto err_put_object; 1272 1273 cpu_ptr = pvr_fw_object_vmap(fw_obj); 1274 if (IS_ERR(cpu_ptr)) { 1275 err = PTR_ERR(cpu_ptr); 1276 goto err_put_object; 1277 } 1278 1279 *fw_obj_out = fw_obj; 1280 1281 if (fw_obj->init) 1282 fw_obj->init(cpu_ptr, fw_obj->init_priv); 1283 1284 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1285 list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list); 1286 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1287 1288 return cpu_ptr; 1289 1290 err_put_object: 1291 pvr_fw_object_destroy(fw_obj); 1292 1293 return ERR_PTR(err); 1294 } 1295 1296 /** 1297 * pvr_fw_object_create() - Create a FW object and map to firmware 1298 * @pvr_dev: PowerVR device pointer. 1299 * @size: Size of object, in bytes. 1300 * @flags: Options which affect both this operation and future mapping 1301 * operations performed on the returned object. Must be a combination of 1302 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1303 * @init: Initialisation callback. 1304 * @init_priv: Private pointer to pass to initialisation callback. 1305 * @fw_obj_out: Pointer to location to store created object pointer. 1306 * 1307 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1308 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1309 * set. 1310 * 1311 * Returns: 1312 * * 0 on success, or 1313 * * Any error returned by pvr_fw_object_create_common(). 1314 */ 1315 int 1316 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags, 1317 void (*init)(void *cpu_ptr, void *priv), void *init_priv, 1318 struct pvr_fw_object **fw_obj_out) 1319 { 1320 void *cpu_ptr; 1321 1322 cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, 1323 fw_obj_out); 1324 if (IS_ERR(cpu_ptr)) 1325 return PTR_ERR(cpu_ptr); 1326 1327 pvr_fw_object_vunmap(*fw_obj_out); 1328 1329 return 0; 1330 } 1331 1332 /** 1333 * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU 1334 * @pvr_dev: PowerVR device pointer. 1335 * @size: Size of object, in bytes. 1336 * @flags: Options which affect both this operation and future mapping 1337 * operations performed on the returned object. Must be a combination of 1338 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1339 * @init: Initialisation callback. 1340 * @init_priv: Private pointer to pass to initialisation callback. 1341 * @fw_obj_out: Pointer to location to store created object pointer. 1342 * 1343 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1344 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1345 * set. 1346 * 1347 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU 1348 * mapping. 1349 * 1350 * Returns: 1351 * * Pointer to CPU mapping of newly created object, or 1352 * * Any error returned by pvr_fw_object_create(), or 1353 * * Any error returned by pvr_fw_object_vmap(). 1354 */ 1355 void * 1356 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags, 1357 void (*init)(void *cpu_ptr, void *priv), 1358 void *init_priv, struct pvr_fw_object **fw_obj_out) 1359 { 1360 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, 1361 fw_obj_out); 1362 } 1363 1364 /** 1365 * pvr_fw_object_create_and_map_offset() - Create a FW object and map to 1366 * firmware at the provided offset and to the CPU. 1367 * @pvr_dev: PowerVR device pointer. 1368 * @dev_offset: Base address of desired FW mapping, offset from start of FW heap. 1369 * @size: Size of object, in bytes. 1370 * @flags: Options which affect both this operation and future mapping 1371 * operations performed on the returned object. Must be a combination of 1372 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1373 * @init: Initialisation callback. 1374 * @init_priv: Private pointer to pass to initialisation callback. 1375 * @fw_obj_out: Pointer to location to store created object pointer. 1376 * 1377 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1378 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1379 * set. 1380 * 1381 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU 1382 * mapping. 1383 * 1384 * Returns: 1385 * * Pointer to CPU mapping of newly created object, or 1386 * * Any error returned by pvr_fw_object_create(), or 1387 * * Any error returned by pvr_fw_object_vmap(). 1388 */ 1389 void * 1390 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev, 1391 u32 dev_offset, size_t size, u64 flags, 1392 void (*init)(void *cpu_ptr, void *priv), 1393 void *init_priv, struct pvr_fw_object **fw_obj_out) 1394 { 1395 u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset; 1396 1397 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv, 1398 fw_obj_out); 1399 } 1400 1401 /** 1402 * pvr_fw_object_destroy() - Destroy a pvr_fw_object 1403 * @fw_obj: Pointer to object to destroy. 1404 */ 1405 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj) 1406 { 1407 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1408 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1409 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); 1410 1411 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1412 list_del(&fw_obj->node); 1413 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1414 1415 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1416 /* If we can't unmap, leak the memory. */ 1417 if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj))) 1418 return; 1419 } 1420 1421 if (fw_obj->gem) 1422 pvr_gem_object_put(fw_obj->gem); 1423 1424 kfree(fw_obj); 1425 } 1426 1427 /** 1428 * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with 1429 * given offset. 1430 * @fw_obj: Pointer to object. 1431 * @offset: Desired offset from start of object. 1432 * @fw_addr_out: Location to store address to. 1433 */ 1434 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out) 1435 { 1436 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1437 struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev); 1438 1439 *fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset); 1440 } 1441 1442 /* 1443 * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW 1444 * structures 1445 * @pvr_dev: Device pointer 1446 * 1447 * If this function returns an error then the caller must regard the device as lost. 1448 * 1449 * Returns: 1450 * * 0 on success, or 1451 * * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all(). 1452 */ 1453 int 1454 pvr_fw_hard_reset(struct pvr_device *pvr_dev) 1455 { 1456 struct list_head *pos; 1457 int err; 1458 1459 /* Reset all FW objects */ 1460 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1461 1462 list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) { 1463 struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node); 1464 void *cpu_ptr = pvr_fw_object_vmap(fw_obj); 1465 1466 WARN_ON(IS_ERR(cpu_ptr)); 1467 1468 if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) { 1469 memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem)); 1470 1471 if (fw_obj->init) 1472 fw_obj->init(cpu_ptr, fw_obj->init_priv); 1473 } 1474 1475 pvr_fw_object_vunmap(fw_obj); 1476 } 1477 1478 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1479 1480 err = pvr_fw_reinit_code_data(pvr_dev); 1481 if (err) 1482 return err; 1483 1484 return 0; 1485 } 1486