xref: /linux/drivers/gpu/drm/imagination/pvr_fw.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only OR MIT
2 /* Copyright (c) 2023 Imagination Technologies Ltd. */
3 
4 #include "pvr_ccb.h"
5 #include "pvr_device.h"
6 #include "pvr_device_info.h"
7 #include "pvr_fw.h"
8 #include "pvr_fw_info.h"
9 #include "pvr_fw_startstop.h"
10 #include "pvr_fw_trace.h"
11 #include "pvr_gem.h"
12 #include "pvr_power.h"
13 #include "pvr_rogue_fwif_dev_info.h"
14 #include "pvr_rogue_heap_config.h"
15 #include "pvr_vm.h"
16 
17 #include <drm/drm_drv.h>
18 #include <drm/drm_managed.h>
19 #include <drm/drm_mm.h>
20 #include <linux/clk.h>
21 #include <linux/firmware.h>
22 #include <linux/math.h>
23 #include <linux/minmax.h>
24 #include <linux/sizes.h>
25 
26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1
27 
28 #define FW_BOOT_TIMEOUT_USEC 5000000
29 
30 /* Config heap occupies top 192k of the firmware heap. */
31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K
32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
33 
34 /* Main firmware allocations should come from the remainder of the heap. */
35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE
36 
37 /* Offsets from start of configuration area of FW heap. */
38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0
39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \
40 	(PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \
42 	(PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY)
43 
44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K
45 
46 #define PVR_SYNC_OBJ_SIZE sizeof(u32)
47 
48 const struct pvr_fw_layout_entry *
49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id)
50 {
51 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
52 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
53 	u32 entry;
54 
55 	for (entry = 0; entry < num_layout_entries; entry++) {
56 		if (layout_entries[entry].id == id)
57 			return &layout_entries[entry];
58 	}
59 
60 	return NULL;
61 }
62 
63 static const struct pvr_fw_layout_entry *
64 pvr_fw_find_private_data(struct pvr_device *pvr_dev)
65 {
66 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
67 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
68 	u32 entry;
69 
70 	for (entry = 0; entry < num_layout_entries; entry++) {
71 		if (layout_entries[entry].id == META_PRIVATE_DATA ||
72 		    layout_entries[entry].id == MIPS_PRIVATE_DATA ||
73 		    layout_entries[entry].id == RISCV_PRIVATE_DATA)
74 			return &layout_entries[entry];
75 	}
76 
77 	return NULL;
78 }
79 
80 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64)
81 
82 /**
83  * pvr_fw_validate() - Parse firmware header and check compatibility
84  * @pvr_dev: Device pointer.
85  *
86  * Returns:
87  *  * 0 on success, or
88  *  * -EINVAL if firmware is incompatible.
89  */
90 static int
91 pvr_fw_validate(struct pvr_device *pvr_dev)
92 {
93 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
94 	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
95 	const struct pvr_fw_layout_entry *layout_entries;
96 	const struct pvr_fw_info_header *header;
97 	const u8 *fw = firmware->data;
98 	u32 fw_offset = firmware->size - SZ_4K;
99 	u32 layout_table_size;
100 	u32 entry;
101 
102 	if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE))
103 		return -EINVAL;
104 
105 	header = (const struct pvr_fw_info_header *)&fw[fw_offset];
106 
107 	if (header->info_version != PVR_FW_INFO_VERSION) {
108 		drm_err(drm_dev, "Unsupported fw info version %u\n",
109 			header->info_version);
110 		return -EINVAL;
111 	}
112 
113 	if (header->header_len != sizeof(struct pvr_fw_info_header) ||
114 	    header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) ||
115 	    header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) {
116 		drm_err(drm_dev, "FW info format mismatch\n");
117 		return -EINVAL;
118 	}
119 
120 	if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ||
121 	    header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION ||
122 	    header->fw_version_major == 0) {
123 		drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n",
124 			header->fw_version_major, header->fw_version_minor,
125 			header->fw_version_build,
126 			(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : "");
127 		return -EINVAL;
128 	}
129 
130 	if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) {
131 		struct pvr_gpu_id fw_gpu_id;
132 
133 		packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id);
134 		drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n",
135 			fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c,
136 			pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c);
137 		return -EINVAL;
138 	}
139 
140 	fw_offset += header->header_len;
141 	layout_table_size =
142 		header->layout_entry_size * header->layout_entry_num;
143 	if ((fw_offset + layout_table_size) > firmware->size)
144 		return -EINVAL;
145 
146 	layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset];
147 	for (entry = 0; entry < header->layout_entry_num; entry++) {
148 		u32 start_addr = layout_entries[entry].base_addr;
149 		u32 end_addr = start_addr + layout_entries[entry].alloc_size;
150 
151 		if (start_addr >= end_addr)
152 			return -EINVAL;
153 	}
154 
155 	fw_offset = (firmware->size - SZ_4K) - header->device_info_size;
156 
157 	drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major,
158 		 header->fw_version_minor, header->fw_version_build);
159 
160 	pvr_dev->fw_version.major = header->fw_version_major;
161 	pvr_dev->fw_version.minor = header->fw_version_minor;
162 
163 	pvr_dev->fw_dev.header = header;
164 	pvr_dev->fw_dev.layout_entries = layout_entries;
165 
166 	return 0;
167 }
168 
169 static int
170 pvr_fw_get_device_info(struct pvr_device *pvr_dev)
171 {
172 	const struct firmware *firmware = pvr_dev->fw_dev.firmware;
173 	struct pvr_fw_device_info_header *header;
174 	const u8 *fw = firmware->data;
175 	const u64 *dev_info;
176 	u32 fw_offset;
177 
178 	fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size;
179 
180 	header = (struct pvr_fw_device_info_header *)&fw[fw_offset];
181 	dev_info = (u64 *)(header + 1);
182 
183 	pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size);
184 	dev_info += header->brn_mask_size;
185 
186 	pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size);
187 	dev_info += header->ern_mask_size;
188 
189 	return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size,
190 					    header->feature_param_size);
191 }
192 
193 static void
194 layout_get_sizes(struct pvr_device *pvr_dev)
195 {
196 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
197 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
198 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
199 
200 	fw_mem->code_alloc_size = 0;
201 	fw_mem->data_alloc_size = 0;
202 	fw_mem->core_code_alloc_size = 0;
203 	fw_mem->core_data_alloc_size = 0;
204 
205 	/* Extract section sizes from FW layout table. */
206 	for (u32 entry = 0; entry < num_layout_entries; entry++) {
207 		switch (layout_entries[entry].type) {
208 		case FW_CODE:
209 			fw_mem->code_alloc_size += layout_entries[entry].alloc_size;
210 			break;
211 		case FW_DATA:
212 			fw_mem->data_alloc_size += layout_entries[entry].alloc_size;
213 			break;
214 		case FW_COREMEM_CODE:
215 			fw_mem->core_code_alloc_size +=
216 				layout_entries[entry].alloc_size;
217 			break;
218 		case FW_COREMEM_DATA:
219 			fw_mem->core_data_alloc_size +=
220 				layout_entries[entry].alloc_size;
221 			break;
222 		case NONE:
223 			break;
224 		}
225 	}
226 }
227 
228 int
229 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr,
230 			void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr,
231 			void **host_addr_out)
232 {
233 	const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries;
234 	u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num;
235 	u32 end_addr = addr + size;
236 	int entry = 0;
237 
238 	/* Ensure requested range is not zero, and size is not causing addr to overflow. */
239 	if (end_addr <= addr)
240 		return -EINVAL;
241 
242 	for (entry = 0; entry < num_layout_entries; entry++) {
243 		u32 entry_start_addr = layout_entries[entry].base_addr;
244 		u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size;
245 
246 		if (addr >= entry_start_addr && addr < entry_end_addr &&
247 		    end_addr > entry_start_addr && end_addr <= entry_end_addr) {
248 			switch (layout_entries[entry].type) {
249 			case FW_CODE:
250 				*host_addr_out = fw_code_ptr;
251 				break;
252 
253 			case FW_DATA:
254 				*host_addr_out = fw_data_ptr;
255 				break;
256 
257 			case FW_COREMEM_CODE:
258 				*host_addr_out = fw_core_code_ptr;
259 				break;
260 
261 			case FW_COREMEM_DATA:
262 				*host_addr_out = fw_core_data_ptr;
263 				break;
264 
265 			default:
266 				return -EINVAL;
267 			}
268 			/* Direct Mem write to mapped memory */
269 			addr -= layout_entries[entry].base_addr;
270 			addr += layout_entries[entry].alloc_offset;
271 
272 			/*
273 			 * Add offset to pointer to FW allocation only if that
274 			 * allocation is available
275 			 */
276 			*(u8 **)host_addr_out += addr;
277 			return 0;
278 		}
279 	}
280 
281 	return -EINVAL;
282 }
283 
284 static int
285 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev)
286 {
287 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
288 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
289 
290 	fw_dev->fwif_connection_ctl =
291 		pvr_fw_object_create_and_map_offset(pvr_dev,
292 						    fw_dev->fw_heap_info.config_offset +
293 						    PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET,
294 						    sizeof(*fw_dev->fwif_connection_ctl),
295 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
296 						    NULL, NULL,
297 						    &fw_dev->mem.fwif_connection_ctl_obj);
298 	if (IS_ERR(fw_dev->fwif_connection_ctl)) {
299 		drm_err(drm_dev,
300 			"Unable to allocate FWIF connection control memory\n");
301 		return PTR_ERR(fw_dev->fwif_connection_ctl);
302 	}
303 
304 	return 0;
305 }
306 
307 static void
308 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev)
309 {
310 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
311 
312 	pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj);
313 }
314 
315 static void
316 fw_osinit_init(void *cpu_ptr, void *priv)
317 {
318 	struct rogue_fwif_osinit *fwif_osinit = cpu_ptr;
319 	struct pvr_device *pvr_dev = priv;
320 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
321 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
322 
323 	fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr;
324 	fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr;
325 	pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj,
326 				  &fwif_osinit->kernel_ccb_rtn_slots_fw_addr);
327 
328 	fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr;
329 	fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr;
330 
331 	fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0;
332 	fwif_osinit->work_est_firmware_ccb_fw_addr = 0;
333 
334 	pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj,
335 				  &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr);
336 	pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr);
337 
338 	fwif_osinit->hwr_debug_dump_limit = 0;
339 
340 	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc);
341 	rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc);
342 }
343 
344 static void
345 fw_osdata_init(void *cpu_ptr, void *priv)
346 {
347 	struct rogue_fwif_osdata *fwif_osdata = cpu_ptr;
348 	struct pvr_device *pvr_dev = priv;
349 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
350 
351 	pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr);
352 }
353 
354 static void
355 fw_fault_page_init(void *cpu_ptr, void *priv)
356 {
357 	u32 *fault_page = cpu_ptr;
358 
359 	for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++)
360 		fault_page[i] = 0xdeadbee0;
361 }
362 
363 static void
364 fw_sysinit_init(void *cpu_ptr, void *priv)
365 {
366 	struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr;
367 	struct pvr_device *pvr_dev = priv;
368 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
369 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
370 	dma_addr_t fault_dma_addr = 0;
371 	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
372 
373 	WARN_ON(!clock_speed_hz);
374 
375 	WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr));
376 	fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr;
377 
378 	fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE;
379 	fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE;
380 
381 	pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr);
382 	pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj,
383 				  &fwif_sysinit->trace_buf_ctl_fw_addr);
384 	pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr);
385 	pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj,
386 				  &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr);
387 	if (fw_mem->core_data_obj) {
388 		pvr_fw_object_get_fw_addr(fw_mem->core_data_obj,
389 					  &fwif_sysinit->coremem_data_store.fw_addr);
390 	}
391 
392 	/* Currently unsupported. */
393 	fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0;
394 	fwif_sysinit->counter_dump_ctl.size_in_dwords = 0;
395 
396 	/* Skip alignment checks. */
397 	fwif_sysinit->align_checks = 0;
398 
399 	fwif_sysinit->filter_flags = 0;
400 	fwif_sysinit->hw_perf_filter = 0;
401 	fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE;
402 	fwif_sysinit->initial_core_clock_speed = clock_speed_hz;
403 	fwif_sysinit->active_pm_latency_ms = 0;
404 	fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF;
405 	fwif_sysinit->firmware_started = false;
406 	fwif_sysinit->marker_val = 1;
407 
408 	memset(&fwif_sysinit->bvnc_km_feature_flags, 0,
409 	       sizeof(fwif_sysinit->bvnc_km_feature_flags));
410 }
411 
412 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4
413 
414 static void
415 fw_sysdata_init(void *cpu_ptr, void *priv)
416 {
417 	struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr;
418 	struct pvr_device *pvr_dev = priv;
419 	u32 slc_size_in_kilobytes = 0;
420 	u32 config_flags = 0;
421 
422 	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes));
423 
424 	if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB)
425 		config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP;
426 
427 	fwif_sysdata->config_flags = config_flags;
428 }
429 
430 static void
431 fw_runtime_cfg_init(void *cpu_ptr, void *priv)
432 {
433 	struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr;
434 	struct pvr_device *pvr_dev = priv;
435 	u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk);
436 
437 	WARN_ON(!clock_speed_hz);
438 
439 	runtime_cfg->core_clock_speed = clock_speed_hz;
440 	runtime_cfg->active_pm_latency_ms = 0;
441 	runtime_cfg->active_pm_latency_persistant = true;
442 	WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters,
443 				  &runtime_cfg->default_dusts_num_init) != 0);
444 }
445 
446 static void
447 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv)
448 {
449 	struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr;
450 
451 	gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE;
452 }
453 
454 static int
455 pvr_fw_create_structures(struct pvr_device *pvr_dev)
456 {
457 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
458 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
459 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
460 	int err;
461 
462 	fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync),
463 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
464 							  NULL, NULL, &fw_mem->power_sync_obj);
465 	if (IS_ERR(fw_dev->power_sync)) {
466 		drm_err(drm_dev, "Unable to allocate FW power_sync structure\n");
467 		return PTR_ERR(fw_dev->power_sync);
468 	}
469 
470 	fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf),
471 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
472 							  NULL, NULL, &fw_mem->hwrinfobuf_obj);
473 	if (IS_ERR(fw_dev->hwrinfobuf)) {
474 		drm_err(drm_dev,
475 			"Unable to allocate FW hwrinfobuf structure\n");
476 		err = PTR_ERR(fw_dev->hwrinfobuf);
477 		goto err_release_power_sync;
478 	}
479 
480 	err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE,
481 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
482 				   NULL, NULL, &fw_mem->mmucache_sync_obj);
483 	if (err) {
484 		drm_err(drm_dev,
485 			"Unable to allocate MMU cache sync object\n");
486 		goto err_release_hwrinfobuf;
487 	}
488 
489 	fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev,
490 							    sizeof(*fw_dev->fwif_sysdata),
491 							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
492 							    fw_sysdata_init, pvr_dev,
493 							    &fw_mem->sysdata_obj);
494 	if (IS_ERR(fw_dev->fwif_sysdata)) {
495 		drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n");
496 		err = PTR_ERR(fw_dev->fwif_sysdata);
497 		goto err_release_mmucache_sync_obj;
498 	}
499 
500 	err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE,
501 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
502 				   fw_fault_page_init, NULL, &fw_mem->fault_page_obj);
503 	if (err) {
504 		drm_err(drm_dev, "Unable to allocate FW fault page\n");
505 		goto err_release_sysdata;
506 	}
507 
508 	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb),
509 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
510 				   fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj);
511 	if (err) {
512 		drm_err(drm_dev, "Unable to allocate GPU util FWCB\n");
513 		goto err_release_fault_page;
514 	}
515 
516 	err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg),
517 				   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
518 				   fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj);
519 	if (err) {
520 		drm_err(drm_dev, "Unable to allocate FW runtime config\n");
521 		goto err_release_gpu_util_fwcb;
522 	}
523 
524 	err = pvr_fw_trace_init(pvr_dev);
525 	if (err)
526 		goto err_release_runtime_cfg;
527 
528 	fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev,
529 							   sizeof(*fw_dev->fwif_osdata),
530 							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
531 							   fw_osdata_init, pvr_dev,
532 							   &fw_mem->osdata_obj);
533 	if (IS_ERR(fw_dev->fwif_osdata)) {
534 		drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n");
535 		err = PTR_ERR(fw_dev->fwif_osdata);
536 		goto err_fw_trace_fini;
537 	}
538 
539 	fw_dev->fwif_osinit =
540 		pvr_fw_object_create_and_map_offset(pvr_dev,
541 						    fw_dev->fw_heap_info.config_offset +
542 						    PVR_ROGUE_FWIF_OSINIT_OFFSET,
543 						    sizeof(*fw_dev->fwif_osinit),
544 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
545 						    fw_osinit_init, pvr_dev, &fw_mem->osinit_obj);
546 	if (IS_ERR(fw_dev->fwif_osinit)) {
547 		drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n");
548 		err = PTR_ERR(fw_dev->fwif_osinit);
549 		goto err_release_osdata;
550 	}
551 
552 	fw_dev->fwif_sysinit =
553 		pvr_fw_object_create_and_map_offset(pvr_dev,
554 						    fw_dev->fw_heap_info.config_offset +
555 						    PVR_ROGUE_FWIF_SYSINIT_OFFSET,
556 						    sizeof(*fw_dev->fwif_sysinit),
557 						    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
558 						    fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj);
559 	if (IS_ERR(fw_dev->fwif_sysinit)) {
560 		drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n");
561 		err = PTR_ERR(fw_dev->fwif_sysinit);
562 		goto err_release_osinit;
563 	}
564 
565 	return 0;
566 
567 err_release_osinit:
568 	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
569 
570 err_release_osdata:
571 	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
572 
573 err_fw_trace_fini:
574 	pvr_fw_trace_fini(pvr_dev);
575 
576 err_release_runtime_cfg:
577 	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
578 
579 err_release_gpu_util_fwcb:
580 	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
581 
582 err_release_fault_page:
583 	pvr_fw_object_destroy(fw_mem->fault_page_obj);
584 
585 err_release_sysdata:
586 	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
587 
588 err_release_mmucache_sync_obj:
589 	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
590 
591 err_release_hwrinfobuf:
592 	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
593 
594 err_release_power_sync:
595 	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
596 
597 	return err;
598 }
599 
600 static void
601 pvr_fw_destroy_structures(struct pvr_device *pvr_dev)
602 {
603 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
604 	struct pvr_fw_mem *fw_mem = &fw_dev->mem;
605 
606 	pvr_fw_trace_fini(pvr_dev);
607 	pvr_fw_object_destroy(fw_mem->runtime_cfg_obj);
608 	pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj);
609 	pvr_fw_object_destroy(fw_mem->fault_page_obj);
610 	pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj);
611 	pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj);
612 
613 	pvr_fw_object_destroy(fw_mem->mmucache_sync_obj);
614 	pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj);
615 	pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj);
616 	pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj);
617 	pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj);
618 }
619 
620 /**
621  * pvr_fw_process() - Process firmware image, allocate FW memory and create boot
622  *                    arguments
623  * @pvr_dev: Device pointer.
624  *
625  * Returns:
626  *  * 0 on success, or
627  *  * Any error returned by pvr_fw_object_create_and_map_offset(), or
628  *  * Any error returned by pvr_fw_object_create_and_map().
629  */
630 static int
631 pvr_fw_process(struct pvr_device *pvr_dev)
632 {
633 	struct drm_device *drm_dev = from_pvr_device(pvr_dev);
634 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
635 	const u8 *fw = pvr_dev->fw_dev.firmware->data;
636 	const struct pvr_fw_layout_entry *private_data;
637 	u8 *fw_code_ptr;
638 	u8 *fw_data_ptr;
639 	u8 *fw_core_code_ptr;
640 	u8 *fw_core_data_ptr;
641 	int err;
642 
643 	layout_get_sizes(pvr_dev);
644 
645 	private_data = pvr_fw_find_private_data(pvr_dev);
646 	if (!private_data)
647 		return -EINVAL;
648 
649 	/* Allocate and map memory for firmware sections. */
650 
651 	/*
652 	 * Code allocation must be at the start of the firmware heap, otherwise
653 	 * firmware processor will be unable to boot.
654 	 *
655 	 * This has the useful side-effect that for every other object in the
656 	 * driver, a firmware address of 0 is invalid.
657 	 */
658 	fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size,
659 							  PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
660 							  NULL, NULL, &fw_mem->code_obj);
661 	if (IS_ERR(fw_code_ptr)) {
662 		drm_err(drm_dev, "Unable to allocate FW code memory\n");
663 		return PTR_ERR(fw_code_ptr);
664 	}
665 
666 	if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) {
667 		u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask;
668 
669 		fw_data_ptr =
670 			pvr_fw_object_create_and_map_offset(pvr_dev, base_addr,
671 							    fw_mem->data_alloc_size,
672 							    PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
673 							    NULL, NULL, &fw_mem->data_obj);
674 	} else {
675 		fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size,
676 							   PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
677 							   NULL, NULL, &fw_mem->data_obj);
678 	}
679 	if (IS_ERR(fw_data_ptr)) {
680 		drm_err(drm_dev, "Unable to allocate FW data memory\n");
681 		err = PTR_ERR(fw_data_ptr);
682 		goto err_free_fw_code_obj;
683 	}
684 
685 	/* Core code and data sections are optional. */
686 	if (fw_mem->core_code_alloc_size) {
687 		fw_core_code_ptr =
688 			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size,
689 						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
690 						     NULL, NULL, &fw_mem->core_code_obj);
691 		if (IS_ERR(fw_core_code_ptr)) {
692 			drm_err(drm_dev,
693 				"Unable to allocate FW core code memory\n");
694 			err = PTR_ERR(fw_core_code_ptr);
695 			goto err_free_fw_data_obj;
696 		}
697 	} else {
698 		fw_core_code_ptr = NULL;
699 	}
700 
701 	if (fw_mem->core_data_alloc_size) {
702 		fw_core_data_ptr =
703 			pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size,
704 						     PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
705 						     NULL, NULL, &fw_mem->core_data_obj);
706 		if (IS_ERR(fw_core_data_ptr)) {
707 			drm_err(drm_dev,
708 				"Unable to allocate FW core data memory\n");
709 			err = PTR_ERR(fw_core_data_ptr);
710 			goto err_free_fw_core_code_obj;
711 		}
712 	} else {
713 		fw_core_data_ptr = NULL;
714 	}
715 
716 	fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL);
717 	fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL);
718 	if (fw_mem->core_code_alloc_size)
719 		fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL);
720 	if (fw_mem->core_data_alloc_size)
721 		fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL);
722 
723 	if (!fw_mem->code || !fw_mem->data ||
724 	    (!fw_mem->core_code && fw_mem->core_code_alloc_size) ||
725 	    (!fw_mem->core_data && fw_mem->core_data_alloc_size)) {
726 		err = -ENOMEM;
727 		goto err_free_kdata;
728 	}
729 
730 	err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw,
731 					       fw_mem->code, fw_mem->data, fw_mem->core_code,
732 					       fw_mem->core_data, fw_mem->core_code_alloc_size);
733 
734 	if (err)
735 		goto err_free_fw_core_data_obj;
736 
737 	memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size);
738 	memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size);
739 	if (fw_mem->core_code)
740 		memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size);
741 	if (fw_mem->core_data)
742 		memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size);
743 
744 	/* We're finished with the firmware section memory on the CPU, unmap. */
745 	if (fw_core_data_ptr)
746 		pvr_fw_object_vunmap(fw_mem->core_data_obj);
747 	if (fw_core_code_ptr)
748 		pvr_fw_object_vunmap(fw_mem->core_code_obj);
749 	pvr_fw_object_vunmap(fw_mem->data_obj);
750 	fw_data_ptr = NULL;
751 	pvr_fw_object_vunmap(fw_mem->code_obj);
752 	fw_code_ptr = NULL;
753 
754 	err = pvr_fw_create_fwif_connection_ctl(pvr_dev);
755 	if (err)
756 		goto err_free_fw_core_data_obj;
757 
758 	return 0;
759 
760 err_free_kdata:
761 	kfree(fw_mem->core_data);
762 	kfree(fw_mem->core_code);
763 	kfree(fw_mem->data);
764 	kfree(fw_mem->code);
765 
766 err_free_fw_core_data_obj:
767 	if (fw_core_data_ptr)
768 		pvr_fw_object_unmap_and_destroy(fw_mem->core_data_obj);
769 
770 err_free_fw_core_code_obj:
771 	if (fw_core_code_ptr)
772 		pvr_fw_object_unmap_and_destroy(fw_mem->core_code_obj);
773 
774 err_free_fw_data_obj:
775 	if (fw_data_ptr)
776 		pvr_fw_object_vunmap(fw_mem->data_obj);
777 	pvr_fw_object_destroy(fw_mem->data_obj);
778 
779 err_free_fw_code_obj:
780 	if (fw_code_ptr)
781 		pvr_fw_object_vunmap(fw_mem->code_obj);
782 	pvr_fw_object_destroy(fw_mem->code_obj);
783 
784 	return err;
785 }
786 
787 static int
788 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size)
789 {
790 	u8 *dest_ptr = pvr_fw_object_vmap(dest_obj);
791 
792 	if (IS_ERR(dest_ptr))
793 		return PTR_ERR(dest_ptr);
794 
795 	memcpy(dest_ptr, src_ptr, size);
796 
797 	pvr_fw_object_vunmap(dest_obj);
798 
799 	return 0;
800 }
801 
802 static int
803 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev)
804 {
805 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
806 	int err;
807 
808 	err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size);
809 	if (err)
810 		return err;
811 
812 	err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size);
813 	if (err)
814 		return err;
815 
816 	if (fw_mem->core_code) {
817 		err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code,
818 				     fw_mem->core_code_alloc_size);
819 		if (err)
820 			return err;
821 	}
822 
823 	if (fw_mem->core_data) {
824 		err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data,
825 				     fw_mem->core_data_alloc_size);
826 		if (err)
827 			return err;
828 	}
829 
830 	return 0;
831 }
832 
833 static void
834 pvr_fw_cleanup(struct pvr_device *pvr_dev)
835 {
836 	struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem;
837 
838 	pvr_fw_fini_fwif_connection_ctl(pvr_dev);
839 	if (fw_mem->core_code_obj)
840 		pvr_fw_object_destroy(fw_mem->core_code_obj);
841 	if (fw_mem->core_data_obj)
842 		pvr_fw_object_destroy(fw_mem->core_data_obj);
843 	pvr_fw_object_destroy(fw_mem->code_obj);
844 	pvr_fw_object_destroy(fw_mem->data_obj);
845 }
846 
847 /**
848  * pvr_wait_for_fw_boot() - Wait for firmware to finish booting
849  * @pvr_dev: Target PowerVR device.
850  *
851  * Returns:
852  *  * 0 on success, or
853  *  * -%ETIMEDOUT if firmware fails to boot within timeout.
854  */
855 int
856 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev)
857 {
858 	ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC);
859 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
860 
861 	while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) {
862 		if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started))
863 			return 0;
864 	}
865 
866 	return -ETIMEDOUT;
867 }
868 
869 /*
870  * pvr_fw_heap_info_init() - Calculate size and masks for FW heap
871  * @pvr_dev: Target PowerVR device.
872  * @log2_size: Log2 of raw heap size.
873  * @reserved_size: Size of reserved area of heap, in bytes. May be zero.
874  */
875 void
876 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size)
877 {
878 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
879 
880 	fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE;
881 	fw_dev->fw_heap_info.log2_size = log2_size;
882 	fw_dev->fw_heap_info.reserved_size = reserved_size;
883 	fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size;
884 	fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1;
885 	fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size -
886 					     PVR_ROGUE_FW_CONFIG_HEAP_SIZE;
887 	fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size -
888 				    (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size);
889 }
890 
891 /**
892  * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information
893  * @pvr_dev: Target PowerVR device.
894  *
895  * This function must be called before querying device information.
896  *
897  * Returns:
898  *  * 0 on success, or
899  *  * -%EINVAL if firmware validation fails.
900  */
901 int
902 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev)
903 {
904 	int err;
905 
906 	err = pvr_fw_validate(pvr_dev);
907 	if (err)
908 		return err;
909 
910 	return pvr_fw_get_device_info(pvr_dev);
911 }
912 
913 /**
914  * pvr_fw_init() - Initialise and boot firmware
915  * @pvr_dev: Target PowerVR device
916  *
917  * On successful completion of the function the PowerVR device will be
918  * initialised and ready to use.
919  *
920  * Returns:
921  *  * 0 on success,
922  *  * -%EINVAL on invalid firmware image,
923  *  * -%ENOMEM on out of memory, or
924  *  * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout.
925  */
926 int
927 pvr_fw_init(struct pvr_device *pvr_dev)
928 {
929 	u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT;
930 	u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn);
931 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
932 	int err;
933 
934 	if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META)
935 		fw_dev->defs = &pvr_fw_defs_meta;
936 	else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS)
937 		fw_dev->defs = &pvr_fw_defs_mips;
938 	else
939 		return -EINVAL;
940 
941 	err = fw_dev->defs->init(pvr_dev);
942 	if (err)
943 		return err;
944 
945 	drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size);
946 	fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE;
947 	spin_lock_init(&fw_dev->fw_mm_lock);
948 
949 	INIT_LIST_HEAD(&fw_dev->fw_objs.list);
950 	err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock);
951 	if (err)
952 		goto err_mm_takedown;
953 
954 	err = pvr_fw_process(pvr_dev);
955 	if (err)
956 		goto err_mm_takedown;
957 
958 	/* Initialise KCCB and FWCCB. */
959 	err = pvr_kccb_init(pvr_dev);
960 	if (err)
961 		goto err_fw_cleanup;
962 
963 	err = pvr_fwccb_init(pvr_dev);
964 	if (err)
965 		goto err_kccb_fini;
966 
967 	/* Allocate memory for KCCB return slots. */
968 	pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size,
969 							 PVR_BO_FW_FLAGS_DEVICE_UNCACHED,
970 							 NULL, NULL, &pvr_dev->kccb.rtn_obj);
971 	if (IS_ERR(pvr_dev->kccb.rtn)) {
972 		err = PTR_ERR(pvr_dev->kccb.rtn);
973 		goto err_fwccb_fini;
974 	}
975 
976 	err = pvr_fw_create_structures(pvr_dev);
977 	if (err)
978 		goto err_kccb_rtn_release;
979 
980 	err = pvr_fw_start(pvr_dev);
981 	if (err)
982 		goto err_destroy_structures;
983 
984 	err = pvr_wait_for_fw_boot(pvr_dev);
985 	if (err) {
986 		drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n");
987 		goto err_fw_stop;
988 	}
989 
990 	fw_dev->booted = true;
991 
992 	return 0;
993 
994 err_fw_stop:
995 	pvr_fw_stop(pvr_dev);
996 
997 err_destroy_structures:
998 	pvr_fw_destroy_structures(pvr_dev);
999 
1000 err_kccb_rtn_release:
1001 	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1002 
1003 err_fwccb_fini:
1004 	pvr_ccb_fini(&pvr_dev->fwccb);
1005 
1006 err_kccb_fini:
1007 	pvr_kccb_fini(pvr_dev);
1008 
1009 err_fw_cleanup:
1010 	pvr_fw_cleanup(pvr_dev);
1011 
1012 err_mm_takedown:
1013 	drm_mm_takedown(&fw_dev->fw_mm);
1014 
1015 	if (fw_dev->defs->fini)
1016 		fw_dev->defs->fini(pvr_dev);
1017 
1018 	return err;
1019 }
1020 
1021 /**
1022  * pvr_fw_fini() - Shutdown firmware processor and free associated memory
1023  * @pvr_dev: Target PowerVR device
1024  */
1025 void
1026 pvr_fw_fini(struct pvr_device *pvr_dev)
1027 {
1028 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1029 
1030 	fw_dev->booted = false;
1031 
1032 	pvr_fw_destroy_structures(pvr_dev);
1033 	pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj);
1034 
1035 	/*
1036 	 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has
1037 	 * been unregistered at this point so no new work should be being submitted.
1038 	 */
1039 	pvr_ccb_fini(&pvr_dev->fwccb);
1040 	pvr_kccb_fini(pvr_dev);
1041 	pvr_fw_cleanup(pvr_dev);
1042 
1043 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1044 	WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list));
1045 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1046 
1047 	drm_mm_takedown(&fw_dev->fw_mm);
1048 
1049 	if (fw_dev->defs->fini)
1050 		fw_dev->defs->fini(pvr_dev);
1051 }
1052 
1053 /**
1054  * pvr_fw_mts_schedule() - Schedule work via an MTS kick
1055  * @pvr_dev: Target PowerVR device
1056  * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_*
1057  */
1058 void
1059 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val)
1060 {
1061 	/* Ensure memory is flushed before kicking MTS. */
1062 	wmb();
1063 
1064 	pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val);
1065 
1066 	/* Ensure the MTS kick goes through before continuing. */
1067 	mb();
1068 }
1069 
1070 /**
1071  * pvr_fw_structure_cleanup() - Send FW cleanup request for an object
1072  * @pvr_dev: Target PowerVR device.
1073  * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type.
1074  * @fw_obj: Pointer to FW object containing object to cleanup.
1075  * @offset: Offset within FW object of object to cleanup.
1076  *
1077  * Returns:
1078  *  * 0 on success,
1079  *  * -EBUSY if object is busy,
1080  *  * -ETIMEDOUT on timeout, or
1081  *  * -EIO if device is lost.
1082  */
1083 int
1084 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj,
1085 			 u32 offset)
1086 {
1087 	struct rogue_fwif_kccb_cmd cmd;
1088 	int slot_nr;
1089 	int idx;
1090 	int err;
1091 	u32 rtn;
1092 
1093 	struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data;
1094 
1095 	down_read(&pvr_dev->reset_sem);
1096 
1097 	if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) {
1098 		err = -EIO;
1099 		goto err_up_read;
1100 	}
1101 
1102 	cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP;
1103 	cmd.kccb_flags = 0;
1104 	cleanup_req->cleanup_type = type;
1105 
1106 	switch (type) {
1107 	case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT:
1108 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1109 						 &cleanup_req->cleanup_data.context_fw_addr);
1110 		break;
1111 	case ROGUE_FWIF_CLEANUP_HWRTDATA:
1112 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1113 						 &cleanup_req->cleanup_data.hwrt_data_fw_addr);
1114 		break;
1115 	case ROGUE_FWIF_CLEANUP_FREELIST:
1116 		pvr_fw_object_get_fw_addr_offset(fw_obj, offset,
1117 						 &cleanup_req->cleanup_data.freelist_fw_addr);
1118 		break;
1119 	default:
1120 		err = -EINVAL;
1121 		goto err_drm_dev_exit;
1122 	}
1123 
1124 	err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr);
1125 	if (err)
1126 		goto err_drm_dev_exit;
1127 
1128 	err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn);
1129 	if (err)
1130 		goto err_drm_dev_exit;
1131 
1132 	if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY)
1133 		err = -EBUSY;
1134 
1135 err_drm_dev_exit:
1136 	drm_dev_exit(idx);
1137 
1138 err_up_read:
1139 	up_read(&pvr_dev->reset_sem);
1140 
1141 	return err;
1142 }
1143 
1144 /**
1145  * pvr_fw_object_fw_map() - Map a FW object in firmware address space
1146  * @pvr_dev: Device pointer.
1147  * @fw_obj: FW object to map.
1148  * @dev_addr: Desired address in device space, if a specific address is
1149  *            required. 0 otherwise.
1150  *
1151  * Returns:
1152  *  * 0 on success, or
1153  *  * -%EINVAL if @fw_obj is already mapped but has no references, or
1154  *  * Any error returned by DRM.
1155  */
1156 static int
1157 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr)
1158 {
1159 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1160 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1161 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1162 
1163 	int err;
1164 
1165 	spin_lock(&fw_dev->fw_mm_lock);
1166 
1167 	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1168 		err = -EINVAL;
1169 		goto err_unlock;
1170 	}
1171 
1172 	if (!dev_addr) {
1173 		/*
1174 		 * Allocate from the main heap only (firmware heap minus
1175 		 * config space).
1176 		 */
1177 		err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node,
1178 						  gem_obj->size, 0, 0,
1179 						  fw_dev->fw_heap_info.gpu_addr,
1180 						  fw_dev->fw_heap_info.gpu_addr +
1181 						  fw_dev->fw_heap_info.size, 0);
1182 		if (err)
1183 			goto err_unlock;
1184 	} else {
1185 		fw_obj->fw_mm_node.start = dev_addr;
1186 		fw_obj->fw_mm_node.size = gem_obj->size;
1187 		err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node);
1188 		if (err)
1189 			goto err_unlock;
1190 	}
1191 
1192 	spin_unlock(&fw_dev->fw_mm_lock);
1193 
1194 	/* Map object on GPU. */
1195 	err = fw_dev->defs->vm_map(pvr_dev, fw_obj);
1196 	if (err)
1197 		goto err_remove_node;
1198 
1199 	fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base);
1200 
1201 	return 0;
1202 
1203 err_remove_node:
1204 	spin_lock(&fw_dev->fw_mm_lock);
1205 	drm_mm_remove_node(&fw_obj->fw_mm_node);
1206 
1207 err_unlock:
1208 	spin_unlock(&fw_dev->fw_mm_lock);
1209 
1210 	return err;
1211 }
1212 
1213 /**
1214  * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object
1215  * @fw_obj: FW object to unmap.
1216  *
1217  * Returns:
1218  *  * 0 on success, or
1219  *  * -%EINVAL if object is not currently mapped.
1220  */
1221 static int
1222 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj)
1223 {
1224 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1225 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1226 	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1227 	struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev;
1228 
1229 	fw_dev->defs->vm_unmap(pvr_dev, fw_obj);
1230 
1231 	spin_lock(&fw_dev->fw_mm_lock);
1232 
1233 	if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1234 		spin_unlock(&fw_dev->fw_mm_lock);
1235 		return -EINVAL;
1236 	}
1237 
1238 	drm_mm_remove_node(&fw_obj->fw_mm_node);
1239 
1240 	spin_unlock(&fw_dev->fw_mm_lock);
1241 
1242 	return 0;
1243 }
1244 
1245 static void *
1246 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size,
1247 				    u64 flags, u64 dev_addr,
1248 				    void (*init)(void *cpu_ptr, void *priv),
1249 				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1250 {
1251 	struct pvr_fw_object *fw_obj;
1252 	void *cpu_ptr;
1253 	int err;
1254 
1255 	/* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */
1256 	flags |= DRM_PVR_BO_PM_FW_PROTECT;
1257 
1258 	fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL);
1259 	if (!fw_obj)
1260 		return ERR_PTR(-ENOMEM);
1261 
1262 	INIT_LIST_HEAD(&fw_obj->node);
1263 	fw_obj->init = init;
1264 	fw_obj->init_priv = init_priv;
1265 
1266 	fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags);
1267 	if (IS_ERR(fw_obj->gem)) {
1268 		err = PTR_ERR(fw_obj->gem);
1269 		fw_obj->gem = NULL;
1270 		goto err_put_object;
1271 	}
1272 
1273 	err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr);
1274 	if (err)
1275 		goto err_put_object;
1276 
1277 	cpu_ptr = pvr_fw_object_vmap(fw_obj);
1278 	if (IS_ERR(cpu_ptr)) {
1279 		err = PTR_ERR(cpu_ptr);
1280 		goto err_put_object;
1281 	}
1282 
1283 	*fw_obj_out = fw_obj;
1284 
1285 	if (fw_obj->init)
1286 		fw_obj->init(cpu_ptr, fw_obj->init_priv);
1287 
1288 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1289 	list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list);
1290 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1291 
1292 	return cpu_ptr;
1293 
1294 err_put_object:
1295 	pvr_fw_object_destroy(fw_obj);
1296 
1297 	return ERR_PTR(err);
1298 }
1299 
1300 /**
1301  * pvr_fw_object_create() - Create a FW object and map to firmware
1302  * @pvr_dev: PowerVR device pointer.
1303  * @size: Size of object, in bytes.
1304  * @flags: Options which affect both this operation and future mapping
1305  * operations performed on the returned object. Must be a combination of
1306  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1307  * @init: Initialisation callback.
1308  * @init_priv: Private pointer to pass to initialisation callback.
1309  * @fw_obj_out: Pointer to location to store created object pointer.
1310  *
1311  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1312  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1313  * set.
1314  *
1315  * Returns:
1316  *  * 0 on success, or
1317  *  * Any error returned by pvr_fw_object_create_common().
1318  */
1319 int
1320 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags,
1321 		     void (*init)(void *cpu_ptr, void *priv), void *init_priv,
1322 		     struct pvr_fw_object **fw_obj_out)
1323 {
1324 	void *cpu_ptr;
1325 
1326 	cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1327 						      fw_obj_out);
1328 	if (IS_ERR(cpu_ptr))
1329 		return PTR_ERR(cpu_ptr);
1330 
1331 	pvr_fw_object_vunmap(*fw_obj_out);
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU
1338  * @pvr_dev: PowerVR device pointer.
1339  * @size: Size of object, in bytes.
1340  * @flags: Options which affect both this operation and future mapping
1341  * operations performed on the returned object. Must be a combination of
1342  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1343  * @init: Initialisation callback.
1344  * @init_priv: Private pointer to pass to initialisation callback.
1345  * @fw_obj_out: Pointer to location to store created object pointer.
1346  *
1347  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1348  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1349  * set.
1350  *
1351  * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1352  * mapping.
1353  *
1354  * Returns:
1355  *  * Pointer to CPU mapping of newly created object, or
1356  *  * Any error returned by pvr_fw_object_create(), or
1357  *  * Any error returned by pvr_fw_object_vmap().
1358  */
1359 void *
1360 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags,
1361 			     void (*init)(void *cpu_ptr, void *priv),
1362 			     void *init_priv, struct pvr_fw_object **fw_obj_out)
1363 {
1364 	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv,
1365 						   fw_obj_out);
1366 }
1367 
1368 /**
1369  * pvr_fw_object_create_and_map_offset() - Create a FW object and map to
1370  * firmware at the provided offset and to the CPU.
1371  * @pvr_dev: PowerVR device pointer.
1372  * @dev_offset: Base address of desired FW mapping, offset from start of FW heap.
1373  * @size: Size of object, in bytes.
1374  * @flags: Options which affect both this operation and future mapping
1375  * operations performed on the returned object. Must be a combination of
1376  * DRM_PVR_BO_* and/or PVR_BO_* flags.
1377  * @init: Initialisation callback.
1378  * @init_priv: Private pointer to pass to initialisation callback.
1379  * @fw_obj_out: Pointer to location to store created object pointer.
1380  *
1381  * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently,
1382  * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS
1383  * set.
1384  *
1385  * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU
1386  * mapping.
1387  *
1388  * Returns:
1389  *  * Pointer to CPU mapping of newly created object, or
1390  *  * Any error returned by pvr_fw_object_create(), or
1391  *  * Any error returned by pvr_fw_object_vmap().
1392  */
1393 void *
1394 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev,
1395 				    u32 dev_offset, size_t size, u64 flags,
1396 				    void (*init)(void *cpu_ptr, void *priv),
1397 				    void *init_priv, struct pvr_fw_object **fw_obj_out)
1398 {
1399 	u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset;
1400 
1401 	return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv,
1402 						   fw_obj_out);
1403 }
1404 
1405 /**
1406  * pvr_fw_object_destroy() - Destroy a pvr_fw_object
1407  * @fw_obj: Pointer to object to destroy.
1408  */
1409 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj)
1410 {
1411 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1412 	struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj);
1413 	struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev);
1414 
1415 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1416 	list_del(&fw_obj->node);
1417 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1418 
1419 	if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) {
1420 		/* If we can't unmap, leak the memory. */
1421 		if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj)))
1422 			return;
1423 	}
1424 
1425 	if (fw_obj->gem)
1426 		pvr_gem_object_put(fw_obj->gem);
1427 
1428 	kfree(fw_obj);
1429 }
1430 
1431 /**
1432  * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with
1433  * given offset.
1434  * @fw_obj: Pointer to object.
1435  * @offset: Desired offset from start of object.
1436  * @fw_addr_out: Location to store address to.
1437  */
1438 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out)
1439 {
1440 	struct pvr_gem_object *pvr_obj = fw_obj->gem;
1441 	struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev);
1442 
1443 	*fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset);
1444 }
1445 
1446 /*
1447  * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW
1448  *                       structures
1449  * @pvr_dev: Device pointer
1450  *
1451  * If this function returns an error then the caller must regard the device as lost.
1452  *
1453  * Returns:
1454  *  * 0 on success, or
1455  *  * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all().
1456  */
1457 int
1458 pvr_fw_hard_reset(struct pvr_device *pvr_dev)
1459 {
1460 	struct list_head *pos;
1461 	int err;
1462 
1463 	/* Reset all FW objects */
1464 	mutex_lock(&pvr_dev->fw_dev.fw_objs.lock);
1465 
1466 	list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) {
1467 		struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node);
1468 		void *cpu_ptr = pvr_fw_object_vmap(fw_obj);
1469 
1470 		WARN_ON(IS_ERR(cpu_ptr));
1471 
1472 		if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) {
1473 			memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem));
1474 
1475 			if (fw_obj->init)
1476 				fw_obj->init(cpu_ptr, fw_obj->init_priv);
1477 		}
1478 
1479 		pvr_fw_object_vunmap(fw_obj);
1480 	}
1481 
1482 	mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock);
1483 
1484 	err = pvr_fw_reinit_code_data(pvr_dev);
1485 	if (err)
1486 		return err;
1487 
1488 	return 0;
1489 }
1490