1 // SPDX-License-Identifier: GPL-2.0-only OR MIT 2 /* Copyright (c) 2023 Imagination Technologies Ltd. */ 3 4 #include "pvr_ccb.h" 5 #include "pvr_device.h" 6 #include "pvr_device_info.h" 7 #include "pvr_fw.h" 8 #include "pvr_fw_info.h" 9 #include "pvr_fw_startstop.h" 10 #include "pvr_fw_trace.h" 11 #include "pvr_gem.h" 12 #include "pvr_power.h" 13 #include "pvr_rogue_fwif_dev_info.h" 14 #include "pvr_rogue_heap_config.h" 15 #include "pvr_vm.h" 16 17 #include <drm/drm_drv.h> 18 #include <drm/drm_managed.h> 19 #include <drm/drm_mm.h> 20 #include <linux/clk.h> 21 #include <linux/firmware.h> 22 #include <linux/math.h> 23 #include <linux/minmax.h> 24 #include <linux/sizes.h> 25 26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1 27 28 #define FW_BOOT_TIMEOUT_USEC 5000000 29 30 /* Config heap occupies top 192k of the firmware heap. */ 31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K 32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 33 34 /* Main firmware allocations should come from the remainder of the heap. */ 35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE 36 37 /* Offsets from start of configuration area of FW heap. */ 38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0 39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \ 40 (PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \ 42 (PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 43 44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K 45 46 #define PVR_SYNC_OBJ_SIZE sizeof(u32) 47 48 const struct pvr_fw_layout_entry * 49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id) 50 { 51 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 52 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 53 u32 entry; 54 55 for (entry = 0; entry < num_layout_entries; entry++) { 56 if (layout_entries[entry].id == id) 57 return &layout_entries[entry]; 58 } 59 60 return NULL; 61 } 62 63 static const struct pvr_fw_layout_entry * 64 pvr_fw_find_private_data(struct pvr_device *pvr_dev) 65 { 66 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 67 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 68 u32 entry; 69 70 for (entry = 0; entry < num_layout_entries; entry++) { 71 if (layout_entries[entry].id == META_PRIVATE_DATA || 72 layout_entries[entry].id == MIPS_PRIVATE_DATA || 73 layout_entries[entry].id == RISCV_PRIVATE_DATA) 74 return &layout_entries[entry]; 75 } 76 77 return NULL; 78 } 79 80 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64) 81 82 /** 83 * pvr_fw_validate() - Parse firmware header and check compatibility 84 * @pvr_dev: Device pointer. 85 * 86 * Returns: 87 * * 0 on success, or 88 * * -EINVAL if firmware is incompatible. 89 */ 90 static int 91 pvr_fw_validate(struct pvr_device *pvr_dev) 92 { 93 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 94 const struct firmware *firmware = pvr_dev->fw_dev.firmware; 95 const struct pvr_fw_layout_entry *layout_entries; 96 const struct pvr_fw_info_header *header; 97 const u8 *fw = firmware->data; 98 u32 fw_offset = firmware->size - SZ_4K; 99 u32 layout_table_size; 100 u32 entry; 101 102 if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE)) 103 return -EINVAL; 104 105 header = (const struct pvr_fw_info_header *)&fw[fw_offset]; 106 107 if (header->info_version != PVR_FW_INFO_VERSION) { 108 drm_err(drm_dev, "Unsupported fw info version %u\n", 109 header->info_version); 110 return -EINVAL; 111 } 112 113 if (header->header_len != sizeof(struct pvr_fw_info_header) || 114 header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) || 115 header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) { 116 drm_err(drm_dev, "FW info format mismatch\n"); 117 return -EINVAL; 118 } 119 120 if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) || 121 header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION || 122 header->fw_version_major == 0) { 123 drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n", 124 header->fw_version_major, header->fw_version_minor, 125 header->fw_version_build, 126 (header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : ""); 127 return -EINVAL; 128 } 129 130 if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) { 131 struct pvr_gpu_id fw_gpu_id; 132 133 packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id); 134 drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n", 135 fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c, 136 pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c); 137 return -EINVAL; 138 } 139 140 fw_offset += header->header_len; 141 layout_table_size = 142 header->layout_entry_size * header->layout_entry_num; 143 if ((fw_offset + layout_table_size) > firmware->size) 144 return -EINVAL; 145 146 layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset]; 147 for (entry = 0; entry < header->layout_entry_num; entry++) { 148 u32 start_addr = layout_entries[entry].base_addr; 149 u32 end_addr = start_addr + layout_entries[entry].alloc_size; 150 151 if (start_addr >= end_addr) 152 return -EINVAL; 153 } 154 155 fw_offset = (firmware->size - SZ_4K) - header->device_info_size; 156 157 drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major, 158 header->fw_version_minor, header->fw_version_build); 159 160 pvr_dev->fw_version.major = header->fw_version_major; 161 pvr_dev->fw_version.minor = header->fw_version_minor; 162 163 pvr_dev->fw_dev.header = header; 164 pvr_dev->fw_dev.layout_entries = layout_entries; 165 166 return 0; 167 } 168 169 static int 170 pvr_fw_get_device_info(struct pvr_device *pvr_dev) 171 { 172 const struct firmware *firmware = pvr_dev->fw_dev.firmware; 173 struct pvr_fw_device_info_header *header; 174 const u8 *fw = firmware->data; 175 const u64 *dev_info; 176 u32 fw_offset; 177 178 fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size; 179 180 header = (struct pvr_fw_device_info_header *)&fw[fw_offset]; 181 dev_info = (u64 *)(header + 1); 182 183 pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size); 184 dev_info += header->brn_mask_size; 185 186 pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size); 187 dev_info += header->ern_mask_size; 188 189 return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size, 190 header->feature_param_size); 191 } 192 193 static void 194 layout_get_sizes(struct pvr_device *pvr_dev) 195 { 196 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 197 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 198 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 199 200 fw_mem->code_alloc_size = 0; 201 fw_mem->data_alloc_size = 0; 202 fw_mem->core_code_alloc_size = 0; 203 fw_mem->core_data_alloc_size = 0; 204 205 /* Extract section sizes from FW layout table. */ 206 for (u32 entry = 0; entry < num_layout_entries; entry++) { 207 switch (layout_entries[entry].type) { 208 case FW_CODE: 209 fw_mem->code_alloc_size += layout_entries[entry].alloc_size; 210 break; 211 case FW_DATA: 212 fw_mem->data_alloc_size += layout_entries[entry].alloc_size; 213 break; 214 case FW_COREMEM_CODE: 215 fw_mem->core_code_alloc_size += 216 layout_entries[entry].alloc_size; 217 break; 218 case FW_COREMEM_DATA: 219 fw_mem->core_data_alloc_size += 220 layout_entries[entry].alloc_size; 221 break; 222 case NONE: 223 break; 224 } 225 } 226 } 227 228 int 229 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr, 230 void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr, 231 void **host_addr_out) 232 { 233 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 234 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 235 u32 end_addr = addr + size; 236 int entry = 0; 237 238 /* Ensure requested range is not zero, and size is not causing addr to overflow. */ 239 if (end_addr <= addr) 240 return -EINVAL; 241 242 for (entry = 0; entry < num_layout_entries; entry++) { 243 u32 entry_start_addr = layout_entries[entry].base_addr; 244 u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size; 245 246 if (addr >= entry_start_addr && addr < entry_end_addr && 247 end_addr > entry_start_addr && end_addr <= entry_end_addr) { 248 switch (layout_entries[entry].type) { 249 case FW_CODE: 250 *host_addr_out = fw_code_ptr; 251 break; 252 253 case FW_DATA: 254 *host_addr_out = fw_data_ptr; 255 break; 256 257 case FW_COREMEM_CODE: 258 *host_addr_out = fw_core_code_ptr; 259 break; 260 261 case FW_COREMEM_DATA: 262 *host_addr_out = fw_core_data_ptr; 263 break; 264 265 default: 266 return -EINVAL; 267 } 268 /* Direct Mem write to mapped memory */ 269 addr -= layout_entries[entry].base_addr; 270 addr += layout_entries[entry].alloc_offset; 271 272 /* 273 * Add offset to pointer to FW allocation only if that 274 * allocation is available 275 */ 276 *(u8 **)host_addr_out += addr; 277 return 0; 278 } 279 } 280 281 return -EINVAL; 282 } 283 284 static int 285 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev) 286 { 287 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 288 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 289 290 fw_dev->fwif_connection_ctl = 291 pvr_fw_object_create_and_map_offset(pvr_dev, 292 fw_dev->fw_heap_info.config_offset + 293 PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET, 294 sizeof(*fw_dev->fwif_connection_ctl), 295 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 296 NULL, NULL, 297 &fw_dev->mem.fwif_connection_ctl_obj); 298 if (IS_ERR(fw_dev->fwif_connection_ctl)) { 299 drm_err(drm_dev, 300 "Unable to allocate FWIF connection control memory\n"); 301 return PTR_ERR(fw_dev->fwif_connection_ctl); 302 } 303 304 return 0; 305 } 306 307 static void 308 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev) 309 { 310 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 311 312 pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj); 313 } 314 315 static void 316 fw_osinit_init(void *cpu_ptr, void *priv) 317 { 318 struct rogue_fwif_osinit *fwif_osinit = cpu_ptr; 319 struct pvr_device *pvr_dev = priv; 320 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 321 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 322 323 fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr; 324 fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr; 325 pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj, 326 &fwif_osinit->kernel_ccb_rtn_slots_fw_addr); 327 328 fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr; 329 fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr; 330 331 fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0; 332 fwif_osinit->work_est_firmware_ccb_fw_addr = 0; 333 334 pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj, 335 &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr); 336 pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr); 337 338 fwif_osinit->hwr_debug_dump_limit = 0; 339 340 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc); 341 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc); 342 } 343 344 static void 345 fw_osdata_init(void *cpu_ptr, void *priv) 346 { 347 struct rogue_fwif_osdata *fwif_osdata = cpu_ptr; 348 struct pvr_device *pvr_dev = priv; 349 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 350 351 pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr); 352 } 353 354 static void 355 fw_fault_page_init(void *cpu_ptr, void *priv) 356 { 357 u32 *fault_page = cpu_ptr; 358 359 for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++) 360 fault_page[i] = 0xdeadbee0; 361 } 362 363 static void 364 fw_sysinit_init(void *cpu_ptr, void *priv) 365 { 366 struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr; 367 struct pvr_device *pvr_dev = priv; 368 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 369 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 370 dma_addr_t fault_dma_addr = 0; 371 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); 372 373 WARN_ON(!clock_speed_hz); 374 375 WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr)); 376 fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr; 377 378 fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE; 379 fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE; 380 381 pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr); 382 pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj, 383 &fwif_sysinit->trace_buf_ctl_fw_addr); 384 pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr); 385 pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj, 386 &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr); 387 if (fw_mem->core_data_obj) { 388 pvr_fw_object_get_fw_addr(fw_mem->core_data_obj, 389 &fwif_sysinit->coremem_data_store.fw_addr); 390 } 391 392 /* Currently unsupported. */ 393 fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0; 394 fwif_sysinit->counter_dump_ctl.size_in_dwords = 0; 395 396 /* Skip alignment checks. */ 397 fwif_sysinit->align_checks = 0; 398 399 fwif_sysinit->filter_flags = 0; 400 fwif_sysinit->hw_perf_filter = 0; 401 fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE; 402 fwif_sysinit->initial_core_clock_speed = clock_speed_hz; 403 fwif_sysinit->active_pm_latency_ms = 0; 404 fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF; 405 fwif_sysinit->firmware_started = false; 406 fwif_sysinit->marker_val = 1; 407 408 memset(&fwif_sysinit->bvnc_km_feature_flags, 0, 409 sizeof(fwif_sysinit->bvnc_km_feature_flags)); 410 } 411 412 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4 413 414 static void 415 fw_sysdata_init(void *cpu_ptr, void *priv) 416 { 417 struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr; 418 struct pvr_device *pvr_dev = priv; 419 u32 slc_size_in_kilobytes = 0; 420 u32 config_flags = 0; 421 422 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes)); 423 424 if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB) 425 config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP; 426 427 fwif_sysdata->config_flags = config_flags; 428 } 429 430 static void 431 fw_runtime_cfg_init(void *cpu_ptr, void *priv) 432 { 433 struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr; 434 struct pvr_device *pvr_dev = priv; 435 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); 436 437 WARN_ON(!clock_speed_hz); 438 439 runtime_cfg->core_clock_speed = clock_speed_hz; 440 runtime_cfg->active_pm_latency_ms = 0; 441 runtime_cfg->active_pm_latency_persistant = true; 442 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters, 443 &runtime_cfg->default_dusts_num_init) != 0); 444 } 445 446 static void 447 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv) 448 { 449 struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr; 450 451 gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE; 452 } 453 454 static int 455 pvr_fw_create_structures(struct pvr_device *pvr_dev) 456 { 457 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 458 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 459 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 460 int err; 461 462 fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync), 463 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 464 NULL, NULL, &fw_mem->power_sync_obj); 465 if (IS_ERR(fw_dev->power_sync)) { 466 drm_err(drm_dev, "Unable to allocate FW power_sync structure\n"); 467 return PTR_ERR(fw_dev->power_sync); 468 } 469 470 fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf), 471 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 472 NULL, NULL, &fw_mem->hwrinfobuf_obj); 473 if (IS_ERR(fw_dev->hwrinfobuf)) { 474 drm_err(drm_dev, 475 "Unable to allocate FW hwrinfobuf structure\n"); 476 err = PTR_ERR(fw_dev->hwrinfobuf); 477 goto err_release_power_sync; 478 } 479 480 err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE, 481 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 482 NULL, NULL, &fw_mem->mmucache_sync_obj); 483 if (err) { 484 drm_err(drm_dev, 485 "Unable to allocate MMU cache sync object\n"); 486 goto err_release_hwrinfobuf; 487 } 488 489 fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev, 490 sizeof(*fw_dev->fwif_sysdata), 491 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 492 fw_sysdata_init, pvr_dev, 493 &fw_mem->sysdata_obj); 494 if (IS_ERR(fw_dev->fwif_sysdata)) { 495 drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n"); 496 err = PTR_ERR(fw_dev->fwif_sysdata); 497 goto err_release_mmucache_sync_obj; 498 } 499 500 err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE, 501 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 502 fw_fault_page_init, NULL, &fw_mem->fault_page_obj); 503 if (err) { 504 drm_err(drm_dev, "Unable to allocate FW fault page\n"); 505 goto err_release_sysdata; 506 } 507 508 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb), 509 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 510 fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj); 511 if (err) { 512 drm_err(drm_dev, "Unable to allocate GPU util FWCB\n"); 513 goto err_release_fault_page; 514 } 515 516 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg), 517 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 518 fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj); 519 if (err) { 520 drm_err(drm_dev, "Unable to allocate FW runtime config\n"); 521 goto err_release_gpu_util_fwcb; 522 } 523 524 err = pvr_fw_trace_init(pvr_dev); 525 if (err) 526 goto err_release_runtime_cfg; 527 528 fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev, 529 sizeof(*fw_dev->fwif_osdata), 530 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 531 fw_osdata_init, pvr_dev, 532 &fw_mem->osdata_obj); 533 if (IS_ERR(fw_dev->fwif_osdata)) { 534 drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n"); 535 err = PTR_ERR(fw_dev->fwif_osdata); 536 goto err_fw_trace_fini; 537 } 538 539 fw_dev->fwif_osinit = 540 pvr_fw_object_create_and_map_offset(pvr_dev, 541 fw_dev->fw_heap_info.config_offset + 542 PVR_ROGUE_FWIF_OSINIT_OFFSET, 543 sizeof(*fw_dev->fwif_osinit), 544 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 545 fw_osinit_init, pvr_dev, &fw_mem->osinit_obj); 546 if (IS_ERR(fw_dev->fwif_osinit)) { 547 drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n"); 548 err = PTR_ERR(fw_dev->fwif_osinit); 549 goto err_release_osdata; 550 } 551 552 fw_dev->fwif_sysinit = 553 pvr_fw_object_create_and_map_offset(pvr_dev, 554 fw_dev->fw_heap_info.config_offset + 555 PVR_ROGUE_FWIF_SYSINIT_OFFSET, 556 sizeof(*fw_dev->fwif_sysinit), 557 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 558 fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj); 559 if (IS_ERR(fw_dev->fwif_sysinit)) { 560 drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n"); 561 err = PTR_ERR(fw_dev->fwif_sysinit); 562 goto err_release_osinit; 563 } 564 565 return 0; 566 567 err_release_osinit: 568 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); 569 570 err_release_osdata: 571 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); 572 573 err_fw_trace_fini: 574 pvr_fw_trace_fini(pvr_dev); 575 576 err_release_runtime_cfg: 577 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); 578 579 err_release_gpu_util_fwcb: 580 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); 581 582 err_release_fault_page: 583 pvr_fw_object_destroy(fw_mem->fault_page_obj); 584 585 err_release_sysdata: 586 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); 587 588 err_release_mmucache_sync_obj: 589 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); 590 591 err_release_hwrinfobuf: 592 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); 593 594 err_release_power_sync: 595 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); 596 597 return err; 598 } 599 600 static void 601 pvr_fw_destroy_structures(struct pvr_device *pvr_dev) 602 { 603 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 604 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 605 606 pvr_fw_trace_fini(pvr_dev); 607 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); 608 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); 609 pvr_fw_object_destroy(fw_mem->fault_page_obj); 610 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); 611 pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj); 612 613 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); 614 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); 615 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); 616 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); 617 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); 618 } 619 620 /** 621 * pvr_fw_process() - Process firmware image, allocate FW memory and create boot 622 * arguments 623 * @pvr_dev: Device pointer. 624 * 625 * Returns: 626 * * 0 on success, or 627 * * Any error returned by pvr_fw_object_create_and_map_offset(), or 628 * * Any error returned by pvr_fw_object_create_and_map(). 629 */ 630 static int 631 pvr_fw_process(struct pvr_device *pvr_dev) 632 { 633 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 634 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 635 const u8 *fw = pvr_dev->fw_dev.firmware->data; 636 const struct pvr_fw_layout_entry *private_data; 637 u8 *fw_code_ptr; 638 u8 *fw_data_ptr; 639 u8 *fw_core_code_ptr; 640 u8 *fw_core_data_ptr; 641 int err; 642 643 layout_get_sizes(pvr_dev); 644 645 private_data = pvr_fw_find_private_data(pvr_dev); 646 if (!private_data) 647 return -EINVAL; 648 649 /* Allocate and map memory for firmware sections. */ 650 651 /* 652 * Code allocation must be at the start of the firmware heap, otherwise 653 * firmware processor will be unable to boot. 654 * 655 * This has the useful side-effect that for every other object in the 656 * driver, a firmware address of 0 is invalid. 657 */ 658 fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size, 659 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 660 NULL, NULL, &fw_mem->code_obj); 661 if (IS_ERR(fw_code_ptr)) { 662 drm_err(drm_dev, "Unable to allocate FW code memory\n"); 663 return PTR_ERR(fw_code_ptr); 664 } 665 666 if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) { 667 u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask; 668 669 fw_data_ptr = 670 pvr_fw_object_create_and_map_offset(pvr_dev, base_addr, 671 fw_mem->data_alloc_size, 672 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 673 NULL, NULL, &fw_mem->data_obj); 674 } else { 675 fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size, 676 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 677 NULL, NULL, &fw_mem->data_obj); 678 } 679 if (IS_ERR(fw_data_ptr)) { 680 drm_err(drm_dev, "Unable to allocate FW data memory\n"); 681 err = PTR_ERR(fw_data_ptr); 682 goto err_free_fw_code_obj; 683 } 684 685 /* Core code and data sections are optional. */ 686 if (fw_mem->core_code_alloc_size) { 687 fw_core_code_ptr = 688 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size, 689 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 690 NULL, NULL, &fw_mem->core_code_obj); 691 if (IS_ERR(fw_core_code_ptr)) { 692 drm_err(drm_dev, 693 "Unable to allocate FW core code memory\n"); 694 err = PTR_ERR(fw_core_code_ptr); 695 goto err_free_fw_data_obj; 696 } 697 } else { 698 fw_core_code_ptr = NULL; 699 } 700 701 if (fw_mem->core_data_alloc_size) { 702 fw_core_data_ptr = 703 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size, 704 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 705 NULL, NULL, &fw_mem->core_data_obj); 706 if (IS_ERR(fw_core_data_ptr)) { 707 drm_err(drm_dev, 708 "Unable to allocate FW core data memory\n"); 709 err = PTR_ERR(fw_core_data_ptr); 710 goto err_free_fw_core_code_obj; 711 } 712 } else { 713 fw_core_data_ptr = NULL; 714 } 715 716 fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL); 717 fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL); 718 if (fw_mem->core_code_alloc_size) 719 fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL); 720 if (fw_mem->core_data_alloc_size) 721 fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL); 722 723 if (!fw_mem->code || !fw_mem->data || 724 (!fw_mem->core_code && fw_mem->core_code_alloc_size) || 725 (!fw_mem->core_data && fw_mem->core_data_alloc_size)) { 726 err = -ENOMEM; 727 goto err_free_kdata; 728 } 729 730 err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw, 731 fw_mem->code, fw_mem->data, fw_mem->core_code, 732 fw_mem->core_data, fw_mem->core_code_alloc_size); 733 734 if (err) 735 goto err_free_kdata; 736 737 memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size); 738 memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size); 739 if (fw_mem->core_code) 740 memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size); 741 if (fw_mem->core_data) 742 memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size); 743 744 /* We're finished with the firmware section memory on the CPU, unmap. */ 745 if (fw_core_data_ptr) { 746 pvr_fw_object_vunmap(fw_mem->core_data_obj); 747 fw_core_data_ptr = NULL; 748 } 749 if (fw_core_code_ptr) { 750 pvr_fw_object_vunmap(fw_mem->core_code_obj); 751 fw_core_code_ptr = NULL; 752 } 753 pvr_fw_object_vunmap(fw_mem->data_obj); 754 fw_data_ptr = NULL; 755 pvr_fw_object_vunmap(fw_mem->code_obj); 756 fw_code_ptr = NULL; 757 758 err = pvr_fw_create_fwif_connection_ctl(pvr_dev); 759 if (err) 760 goto err_free_kdata; 761 762 return 0; 763 764 err_free_kdata: 765 kfree(fw_mem->core_data); 766 kfree(fw_mem->core_code); 767 kfree(fw_mem->data); 768 kfree(fw_mem->code); 769 770 if (fw_core_data_ptr) 771 pvr_fw_object_vunmap(fw_mem->core_data_obj); 772 if (fw_mem->core_data_obj) 773 pvr_fw_object_destroy(fw_mem->core_data_obj); 774 775 err_free_fw_core_code_obj: 776 if (fw_core_code_ptr) 777 pvr_fw_object_vunmap(fw_mem->core_code_obj); 778 if (fw_mem->core_code_obj) 779 pvr_fw_object_destroy(fw_mem->core_code_obj); 780 781 err_free_fw_data_obj: 782 if (fw_data_ptr) 783 pvr_fw_object_vunmap(fw_mem->data_obj); 784 pvr_fw_object_destroy(fw_mem->data_obj); 785 786 err_free_fw_code_obj: 787 if (fw_code_ptr) 788 pvr_fw_object_vunmap(fw_mem->code_obj); 789 pvr_fw_object_destroy(fw_mem->code_obj); 790 791 return err; 792 } 793 794 static int 795 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size) 796 { 797 u8 *dest_ptr = pvr_fw_object_vmap(dest_obj); 798 799 if (IS_ERR(dest_ptr)) 800 return PTR_ERR(dest_ptr); 801 802 memcpy(dest_ptr, src_ptr, size); 803 804 pvr_fw_object_vunmap(dest_obj); 805 806 return 0; 807 } 808 809 static int 810 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev) 811 { 812 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 813 int err; 814 815 err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size); 816 if (err) 817 return err; 818 819 err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size); 820 if (err) 821 return err; 822 823 if (fw_mem->core_code) { 824 err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code, 825 fw_mem->core_code_alloc_size); 826 if (err) 827 return err; 828 } 829 830 if (fw_mem->core_data) { 831 err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data, 832 fw_mem->core_data_alloc_size); 833 if (err) 834 return err; 835 } 836 837 return 0; 838 } 839 840 static void 841 pvr_fw_cleanup(struct pvr_device *pvr_dev) 842 { 843 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 844 845 pvr_fw_fini_fwif_connection_ctl(pvr_dev); 846 847 kfree(fw_mem->core_data); 848 kfree(fw_mem->core_code); 849 kfree(fw_mem->data); 850 kfree(fw_mem->code); 851 852 if (fw_mem->core_code_obj) 853 pvr_fw_object_destroy(fw_mem->core_code_obj); 854 if (fw_mem->core_data_obj) 855 pvr_fw_object_destroy(fw_mem->core_data_obj); 856 pvr_fw_object_destroy(fw_mem->code_obj); 857 pvr_fw_object_destroy(fw_mem->data_obj); 858 } 859 860 /** 861 * pvr_wait_for_fw_boot() - Wait for firmware to finish booting 862 * @pvr_dev: Target PowerVR device. 863 * 864 * Returns: 865 * * 0 on success, or 866 * * -%ETIMEDOUT if firmware fails to boot within timeout. 867 */ 868 int 869 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev) 870 { 871 ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC); 872 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 873 874 while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) { 875 if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started)) 876 return 0; 877 } 878 879 return -ETIMEDOUT; 880 } 881 882 /* 883 * pvr_fw_heap_info_init() - Calculate size and masks for FW heap 884 * @pvr_dev: Target PowerVR device. 885 * @log2_size: Log2 of raw heap size. 886 * @reserved_size: Size of reserved area of heap, in bytes. May be zero. 887 */ 888 void 889 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size) 890 { 891 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 892 893 fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE; 894 fw_dev->fw_heap_info.log2_size = log2_size; 895 fw_dev->fw_heap_info.reserved_size = reserved_size; 896 fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size; 897 fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1; 898 fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size - 899 PVR_ROGUE_FW_CONFIG_HEAP_SIZE; 900 fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size - 901 (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size); 902 } 903 904 /** 905 * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information 906 * @pvr_dev: Target PowerVR device. 907 * 908 * This function must be called before querying device information. 909 * 910 * Returns: 911 * * 0 on success, or 912 * * -%EINVAL if firmware validation fails. 913 */ 914 int 915 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev) 916 { 917 int err; 918 919 err = pvr_fw_validate(pvr_dev); 920 if (err) 921 return err; 922 923 return pvr_fw_get_device_info(pvr_dev); 924 } 925 926 /** 927 * pvr_fw_init() - Initialise and boot firmware 928 * @pvr_dev: Target PowerVR device 929 * 930 * On successful completion of the function the PowerVR device will be 931 * initialised and ready to use. 932 * 933 * Returns: 934 * * 0 on success, 935 * * -%EINVAL on invalid firmware image, 936 * * -%ENOMEM on out of memory, or 937 * * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout. 938 */ 939 int 940 pvr_fw_init(struct pvr_device *pvr_dev) 941 { 942 u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT; 943 u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn); 944 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 945 int err; 946 947 if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META) 948 fw_dev->defs = &pvr_fw_defs_meta; 949 else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS) 950 fw_dev->defs = &pvr_fw_defs_mips; 951 else 952 return -EINVAL; 953 954 err = fw_dev->defs->init(pvr_dev); 955 if (err) 956 return err; 957 958 drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size); 959 fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE; 960 spin_lock_init(&fw_dev->fw_mm_lock); 961 962 INIT_LIST_HEAD(&fw_dev->fw_objs.list); 963 err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock); 964 if (err) 965 goto err_mm_takedown; 966 967 err = pvr_fw_process(pvr_dev); 968 if (err) 969 goto err_mm_takedown; 970 971 /* Initialise KCCB and FWCCB. */ 972 err = pvr_kccb_init(pvr_dev); 973 if (err) 974 goto err_fw_cleanup; 975 976 err = pvr_fwccb_init(pvr_dev); 977 if (err) 978 goto err_kccb_fini; 979 980 /* Allocate memory for KCCB return slots. */ 981 pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size, 982 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 983 NULL, NULL, &pvr_dev->kccb.rtn_obj); 984 if (IS_ERR(pvr_dev->kccb.rtn)) { 985 err = PTR_ERR(pvr_dev->kccb.rtn); 986 goto err_fwccb_fini; 987 } 988 989 err = pvr_fw_create_structures(pvr_dev); 990 if (err) 991 goto err_kccb_rtn_release; 992 993 err = pvr_fw_start(pvr_dev); 994 if (err) 995 goto err_destroy_structures; 996 997 err = pvr_wait_for_fw_boot(pvr_dev); 998 if (err) { 999 drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n"); 1000 goto err_fw_stop; 1001 } 1002 1003 fw_dev->booted = true; 1004 1005 return 0; 1006 1007 err_fw_stop: 1008 pvr_fw_stop(pvr_dev); 1009 1010 err_destroy_structures: 1011 pvr_fw_destroy_structures(pvr_dev); 1012 1013 err_kccb_rtn_release: 1014 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); 1015 1016 err_fwccb_fini: 1017 pvr_ccb_fini(&pvr_dev->fwccb); 1018 1019 err_kccb_fini: 1020 pvr_kccb_fini(pvr_dev); 1021 1022 err_fw_cleanup: 1023 pvr_fw_cleanup(pvr_dev); 1024 1025 err_mm_takedown: 1026 drm_mm_takedown(&fw_dev->fw_mm); 1027 1028 if (fw_dev->defs->fini) 1029 fw_dev->defs->fini(pvr_dev); 1030 1031 return err; 1032 } 1033 1034 /** 1035 * pvr_fw_fini() - Shutdown firmware processor and free associated memory 1036 * @pvr_dev: Target PowerVR device 1037 */ 1038 void 1039 pvr_fw_fini(struct pvr_device *pvr_dev) 1040 { 1041 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1042 1043 fw_dev->booted = false; 1044 1045 pvr_fw_destroy_structures(pvr_dev); 1046 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); 1047 1048 /* 1049 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has 1050 * been unregistered at this point so no new work should be being submitted. 1051 */ 1052 pvr_ccb_fini(&pvr_dev->fwccb); 1053 pvr_kccb_fini(pvr_dev); 1054 pvr_fw_cleanup(pvr_dev); 1055 1056 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1057 WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list)); 1058 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1059 1060 drm_mm_takedown(&fw_dev->fw_mm); 1061 1062 if (fw_dev->defs->fini) 1063 fw_dev->defs->fini(pvr_dev); 1064 } 1065 1066 /** 1067 * pvr_fw_mts_schedule() - Schedule work via an MTS kick 1068 * @pvr_dev: Target PowerVR device 1069 * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_* 1070 */ 1071 void 1072 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val) 1073 { 1074 /* Ensure memory is flushed before kicking MTS. */ 1075 wmb(); 1076 1077 pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val); 1078 1079 /* Ensure the MTS kick goes through before continuing. */ 1080 mb(); 1081 } 1082 1083 /** 1084 * pvr_fw_structure_cleanup() - Send FW cleanup request for an object 1085 * @pvr_dev: Target PowerVR device. 1086 * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type. 1087 * @fw_obj: Pointer to FW object containing object to cleanup. 1088 * @offset: Offset within FW object of object to cleanup. 1089 * 1090 * Returns: 1091 * * 0 on success, 1092 * * -EBUSY if object is busy, 1093 * * -ETIMEDOUT on timeout, or 1094 * * -EIO if device is lost. 1095 */ 1096 int 1097 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj, 1098 u32 offset) 1099 { 1100 struct rogue_fwif_kccb_cmd cmd; 1101 int slot_nr; 1102 int idx; 1103 int err; 1104 u32 rtn; 1105 1106 struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data; 1107 1108 down_read(&pvr_dev->reset_sem); 1109 1110 if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) { 1111 err = -EIO; 1112 goto err_up_read; 1113 } 1114 1115 cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP; 1116 cmd.kccb_flags = 0; 1117 cleanup_req->cleanup_type = type; 1118 1119 switch (type) { 1120 case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT: 1121 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1122 &cleanup_req->cleanup_data.context_fw_addr); 1123 break; 1124 case ROGUE_FWIF_CLEANUP_HWRTDATA: 1125 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1126 &cleanup_req->cleanup_data.hwrt_data_fw_addr); 1127 break; 1128 case ROGUE_FWIF_CLEANUP_FREELIST: 1129 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1130 &cleanup_req->cleanup_data.freelist_fw_addr); 1131 break; 1132 default: 1133 err = -EINVAL; 1134 goto err_drm_dev_exit; 1135 } 1136 1137 err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr); 1138 if (err) 1139 goto err_drm_dev_exit; 1140 1141 err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn); 1142 if (err) 1143 goto err_drm_dev_exit; 1144 1145 if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY) 1146 err = -EBUSY; 1147 1148 err_drm_dev_exit: 1149 drm_dev_exit(idx); 1150 1151 err_up_read: 1152 up_read(&pvr_dev->reset_sem); 1153 1154 return err; 1155 } 1156 1157 /** 1158 * pvr_fw_object_fw_map() - Map a FW object in firmware address space 1159 * @pvr_dev: Device pointer. 1160 * @fw_obj: FW object to map. 1161 * @dev_addr: Desired address in device space, if a specific address is 1162 * required. 0 otherwise. 1163 * 1164 * Returns: 1165 * * 0 on success, or 1166 * * -%EINVAL if @fw_obj is already mapped but has no references, or 1167 * * Any error returned by DRM. 1168 */ 1169 static int 1170 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr) 1171 { 1172 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1173 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1174 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1175 1176 int err; 1177 1178 spin_lock(&fw_dev->fw_mm_lock); 1179 1180 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1181 err = -EINVAL; 1182 goto err_unlock; 1183 } 1184 1185 if (!dev_addr) { 1186 /* 1187 * Allocate from the main heap only (firmware heap minus 1188 * config space). 1189 */ 1190 err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node, 1191 gem_obj->size, 0, 0, 1192 fw_dev->fw_heap_info.gpu_addr, 1193 fw_dev->fw_heap_info.gpu_addr + 1194 fw_dev->fw_heap_info.size, 0); 1195 if (err) 1196 goto err_unlock; 1197 } else { 1198 fw_obj->fw_mm_node.start = dev_addr; 1199 fw_obj->fw_mm_node.size = gem_obj->size; 1200 err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node); 1201 if (err) 1202 goto err_unlock; 1203 } 1204 1205 spin_unlock(&fw_dev->fw_mm_lock); 1206 1207 /* Map object on GPU. */ 1208 err = fw_dev->defs->vm_map(pvr_dev, fw_obj); 1209 if (err) 1210 goto err_remove_node; 1211 1212 fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base); 1213 1214 return 0; 1215 1216 err_remove_node: 1217 spin_lock(&fw_dev->fw_mm_lock); 1218 drm_mm_remove_node(&fw_obj->fw_mm_node); 1219 1220 err_unlock: 1221 spin_unlock(&fw_dev->fw_mm_lock); 1222 1223 return err; 1224 } 1225 1226 /** 1227 * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object 1228 * @fw_obj: FW object to unmap. 1229 * 1230 * Returns: 1231 * * 0 on success, or 1232 * * -%EINVAL if object is not currently mapped. 1233 */ 1234 static int 1235 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj) 1236 { 1237 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1238 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1239 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); 1240 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1241 1242 fw_dev->defs->vm_unmap(pvr_dev, fw_obj); 1243 1244 spin_lock(&fw_dev->fw_mm_lock); 1245 1246 if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1247 spin_unlock(&fw_dev->fw_mm_lock); 1248 return -EINVAL; 1249 } 1250 1251 drm_mm_remove_node(&fw_obj->fw_mm_node); 1252 1253 spin_unlock(&fw_dev->fw_mm_lock); 1254 1255 return 0; 1256 } 1257 1258 static void * 1259 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size, 1260 u64 flags, u64 dev_addr, 1261 void (*init)(void *cpu_ptr, void *priv), 1262 void *init_priv, struct pvr_fw_object **fw_obj_out) 1263 { 1264 struct pvr_fw_object *fw_obj; 1265 void *cpu_ptr; 1266 int err; 1267 1268 /* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */ 1269 flags |= DRM_PVR_BO_PM_FW_PROTECT; 1270 1271 fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL); 1272 if (!fw_obj) 1273 return ERR_PTR(-ENOMEM); 1274 1275 INIT_LIST_HEAD(&fw_obj->node); 1276 fw_obj->init = init; 1277 fw_obj->init_priv = init_priv; 1278 1279 fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags); 1280 if (IS_ERR(fw_obj->gem)) { 1281 err = PTR_ERR(fw_obj->gem); 1282 fw_obj->gem = NULL; 1283 goto err_put_object; 1284 } 1285 1286 err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr); 1287 if (err) 1288 goto err_put_object; 1289 1290 cpu_ptr = pvr_fw_object_vmap(fw_obj); 1291 if (IS_ERR(cpu_ptr)) { 1292 err = PTR_ERR(cpu_ptr); 1293 goto err_put_object; 1294 } 1295 1296 *fw_obj_out = fw_obj; 1297 1298 if (fw_obj->init) 1299 fw_obj->init(cpu_ptr, fw_obj->init_priv); 1300 1301 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1302 list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list); 1303 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1304 1305 return cpu_ptr; 1306 1307 err_put_object: 1308 pvr_fw_object_destroy(fw_obj); 1309 1310 return ERR_PTR(err); 1311 } 1312 1313 /** 1314 * pvr_fw_object_create() - Create a FW object and map to firmware 1315 * @pvr_dev: PowerVR device pointer. 1316 * @size: Size of object, in bytes. 1317 * @flags: Options which affect both this operation and future mapping 1318 * operations performed on the returned object. Must be a combination of 1319 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1320 * @init: Initialisation callback. 1321 * @init_priv: Private pointer to pass to initialisation callback. 1322 * @fw_obj_out: Pointer to location to store created object pointer. 1323 * 1324 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1325 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1326 * set. 1327 * 1328 * Returns: 1329 * * 0 on success, or 1330 * * Any error returned by pvr_fw_object_create_common(). 1331 */ 1332 int 1333 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags, 1334 void (*init)(void *cpu_ptr, void *priv), void *init_priv, 1335 struct pvr_fw_object **fw_obj_out) 1336 { 1337 void *cpu_ptr; 1338 1339 cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, 1340 fw_obj_out); 1341 if (IS_ERR(cpu_ptr)) 1342 return PTR_ERR(cpu_ptr); 1343 1344 pvr_fw_object_vunmap(*fw_obj_out); 1345 1346 return 0; 1347 } 1348 1349 /** 1350 * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU 1351 * @pvr_dev: PowerVR device pointer. 1352 * @size: Size of object, in bytes. 1353 * @flags: Options which affect both this operation and future mapping 1354 * operations performed on the returned object. Must be a combination of 1355 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1356 * @init: Initialisation callback. 1357 * @init_priv: Private pointer to pass to initialisation callback. 1358 * @fw_obj_out: Pointer to location to store created object pointer. 1359 * 1360 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1361 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1362 * set. 1363 * 1364 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU 1365 * mapping. 1366 * 1367 * Returns: 1368 * * Pointer to CPU mapping of newly created object, or 1369 * * Any error returned by pvr_fw_object_create(), or 1370 * * Any error returned by pvr_fw_object_vmap(). 1371 */ 1372 void * 1373 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags, 1374 void (*init)(void *cpu_ptr, void *priv), 1375 void *init_priv, struct pvr_fw_object **fw_obj_out) 1376 { 1377 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, 1378 fw_obj_out); 1379 } 1380 1381 /** 1382 * pvr_fw_object_create_and_map_offset() - Create a FW object and map to 1383 * firmware at the provided offset and to the CPU. 1384 * @pvr_dev: PowerVR device pointer. 1385 * @dev_offset: Base address of desired FW mapping, offset from start of FW heap. 1386 * @size: Size of object, in bytes. 1387 * @flags: Options which affect both this operation and future mapping 1388 * operations performed on the returned object. Must be a combination of 1389 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1390 * @init: Initialisation callback. 1391 * @init_priv: Private pointer to pass to initialisation callback. 1392 * @fw_obj_out: Pointer to location to store created object pointer. 1393 * 1394 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1395 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1396 * set. 1397 * 1398 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU 1399 * mapping. 1400 * 1401 * Returns: 1402 * * Pointer to CPU mapping of newly created object, or 1403 * * Any error returned by pvr_fw_object_create(), or 1404 * * Any error returned by pvr_fw_object_vmap(). 1405 */ 1406 void * 1407 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev, 1408 u32 dev_offset, size_t size, u64 flags, 1409 void (*init)(void *cpu_ptr, void *priv), 1410 void *init_priv, struct pvr_fw_object **fw_obj_out) 1411 { 1412 u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset; 1413 1414 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv, 1415 fw_obj_out); 1416 } 1417 1418 /** 1419 * pvr_fw_object_destroy() - Destroy a pvr_fw_object 1420 * @fw_obj: Pointer to object to destroy. 1421 */ 1422 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj) 1423 { 1424 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1425 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1426 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); 1427 1428 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1429 list_del(&fw_obj->node); 1430 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1431 1432 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1433 /* If we can't unmap, leak the memory. */ 1434 if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj))) 1435 return; 1436 } 1437 1438 if (fw_obj->gem) 1439 pvr_gem_object_put(fw_obj->gem); 1440 1441 kfree(fw_obj); 1442 } 1443 1444 /** 1445 * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with 1446 * given offset. 1447 * @fw_obj: Pointer to object. 1448 * @offset: Desired offset from start of object. 1449 * @fw_addr_out: Location to store address to. 1450 */ 1451 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out) 1452 { 1453 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1454 struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev); 1455 1456 *fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset); 1457 } 1458 1459 /* 1460 * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW 1461 * structures 1462 * @pvr_dev: Device pointer 1463 * 1464 * If this function returns an error then the caller must regard the device as lost. 1465 * 1466 * Returns: 1467 * * 0 on success, or 1468 * * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all(). 1469 */ 1470 int 1471 pvr_fw_hard_reset(struct pvr_device *pvr_dev) 1472 { 1473 struct list_head *pos; 1474 int err; 1475 1476 /* Reset all FW objects */ 1477 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1478 1479 list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) { 1480 struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node); 1481 void *cpu_ptr = pvr_fw_object_vmap(fw_obj); 1482 1483 WARN_ON(IS_ERR(cpu_ptr)); 1484 1485 if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) { 1486 memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem)); 1487 1488 if (fw_obj->init) 1489 fw_obj->init(cpu_ptr, fw_obj->init_priv); 1490 } 1491 1492 pvr_fw_object_vunmap(fw_obj); 1493 } 1494 1495 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1496 1497 err = pvr_fw_reinit_code_data(pvr_dev); 1498 if (err) 1499 return err; 1500 1501 return 0; 1502 } 1503