1 // SPDX-License-Identifier: GPL-2.0-only OR MIT 2 /* Copyright (c) 2023 Imagination Technologies Ltd. */ 3 4 #include "pvr_ccb.h" 5 #include "pvr_device.h" 6 #include "pvr_device_info.h" 7 #include "pvr_fw.h" 8 #include "pvr_fw_info.h" 9 #include "pvr_fw_startstop.h" 10 #include "pvr_fw_trace.h" 11 #include "pvr_gem.h" 12 #include "pvr_power.h" 13 #include "pvr_rogue_fwif_dev_info.h" 14 #include "pvr_rogue_heap_config.h" 15 #include "pvr_vm.h" 16 17 #include <drm/drm_drv.h> 18 #include <drm/drm_managed.h> 19 #include <drm/drm_mm.h> 20 #include <linux/clk.h> 21 #include <linux/firmware.h> 22 #include <linux/math.h> 23 #include <linux/minmax.h> 24 #include <linux/sizes.h> 25 26 #define FW_MAX_SUPPORTED_MAJOR_VERSION 1 27 28 #define FW_BOOT_TIMEOUT_USEC 5000000 29 30 /* Config heap occupies top 192k of the firmware heap. */ 31 #define PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY SZ_64K 32 #define PVR_ROGUE_FW_CONFIG_HEAP_SIZE (3 * PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 33 34 /* Main firmware allocations should come from the remainder of the heap. */ 35 #define PVR_ROGUE_FW_MAIN_HEAP_BASE ROGUE_FW_HEAP_BASE 36 37 /* Offsets from start of configuration area of FW heap. */ 38 #define PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET 0 39 #define PVR_ROGUE_FWIF_OSINIT_OFFSET \ 40 (PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 41 #define PVR_ROGUE_FWIF_SYSINIT_OFFSET \ 42 (PVR_ROGUE_FWIF_OSINIT_OFFSET + PVR_ROGUE_FW_CONFIG_HEAP_GRANULARITY) 43 44 #define PVR_ROGUE_FAULT_PAGE_SIZE SZ_4K 45 46 #define PVR_SYNC_OBJ_SIZE sizeof(u32) 47 48 const struct pvr_fw_layout_entry * 49 pvr_fw_find_layout_entry(struct pvr_device *pvr_dev, enum pvr_fw_section_id id) 50 { 51 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 52 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 53 54 for (u32 entry = 0; entry < num_layout_entries; entry++) { 55 if (layout_entries[entry].id == id) 56 return &layout_entries[entry]; 57 } 58 59 return NULL; 60 } 61 62 static const struct pvr_fw_layout_entry * 63 pvr_fw_find_private_data(struct pvr_device *pvr_dev) 64 { 65 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 66 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 67 68 for (u32 entry = 0; entry < num_layout_entries; entry++) { 69 if (layout_entries[entry].id == META_PRIVATE_DATA || 70 layout_entries[entry].id == MIPS_PRIVATE_DATA || 71 layout_entries[entry].id == RISCV_PRIVATE_DATA) 72 return &layout_entries[entry]; 73 } 74 75 return NULL; 76 } 77 78 #define DEV_INFO_MASK_SIZE(x) DIV_ROUND_UP(x, 64) 79 80 /** 81 * pvr_fw_validate() - Parse firmware header and check compatibility 82 * @pvr_dev: Device pointer. 83 * 84 * Returns: 85 * * 0 on success, or 86 * * -EINVAL if firmware is incompatible. 87 */ 88 static int 89 pvr_fw_validate(struct pvr_device *pvr_dev) 90 { 91 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 92 const struct firmware *firmware = pvr_dev->fw_dev.firmware; 93 const struct pvr_fw_layout_entry *layout_entries; 94 const struct pvr_fw_info_header *header; 95 const u8 *fw = firmware->data; 96 u32 fw_offset = firmware->size - SZ_4K; 97 u32 layout_table_size; 98 99 if (firmware->size < SZ_4K || (firmware->size % FW_BLOCK_SIZE)) 100 return -EINVAL; 101 102 header = (const struct pvr_fw_info_header *)&fw[fw_offset]; 103 104 if (header->info_version != PVR_FW_INFO_VERSION) { 105 drm_err(drm_dev, "Unsupported fw info version %u\n", 106 header->info_version); 107 return -EINVAL; 108 } 109 110 if (header->header_len != sizeof(struct pvr_fw_info_header) || 111 header->layout_entry_size != sizeof(struct pvr_fw_layout_entry) || 112 header->layout_entry_num > PVR_FW_INFO_MAX_NUM_ENTRIES) { 113 drm_err(drm_dev, "FW info format mismatch\n"); 114 return -EINVAL; 115 } 116 117 if (!(header->flags & PVR_FW_FLAGS_OPEN_SOURCE) || 118 header->fw_version_major > FW_MAX_SUPPORTED_MAJOR_VERSION || 119 header->fw_version_major == 0) { 120 drm_err(drm_dev, "Unsupported FW version %u.%u (build: %u%s)\n", 121 header->fw_version_major, header->fw_version_minor, 122 header->fw_version_build, 123 (header->flags & PVR_FW_FLAGS_OPEN_SOURCE) ? " OS" : ""); 124 return -EINVAL; 125 } 126 127 if (pvr_gpu_id_to_packed_bvnc(&pvr_dev->gpu_id) != header->bvnc) { 128 struct pvr_gpu_id fw_gpu_id; 129 130 packed_bvnc_to_pvr_gpu_id(header->bvnc, &fw_gpu_id); 131 drm_err(drm_dev, "FW built for incorrect GPU ID %i.%i.%i.%i (expected %i.%i.%i.%i)\n", 132 fw_gpu_id.b, fw_gpu_id.v, fw_gpu_id.n, fw_gpu_id.c, 133 pvr_dev->gpu_id.b, pvr_dev->gpu_id.v, pvr_dev->gpu_id.n, pvr_dev->gpu_id.c); 134 return -EINVAL; 135 } 136 137 fw_offset += header->header_len; 138 layout_table_size = 139 header->layout_entry_size * header->layout_entry_num; 140 if ((fw_offset + layout_table_size) > firmware->size) 141 return -EINVAL; 142 143 layout_entries = (const struct pvr_fw_layout_entry *)&fw[fw_offset]; 144 for (u32 entry = 0; entry < header->layout_entry_num; entry++) { 145 u32 start_addr = layout_entries[entry].base_addr; 146 u32 end_addr = start_addr + layout_entries[entry].alloc_size; 147 148 if (start_addr >= end_addr) 149 return -EINVAL; 150 } 151 152 fw_offset = (firmware->size - SZ_4K) - header->device_info_size; 153 154 drm_info(drm_dev, "FW version v%u.%u (build %u OS)\n", header->fw_version_major, 155 header->fw_version_minor, header->fw_version_build); 156 157 pvr_dev->fw_version.major = header->fw_version_major; 158 pvr_dev->fw_version.minor = header->fw_version_minor; 159 160 pvr_dev->fw_dev.header = header; 161 pvr_dev->fw_dev.layout_entries = layout_entries; 162 163 return 0; 164 } 165 166 static int 167 pvr_fw_get_device_info(struct pvr_device *pvr_dev) 168 { 169 const struct firmware *firmware = pvr_dev->fw_dev.firmware; 170 struct pvr_fw_device_info_header *header; 171 const u8 *fw = firmware->data; 172 const u64 *dev_info; 173 u32 fw_offset; 174 175 fw_offset = (firmware->size - SZ_4K) - pvr_dev->fw_dev.header->device_info_size; 176 177 header = (struct pvr_fw_device_info_header *)&fw[fw_offset]; 178 dev_info = (u64 *)(header + 1); 179 180 pvr_device_info_set_quirks(pvr_dev, dev_info, header->brn_mask_size); 181 dev_info += header->brn_mask_size; 182 183 pvr_device_info_set_enhancements(pvr_dev, dev_info, header->ern_mask_size); 184 dev_info += header->ern_mask_size; 185 186 return pvr_device_info_set_features(pvr_dev, dev_info, header->feature_mask_size, 187 header->feature_param_size); 188 } 189 190 static void 191 layout_get_sizes(struct pvr_device *pvr_dev) 192 { 193 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 194 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 195 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 196 197 fw_mem->code_alloc_size = 0; 198 fw_mem->data_alloc_size = 0; 199 fw_mem->core_code_alloc_size = 0; 200 fw_mem->core_data_alloc_size = 0; 201 202 /* Extract section sizes from FW layout table. */ 203 for (u32 entry = 0; entry < num_layout_entries; entry++) { 204 switch (layout_entries[entry].type) { 205 case FW_CODE: 206 fw_mem->code_alloc_size += layout_entries[entry].alloc_size; 207 break; 208 case FW_DATA: 209 fw_mem->data_alloc_size += layout_entries[entry].alloc_size; 210 break; 211 case FW_COREMEM_CODE: 212 fw_mem->core_code_alloc_size += 213 layout_entries[entry].alloc_size; 214 break; 215 case FW_COREMEM_DATA: 216 fw_mem->core_data_alloc_size += 217 layout_entries[entry].alloc_size; 218 break; 219 case NONE: 220 break; 221 } 222 } 223 } 224 225 int 226 pvr_fw_find_mmu_segment(struct pvr_device *pvr_dev, u32 addr, u32 size, void *fw_code_ptr, 227 void *fw_data_ptr, void *fw_core_code_ptr, void *fw_core_data_ptr, 228 void **host_addr_out) 229 { 230 const struct pvr_fw_layout_entry *layout_entries = pvr_dev->fw_dev.layout_entries; 231 u32 num_layout_entries = pvr_dev->fw_dev.header->layout_entry_num; 232 u32 end_addr = addr + size; 233 234 /* Ensure requested range is not zero, and size is not causing addr to overflow. */ 235 if (end_addr <= addr) 236 return -EINVAL; 237 238 for (int entry = 0; entry < num_layout_entries; entry++) { 239 u32 entry_start_addr = layout_entries[entry].base_addr; 240 u32 entry_end_addr = entry_start_addr + layout_entries[entry].alloc_size; 241 242 if (addr >= entry_start_addr && addr < entry_end_addr && 243 end_addr > entry_start_addr && end_addr <= entry_end_addr) { 244 switch (layout_entries[entry].type) { 245 case FW_CODE: 246 *host_addr_out = fw_code_ptr; 247 break; 248 249 case FW_DATA: 250 *host_addr_out = fw_data_ptr; 251 break; 252 253 case FW_COREMEM_CODE: 254 *host_addr_out = fw_core_code_ptr; 255 break; 256 257 case FW_COREMEM_DATA: 258 *host_addr_out = fw_core_data_ptr; 259 break; 260 261 default: 262 return -EINVAL; 263 } 264 /* Direct Mem write to mapped memory */ 265 addr -= layout_entries[entry].base_addr; 266 addr += layout_entries[entry].alloc_offset; 267 268 /* 269 * Add offset to pointer to FW allocation only if that 270 * allocation is available 271 */ 272 *(u8 **)host_addr_out += addr; 273 return 0; 274 } 275 } 276 277 return -EINVAL; 278 } 279 280 static int 281 pvr_fw_create_fwif_connection_ctl(struct pvr_device *pvr_dev) 282 { 283 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 284 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 285 286 fw_dev->fwif_connection_ctl = 287 pvr_fw_object_create_and_map_offset(pvr_dev, 288 fw_dev->fw_heap_info.config_offset + 289 PVR_ROGUE_FWIF_CONNECTION_CTL_OFFSET, 290 sizeof(*fw_dev->fwif_connection_ctl), 291 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 292 NULL, NULL, 293 &fw_dev->mem.fwif_connection_ctl_obj); 294 if (IS_ERR(fw_dev->fwif_connection_ctl)) { 295 drm_err(drm_dev, 296 "Unable to allocate FWIF connection control memory\n"); 297 return PTR_ERR(fw_dev->fwif_connection_ctl); 298 } 299 300 return 0; 301 } 302 303 static void 304 pvr_fw_fini_fwif_connection_ctl(struct pvr_device *pvr_dev) 305 { 306 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 307 308 pvr_fw_object_unmap_and_destroy(fw_dev->mem.fwif_connection_ctl_obj); 309 } 310 311 static void 312 fw_osinit_init(void *cpu_ptr, void *priv) 313 { 314 struct rogue_fwif_osinit *fwif_osinit = cpu_ptr; 315 struct pvr_device *pvr_dev = priv; 316 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 317 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 318 319 fwif_osinit->kernel_ccbctl_fw_addr = pvr_dev->kccb.ccb.ctrl_fw_addr; 320 fwif_osinit->kernel_ccb_fw_addr = pvr_dev->kccb.ccb.ccb_fw_addr; 321 pvr_fw_object_get_fw_addr(pvr_dev->kccb.rtn_obj, 322 &fwif_osinit->kernel_ccb_rtn_slots_fw_addr); 323 324 fwif_osinit->firmware_ccbctl_fw_addr = pvr_dev->fwccb.ctrl_fw_addr; 325 fwif_osinit->firmware_ccb_fw_addr = pvr_dev->fwccb.ccb_fw_addr; 326 327 fwif_osinit->work_est_firmware_ccbctl_fw_addr = 0; 328 fwif_osinit->work_est_firmware_ccb_fw_addr = 0; 329 330 pvr_fw_object_get_fw_addr(fw_mem->hwrinfobuf_obj, 331 &fwif_osinit->rogue_fwif_hwr_info_buf_ctl_fw_addr); 332 pvr_fw_object_get_fw_addr(fw_mem->osdata_obj, &fwif_osinit->fw_os_data_fw_addr); 333 334 fwif_osinit->hwr_debug_dump_limit = 0; 335 336 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.hw_bvnc); 337 rogue_fwif_compchecks_bvnc_init(&fwif_osinit->rogue_comp_checks.fw_bvnc); 338 } 339 340 static void 341 fw_osdata_init(void *cpu_ptr, void *priv) 342 { 343 struct rogue_fwif_osdata *fwif_osdata = cpu_ptr; 344 struct pvr_device *pvr_dev = priv; 345 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 346 347 pvr_fw_object_get_fw_addr(fw_mem->power_sync_obj, &fwif_osdata->power_sync_fw_addr); 348 } 349 350 static void 351 fw_fault_page_init(void *cpu_ptr, void *priv) 352 { 353 u32 *fault_page = cpu_ptr; 354 355 for (int i = 0; i < PVR_ROGUE_FAULT_PAGE_SIZE / sizeof(*fault_page); i++) 356 fault_page[i] = 0xdeadbee0; 357 } 358 359 static void 360 fw_sysinit_init(void *cpu_ptr, void *priv) 361 { 362 struct rogue_fwif_sysinit *fwif_sysinit = cpu_ptr; 363 struct pvr_device *pvr_dev = priv; 364 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 365 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 366 dma_addr_t fault_dma_addr = 0; 367 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); 368 369 WARN_ON(!clock_speed_hz); 370 371 WARN_ON(pvr_fw_object_get_dma_addr(fw_mem->fault_page_obj, 0, &fault_dma_addr)); 372 fwif_sysinit->fault_phys_addr = (u64)fault_dma_addr; 373 374 fwif_sysinit->pds_exec_base = ROGUE_PDSCODEDATA_HEAP_BASE; 375 fwif_sysinit->usc_exec_base = ROGUE_USCCODE_HEAP_BASE; 376 377 pvr_fw_object_get_fw_addr(fw_mem->runtime_cfg_obj, &fwif_sysinit->runtime_cfg_fw_addr); 378 pvr_fw_object_get_fw_addr(fw_dev->fw_trace.tracebuf_ctrl_obj, 379 &fwif_sysinit->trace_buf_ctl_fw_addr); 380 pvr_fw_object_get_fw_addr(fw_mem->sysdata_obj, &fwif_sysinit->fw_sys_data_fw_addr); 381 pvr_fw_object_get_fw_addr(fw_mem->gpu_util_fwcb_obj, 382 &fwif_sysinit->gpu_util_fw_cb_ctl_fw_addr); 383 if (fw_mem->core_data_obj) { 384 pvr_fw_object_get_fw_addr(fw_mem->core_data_obj, 385 &fwif_sysinit->coremem_data_store.fw_addr); 386 } 387 388 /* Currently unsupported. */ 389 fwif_sysinit->counter_dump_ctl.buffer_fw_addr = 0; 390 fwif_sysinit->counter_dump_ctl.size_in_dwords = 0; 391 392 /* Skip alignment checks. */ 393 fwif_sysinit->align_checks = 0; 394 395 fwif_sysinit->filter_flags = 0; 396 fwif_sysinit->hw_perf_filter = 0; 397 fwif_sysinit->firmware_perf = FW_PERF_CONF_NONE; 398 fwif_sysinit->initial_core_clock_speed = clock_speed_hz; 399 fwif_sysinit->active_pm_latency_ms = 0; 400 fwif_sysinit->gpio_validation_mode = ROGUE_FWIF_GPIO_VAL_OFF; 401 fwif_sysinit->firmware_started = false; 402 fwif_sysinit->marker_val = 1; 403 404 memset(&fwif_sysinit->bvnc_km_feature_flags, 0, 405 sizeof(fwif_sysinit->bvnc_km_feature_flags)); 406 } 407 408 #define ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB 4 409 410 static void 411 fw_sysdata_init(void *cpu_ptr, void *priv) 412 { 413 struct rogue_fwif_sysdata *fwif_sysdata = cpu_ptr; 414 struct pvr_device *pvr_dev = priv; 415 u32 slc_size_in_kilobytes = 0; 416 u32 config_flags = 0; 417 418 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, slc_size_in_kilobytes, &slc_size_in_kilobytes)); 419 420 if (slc_size_in_kilobytes < ROGUE_FWIF_SLC_MIN_SIZE_FOR_DM_OVERLAP_KB) 421 config_flags |= ROGUE_FWIF_INICFG_DISABLE_DM_OVERLAP; 422 423 fwif_sysdata->config_flags = config_flags; 424 } 425 426 static void 427 fw_runtime_cfg_init(void *cpu_ptr, void *priv) 428 { 429 struct rogue_fwif_runtime_cfg *runtime_cfg = cpu_ptr; 430 struct pvr_device *pvr_dev = priv; 431 u32 clock_speed_hz = clk_get_rate(pvr_dev->core_clk); 432 433 WARN_ON(!clock_speed_hz); 434 435 runtime_cfg->core_clock_speed = clock_speed_hz; 436 runtime_cfg->active_pm_latency_ms = 0; 437 runtime_cfg->active_pm_latency_persistant = true; 438 WARN_ON(PVR_FEATURE_VALUE(pvr_dev, num_clusters, 439 &runtime_cfg->default_dusts_num_init) != 0); 440 } 441 442 static void 443 fw_gpu_util_fwcb_init(void *cpu_ptr, void *priv) 444 { 445 struct rogue_fwif_gpu_util_fwcb *gpu_util_fwcb = cpu_ptr; 446 447 gpu_util_fwcb->last_word = PVR_FWIF_GPU_UTIL_STATE_IDLE; 448 } 449 450 static int 451 pvr_fw_create_structures(struct pvr_device *pvr_dev) 452 { 453 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 454 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 455 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 456 int err; 457 458 fw_dev->power_sync = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->power_sync), 459 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 460 NULL, NULL, &fw_mem->power_sync_obj); 461 if (IS_ERR(fw_dev->power_sync)) { 462 drm_err(drm_dev, "Unable to allocate FW power_sync structure\n"); 463 return PTR_ERR(fw_dev->power_sync); 464 } 465 466 fw_dev->hwrinfobuf = pvr_fw_object_create_and_map(pvr_dev, sizeof(*fw_dev->hwrinfobuf), 467 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 468 NULL, NULL, &fw_mem->hwrinfobuf_obj); 469 if (IS_ERR(fw_dev->hwrinfobuf)) { 470 drm_err(drm_dev, 471 "Unable to allocate FW hwrinfobuf structure\n"); 472 err = PTR_ERR(fw_dev->hwrinfobuf); 473 goto err_release_power_sync; 474 } 475 476 err = pvr_fw_object_create(pvr_dev, PVR_SYNC_OBJ_SIZE, 477 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 478 NULL, NULL, &fw_mem->mmucache_sync_obj); 479 if (err) { 480 drm_err(drm_dev, 481 "Unable to allocate MMU cache sync object\n"); 482 goto err_release_hwrinfobuf; 483 } 484 485 fw_dev->fwif_sysdata = pvr_fw_object_create_and_map(pvr_dev, 486 sizeof(*fw_dev->fwif_sysdata), 487 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 488 fw_sysdata_init, pvr_dev, 489 &fw_mem->sysdata_obj); 490 if (IS_ERR(fw_dev->fwif_sysdata)) { 491 drm_err(drm_dev, "Unable to allocate FW SYSDATA structure\n"); 492 err = PTR_ERR(fw_dev->fwif_sysdata); 493 goto err_release_mmucache_sync_obj; 494 } 495 496 err = pvr_fw_object_create(pvr_dev, PVR_ROGUE_FAULT_PAGE_SIZE, 497 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 498 fw_fault_page_init, NULL, &fw_mem->fault_page_obj); 499 if (err) { 500 drm_err(drm_dev, "Unable to allocate FW fault page\n"); 501 goto err_release_sysdata; 502 } 503 504 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_gpu_util_fwcb), 505 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 506 fw_gpu_util_fwcb_init, pvr_dev, &fw_mem->gpu_util_fwcb_obj); 507 if (err) { 508 drm_err(drm_dev, "Unable to allocate GPU util FWCB\n"); 509 goto err_release_fault_page; 510 } 511 512 err = pvr_fw_object_create(pvr_dev, sizeof(struct rogue_fwif_runtime_cfg), 513 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 514 fw_runtime_cfg_init, pvr_dev, &fw_mem->runtime_cfg_obj); 515 if (err) { 516 drm_err(drm_dev, "Unable to allocate FW runtime config\n"); 517 goto err_release_gpu_util_fwcb; 518 } 519 520 err = pvr_fw_trace_init(pvr_dev); 521 if (err) 522 goto err_release_runtime_cfg; 523 524 fw_dev->fwif_osdata = pvr_fw_object_create_and_map(pvr_dev, 525 sizeof(*fw_dev->fwif_osdata), 526 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 527 fw_osdata_init, pvr_dev, 528 &fw_mem->osdata_obj); 529 if (IS_ERR(fw_dev->fwif_osdata)) { 530 drm_err(drm_dev, "Unable to allocate FW OSDATA structure\n"); 531 err = PTR_ERR(fw_dev->fwif_osdata); 532 goto err_fw_trace_fini; 533 } 534 535 fw_dev->fwif_osinit = 536 pvr_fw_object_create_and_map_offset(pvr_dev, 537 fw_dev->fw_heap_info.config_offset + 538 PVR_ROGUE_FWIF_OSINIT_OFFSET, 539 sizeof(*fw_dev->fwif_osinit), 540 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 541 fw_osinit_init, pvr_dev, &fw_mem->osinit_obj); 542 if (IS_ERR(fw_dev->fwif_osinit)) { 543 drm_err(drm_dev, "Unable to allocate FW OSINIT structure\n"); 544 err = PTR_ERR(fw_dev->fwif_osinit); 545 goto err_release_osdata; 546 } 547 548 fw_dev->fwif_sysinit = 549 pvr_fw_object_create_and_map_offset(pvr_dev, 550 fw_dev->fw_heap_info.config_offset + 551 PVR_ROGUE_FWIF_SYSINIT_OFFSET, 552 sizeof(*fw_dev->fwif_sysinit), 553 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 554 fw_sysinit_init, pvr_dev, &fw_mem->sysinit_obj); 555 if (IS_ERR(fw_dev->fwif_sysinit)) { 556 drm_err(drm_dev, "Unable to allocate FW SYSINIT structure\n"); 557 err = PTR_ERR(fw_dev->fwif_sysinit); 558 goto err_release_osinit; 559 } 560 561 return 0; 562 563 err_release_osinit: 564 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); 565 566 err_release_osdata: 567 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); 568 569 err_fw_trace_fini: 570 pvr_fw_trace_fini(pvr_dev); 571 572 err_release_runtime_cfg: 573 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); 574 575 err_release_gpu_util_fwcb: 576 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); 577 578 err_release_fault_page: 579 pvr_fw_object_destroy(fw_mem->fault_page_obj); 580 581 err_release_sysdata: 582 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); 583 584 err_release_mmucache_sync_obj: 585 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); 586 587 err_release_hwrinfobuf: 588 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); 589 590 err_release_power_sync: 591 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); 592 593 return err; 594 } 595 596 static void 597 pvr_fw_destroy_structures(struct pvr_device *pvr_dev) 598 { 599 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 600 struct pvr_fw_mem *fw_mem = &fw_dev->mem; 601 602 pvr_fw_trace_fini(pvr_dev); 603 pvr_fw_object_destroy(fw_mem->runtime_cfg_obj); 604 pvr_fw_object_destroy(fw_mem->gpu_util_fwcb_obj); 605 pvr_fw_object_destroy(fw_mem->fault_page_obj); 606 pvr_fw_object_unmap_and_destroy(fw_mem->sysdata_obj); 607 pvr_fw_object_unmap_and_destroy(fw_mem->sysinit_obj); 608 609 pvr_fw_object_destroy(fw_mem->mmucache_sync_obj); 610 pvr_fw_object_unmap_and_destroy(fw_mem->hwrinfobuf_obj); 611 pvr_fw_object_unmap_and_destroy(fw_mem->power_sync_obj); 612 pvr_fw_object_unmap_and_destroy(fw_mem->osdata_obj); 613 pvr_fw_object_unmap_and_destroy(fw_mem->osinit_obj); 614 } 615 616 /** 617 * pvr_fw_process() - Process firmware image, allocate FW memory and create boot 618 * arguments 619 * @pvr_dev: Device pointer. 620 * 621 * Returns: 622 * * 0 on success, or 623 * * Any error returned by pvr_fw_object_create_and_map_offset(), or 624 * * Any error returned by pvr_fw_object_create_and_map(). 625 */ 626 static int 627 pvr_fw_process(struct pvr_device *pvr_dev) 628 { 629 struct drm_device *drm_dev = from_pvr_device(pvr_dev); 630 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 631 const u8 *fw = pvr_dev->fw_dev.firmware->data; 632 const struct pvr_fw_layout_entry *private_data; 633 u8 *fw_code_ptr; 634 u8 *fw_data_ptr; 635 u8 *fw_core_code_ptr; 636 u8 *fw_core_data_ptr; 637 int err; 638 639 layout_get_sizes(pvr_dev); 640 641 private_data = pvr_fw_find_private_data(pvr_dev); 642 if (!private_data) 643 return -EINVAL; 644 645 /* Allocate and map memory for firmware sections. */ 646 647 /* 648 * Code allocation must be at the start of the firmware heap, otherwise 649 * firmware processor will be unable to boot. 650 * 651 * This has the useful side-effect that for every other object in the 652 * driver, a firmware address of 0 is invalid. 653 */ 654 fw_code_ptr = pvr_fw_object_create_and_map_offset(pvr_dev, 0, fw_mem->code_alloc_size, 655 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 656 NULL, NULL, &fw_mem->code_obj); 657 if (IS_ERR(fw_code_ptr)) { 658 drm_err(drm_dev, "Unable to allocate FW code memory\n"); 659 return PTR_ERR(fw_code_ptr); 660 } 661 662 if (pvr_dev->fw_dev.defs->has_fixed_data_addr()) { 663 u32 base_addr = private_data->base_addr & pvr_dev->fw_dev.fw_heap_info.offset_mask; 664 665 fw_data_ptr = 666 pvr_fw_object_create_and_map_offset(pvr_dev, base_addr, 667 fw_mem->data_alloc_size, 668 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 669 NULL, NULL, &fw_mem->data_obj); 670 } else { 671 fw_data_ptr = pvr_fw_object_create_and_map(pvr_dev, fw_mem->data_alloc_size, 672 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 673 NULL, NULL, &fw_mem->data_obj); 674 } 675 if (IS_ERR(fw_data_ptr)) { 676 drm_err(drm_dev, "Unable to allocate FW data memory\n"); 677 err = PTR_ERR(fw_data_ptr); 678 goto err_free_fw_code_obj; 679 } 680 681 /* Core code and data sections are optional. */ 682 if (fw_mem->core_code_alloc_size) { 683 fw_core_code_ptr = 684 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_code_alloc_size, 685 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 686 NULL, NULL, &fw_mem->core_code_obj); 687 if (IS_ERR(fw_core_code_ptr)) { 688 drm_err(drm_dev, 689 "Unable to allocate FW core code memory\n"); 690 err = PTR_ERR(fw_core_code_ptr); 691 goto err_free_fw_data_obj; 692 } 693 } else { 694 fw_core_code_ptr = NULL; 695 } 696 697 if (fw_mem->core_data_alloc_size) { 698 fw_core_data_ptr = 699 pvr_fw_object_create_and_map(pvr_dev, fw_mem->core_data_alloc_size, 700 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 701 NULL, NULL, &fw_mem->core_data_obj); 702 if (IS_ERR(fw_core_data_ptr)) { 703 drm_err(drm_dev, 704 "Unable to allocate FW core data memory\n"); 705 err = PTR_ERR(fw_core_data_ptr); 706 goto err_free_fw_core_code_obj; 707 } 708 } else { 709 fw_core_data_ptr = NULL; 710 } 711 712 fw_mem->code = kzalloc(fw_mem->code_alloc_size, GFP_KERNEL); 713 fw_mem->data = kzalloc(fw_mem->data_alloc_size, GFP_KERNEL); 714 if (fw_mem->core_code_alloc_size) 715 fw_mem->core_code = kzalloc(fw_mem->core_code_alloc_size, GFP_KERNEL); 716 if (fw_mem->core_data_alloc_size) 717 fw_mem->core_data = kzalloc(fw_mem->core_data_alloc_size, GFP_KERNEL); 718 719 if (!fw_mem->code || !fw_mem->data || 720 (!fw_mem->core_code && fw_mem->core_code_alloc_size) || 721 (!fw_mem->core_data && fw_mem->core_data_alloc_size)) { 722 err = -ENOMEM; 723 goto err_free_kdata; 724 } 725 726 err = pvr_dev->fw_dev.defs->fw_process(pvr_dev, fw, 727 fw_mem->code, fw_mem->data, fw_mem->core_code, 728 fw_mem->core_data, fw_mem->core_code_alloc_size); 729 730 if (err) 731 goto err_free_kdata; 732 733 memcpy(fw_code_ptr, fw_mem->code, fw_mem->code_alloc_size); 734 memcpy(fw_data_ptr, fw_mem->data, fw_mem->data_alloc_size); 735 if (fw_mem->core_code) 736 memcpy(fw_core_code_ptr, fw_mem->core_code, fw_mem->core_code_alloc_size); 737 if (fw_mem->core_data) 738 memcpy(fw_core_data_ptr, fw_mem->core_data, fw_mem->core_data_alloc_size); 739 740 /* We're finished with the firmware section memory on the CPU, unmap. */ 741 if (fw_core_data_ptr) { 742 pvr_fw_object_vunmap(fw_mem->core_data_obj); 743 fw_core_data_ptr = NULL; 744 } 745 if (fw_core_code_ptr) { 746 pvr_fw_object_vunmap(fw_mem->core_code_obj); 747 fw_core_code_ptr = NULL; 748 } 749 pvr_fw_object_vunmap(fw_mem->data_obj); 750 fw_data_ptr = NULL; 751 pvr_fw_object_vunmap(fw_mem->code_obj); 752 fw_code_ptr = NULL; 753 754 err = pvr_fw_create_fwif_connection_ctl(pvr_dev); 755 if (err) 756 goto err_free_kdata; 757 758 return 0; 759 760 err_free_kdata: 761 kfree(fw_mem->core_data); 762 kfree(fw_mem->core_code); 763 kfree(fw_mem->data); 764 kfree(fw_mem->code); 765 766 if (fw_core_data_ptr) 767 pvr_fw_object_vunmap(fw_mem->core_data_obj); 768 if (fw_mem->core_data_obj) 769 pvr_fw_object_destroy(fw_mem->core_data_obj); 770 771 err_free_fw_core_code_obj: 772 if (fw_core_code_ptr) 773 pvr_fw_object_vunmap(fw_mem->core_code_obj); 774 if (fw_mem->core_code_obj) 775 pvr_fw_object_destroy(fw_mem->core_code_obj); 776 777 err_free_fw_data_obj: 778 if (fw_data_ptr) 779 pvr_fw_object_vunmap(fw_mem->data_obj); 780 pvr_fw_object_destroy(fw_mem->data_obj); 781 782 err_free_fw_code_obj: 783 if (fw_code_ptr) 784 pvr_fw_object_vunmap(fw_mem->code_obj); 785 pvr_fw_object_destroy(fw_mem->code_obj); 786 787 return err; 788 } 789 790 static int 791 pvr_copy_to_fw(struct pvr_fw_object *dest_obj, u8 *src_ptr, u32 size) 792 { 793 u8 *dest_ptr = pvr_fw_object_vmap(dest_obj); 794 795 if (IS_ERR(dest_ptr)) 796 return PTR_ERR(dest_ptr); 797 798 memcpy(dest_ptr, src_ptr, size); 799 800 pvr_fw_object_vunmap(dest_obj); 801 802 return 0; 803 } 804 805 static int 806 pvr_fw_reinit_code_data(struct pvr_device *pvr_dev) 807 { 808 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 809 int err; 810 811 err = pvr_copy_to_fw(fw_mem->code_obj, fw_mem->code, fw_mem->code_alloc_size); 812 if (err) 813 return err; 814 815 err = pvr_copy_to_fw(fw_mem->data_obj, fw_mem->data, fw_mem->data_alloc_size); 816 if (err) 817 return err; 818 819 if (fw_mem->core_code) { 820 err = pvr_copy_to_fw(fw_mem->core_code_obj, fw_mem->core_code, 821 fw_mem->core_code_alloc_size); 822 if (err) 823 return err; 824 } 825 826 if (fw_mem->core_data) { 827 err = pvr_copy_to_fw(fw_mem->core_data_obj, fw_mem->core_data, 828 fw_mem->core_data_alloc_size); 829 if (err) 830 return err; 831 } 832 833 return 0; 834 } 835 836 static void 837 pvr_fw_cleanup(struct pvr_device *pvr_dev) 838 { 839 struct pvr_fw_mem *fw_mem = &pvr_dev->fw_dev.mem; 840 841 pvr_fw_fini_fwif_connection_ctl(pvr_dev); 842 843 kfree(fw_mem->core_data); 844 kfree(fw_mem->core_code); 845 kfree(fw_mem->data); 846 kfree(fw_mem->code); 847 848 if (fw_mem->core_code_obj) 849 pvr_fw_object_destroy(fw_mem->core_code_obj); 850 if (fw_mem->core_data_obj) 851 pvr_fw_object_destroy(fw_mem->core_data_obj); 852 pvr_fw_object_destroy(fw_mem->code_obj); 853 pvr_fw_object_destroy(fw_mem->data_obj); 854 } 855 856 /** 857 * pvr_wait_for_fw_boot() - Wait for firmware to finish booting 858 * @pvr_dev: Target PowerVR device. 859 * 860 * Returns: 861 * * 0 on success, or 862 * * -%ETIMEDOUT if firmware fails to boot within timeout. 863 */ 864 int 865 pvr_wait_for_fw_boot(struct pvr_device *pvr_dev) 866 { 867 ktime_t deadline = ktime_add_us(ktime_get(), FW_BOOT_TIMEOUT_USEC); 868 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 869 870 while (ktime_to_ns(ktime_sub(deadline, ktime_get())) > 0) { 871 if (READ_ONCE(fw_dev->fwif_sysinit->firmware_started)) 872 return 0; 873 } 874 875 return -ETIMEDOUT; 876 } 877 878 /* 879 * pvr_fw_heap_info_init() - Calculate size and masks for FW heap 880 * @pvr_dev: Target PowerVR device. 881 * @log2_size: Log2 of raw heap size. 882 * @reserved_size: Size of reserved area of heap, in bytes. May be zero. 883 */ 884 void 885 pvr_fw_heap_info_init(struct pvr_device *pvr_dev, u32 log2_size, u32 reserved_size) 886 { 887 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 888 889 fw_dev->fw_heap_info.gpu_addr = PVR_ROGUE_FW_MAIN_HEAP_BASE; 890 fw_dev->fw_heap_info.log2_size = log2_size; 891 fw_dev->fw_heap_info.reserved_size = reserved_size; 892 fw_dev->fw_heap_info.raw_size = 1 << fw_dev->fw_heap_info.log2_size; 893 fw_dev->fw_heap_info.offset_mask = fw_dev->fw_heap_info.raw_size - 1; 894 fw_dev->fw_heap_info.config_offset = fw_dev->fw_heap_info.raw_size - 895 PVR_ROGUE_FW_CONFIG_HEAP_SIZE; 896 fw_dev->fw_heap_info.size = fw_dev->fw_heap_info.raw_size - 897 (PVR_ROGUE_FW_CONFIG_HEAP_SIZE + reserved_size); 898 } 899 900 /** 901 * pvr_fw_validate_init_device_info() - Validate firmware and initialise device information 902 * @pvr_dev: Target PowerVR device. 903 * 904 * This function must be called before querying device information. 905 * 906 * Returns: 907 * * 0 on success, or 908 * * -%EINVAL if firmware validation fails. 909 */ 910 int 911 pvr_fw_validate_init_device_info(struct pvr_device *pvr_dev) 912 { 913 int err; 914 915 err = pvr_fw_validate(pvr_dev); 916 if (err) 917 return err; 918 919 return pvr_fw_get_device_info(pvr_dev); 920 } 921 922 /** 923 * pvr_fw_init() - Initialise and boot firmware 924 * @pvr_dev: Target PowerVR device 925 * 926 * On successful completion of the function the PowerVR device will be 927 * initialised and ready to use. 928 * 929 * Returns: 930 * * 0 on success, 931 * * -%EINVAL on invalid firmware image, 932 * * -%ENOMEM on out of memory, or 933 * * -%ETIMEDOUT if firmware processor fails to boot or on register poll timeout. 934 */ 935 int 936 pvr_fw_init(struct pvr_device *pvr_dev) 937 { 938 u32 kccb_size_log2 = ROGUE_FWIF_KCCB_NUMCMDS_LOG2_DEFAULT; 939 u32 kccb_rtn_size = (1 << kccb_size_log2) * sizeof(*pvr_dev->kccb.rtn); 940 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 941 int err; 942 943 if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_META) 944 fw_dev->defs = &pvr_fw_defs_meta; 945 else if (fw_dev->processor_type == PVR_FW_PROCESSOR_TYPE_MIPS) 946 fw_dev->defs = &pvr_fw_defs_mips; 947 else 948 return -EINVAL; 949 950 err = fw_dev->defs->init(pvr_dev); 951 if (err) 952 return err; 953 954 drm_mm_init(&fw_dev->fw_mm, ROGUE_FW_HEAP_BASE, fw_dev->fw_heap_info.raw_size); 955 fw_dev->fw_mm_base = ROGUE_FW_HEAP_BASE; 956 spin_lock_init(&fw_dev->fw_mm_lock); 957 958 INIT_LIST_HEAD(&fw_dev->fw_objs.list); 959 err = drmm_mutex_init(from_pvr_device(pvr_dev), &fw_dev->fw_objs.lock); 960 if (err) 961 goto err_mm_takedown; 962 963 err = pvr_fw_process(pvr_dev); 964 if (err) 965 goto err_mm_takedown; 966 967 /* Initialise KCCB and FWCCB. */ 968 err = pvr_kccb_init(pvr_dev); 969 if (err) 970 goto err_fw_cleanup; 971 972 err = pvr_fwccb_init(pvr_dev); 973 if (err) 974 goto err_kccb_fini; 975 976 /* Allocate memory for KCCB return slots. */ 977 pvr_dev->kccb.rtn = pvr_fw_object_create_and_map(pvr_dev, kccb_rtn_size, 978 PVR_BO_FW_FLAGS_DEVICE_UNCACHED, 979 NULL, NULL, &pvr_dev->kccb.rtn_obj); 980 if (IS_ERR(pvr_dev->kccb.rtn)) { 981 err = PTR_ERR(pvr_dev->kccb.rtn); 982 goto err_fwccb_fini; 983 } 984 985 err = pvr_fw_create_structures(pvr_dev); 986 if (err) 987 goto err_kccb_rtn_release; 988 989 err = pvr_fw_start(pvr_dev); 990 if (err) 991 goto err_destroy_structures; 992 993 err = pvr_wait_for_fw_boot(pvr_dev); 994 if (err) { 995 drm_err(from_pvr_device(pvr_dev), "Firmware failed to boot\n"); 996 goto err_fw_stop; 997 } 998 999 fw_dev->booted = true; 1000 1001 return 0; 1002 1003 err_fw_stop: 1004 pvr_fw_stop(pvr_dev); 1005 1006 err_destroy_structures: 1007 pvr_fw_destroy_structures(pvr_dev); 1008 1009 err_kccb_rtn_release: 1010 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); 1011 1012 err_fwccb_fini: 1013 pvr_ccb_fini(&pvr_dev->fwccb); 1014 1015 err_kccb_fini: 1016 pvr_kccb_fini(pvr_dev); 1017 1018 err_fw_cleanup: 1019 pvr_fw_cleanup(pvr_dev); 1020 1021 err_mm_takedown: 1022 drm_mm_takedown(&fw_dev->fw_mm); 1023 1024 if (fw_dev->defs->fini) 1025 fw_dev->defs->fini(pvr_dev); 1026 1027 return err; 1028 } 1029 1030 /** 1031 * pvr_fw_fini() - Shutdown firmware processor and free associated memory 1032 * @pvr_dev: Target PowerVR device 1033 */ 1034 void 1035 pvr_fw_fini(struct pvr_device *pvr_dev) 1036 { 1037 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1038 1039 fw_dev->booted = false; 1040 1041 pvr_fw_destroy_structures(pvr_dev); 1042 pvr_fw_object_unmap_and_destroy(pvr_dev->kccb.rtn_obj); 1043 1044 /* 1045 * Ensure FWCCB worker has finished executing before destroying FWCCB. The IRQ handler has 1046 * been unregistered at this point so no new work should be being submitted. 1047 */ 1048 pvr_ccb_fini(&pvr_dev->fwccb); 1049 pvr_kccb_fini(pvr_dev); 1050 pvr_fw_cleanup(pvr_dev); 1051 1052 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1053 WARN_ON(!list_empty(&pvr_dev->fw_dev.fw_objs.list)); 1054 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1055 1056 drm_mm_takedown(&fw_dev->fw_mm); 1057 1058 if (fw_dev->defs->fini) 1059 fw_dev->defs->fini(pvr_dev); 1060 } 1061 1062 /** 1063 * pvr_fw_mts_schedule() - Schedule work via an MTS kick 1064 * @pvr_dev: Target PowerVR device 1065 * @val: Kick mask. Should be a combination of %ROGUE_CR_MTS_SCHEDULE_* 1066 */ 1067 void 1068 pvr_fw_mts_schedule(struct pvr_device *pvr_dev, u32 val) 1069 { 1070 /* Ensure memory is flushed before kicking MTS. */ 1071 wmb(); 1072 1073 pvr_cr_write32(pvr_dev, ROGUE_CR_MTS_SCHEDULE, val); 1074 1075 /* Ensure the MTS kick goes through before continuing. */ 1076 mb(); 1077 } 1078 1079 /** 1080 * pvr_fw_structure_cleanup() - Send FW cleanup request for an object 1081 * @pvr_dev: Target PowerVR device. 1082 * @type: Type of object to cleanup. Must be one of &enum rogue_fwif_cleanup_type. 1083 * @fw_obj: Pointer to FW object containing object to cleanup. 1084 * @offset: Offset within FW object of object to cleanup. 1085 * 1086 * Returns: 1087 * * 0 on success, 1088 * * -EBUSY if object is busy, 1089 * * -ETIMEDOUT on timeout, or 1090 * * -EIO if device is lost. 1091 */ 1092 int 1093 pvr_fw_structure_cleanup(struct pvr_device *pvr_dev, u32 type, struct pvr_fw_object *fw_obj, 1094 u32 offset) 1095 { 1096 struct rogue_fwif_kccb_cmd cmd; 1097 int slot_nr; 1098 int idx; 1099 int err; 1100 u32 rtn; 1101 1102 struct rogue_fwif_cleanup_request *cleanup_req = &cmd.cmd_data.cleanup_data; 1103 1104 down_read(&pvr_dev->reset_sem); 1105 1106 if (!drm_dev_enter(from_pvr_device(pvr_dev), &idx)) { 1107 err = -EIO; 1108 goto err_up_read; 1109 } 1110 1111 cmd.cmd_type = ROGUE_FWIF_KCCB_CMD_CLEANUP; 1112 cmd.kccb_flags = 0; 1113 cleanup_req->cleanup_type = type; 1114 1115 switch (type) { 1116 case ROGUE_FWIF_CLEANUP_FWCOMMONCONTEXT: 1117 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1118 &cleanup_req->cleanup_data.context_fw_addr); 1119 break; 1120 case ROGUE_FWIF_CLEANUP_HWRTDATA: 1121 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1122 &cleanup_req->cleanup_data.hwrt_data_fw_addr); 1123 break; 1124 case ROGUE_FWIF_CLEANUP_FREELIST: 1125 pvr_fw_object_get_fw_addr_offset(fw_obj, offset, 1126 &cleanup_req->cleanup_data.freelist_fw_addr); 1127 break; 1128 default: 1129 err = -EINVAL; 1130 goto err_drm_dev_exit; 1131 } 1132 1133 err = pvr_kccb_send_cmd(pvr_dev, &cmd, &slot_nr); 1134 if (err) 1135 goto err_drm_dev_exit; 1136 1137 err = pvr_kccb_wait_for_completion(pvr_dev, slot_nr, HZ, &rtn); 1138 if (err) 1139 goto err_drm_dev_exit; 1140 1141 if (rtn & ROGUE_FWIF_KCCB_RTN_SLOT_CLEANUP_BUSY) 1142 err = -EBUSY; 1143 1144 err_drm_dev_exit: 1145 drm_dev_exit(idx); 1146 1147 err_up_read: 1148 up_read(&pvr_dev->reset_sem); 1149 1150 return err; 1151 } 1152 1153 /** 1154 * pvr_fw_object_fw_map() - Map a FW object in firmware address space 1155 * @pvr_dev: Device pointer. 1156 * @fw_obj: FW object to map. 1157 * @dev_addr: Desired address in device space, if a specific address is 1158 * required. 0 otherwise. 1159 * 1160 * Returns: 1161 * * 0 on success, or 1162 * * -%EINVAL if @fw_obj is already mapped but has no references, or 1163 * * Any error returned by DRM. 1164 */ 1165 static int 1166 pvr_fw_object_fw_map(struct pvr_device *pvr_dev, struct pvr_fw_object *fw_obj, u64 dev_addr) 1167 { 1168 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1169 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1170 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1171 1172 int err; 1173 1174 spin_lock(&fw_dev->fw_mm_lock); 1175 1176 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1177 err = -EINVAL; 1178 goto err_unlock; 1179 } 1180 1181 if (!dev_addr) { 1182 /* 1183 * Allocate from the main heap only (firmware heap minus 1184 * config space). 1185 */ 1186 err = drm_mm_insert_node_in_range(&fw_dev->fw_mm, &fw_obj->fw_mm_node, 1187 gem_obj->size, 0, 0, 1188 fw_dev->fw_heap_info.gpu_addr, 1189 fw_dev->fw_heap_info.gpu_addr + 1190 fw_dev->fw_heap_info.size, 0); 1191 if (err) 1192 goto err_unlock; 1193 } else { 1194 fw_obj->fw_mm_node.start = dev_addr; 1195 fw_obj->fw_mm_node.size = gem_obj->size; 1196 err = drm_mm_reserve_node(&fw_dev->fw_mm, &fw_obj->fw_mm_node); 1197 if (err) 1198 goto err_unlock; 1199 } 1200 1201 spin_unlock(&fw_dev->fw_mm_lock); 1202 1203 /* Map object on GPU. */ 1204 err = fw_dev->defs->vm_map(pvr_dev, fw_obj); 1205 if (err) 1206 goto err_remove_node; 1207 1208 fw_obj->fw_addr_offset = (u32)(fw_obj->fw_mm_node.start - fw_dev->fw_mm_base); 1209 1210 return 0; 1211 1212 err_remove_node: 1213 spin_lock(&fw_dev->fw_mm_lock); 1214 drm_mm_remove_node(&fw_obj->fw_mm_node); 1215 1216 err_unlock: 1217 spin_unlock(&fw_dev->fw_mm_lock); 1218 1219 return err; 1220 } 1221 1222 /** 1223 * pvr_fw_object_fw_unmap() - Unmap a previously mapped FW object 1224 * @fw_obj: FW object to unmap. 1225 * 1226 * Returns: 1227 * * 0 on success, or 1228 * * -%EINVAL if object is not currently mapped. 1229 */ 1230 static int 1231 pvr_fw_object_fw_unmap(struct pvr_fw_object *fw_obj) 1232 { 1233 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1234 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1235 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); 1236 struct pvr_fw_device *fw_dev = &pvr_dev->fw_dev; 1237 1238 fw_dev->defs->vm_unmap(pvr_dev, fw_obj); 1239 1240 spin_lock(&fw_dev->fw_mm_lock); 1241 1242 if (!drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1243 spin_unlock(&fw_dev->fw_mm_lock); 1244 return -EINVAL; 1245 } 1246 1247 drm_mm_remove_node(&fw_obj->fw_mm_node); 1248 1249 spin_unlock(&fw_dev->fw_mm_lock); 1250 1251 return 0; 1252 } 1253 1254 static void * 1255 pvr_fw_object_create_and_map_common(struct pvr_device *pvr_dev, size_t size, 1256 u64 flags, u64 dev_addr, 1257 void (*init)(void *cpu_ptr, void *priv), 1258 void *init_priv, struct pvr_fw_object **fw_obj_out) 1259 { 1260 struct pvr_fw_object *fw_obj; 1261 void *cpu_ptr; 1262 int err; 1263 1264 /* %DRM_PVR_BO_PM_FW_PROTECT is implicit for FW objects. */ 1265 flags |= DRM_PVR_BO_PM_FW_PROTECT; 1266 1267 fw_obj = kzalloc(sizeof(*fw_obj), GFP_KERNEL); 1268 if (!fw_obj) 1269 return ERR_PTR(-ENOMEM); 1270 1271 INIT_LIST_HEAD(&fw_obj->node); 1272 fw_obj->init = init; 1273 fw_obj->init_priv = init_priv; 1274 1275 fw_obj->gem = pvr_gem_object_create(pvr_dev, size, flags); 1276 if (IS_ERR(fw_obj->gem)) { 1277 err = PTR_ERR(fw_obj->gem); 1278 fw_obj->gem = NULL; 1279 goto err_put_object; 1280 } 1281 1282 err = pvr_fw_object_fw_map(pvr_dev, fw_obj, dev_addr); 1283 if (err) 1284 goto err_put_object; 1285 1286 cpu_ptr = pvr_fw_object_vmap(fw_obj); 1287 if (IS_ERR(cpu_ptr)) { 1288 err = PTR_ERR(cpu_ptr); 1289 goto err_put_object; 1290 } 1291 1292 *fw_obj_out = fw_obj; 1293 1294 if (fw_obj->init) 1295 fw_obj->init(cpu_ptr, fw_obj->init_priv); 1296 1297 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1298 list_add_tail(&fw_obj->node, &pvr_dev->fw_dev.fw_objs.list); 1299 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1300 1301 return cpu_ptr; 1302 1303 err_put_object: 1304 pvr_fw_object_destroy(fw_obj); 1305 1306 return ERR_PTR(err); 1307 } 1308 1309 /** 1310 * pvr_fw_object_create() - Create a FW object and map to firmware 1311 * @pvr_dev: PowerVR device pointer. 1312 * @size: Size of object, in bytes. 1313 * @flags: Options which affect both this operation and future mapping 1314 * operations performed on the returned object. Must be a combination of 1315 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1316 * @init: Initialisation callback. 1317 * @init_priv: Private pointer to pass to initialisation callback. 1318 * @fw_obj_out: Pointer to location to store created object pointer. 1319 * 1320 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1321 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1322 * set. 1323 * 1324 * Returns: 1325 * * 0 on success, or 1326 * * Any error returned by pvr_fw_object_create_common(). 1327 */ 1328 int 1329 pvr_fw_object_create(struct pvr_device *pvr_dev, size_t size, u64 flags, 1330 void (*init)(void *cpu_ptr, void *priv), void *init_priv, 1331 struct pvr_fw_object **fw_obj_out) 1332 { 1333 void *cpu_ptr; 1334 1335 cpu_ptr = pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, 1336 fw_obj_out); 1337 if (IS_ERR(cpu_ptr)) 1338 return PTR_ERR(cpu_ptr); 1339 1340 pvr_fw_object_vunmap(*fw_obj_out); 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * pvr_fw_object_create_and_map() - Create a FW object and map to firmware and CPU 1347 * @pvr_dev: PowerVR device pointer. 1348 * @size: Size of object, in bytes. 1349 * @flags: Options which affect both this operation and future mapping 1350 * operations performed on the returned object. Must be a combination of 1351 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1352 * @init: Initialisation callback. 1353 * @init_priv: Private pointer to pass to initialisation callback. 1354 * @fw_obj_out: Pointer to location to store created object pointer. 1355 * 1356 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1357 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1358 * set. 1359 * 1360 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU 1361 * mapping. 1362 * 1363 * Returns: 1364 * * Pointer to CPU mapping of newly created object, or 1365 * * Any error returned by pvr_fw_object_create(), or 1366 * * Any error returned by pvr_fw_object_vmap(). 1367 */ 1368 void * 1369 pvr_fw_object_create_and_map(struct pvr_device *pvr_dev, size_t size, u64 flags, 1370 void (*init)(void *cpu_ptr, void *priv), 1371 void *init_priv, struct pvr_fw_object **fw_obj_out) 1372 { 1373 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, 0, init, init_priv, 1374 fw_obj_out); 1375 } 1376 1377 /** 1378 * pvr_fw_object_create_and_map_offset() - Create a FW object and map to 1379 * firmware at the provided offset and to the CPU. 1380 * @pvr_dev: PowerVR device pointer. 1381 * @dev_offset: Base address of desired FW mapping, offset from start of FW heap. 1382 * @size: Size of object, in bytes. 1383 * @flags: Options which affect both this operation and future mapping 1384 * operations performed on the returned object. Must be a combination of 1385 * DRM_PVR_BO_* and/or PVR_BO_* flags. 1386 * @init: Initialisation callback. 1387 * @init_priv: Private pointer to pass to initialisation callback. 1388 * @fw_obj_out: Pointer to location to store created object pointer. 1389 * 1390 * %DRM_PVR_BO_DEVICE_PM_FW_PROTECT is implied for all FW objects. Consequently, 1391 * this function will fail if @flags has %DRM_PVR_BO_CPU_ALLOW_USERSPACE_ACCESS 1392 * set. 1393 * 1394 * Caller is responsible for calling pvr_fw_object_vunmap() to release the CPU 1395 * mapping. 1396 * 1397 * Returns: 1398 * * Pointer to CPU mapping of newly created object, or 1399 * * Any error returned by pvr_fw_object_create(), or 1400 * * Any error returned by pvr_fw_object_vmap(). 1401 */ 1402 void * 1403 pvr_fw_object_create_and_map_offset(struct pvr_device *pvr_dev, 1404 u32 dev_offset, size_t size, u64 flags, 1405 void (*init)(void *cpu_ptr, void *priv), 1406 void *init_priv, struct pvr_fw_object **fw_obj_out) 1407 { 1408 u64 dev_addr = pvr_dev->fw_dev.fw_mm_base + dev_offset; 1409 1410 return pvr_fw_object_create_and_map_common(pvr_dev, size, flags, dev_addr, init, init_priv, 1411 fw_obj_out); 1412 } 1413 1414 /** 1415 * pvr_fw_object_destroy() - Destroy a pvr_fw_object 1416 * @fw_obj: Pointer to object to destroy. 1417 */ 1418 void pvr_fw_object_destroy(struct pvr_fw_object *fw_obj) 1419 { 1420 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1421 struct drm_gem_object *gem_obj = gem_from_pvr_gem(pvr_obj); 1422 struct pvr_device *pvr_dev = to_pvr_device(gem_obj->dev); 1423 1424 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1425 list_del(&fw_obj->node); 1426 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1427 1428 if (drm_mm_node_allocated(&fw_obj->fw_mm_node)) { 1429 /* If we can't unmap, leak the memory. */ 1430 if (WARN_ON(pvr_fw_object_fw_unmap(fw_obj))) 1431 return; 1432 } 1433 1434 if (fw_obj->gem) 1435 pvr_gem_object_put(fw_obj->gem); 1436 1437 kfree(fw_obj); 1438 } 1439 1440 /** 1441 * pvr_fw_object_get_fw_addr_offset() - Return address of object in firmware address space, with 1442 * given offset. 1443 * @fw_obj: Pointer to object. 1444 * @offset: Desired offset from start of object. 1445 * @fw_addr_out: Location to store address to. 1446 */ 1447 void pvr_fw_object_get_fw_addr_offset(struct pvr_fw_object *fw_obj, u32 offset, u32 *fw_addr_out) 1448 { 1449 struct pvr_gem_object *pvr_obj = fw_obj->gem; 1450 struct pvr_device *pvr_dev = to_pvr_device(gem_from_pvr_gem(pvr_obj)->dev); 1451 1452 *fw_addr_out = pvr_dev->fw_dev.defs->get_fw_addr_with_offset(fw_obj, offset); 1453 } 1454 1455 /* 1456 * pvr_fw_hard_reset() - Re-initialise the FW code and data segments, and reset all global FW 1457 * structures 1458 * @pvr_dev: Device pointer 1459 * 1460 * If this function returns an error then the caller must regard the device as lost. 1461 * 1462 * Returns: 1463 * * 0 on success, or 1464 * * Any error returned by pvr_fw_init_dev_structures() or pvr_fw_reset_all(). 1465 */ 1466 int 1467 pvr_fw_hard_reset(struct pvr_device *pvr_dev) 1468 { 1469 struct list_head *pos; 1470 int err; 1471 1472 /* Reset all FW objects */ 1473 mutex_lock(&pvr_dev->fw_dev.fw_objs.lock); 1474 1475 list_for_each(pos, &pvr_dev->fw_dev.fw_objs.list) { 1476 struct pvr_fw_object *fw_obj = container_of(pos, struct pvr_fw_object, node); 1477 void *cpu_ptr = pvr_fw_object_vmap(fw_obj); 1478 1479 WARN_ON(IS_ERR(cpu_ptr)); 1480 1481 if (!(fw_obj->gem->flags & PVR_BO_FW_NO_CLEAR_ON_RESET)) { 1482 memset(cpu_ptr, 0, pvr_gem_object_size(fw_obj->gem)); 1483 1484 if (fw_obj->init) 1485 fw_obj->init(cpu_ptr, fw_obj->init_priv); 1486 } 1487 1488 pvr_fw_object_vunmap(fw_obj); 1489 } 1490 1491 mutex_unlock(&pvr_dev->fw_dev.fw_objs.lock); 1492 1493 err = pvr_fw_reinit_code_data(pvr_dev); 1494 if (err) 1495 return err; 1496 1497 return 0; 1498 } 1499