xref: /linux/drivers/gpu/drm/i915/selftests/i915_request.c (revision 5a7eeb8ba143d860050ecea924a8f074f02d8023)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/prime_numbers.h>
26 #include <linux/pm_qos.h>
27 #include <linux/sort.h>
28 
29 #include "gem/i915_gem_pm.h"
30 #include "gem/selftests/mock_context.h"
31 
32 #include "gt/intel_engine_heartbeat.h"
33 #include "gt/intel_engine_pm.h"
34 #include "gt/intel_engine_user.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_requests.h"
37 
38 #include "i915_random.h"
39 #include "i915_selftest.h"
40 #include "igt_flush_test.h"
41 #include "igt_live_test.h"
42 #include "igt_spinner.h"
43 #include "lib_sw_fence.h"
44 
45 #include "mock_drm.h"
46 #include "mock_gem_device.h"
47 
48 static unsigned int num_uabi_engines(struct drm_i915_private *i915)
49 {
50 	struct intel_engine_cs *engine;
51 	unsigned int count;
52 
53 	count = 0;
54 	for_each_uabi_engine(engine, i915)
55 		count++;
56 
57 	return count;
58 }
59 
60 static struct intel_engine_cs *rcs0(struct drm_i915_private *i915)
61 {
62 	return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0);
63 }
64 
65 static int igt_add_request(void *arg)
66 {
67 	struct drm_i915_private *i915 = arg;
68 	struct i915_request *request;
69 
70 	/* Basic preliminary test to create a request and let it loose! */
71 
72 	request = mock_request(rcs0(i915)->kernel_context, HZ / 10);
73 	if (!request)
74 		return -ENOMEM;
75 
76 	i915_request_add(request);
77 
78 	return 0;
79 }
80 
81 static int igt_wait_request(void *arg)
82 {
83 	const long T = HZ / 4;
84 	struct drm_i915_private *i915 = arg;
85 	struct i915_request *request;
86 	int err = -EINVAL;
87 
88 	/* Submit a request, then wait upon it */
89 
90 	request = mock_request(rcs0(i915)->kernel_context, T);
91 	if (!request)
92 		return -ENOMEM;
93 
94 	i915_request_get(request);
95 
96 	if (i915_request_wait(request, 0, 0) != -ETIME) {
97 		pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n");
98 		goto out_request;
99 	}
100 
101 	if (i915_request_wait(request, 0, T) != -ETIME) {
102 		pr_err("request wait succeeded (expected timeout before submit!)\n");
103 		goto out_request;
104 	}
105 
106 	if (i915_request_completed(request)) {
107 		pr_err("request completed before submit!!\n");
108 		goto out_request;
109 	}
110 
111 	i915_request_add(request);
112 
113 	if (i915_request_wait(request, 0, 0) != -ETIME) {
114 		pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n");
115 		goto out_request;
116 	}
117 
118 	if (i915_request_completed(request)) {
119 		pr_err("request completed immediately!\n");
120 		goto out_request;
121 	}
122 
123 	if (i915_request_wait(request, 0, T / 2) != -ETIME) {
124 		pr_err("request wait succeeded (expected timeout!)\n");
125 		goto out_request;
126 	}
127 
128 	if (i915_request_wait(request, 0, T) == -ETIME) {
129 		pr_err("request wait timed out!\n");
130 		goto out_request;
131 	}
132 
133 	if (!i915_request_completed(request)) {
134 		pr_err("request not complete after waiting!\n");
135 		goto out_request;
136 	}
137 
138 	if (i915_request_wait(request, 0, T) == -ETIME) {
139 		pr_err("request wait timed out when already complete!\n");
140 		goto out_request;
141 	}
142 
143 	err = 0;
144 out_request:
145 	i915_request_put(request);
146 	mock_device_flush(i915);
147 	return err;
148 }
149 
150 static int igt_fence_wait(void *arg)
151 {
152 	const long T = HZ / 4;
153 	struct drm_i915_private *i915 = arg;
154 	struct i915_request *request;
155 	int err = -EINVAL;
156 
157 	/* Submit a request, treat it as a fence and wait upon it */
158 
159 	request = mock_request(rcs0(i915)->kernel_context, T);
160 	if (!request)
161 		return -ENOMEM;
162 
163 	if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) {
164 		pr_err("fence wait success before submit (expected timeout)!\n");
165 		goto out;
166 	}
167 
168 	i915_request_add(request);
169 
170 	if (dma_fence_is_signaled(&request->fence)) {
171 		pr_err("fence signaled immediately!\n");
172 		goto out;
173 	}
174 
175 	if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) {
176 		pr_err("fence wait success after submit (expected timeout)!\n");
177 		goto out;
178 	}
179 
180 	if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
181 		pr_err("fence wait timed out (expected success)!\n");
182 		goto out;
183 	}
184 
185 	if (!dma_fence_is_signaled(&request->fence)) {
186 		pr_err("fence unsignaled after waiting!\n");
187 		goto out;
188 	}
189 
190 	if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) {
191 		pr_err("fence wait timed out when complete (expected success)!\n");
192 		goto out;
193 	}
194 
195 	err = 0;
196 out:
197 	mock_device_flush(i915);
198 	return err;
199 }
200 
201 static int igt_request_rewind(void *arg)
202 {
203 	struct drm_i915_private *i915 = arg;
204 	struct i915_request *request, *vip;
205 	struct i915_gem_context *ctx[2];
206 	struct intel_context *ce;
207 	int err = -EINVAL;
208 
209 	ctx[0] = mock_context(i915, "A");
210 
211 	ce = i915_gem_context_get_engine(ctx[0], RCS0);
212 	GEM_BUG_ON(IS_ERR(ce));
213 	request = mock_request(ce, 2 * HZ);
214 	intel_context_put(ce);
215 	if (!request) {
216 		err = -ENOMEM;
217 		goto err_context_0;
218 	}
219 
220 	i915_request_get(request);
221 	i915_request_add(request);
222 
223 	ctx[1] = mock_context(i915, "B");
224 
225 	ce = i915_gem_context_get_engine(ctx[1], RCS0);
226 	GEM_BUG_ON(IS_ERR(ce));
227 	vip = mock_request(ce, 0);
228 	intel_context_put(ce);
229 	if (!vip) {
230 		err = -ENOMEM;
231 		goto err_context_1;
232 	}
233 
234 	/* Simulate preemption by manual reordering */
235 	if (!mock_cancel_request(request)) {
236 		pr_err("failed to cancel request (already executed)!\n");
237 		i915_request_add(vip);
238 		goto err_context_1;
239 	}
240 	i915_request_get(vip);
241 	i915_request_add(vip);
242 	rcu_read_lock();
243 	request->engine->submit_request(request);
244 	rcu_read_unlock();
245 
246 
247 	if (i915_request_wait(vip, 0, HZ) == -ETIME) {
248 		pr_err("timed out waiting for high priority request\n");
249 		goto err;
250 	}
251 
252 	if (i915_request_completed(request)) {
253 		pr_err("low priority request already completed\n");
254 		goto err;
255 	}
256 
257 	err = 0;
258 err:
259 	i915_request_put(vip);
260 err_context_1:
261 	mock_context_close(ctx[1]);
262 	i915_request_put(request);
263 err_context_0:
264 	mock_context_close(ctx[0]);
265 	mock_device_flush(i915);
266 	return err;
267 }
268 
269 struct smoketest {
270 	struct intel_engine_cs *engine;
271 	struct i915_gem_context **contexts;
272 	atomic_long_t num_waits, num_fences;
273 	int ncontexts, max_batch;
274 	struct i915_request *(*request_alloc)(struct intel_context *ce);
275 };
276 
277 static struct i915_request *
278 __mock_request_alloc(struct intel_context *ce)
279 {
280 	return mock_request(ce, 0);
281 }
282 
283 static struct i915_request *
284 __live_request_alloc(struct intel_context *ce)
285 {
286 	return intel_context_create_request(ce);
287 }
288 
289 static int __igt_breadcrumbs_smoketest(void *arg)
290 {
291 	struct smoketest *t = arg;
292 	const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1;
293 	const unsigned int total = 4 * t->ncontexts + 1;
294 	unsigned int num_waits = 0, num_fences = 0;
295 	struct i915_request **requests;
296 	I915_RND_STATE(prng);
297 	unsigned int *order;
298 	int err = 0;
299 
300 	/*
301 	 * A very simple test to catch the most egregious of list handling bugs.
302 	 *
303 	 * At its heart, we simply create oodles of requests running across
304 	 * multiple kthreads and enable signaling on them, for the sole purpose
305 	 * of stressing our breadcrumb handling. The only inspection we do is
306 	 * that the fences were marked as signaled.
307 	 */
308 
309 	requests = kcalloc(total, sizeof(*requests), GFP_KERNEL);
310 	if (!requests)
311 		return -ENOMEM;
312 
313 	order = i915_random_order(total, &prng);
314 	if (!order) {
315 		err = -ENOMEM;
316 		goto out_requests;
317 	}
318 
319 	while (!kthread_should_stop()) {
320 		struct i915_sw_fence *submit, *wait;
321 		unsigned int n, count;
322 
323 		submit = heap_fence_create(GFP_KERNEL);
324 		if (!submit) {
325 			err = -ENOMEM;
326 			break;
327 		}
328 
329 		wait = heap_fence_create(GFP_KERNEL);
330 		if (!wait) {
331 			i915_sw_fence_commit(submit);
332 			heap_fence_put(submit);
333 			err = ENOMEM;
334 			break;
335 		}
336 
337 		i915_random_reorder(order, total, &prng);
338 		count = 1 + i915_prandom_u32_max_state(max_batch, &prng);
339 
340 		for (n = 0; n < count; n++) {
341 			struct i915_gem_context *ctx =
342 				t->contexts[order[n] % t->ncontexts];
343 			struct i915_request *rq;
344 			struct intel_context *ce;
345 
346 			ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx);
347 			GEM_BUG_ON(IS_ERR(ce));
348 			rq = t->request_alloc(ce);
349 			intel_context_put(ce);
350 			if (IS_ERR(rq)) {
351 				err = PTR_ERR(rq);
352 				count = n;
353 				break;
354 			}
355 
356 			err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
357 							       submit,
358 							       GFP_KERNEL);
359 
360 			requests[n] = i915_request_get(rq);
361 			i915_request_add(rq);
362 
363 			if (err >= 0)
364 				err = i915_sw_fence_await_dma_fence(wait,
365 								    &rq->fence,
366 								    0,
367 								    GFP_KERNEL);
368 
369 			if (err < 0) {
370 				i915_request_put(rq);
371 				count = n;
372 				break;
373 			}
374 		}
375 
376 		i915_sw_fence_commit(submit);
377 		i915_sw_fence_commit(wait);
378 
379 		if (!wait_event_timeout(wait->wait,
380 					i915_sw_fence_done(wait),
381 					5 * HZ)) {
382 			struct i915_request *rq = requests[count - 1];
383 
384 			pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n",
385 			       atomic_read(&wait->pending), count,
386 			       rq->fence.context, rq->fence.seqno,
387 			       t->engine->name);
388 			GEM_TRACE_DUMP();
389 
390 			intel_gt_set_wedged(t->engine->gt);
391 			GEM_BUG_ON(!i915_request_completed(rq));
392 			i915_sw_fence_wait(wait);
393 			err = -EIO;
394 		}
395 
396 		for (n = 0; n < count; n++) {
397 			struct i915_request *rq = requests[n];
398 
399 			if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
400 				      &rq->fence.flags)) {
401 				pr_err("%llu:%llu was not signaled!\n",
402 				       rq->fence.context, rq->fence.seqno);
403 				err = -EINVAL;
404 			}
405 
406 			i915_request_put(rq);
407 		}
408 
409 		heap_fence_put(wait);
410 		heap_fence_put(submit);
411 
412 		if (err < 0)
413 			break;
414 
415 		num_fences += count;
416 		num_waits++;
417 
418 		cond_resched();
419 	}
420 
421 	atomic_long_add(num_fences, &t->num_fences);
422 	atomic_long_add(num_waits, &t->num_waits);
423 
424 	kfree(order);
425 out_requests:
426 	kfree(requests);
427 	return err;
428 }
429 
430 static int mock_breadcrumbs_smoketest(void *arg)
431 {
432 	struct drm_i915_private *i915 = arg;
433 	struct smoketest t = {
434 		.engine = rcs0(i915),
435 		.ncontexts = 1024,
436 		.max_batch = 1024,
437 		.request_alloc = __mock_request_alloc
438 	};
439 	unsigned int ncpus = num_online_cpus();
440 	struct task_struct **threads;
441 	unsigned int n;
442 	int ret = 0;
443 
444 	/*
445 	 * Smoketest our breadcrumb/signal handling for requests across multiple
446 	 * threads. A very simple test to only catch the most egregious of bugs.
447 	 * See __igt_breadcrumbs_smoketest();
448 	 */
449 
450 	threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL);
451 	if (!threads)
452 		return -ENOMEM;
453 
454 	t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL);
455 	if (!t.contexts) {
456 		ret = -ENOMEM;
457 		goto out_threads;
458 	}
459 
460 	for (n = 0; n < t.ncontexts; n++) {
461 		t.contexts[n] = mock_context(t.engine->i915, "mock");
462 		if (!t.contexts[n]) {
463 			ret = -ENOMEM;
464 			goto out_contexts;
465 		}
466 	}
467 
468 	for (n = 0; n < ncpus; n++) {
469 		threads[n] = kthread_run(__igt_breadcrumbs_smoketest,
470 					 &t, "igt/%d", n);
471 		if (IS_ERR(threads[n])) {
472 			ret = PTR_ERR(threads[n]);
473 			ncpus = n;
474 			break;
475 		}
476 
477 		get_task_struct(threads[n]);
478 	}
479 
480 	yield(); /* start all threads before we begin */
481 	msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
482 
483 	for (n = 0; n < ncpus; n++) {
484 		int err;
485 
486 		err = kthread_stop(threads[n]);
487 		if (err < 0 && !ret)
488 			ret = err;
489 
490 		put_task_struct(threads[n]);
491 	}
492 	pr_info("Completed %lu waits for %lu fence across %d cpus\n",
493 		atomic_long_read(&t.num_waits),
494 		atomic_long_read(&t.num_fences),
495 		ncpus);
496 
497 out_contexts:
498 	for (n = 0; n < t.ncontexts; n++) {
499 		if (!t.contexts[n])
500 			break;
501 		mock_context_close(t.contexts[n]);
502 	}
503 	kfree(t.contexts);
504 out_threads:
505 	kfree(threads);
506 	return ret;
507 }
508 
509 int i915_request_mock_selftests(void)
510 {
511 	static const struct i915_subtest tests[] = {
512 		SUBTEST(igt_add_request),
513 		SUBTEST(igt_wait_request),
514 		SUBTEST(igt_fence_wait),
515 		SUBTEST(igt_request_rewind),
516 		SUBTEST(mock_breadcrumbs_smoketest),
517 	};
518 	struct drm_i915_private *i915;
519 	intel_wakeref_t wakeref;
520 	int err = 0;
521 
522 	i915 = mock_gem_device();
523 	if (!i915)
524 		return -ENOMEM;
525 
526 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
527 		err = i915_subtests(tests, i915);
528 
529 	drm_dev_put(&i915->drm);
530 
531 	return err;
532 }
533 
534 static int live_nop_request(void *arg)
535 {
536 	struct drm_i915_private *i915 = arg;
537 	struct intel_engine_cs *engine;
538 	struct igt_live_test t;
539 	int err = -ENODEV;
540 
541 	/*
542 	 * Submit various sized batches of empty requests, to each engine
543 	 * (individually), and wait for the batch to complete. We can check
544 	 * the overhead of submitting requests to the hardware.
545 	 */
546 
547 	for_each_uabi_engine(engine, i915) {
548 		unsigned long n, prime;
549 		IGT_TIMEOUT(end_time);
550 		ktime_t times[2] = {};
551 
552 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
553 		if (err)
554 			return err;
555 
556 		intel_engine_pm_get(engine);
557 		for_each_prime_number_from(prime, 1, 8192) {
558 			struct i915_request *request = NULL;
559 
560 			times[1] = ktime_get_raw();
561 
562 			for (n = 0; n < prime; n++) {
563 				i915_request_put(request);
564 				request = i915_request_create(engine->kernel_context);
565 				if (IS_ERR(request))
566 					return PTR_ERR(request);
567 
568 				/*
569 				 * This space is left intentionally blank.
570 				 *
571 				 * We do not actually want to perform any
572 				 * action with this request, we just want
573 				 * to measure the latency in allocation
574 				 * and submission of our breadcrumbs -
575 				 * ensuring that the bare request is sufficient
576 				 * for the system to work (i.e. proper HEAD
577 				 * tracking of the rings, interrupt handling,
578 				 * etc). It also gives us the lowest bounds
579 				 * for latency.
580 				 */
581 
582 				i915_request_get(request);
583 				i915_request_add(request);
584 			}
585 			i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
586 			i915_request_put(request);
587 
588 			times[1] = ktime_sub(ktime_get_raw(), times[1]);
589 			if (prime == 1)
590 				times[0] = times[1];
591 
592 			if (__igt_timeout(end_time, NULL))
593 				break;
594 		}
595 		intel_engine_pm_put(engine);
596 
597 		err = igt_live_test_end(&t);
598 		if (err)
599 			return err;
600 
601 		pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n",
602 			engine->name,
603 			ktime_to_ns(times[0]),
604 			prime, div64_u64(ktime_to_ns(times[1]), prime));
605 	}
606 
607 	return err;
608 }
609 
610 static struct i915_vma *empty_batch(struct drm_i915_private *i915)
611 {
612 	struct drm_i915_gem_object *obj;
613 	struct i915_vma *vma;
614 	u32 *cmd;
615 	int err;
616 
617 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
618 	if (IS_ERR(obj))
619 		return ERR_CAST(obj);
620 
621 	cmd = i915_gem_object_pin_map(obj, I915_MAP_WB);
622 	if (IS_ERR(cmd)) {
623 		err = PTR_ERR(cmd);
624 		goto err;
625 	}
626 
627 	*cmd = MI_BATCH_BUFFER_END;
628 
629 	__i915_gem_object_flush_map(obj, 0, 64);
630 	i915_gem_object_unpin_map(obj);
631 
632 	intel_gt_chipset_flush(&i915->gt);
633 
634 	vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
635 	if (IS_ERR(vma)) {
636 		err = PTR_ERR(vma);
637 		goto err;
638 	}
639 
640 	err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL);
641 	if (err)
642 		goto err;
643 
644 	/* Force the wait wait now to avoid including it in the benchmark */
645 	err = i915_vma_sync(vma);
646 	if (err)
647 		goto err_pin;
648 
649 	return vma;
650 
651 err_pin:
652 	i915_vma_unpin(vma);
653 err:
654 	i915_gem_object_put(obj);
655 	return ERR_PTR(err);
656 }
657 
658 static struct i915_request *
659 empty_request(struct intel_engine_cs *engine,
660 	      struct i915_vma *batch)
661 {
662 	struct i915_request *request;
663 	int err;
664 
665 	request = i915_request_create(engine->kernel_context);
666 	if (IS_ERR(request))
667 		return request;
668 
669 	err = engine->emit_bb_start(request,
670 				    batch->node.start,
671 				    batch->node.size,
672 				    I915_DISPATCH_SECURE);
673 	if (err)
674 		goto out_request;
675 
676 	i915_request_get(request);
677 out_request:
678 	i915_request_add(request);
679 	return err ? ERR_PTR(err) : request;
680 }
681 
682 static int live_empty_request(void *arg)
683 {
684 	struct drm_i915_private *i915 = arg;
685 	struct intel_engine_cs *engine;
686 	struct igt_live_test t;
687 	struct i915_vma *batch;
688 	int err = 0;
689 
690 	/*
691 	 * Submit various sized batches of empty requests, to each engine
692 	 * (individually), and wait for the batch to complete. We can check
693 	 * the overhead of submitting requests to the hardware.
694 	 */
695 
696 	batch = empty_batch(i915);
697 	if (IS_ERR(batch))
698 		return PTR_ERR(batch);
699 
700 	for_each_uabi_engine(engine, i915) {
701 		IGT_TIMEOUT(end_time);
702 		struct i915_request *request;
703 		unsigned long n, prime;
704 		ktime_t times[2] = {};
705 
706 		err = igt_live_test_begin(&t, i915, __func__, engine->name);
707 		if (err)
708 			goto out_batch;
709 
710 		intel_engine_pm_get(engine);
711 
712 		/* Warmup / preload */
713 		request = empty_request(engine, batch);
714 		if (IS_ERR(request)) {
715 			err = PTR_ERR(request);
716 			intel_engine_pm_put(engine);
717 			goto out_batch;
718 		}
719 		i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
720 
721 		for_each_prime_number_from(prime, 1, 8192) {
722 			times[1] = ktime_get_raw();
723 
724 			for (n = 0; n < prime; n++) {
725 				i915_request_put(request);
726 				request = empty_request(engine, batch);
727 				if (IS_ERR(request)) {
728 					err = PTR_ERR(request);
729 					intel_engine_pm_put(engine);
730 					goto out_batch;
731 				}
732 			}
733 			i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT);
734 
735 			times[1] = ktime_sub(ktime_get_raw(), times[1]);
736 			if (prime == 1)
737 				times[0] = times[1];
738 
739 			if (__igt_timeout(end_time, NULL))
740 				break;
741 		}
742 		i915_request_put(request);
743 		intel_engine_pm_put(engine);
744 
745 		err = igt_live_test_end(&t);
746 		if (err)
747 			goto out_batch;
748 
749 		pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n",
750 			engine->name,
751 			ktime_to_ns(times[0]),
752 			prime, div64_u64(ktime_to_ns(times[1]), prime));
753 	}
754 
755 out_batch:
756 	i915_vma_unpin(batch);
757 	i915_vma_put(batch);
758 	return err;
759 }
760 
761 static struct i915_vma *recursive_batch(struct drm_i915_private *i915)
762 {
763 	struct drm_i915_gem_object *obj;
764 	const int gen = INTEL_GEN(i915);
765 	struct i915_vma *vma;
766 	u32 *cmd;
767 	int err;
768 
769 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
770 	if (IS_ERR(obj))
771 		return ERR_CAST(obj);
772 
773 	vma = i915_vma_instance(obj, i915->gt.vm, NULL);
774 	if (IS_ERR(vma)) {
775 		err = PTR_ERR(vma);
776 		goto err;
777 	}
778 
779 	err = i915_vma_pin(vma, 0, 0, PIN_USER);
780 	if (err)
781 		goto err;
782 
783 	cmd = i915_gem_object_pin_map(obj, I915_MAP_WC);
784 	if (IS_ERR(cmd)) {
785 		err = PTR_ERR(cmd);
786 		goto err;
787 	}
788 
789 	if (gen >= 8) {
790 		*cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1;
791 		*cmd++ = lower_32_bits(vma->node.start);
792 		*cmd++ = upper_32_bits(vma->node.start);
793 	} else if (gen >= 6) {
794 		*cmd++ = MI_BATCH_BUFFER_START | 1 << 8;
795 		*cmd++ = lower_32_bits(vma->node.start);
796 	} else {
797 		*cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
798 		*cmd++ = lower_32_bits(vma->node.start);
799 	}
800 	*cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */
801 
802 	__i915_gem_object_flush_map(obj, 0, 64);
803 	i915_gem_object_unpin_map(obj);
804 
805 	intel_gt_chipset_flush(&i915->gt);
806 
807 	return vma;
808 
809 err:
810 	i915_gem_object_put(obj);
811 	return ERR_PTR(err);
812 }
813 
814 static int recursive_batch_resolve(struct i915_vma *batch)
815 {
816 	u32 *cmd;
817 
818 	cmd = i915_gem_object_pin_map(batch->obj, I915_MAP_WC);
819 	if (IS_ERR(cmd))
820 		return PTR_ERR(cmd);
821 
822 	*cmd = MI_BATCH_BUFFER_END;
823 
824 	__i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd));
825 	i915_gem_object_unpin_map(batch->obj);
826 
827 	intel_gt_chipset_flush(batch->vm->gt);
828 
829 	return 0;
830 }
831 
832 static int live_all_engines(void *arg)
833 {
834 	struct drm_i915_private *i915 = arg;
835 	const unsigned int nengines = num_uabi_engines(i915);
836 	struct intel_engine_cs *engine;
837 	struct i915_request **request;
838 	struct igt_live_test t;
839 	struct i915_vma *batch;
840 	unsigned int idx;
841 	int err;
842 
843 	/*
844 	 * Check we can submit requests to all engines simultaneously. We
845 	 * send a recursive batch to each engine - checking that we don't
846 	 * block doing so, and that they don't complete too soon.
847 	 */
848 
849 	request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
850 	if (!request)
851 		return -ENOMEM;
852 
853 	err = igt_live_test_begin(&t, i915, __func__, "");
854 	if (err)
855 		goto out_free;
856 
857 	batch = recursive_batch(i915);
858 	if (IS_ERR(batch)) {
859 		err = PTR_ERR(batch);
860 		pr_err("%s: Unable to create batch, err=%d\n", __func__, err);
861 		goto out_free;
862 	}
863 
864 	idx = 0;
865 	for_each_uabi_engine(engine, i915) {
866 		request[idx] = intel_engine_create_kernel_request(engine);
867 		if (IS_ERR(request[idx])) {
868 			err = PTR_ERR(request[idx]);
869 			pr_err("%s: Request allocation failed with err=%d\n",
870 			       __func__, err);
871 			goto out_request;
872 		}
873 
874 		i915_vma_lock(batch);
875 		err = i915_request_await_object(request[idx], batch->obj, 0);
876 		if (err == 0)
877 			err = i915_vma_move_to_active(batch, request[idx], 0);
878 		i915_vma_unlock(batch);
879 		GEM_BUG_ON(err);
880 
881 		err = engine->emit_bb_start(request[idx],
882 					    batch->node.start,
883 					    batch->node.size,
884 					    0);
885 		GEM_BUG_ON(err);
886 		request[idx]->batch = batch;
887 
888 		i915_request_get(request[idx]);
889 		i915_request_add(request[idx]);
890 		idx++;
891 	}
892 
893 	idx = 0;
894 	for_each_uabi_engine(engine, i915) {
895 		if (i915_request_completed(request[idx])) {
896 			pr_err("%s(%s): request completed too early!\n",
897 			       __func__, engine->name);
898 			err = -EINVAL;
899 			goto out_request;
900 		}
901 		idx++;
902 	}
903 
904 	err = recursive_batch_resolve(batch);
905 	if (err) {
906 		pr_err("%s: failed to resolve batch, err=%d\n", __func__, err);
907 		goto out_request;
908 	}
909 
910 	idx = 0;
911 	for_each_uabi_engine(engine, i915) {
912 		long timeout;
913 
914 		timeout = i915_request_wait(request[idx], 0,
915 					    MAX_SCHEDULE_TIMEOUT);
916 		if (timeout < 0) {
917 			err = timeout;
918 			pr_err("%s: error waiting for request on %s, err=%d\n",
919 			       __func__, engine->name, err);
920 			goto out_request;
921 		}
922 
923 		GEM_BUG_ON(!i915_request_completed(request[idx]));
924 		i915_request_put(request[idx]);
925 		request[idx] = NULL;
926 		idx++;
927 	}
928 
929 	err = igt_live_test_end(&t);
930 
931 out_request:
932 	idx = 0;
933 	for_each_uabi_engine(engine, i915) {
934 		if (request[idx])
935 			i915_request_put(request[idx]);
936 		idx++;
937 	}
938 	i915_vma_unpin(batch);
939 	i915_vma_put(batch);
940 out_free:
941 	kfree(request);
942 	return err;
943 }
944 
945 static int live_sequential_engines(void *arg)
946 {
947 	struct drm_i915_private *i915 = arg;
948 	const unsigned int nengines = num_uabi_engines(i915);
949 	struct i915_request **request;
950 	struct i915_request *prev = NULL;
951 	struct intel_engine_cs *engine;
952 	struct igt_live_test t;
953 	unsigned int idx;
954 	int err;
955 
956 	/*
957 	 * Check we can submit requests to all engines sequentially, such
958 	 * that each successive request waits for the earlier ones. This
959 	 * tests that we don't execute requests out of order, even though
960 	 * they are running on independent engines.
961 	 */
962 
963 	request = kcalloc(nengines, sizeof(*request), GFP_KERNEL);
964 	if (!request)
965 		return -ENOMEM;
966 
967 	err = igt_live_test_begin(&t, i915, __func__, "");
968 	if (err)
969 		goto out_free;
970 
971 	idx = 0;
972 	for_each_uabi_engine(engine, i915) {
973 		struct i915_vma *batch;
974 
975 		batch = recursive_batch(i915);
976 		if (IS_ERR(batch)) {
977 			err = PTR_ERR(batch);
978 			pr_err("%s: Unable to create batch for %s, err=%d\n",
979 			       __func__, engine->name, err);
980 			goto out_free;
981 		}
982 
983 		request[idx] = intel_engine_create_kernel_request(engine);
984 		if (IS_ERR(request[idx])) {
985 			err = PTR_ERR(request[idx]);
986 			pr_err("%s: Request allocation failed for %s with err=%d\n",
987 			       __func__, engine->name, err);
988 			goto out_request;
989 		}
990 
991 		if (prev) {
992 			err = i915_request_await_dma_fence(request[idx],
993 							   &prev->fence);
994 			if (err) {
995 				i915_request_add(request[idx]);
996 				pr_err("%s: Request await failed for %s with err=%d\n",
997 				       __func__, engine->name, err);
998 				goto out_request;
999 			}
1000 		}
1001 
1002 		i915_vma_lock(batch);
1003 		err = i915_request_await_object(request[idx],
1004 						batch->obj, false);
1005 		if (err == 0)
1006 			err = i915_vma_move_to_active(batch, request[idx], 0);
1007 		i915_vma_unlock(batch);
1008 		GEM_BUG_ON(err);
1009 
1010 		err = engine->emit_bb_start(request[idx],
1011 					    batch->node.start,
1012 					    batch->node.size,
1013 					    0);
1014 		GEM_BUG_ON(err);
1015 		request[idx]->batch = batch;
1016 
1017 		i915_request_get(request[idx]);
1018 		i915_request_add(request[idx]);
1019 
1020 		prev = request[idx];
1021 		idx++;
1022 	}
1023 
1024 	idx = 0;
1025 	for_each_uabi_engine(engine, i915) {
1026 		long timeout;
1027 
1028 		if (i915_request_completed(request[idx])) {
1029 			pr_err("%s(%s): request completed too early!\n",
1030 			       __func__, engine->name);
1031 			err = -EINVAL;
1032 			goto out_request;
1033 		}
1034 
1035 		err = recursive_batch_resolve(request[idx]->batch);
1036 		if (err) {
1037 			pr_err("%s: failed to resolve batch, err=%d\n",
1038 			       __func__, err);
1039 			goto out_request;
1040 		}
1041 
1042 		timeout = i915_request_wait(request[idx], 0,
1043 					    MAX_SCHEDULE_TIMEOUT);
1044 		if (timeout < 0) {
1045 			err = timeout;
1046 			pr_err("%s: error waiting for request on %s, err=%d\n",
1047 			       __func__, engine->name, err);
1048 			goto out_request;
1049 		}
1050 
1051 		GEM_BUG_ON(!i915_request_completed(request[idx]));
1052 		idx++;
1053 	}
1054 
1055 	err = igt_live_test_end(&t);
1056 
1057 out_request:
1058 	idx = 0;
1059 	for_each_uabi_engine(engine, i915) {
1060 		u32 *cmd;
1061 
1062 		if (!request[idx])
1063 			break;
1064 
1065 		cmd = i915_gem_object_pin_map(request[idx]->batch->obj,
1066 					      I915_MAP_WC);
1067 		if (!IS_ERR(cmd)) {
1068 			*cmd = MI_BATCH_BUFFER_END;
1069 
1070 			__i915_gem_object_flush_map(request[idx]->batch->obj,
1071 						    0, sizeof(*cmd));
1072 			i915_gem_object_unpin_map(request[idx]->batch->obj);
1073 
1074 			intel_gt_chipset_flush(engine->gt);
1075 		}
1076 
1077 		i915_vma_put(request[idx]->batch);
1078 		i915_request_put(request[idx]);
1079 		idx++;
1080 	}
1081 out_free:
1082 	kfree(request);
1083 	return err;
1084 }
1085 
1086 static int __live_parallel_engine1(void *arg)
1087 {
1088 	struct intel_engine_cs *engine = arg;
1089 	IGT_TIMEOUT(end_time);
1090 	unsigned long count;
1091 	int err = 0;
1092 
1093 	count = 0;
1094 	intel_engine_pm_get(engine);
1095 	do {
1096 		struct i915_request *rq;
1097 
1098 		rq = i915_request_create(engine->kernel_context);
1099 		if (IS_ERR(rq)) {
1100 			err = PTR_ERR(rq);
1101 			break;
1102 		}
1103 
1104 		i915_request_get(rq);
1105 		i915_request_add(rq);
1106 
1107 		err = 0;
1108 		if (i915_request_wait(rq, 0, HZ / 5) < 0)
1109 			err = -ETIME;
1110 		i915_request_put(rq);
1111 		if (err)
1112 			break;
1113 
1114 		count++;
1115 	} while (!__igt_timeout(end_time, NULL));
1116 	intel_engine_pm_put(engine);
1117 
1118 	pr_info("%s: %lu request + sync\n", engine->name, count);
1119 	return err;
1120 }
1121 
1122 static int __live_parallel_engineN(void *arg)
1123 {
1124 	struct intel_engine_cs *engine = arg;
1125 	IGT_TIMEOUT(end_time);
1126 	unsigned long count;
1127 	int err = 0;
1128 
1129 	count = 0;
1130 	intel_engine_pm_get(engine);
1131 	do {
1132 		struct i915_request *rq;
1133 
1134 		rq = i915_request_create(engine->kernel_context);
1135 		if (IS_ERR(rq)) {
1136 			err = PTR_ERR(rq);
1137 			break;
1138 		}
1139 
1140 		i915_request_add(rq);
1141 		count++;
1142 	} while (!__igt_timeout(end_time, NULL));
1143 	intel_engine_pm_put(engine);
1144 
1145 	pr_info("%s: %lu requests\n", engine->name, count);
1146 	return err;
1147 }
1148 
1149 static bool wake_all(struct drm_i915_private *i915)
1150 {
1151 	if (atomic_dec_and_test(&i915->selftest.counter)) {
1152 		wake_up_var(&i915->selftest.counter);
1153 		return true;
1154 	}
1155 
1156 	return false;
1157 }
1158 
1159 static int wait_for_all(struct drm_i915_private *i915)
1160 {
1161 	if (wake_all(i915))
1162 		return 0;
1163 
1164 	if (wait_var_event_timeout(&i915->selftest.counter,
1165 				   !atomic_read(&i915->selftest.counter),
1166 				   i915_selftest.timeout_jiffies))
1167 		return 0;
1168 
1169 	return -ETIME;
1170 }
1171 
1172 static int __live_parallel_spin(void *arg)
1173 {
1174 	struct intel_engine_cs *engine = arg;
1175 	struct igt_spinner spin;
1176 	struct i915_request *rq;
1177 	int err = 0;
1178 
1179 	/*
1180 	 * Create a spinner running for eternity on each engine. If a second
1181 	 * spinner is incorrectly placed on the same engine, it will not be
1182 	 * able to start in time.
1183 	 */
1184 
1185 	if (igt_spinner_init(&spin, engine->gt)) {
1186 		wake_all(engine->i915);
1187 		return -ENOMEM;
1188 	}
1189 
1190 	intel_engine_pm_get(engine);
1191 	rq = igt_spinner_create_request(&spin,
1192 					engine->kernel_context,
1193 					MI_NOOP); /* no preemption */
1194 	intel_engine_pm_put(engine);
1195 	if (IS_ERR(rq)) {
1196 		err = PTR_ERR(rq);
1197 		if (err == -ENODEV)
1198 			err = 0;
1199 		wake_all(engine->i915);
1200 		goto out_spin;
1201 	}
1202 
1203 	i915_request_get(rq);
1204 	i915_request_add(rq);
1205 	if (igt_wait_for_spinner(&spin, rq)) {
1206 		/* Occupy this engine for the whole test */
1207 		err = wait_for_all(engine->i915);
1208 	} else {
1209 		pr_err("Failed to start spinner on %s\n", engine->name);
1210 		err = -EINVAL;
1211 	}
1212 	igt_spinner_end(&spin);
1213 
1214 	if (err == 0 && i915_request_wait(rq, 0, HZ / 5) < 0)
1215 		err = -EIO;
1216 	i915_request_put(rq);
1217 
1218 out_spin:
1219 	igt_spinner_fini(&spin);
1220 	return err;
1221 }
1222 
1223 static int live_parallel_engines(void *arg)
1224 {
1225 	struct drm_i915_private *i915 = arg;
1226 	static int (* const func[])(void *arg) = {
1227 		__live_parallel_engine1,
1228 		__live_parallel_engineN,
1229 		__live_parallel_spin,
1230 		NULL,
1231 	};
1232 	const unsigned int nengines = num_uabi_engines(i915);
1233 	struct intel_engine_cs *engine;
1234 	int (* const *fn)(void *arg);
1235 	struct task_struct **tsk;
1236 	int err = 0;
1237 
1238 	/*
1239 	 * Check we can submit requests to all engines concurrently. This
1240 	 * tests that we load up the system maximally.
1241 	 */
1242 
1243 	tsk = kcalloc(nengines, sizeof(*tsk), GFP_KERNEL);
1244 	if (!tsk)
1245 		return -ENOMEM;
1246 
1247 	for (fn = func; !err && *fn; fn++) {
1248 		char name[KSYM_NAME_LEN];
1249 		struct igt_live_test t;
1250 		unsigned int idx;
1251 
1252 		snprintf(name, sizeof(name), "%ps", *fn);
1253 		err = igt_live_test_begin(&t, i915, __func__, name);
1254 		if (err)
1255 			break;
1256 
1257 		atomic_set(&i915->selftest.counter, nengines);
1258 
1259 		idx = 0;
1260 		for_each_uabi_engine(engine, i915) {
1261 			tsk[idx] = kthread_run(*fn, engine,
1262 					       "igt/parallel:%s",
1263 					       engine->name);
1264 			if (IS_ERR(tsk[idx])) {
1265 				err = PTR_ERR(tsk[idx]);
1266 				break;
1267 			}
1268 			get_task_struct(tsk[idx++]);
1269 		}
1270 
1271 		yield(); /* start all threads before we kthread_stop() */
1272 
1273 		idx = 0;
1274 		for_each_uabi_engine(engine, i915) {
1275 			int status;
1276 
1277 			if (IS_ERR(tsk[idx]))
1278 				break;
1279 
1280 			status = kthread_stop(tsk[idx]);
1281 			if (status && !err)
1282 				err = status;
1283 
1284 			put_task_struct(tsk[idx++]);
1285 		}
1286 
1287 		if (igt_live_test_end(&t))
1288 			err = -EIO;
1289 	}
1290 
1291 	kfree(tsk);
1292 	return err;
1293 }
1294 
1295 static int
1296 max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine)
1297 {
1298 	struct i915_request *rq;
1299 	int ret;
1300 
1301 	/*
1302 	 * Before execlists, all contexts share the same ringbuffer. With
1303 	 * execlists, each context/engine has a separate ringbuffer and
1304 	 * for the purposes of this test, inexhaustible.
1305 	 *
1306 	 * For the global ringbuffer though, we have to be very careful
1307 	 * that we do not wrap while preventing the execution of requests
1308 	 * with a unsignaled fence.
1309 	 */
1310 	if (HAS_EXECLISTS(ctx->i915))
1311 		return INT_MAX;
1312 
1313 	rq = igt_request_alloc(ctx, engine);
1314 	if (IS_ERR(rq)) {
1315 		ret = PTR_ERR(rq);
1316 	} else {
1317 		int sz;
1318 
1319 		ret = rq->ring->size - rq->reserved_space;
1320 		i915_request_add(rq);
1321 
1322 		sz = rq->ring->emit - rq->head;
1323 		if (sz < 0)
1324 			sz += rq->ring->size;
1325 		ret /= sz;
1326 		ret /= 2; /* leave half spare, in case of emergency! */
1327 	}
1328 
1329 	return ret;
1330 }
1331 
1332 static int live_breadcrumbs_smoketest(void *arg)
1333 {
1334 	struct drm_i915_private *i915 = arg;
1335 	const unsigned int nengines = num_uabi_engines(i915);
1336 	const unsigned int ncpus = num_online_cpus();
1337 	unsigned long num_waits, num_fences;
1338 	struct intel_engine_cs *engine;
1339 	struct task_struct **threads;
1340 	struct igt_live_test live;
1341 	intel_wakeref_t wakeref;
1342 	struct smoketest *smoke;
1343 	unsigned int n, idx;
1344 	struct file *file;
1345 	int ret = 0;
1346 
1347 	/*
1348 	 * Smoketest our breadcrumb/signal handling for requests across multiple
1349 	 * threads. A very simple test to only catch the most egregious of bugs.
1350 	 * See __igt_breadcrumbs_smoketest();
1351 	 *
1352 	 * On real hardware this time.
1353 	 */
1354 
1355 	wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1356 
1357 	file = mock_file(i915);
1358 	if (IS_ERR(file)) {
1359 		ret = PTR_ERR(file);
1360 		goto out_rpm;
1361 	}
1362 
1363 	smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL);
1364 	if (!smoke) {
1365 		ret = -ENOMEM;
1366 		goto out_file;
1367 	}
1368 
1369 	threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL);
1370 	if (!threads) {
1371 		ret = -ENOMEM;
1372 		goto out_smoke;
1373 	}
1374 
1375 	smoke[0].request_alloc = __live_request_alloc;
1376 	smoke[0].ncontexts = 64;
1377 	smoke[0].contexts = kcalloc(smoke[0].ncontexts,
1378 				    sizeof(*smoke[0].contexts),
1379 				    GFP_KERNEL);
1380 	if (!smoke[0].contexts) {
1381 		ret = -ENOMEM;
1382 		goto out_threads;
1383 	}
1384 
1385 	for (n = 0; n < smoke[0].ncontexts; n++) {
1386 		smoke[0].contexts[n] = live_context(i915, file);
1387 		if (!smoke[0].contexts[n]) {
1388 			ret = -ENOMEM;
1389 			goto out_contexts;
1390 		}
1391 	}
1392 
1393 	ret = igt_live_test_begin(&live, i915, __func__, "");
1394 	if (ret)
1395 		goto out_contexts;
1396 
1397 	idx = 0;
1398 	for_each_uabi_engine(engine, i915) {
1399 		smoke[idx] = smoke[0];
1400 		smoke[idx].engine = engine;
1401 		smoke[idx].max_batch =
1402 			max_batches(smoke[0].contexts[0], engine);
1403 		if (smoke[idx].max_batch < 0) {
1404 			ret = smoke[idx].max_batch;
1405 			goto out_flush;
1406 		}
1407 		/* One ring interleaved between requests from all cpus */
1408 		smoke[idx].max_batch /= num_online_cpus() + 1;
1409 		pr_debug("Limiting batches to %d requests on %s\n",
1410 			 smoke[idx].max_batch, engine->name);
1411 
1412 		for (n = 0; n < ncpus; n++) {
1413 			struct task_struct *tsk;
1414 
1415 			tsk = kthread_run(__igt_breadcrumbs_smoketest,
1416 					  &smoke[idx], "igt/%d.%d", idx, n);
1417 			if (IS_ERR(tsk)) {
1418 				ret = PTR_ERR(tsk);
1419 				goto out_flush;
1420 			}
1421 
1422 			get_task_struct(tsk);
1423 			threads[idx * ncpus + n] = tsk;
1424 		}
1425 
1426 		idx++;
1427 	}
1428 
1429 	yield(); /* start all threads before we begin */
1430 	msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies));
1431 
1432 out_flush:
1433 	idx = 0;
1434 	num_waits = 0;
1435 	num_fences = 0;
1436 	for_each_uabi_engine(engine, i915) {
1437 		for (n = 0; n < ncpus; n++) {
1438 			struct task_struct *tsk = threads[idx * ncpus + n];
1439 			int err;
1440 
1441 			if (!tsk)
1442 				continue;
1443 
1444 			err = kthread_stop(tsk);
1445 			if (err < 0 && !ret)
1446 				ret = err;
1447 
1448 			put_task_struct(tsk);
1449 		}
1450 
1451 		num_waits += atomic_long_read(&smoke[idx].num_waits);
1452 		num_fences += atomic_long_read(&smoke[idx].num_fences);
1453 		idx++;
1454 	}
1455 	pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n",
1456 		num_waits, num_fences, RUNTIME_INFO(i915)->num_engines, ncpus);
1457 
1458 	ret = igt_live_test_end(&live) ?: ret;
1459 out_contexts:
1460 	kfree(smoke[0].contexts);
1461 out_threads:
1462 	kfree(threads);
1463 out_smoke:
1464 	kfree(smoke);
1465 out_file:
1466 	fput(file);
1467 out_rpm:
1468 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1469 
1470 	return ret;
1471 }
1472 
1473 int i915_request_live_selftests(struct drm_i915_private *i915)
1474 {
1475 	static const struct i915_subtest tests[] = {
1476 		SUBTEST(live_nop_request),
1477 		SUBTEST(live_all_engines),
1478 		SUBTEST(live_sequential_engines),
1479 		SUBTEST(live_parallel_engines),
1480 		SUBTEST(live_empty_request),
1481 		SUBTEST(live_breadcrumbs_smoketest),
1482 	};
1483 
1484 	if (intel_gt_is_wedged(&i915->gt))
1485 		return 0;
1486 
1487 	return i915_subtests(tests, i915);
1488 }
1489 
1490 static int switch_to_kernel_sync(struct intel_context *ce, int err)
1491 {
1492 	struct i915_request *rq;
1493 	struct dma_fence *fence;
1494 
1495 	rq = intel_engine_create_kernel_request(ce->engine);
1496 	if (IS_ERR(rq))
1497 		return PTR_ERR(rq);
1498 
1499 	fence = i915_active_fence_get(&ce->timeline->last_request);
1500 	if (fence) {
1501 		i915_request_await_dma_fence(rq, fence);
1502 		dma_fence_put(fence);
1503 	}
1504 
1505 	rq = i915_request_get(rq);
1506 	i915_request_add(rq);
1507 	if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err)
1508 		err = -ETIME;
1509 	i915_request_put(rq);
1510 
1511 	while (!err && !intel_engine_is_idle(ce->engine))
1512 		intel_engine_flush_submission(ce->engine);
1513 
1514 	return err;
1515 }
1516 
1517 struct perf_stats {
1518 	struct intel_engine_cs *engine;
1519 	unsigned long count;
1520 	ktime_t time;
1521 	ktime_t busy;
1522 	u64 runtime;
1523 };
1524 
1525 struct perf_series {
1526 	struct drm_i915_private *i915;
1527 	unsigned int nengines;
1528 	struct intel_context *ce[];
1529 };
1530 
1531 static int cmp_u32(const void *A, const void *B)
1532 {
1533 	const u32 *a = A, *b = B;
1534 
1535 	return *a - *b;
1536 }
1537 
1538 static u32 trifilter(u32 *a)
1539 {
1540 	u64 sum;
1541 
1542 #define TF_COUNT 5
1543 	sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL);
1544 
1545 	sum = mul_u32_u32(a[2], 2);
1546 	sum += a[1];
1547 	sum += a[3];
1548 
1549 	GEM_BUG_ON(sum > U32_MAX);
1550 	return sum;
1551 #define TF_BIAS 2
1552 }
1553 
1554 static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles)
1555 {
1556 	u64 ns = i915_cs_timestamp_ticks_to_ns(engine->i915, cycles);
1557 
1558 	return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS);
1559 }
1560 
1561 static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset)
1562 {
1563 	*cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT;
1564 	*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base)));
1565 	*cs++ = offset;
1566 	*cs++ = 0;
1567 
1568 	return cs;
1569 }
1570 
1571 static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value)
1572 {
1573 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1574 	*cs++ = offset;
1575 	*cs++ = 0;
1576 	*cs++ = value;
1577 
1578 	return cs;
1579 }
1580 
1581 static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset)
1582 {
1583 	*cs++ = MI_SEMAPHORE_WAIT |
1584 		MI_SEMAPHORE_GLOBAL_GTT |
1585 		MI_SEMAPHORE_POLL |
1586 		mode;
1587 	*cs++ = value;
1588 	*cs++ = offset;
1589 	*cs++ = 0;
1590 
1591 	return cs;
1592 }
1593 
1594 static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value)
1595 {
1596 	return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset);
1597 }
1598 
1599 static void semaphore_set(u32 *sema, u32 value)
1600 {
1601 	WRITE_ONCE(*sema, value);
1602 	wmb(); /* flush the update to the cache, and beyond */
1603 }
1604 
1605 static u32 *hwsp_scratch(const struct intel_context *ce)
1606 {
1607 	return memset32(ce->engine->status_page.addr + 1000, 0, 21);
1608 }
1609 
1610 static u32 hwsp_offset(const struct intel_context *ce, u32 *dw)
1611 {
1612 	return (i915_ggtt_offset(ce->engine->status_page.vma) +
1613 		offset_in_page(dw));
1614 }
1615 
1616 static int measure_semaphore_response(struct intel_context *ce)
1617 {
1618 	u32 *sema = hwsp_scratch(ce);
1619 	const u32 offset = hwsp_offset(ce, sema);
1620 	u32 elapsed[TF_COUNT], cycles;
1621 	struct i915_request *rq;
1622 	u32 *cs;
1623 	int err;
1624 	int i;
1625 
1626 	/*
1627 	 * Measure how many cycles it takes for the HW to detect the change
1628 	 * in a semaphore value.
1629 	 *
1630 	 *    A: read CS_TIMESTAMP from CPU
1631 	 *    poke semaphore
1632 	 *    B: read CS_TIMESTAMP on GPU
1633 	 *
1634 	 * Semaphore latency: B - A
1635 	 */
1636 
1637 	semaphore_set(sema, -1);
1638 
1639 	rq = i915_request_create(ce);
1640 	if (IS_ERR(rq))
1641 		return PTR_ERR(rq);
1642 
1643 	cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed));
1644 	if (IS_ERR(cs)) {
1645 		i915_request_add(rq);
1646 		err = PTR_ERR(cs);
1647 		goto err;
1648 	}
1649 
1650 	cs = emit_store_dw(cs, offset, 0);
1651 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1652 		cs = emit_semaphore_poll_until(cs, offset, i);
1653 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
1654 		cs = emit_store_dw(cs, offset, 0);
1655 	}
1656 
1657 	intel_ring_advance(rq, cs);
1658 	i915_request_add(rq);
1659 
1660 	if (wait_for(READ_ONCE(*sema) == 0, 50)) {
1661 		err = -EIO;
1662 		goto err;
1663 	}
1664 
1665 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1666 		preempt_disable();
1667 		cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
1668 		semaphore_set(sema, i);
1669 		preempt_enable();
1670 
1671 		if (wait_for(READ_ONCE(*sema) == 0, 50)) {
1672 			err = -EIO;
1673 			goto err;
1674 		}
1675 
1676 		elapsed[i - 1] = sema[i] - cycles;
1677 	}
1678 
1679 	cycles = trifilter(elapsed);
1680 	pr_info("%s: semaphore response %d cycles, %lluns\n",
1681 		ce->engine->name, cycles >> TF_BIAS,
1682 		cycles_to_ns(ce->engine, cycles));
1683 
1684 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
1685 
1686 err:
1687 	intel_gt_set_wedged(ce->engine->gt);
1688 	return err;
1689 }
1690 
1691 static int measure_idle_dispatch(struct intel_context *ce)
1692 {
1693 	u32 *sema = hwsp_scratch(ce);
1694 	const u32 offset = hwsp_offset(ce, sema);
1695 	u32 elapsed[TF_COUNT], cycles;
1696 	u32 *cs;
1697 	int err;
1698 	int i;
1699 
1700 	/*
1701 	 * Measure how long it takes for us to submit a request while the
1702 	 * engine is idle, but is resting in our context.
1703 	 *
1704 	 *    A: read CS_TIMESTAMP from CPU
1705 	 *    submit request
1706 	 *    B: read CS_TIMESTAMP on GPU
1707 	 *
1708 	 * Submission latency: B - A
1709 	 */
1710 
1711 	for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
1712 		struct i915_request *rq;
1713 
1714 		err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
1715 		if (err)
1716 			return err;
1717 
1718 		rq = i915_request_create(ce);
1719 		if (IS_ERR(rq)) {
1720 			err = PTR_ERR(rq);
1721 			goto err;
1722 		}
1723 
1724 		cs = intel_ring_begin(rq, 4);
1725 		if (IS_ERR(cs)) {
1726 			i915_request_add(rq);
1727 			err = PTR_ERR(cs);
1728 			goto err;
1729 		}
1730 
1731 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
1732 
1733 		intel_ring_advance(rq, cs);
1734 
1735 		preempt_disable();
1736 		local_bh_disable();
1737 		elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
1738 		i915_request_add(rq);
1739 		local_bh_enable();
1740 		preempt_enable();
1741 	}
1742 
1743 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
1744 	if (err)
1745 		goto err;
1746 
1747 	for (i = 0; i < ARRAY_SIZE(elapsed); i++)
1748 		elapsed[i] = sema[i] - elapsed[i];
1749 
1750 	cycles = trifilter(elapsed);
1751 	pr_info("%s: idle dispatch latency %d cycles, %lluns\n",
1752 		ce->engine->name, cycles >> TF_BIAS,
1753 		cycles_to_ns(ce->engine, cycles));
1754 
1755 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
1756 
1757 err:
1758 	intel_gt_set_wedged(ce->engine->gt);
1759 	return err;
1760 }
1761 
1762 static int measure_busy_dispatch(struct intel_context *ce)
1763 {
1764 	u32 *sema = hwsp_scratch(ce);
1765 	const u32 offset = hwsp_offset(ce, sema);
1766 	u32 elapsed[TF_COUNT + 1], cycles;
1767 	u32 *cs;
1768 	int err;
1769 	int i;
1770 
1771 	/*
1772 	 * Measure how long it takes for us to submit a request while the
1773 	 * engine is busy, polling on a semaphore in our context. With
1774 	 * direct submission, this will include the cost of a lite restore.
1775 	 *
1776 	 *    A: read CS_TIMESTAMP from CPU
1777 	 *    submit request
1778 	 *    B: read CS_TIMESTAMP on GPU
1779 	 *
1780 	 * Submission latency: B - A
1781 	 */
1782 
1783 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1784 		struct i915_request *rq;
1785 
1786 		rq = i915_request_create(ce);
1787 		if (IS_ERR(rq)) {
1788 			err = PTR_ERR(rq);
1789 			goto err;
1790 		}
1791 
1792 		cs = intel_ring_begin(rq, 12);
1793 		if (IS_ERR(cs)) {
1794 			i915_request_add(rq);
1795 			err = PTR_ERR(cs);
1796 			goto err;
1797 		}
1798 
1799 		cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
1800 		cs = emit_semaphore_poll_until(cs, offset, i);
1801 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
1802 
1803 		intel_ring_advance(rq, cs);
1804 
1805 		if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) {
1806 			err = -EIO;
1807 			goto err;
1808 		}
1809 
1810 		preempt_disable();
1811 		local_bh_disable();
1812 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
1813 		i915_request_add(rq);
1814 		local_bh_enable();
1815 		semaphore_set(sema, i - 1);
1816 		preempt_enable();
1817 	}
1818 
1819 	wait_for(READ_ONCE(sema[i - 1]), 500);
1820 	semaphore_set(sema, i - 1);
1821 
1822 	for (i = 1; i <= TF_COUNT; i++) {
1823 		GEM_BUG_ON(sema[i] == -1);
1824 		elapsed[i - 1] = sema[i] - elapsed[i];
1825 	}
1826 
1827 	cycles = trifilter(elapsed);
1828 	pr_info("%s: busy dispatch latency %d cycles, %lluns\n",
1829 		ce->engine->name, cycles >> TF_BIAS,
1830 		cycles_to_ns(ce->engine, cycles));
1831 
1832 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
1833 
1834 err:
1835 	intel_gt_set_wedged(ce->engine->gt);
1836 	return err;
1837 }
1838 
1839 static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value)
1840 {
1841 	const u32 offset =
1842 		i915_ggtt_offset(engine->status_page.vma) +
1843 		offset_in_page(sema);
1844 	struct i915_request *rq;
1845 	u32 *cs;
1846 
1847 	rq = i915_request_create(engine->kernel_context);
1848 	if (IS_ERR(rq))
1849 		return PTR_ERR(rq);
1850 
1851 	cs = intel_ring_begin(rq, 4);
1852 	if (IS_ERR(cs)) {
1853 		i915_request_add(rq);
1854 		return PTR_ERR(cs);
1855 	}
1856 
1857 	cs = emit_semaphore_poll(cs, mode, value, offset);
1858 
1859 	intel_ring_advance(rq, cs);
1860 	i915_request_add(rq);
1861 
1862 	return 0;
1863 }
1864 
1865 static int measure_inter_request(struct intel_context *ce)
1866 {
1867 	u32 *sema = hwsp_scratch(ce);
1868 	const u32 offset = hwsp_offset(ce, sema);
1869 	u32 elapsed[TF_COUNT + 1], cycles;
1870 	struct i915_sw_fence *submit;
1871 	int i, err;
1872 
1873 	/*
1874 	 * Measure how long it takes to advance from one request into the
1875 	 * next. Between each request we flush the GPU caches to memory,
1876 	 * update the breadcrumbs, and then invalidate those caches.
1877 	 * We queue up all the requests to be submitted in one batch so
1878 	 * it should be one set of contiguous measurements.
1879 	 *
1880 	 *    A: read CS_TIMESTAMP on GPU
1881 	 *    advance request
1882 	 *    B: read CS_TIMESTAMP on GPU
1883 	 *
1884 	 * Request latency: B - A
1885 	 */
1886 
1887 	err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
1888 	if (err)
1889 		return err;
1890 
1891 	submit = heap_fence_create(GFP_KERNEL);
1892 	if (!submit) {
1893 		semaphore_set(sema, 1);
1894 		return -ENOMEM;
1895 	}
1896 
1897 	intel_engine_flush_submission(ce->engine);
1898 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1899 		struct i915_request *rq;
1900 		u32 *cs;
1901 
1902 		rq = i915_request_create(ce);
1903 		if (IS_ERR(rq)) {
1904 			err = PTR_ERR(rq);
1905 			goto err_submit;
1906 		}
1907 
1908 		err = i915_sw_fence_await_sw_fence_gfp(&rq->submit,
1909 						       submit,
1910 						       GFP_KERNEL);
1911 		if (err < 0) {
1912 			i915_request_add(rq);
1913 			goto err_submit;
1914 		}
1915 
1916 		cs = intel_ring_begin(rq, 4);
1917 		if (IS_ERR(cs)) {
1918 			i915_request_add(rq);
1919 			err = PTR_ERR(cs);
1920 			goto err_submit;
1921 		}
1922 
1923 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
1924 
1925 		intel_ring_advance(rq, cs);
1926 		i915_request_add(rq);
1927 	}
1928 	local_bh_disable();
1929 	i915_sw_fence_commit(submit);
1930 	local_bh_enable();
1931 	intel_engine_flush_submission(ce->engine);
1932 	heap_fence_put(submit);
1933 
1934 	semaphore_set(sema, 1);
1935 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
1936 	if (err)
1937 		goto err;
1938 
1939 	for (i = 1; i <= TF_COUNT; i++)
1940 		elapsed[i - 1] = sema[i + 1] - sema[i];
1941 
1942 	cycles = trifilter(elapsed);
1943 	pr_info("%s: inter-request latency %d cycles, %lluns\n",
1944 		ce->engine->name, cycles >> TF_BIAS,
1945 		cycles_to_ns(ce->engine, cycles));
1946 
1947 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
1948 
1949 err_submit:
1950 	i915_sw_fence_commit(submit);
1951 	heap_fence_put(submit);
1952 	semaphore_set(sema, 1);
1953 err:
1954 	intel_gt_set_wedged(ce->engine->gt);
1955 	return err;
1956 }
1957 
1958 static int measure_context_switch(struct intel_context *ce)
1959 {
1960 	u32 *sema = hwsp_scratch(ce);
1961 	const u32 offset = hwsp_offset(ce, sema);
1962 	struct i915_request *fence = NULL;
1963 	u32 elapsed[TF_COUNT + 1], cycles;
1964 	int i, j, err;
1965 	u32 *cs;
1966 
1967 	/*
1968 	 * Measure how long it takes to advance from one request in one
1969 	 * context to a request in another context. This allows us to
1970 	 * measure how long the context save/restore take, along with all
1971 	 * the inter-context setup we require.
1972 	 *
1973 	 *    A: read CS_TIMESTAMP on GPU
1974 	 *    switch context
1975 	 *    B: read CS_TIMESTAMP on GPU
1976 	 *
1977 	 * Context switch latency: B - A
1978 	 */
1979 
1980 	err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0);
1981 	if (err)
1982 		return err;
1983 
1984 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
1985 		struct intel_context *arr[] = {
1986 			ce, ce->engine->kernel_context
1987 		};
1988 		u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32);
1989 
1990 		for (j = 0; j < ARRAY_SIZE(arr); j++) {
1991 			struct i915_request *rq;
1992 
1993 			rq = i915_request_create(arr[j]);
1994 			if (IS_ERR(rq)) {
1995 				err = PTR_ERR(rq);
1996 				goto err_fence;
1997 			}
1998 
1999 			if (fence) {
2000 				err = i915_request_await_dma_fence(rq,
2001 								   &fence->fence);
2002 				if (err) {
2003 					i915_request_add(rq);
2004 					goto err_fence;
2005 				}
2006 			}
2007 
2008 			cs = intel_ring_begin(rq, 4);
2009 			if (IS_ERR(cs)) {
2010 				i915_request_add(rq);
2011 				err = PTR_ERR(cs);
2012 				goto err_fence;
2013 			}
2014 
2015 			cs = emit_timestamp_store(cs, ce, addr);
2016 			addr += sizeof(u32);
2017 
2018 			intel_ring_advance(rq, cs);
2019 
2020 			i915_request_put(fence);
2021 			fence = i915_request_get(rq);
2022 
2023 			i915_request_add(rq);
2024 		}
2025 	}
2026 	i915_request_put(fence);
2027 	intel_engine_flush_submission(ce->engine);
2028 
2029 	semaphore_set(sema, 1);
2030 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2031 	if (err)
2032 		goto err;
2033 
2034 	for (i = 1; i <= TF_COUNT; i++)
2035 		elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1];
2036 
2037 	cycles = trifilter(elapsed);
2038 	pr_info("%s: context switch latency %d cycles, %lluns\n",
2039 		ce->engine->name, cycles >> TF_BIAS,
2040 		cycles_to_ns(ce->engine, cycles));
2041 
2042 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2043 
2044 err_fence:
2045 	i915_request_put(fence);
2046 	semaphore_set(sema, 1);
2047 err:
2048 	intel_gt_set_wedged(ce->engine->gt);
2049 	return err;
2050 }
2051 
2052 static int measure_preemption(struct intel_context *ce)
2053 {
2054 	u32 *sema = hwsp_scratch(ce);
2055 	const u32 offset = hwsp_offset(ce, sema);
2056 	u32 elapsed[TF_COUNT], cycles;
2057 	u32 *cs;
2058 	int err;
2059 	int i;
2060 
2061 	/*
2062 	 * We measure two latencies while triggering preemption. The first
2063 	 * latency is how long it takes for us to submit a preempting request.
2064 	 * The second latency is how it takes for us to return from the
2065 	 * preemption back to the original context.
2066 	 *
2067 	 *    A: read CS_TIMESTAMP from CPU
2068 	 *    submit preemption
2069 	 *    B: read CS_TIMESTAMP on GPU (in preempting context)
2070 	 *    context switch
2071 	 *    C: read CS_TIMESTAMP on GPU (in original context)
2072 	 *
2073 	 * Preemption dispatch latency: B - A
2074 	 * Preemption switch latency: C - B
2075 	 */
2076 
2077 	if (!intel_engine_has_preemption(ce->engine))
2078 		return 0;
2079 
2080 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2081 		u32 addr = offset + 2 * i * sizeof(u32);
2082 		struct i915_request *rq;
2083 
2084 		rq = i915_request_create(ce);
2085 		if (IS_ERR(rq)) {
2086 			err = PTR_ERR(rq);
2087 			goto err;
2088 		}
2089 
2090 		cs = intel_ring_begin(rq, 12);
2091 		if (IS_ERR(cs)) {
2092 			i915_request_add(rq);
2093 			err = PTR_ERR(cs);
2094 			goto err;
2095 		}
2096 
2097 		cs = emit_store_dw(cs, addr, -1);
2098 		cs = emit_semaphore_poll_until(cs, offset, i);
2099 		cs = emit_timestamp_store(cs, ce, addr + sizeof(u32));
2100 
2101 		intel_ring_advance(rq, cs);
2102 		i915_request_add(rq);
2103 
2104 		if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) {
2105 			err = -EIO;
2106 			goto err;
2107 		}
2108 
2109 		rq = i915_request_create(ce->engine->kernel_context);
2110 		if (IS_ERR(rq)) {
2111 			err = PTR_ERR(rq);
2112 			goto err;
2113 		}
2114 
2115 		cs = intel_ring_begin(rq, 8);
2116 		if (IS_ERR(cs)) {
2117 			i915_request_add(rq);
2118 			err = PTR_ERR(cs);
2119 			goto err;
2120 		}
2121 
2122 		cs = emit_timestamp_store(cs, ce, addr);
2123 		cs = emit_store_dw(cs, offset, i);
2124 
2125 		intel_ring_advance(rq, cs);
2126 		rq->sched.attr.priority = I915_PRIORITY_BARRIER;
2127 
2128 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2129 		i915_request_add(rq);
2130 	}
2131 
2132 	if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) {
2133 		err = -EIO;
2134 		goto err;
2135 	}
2136 
2137 	for (i = 1; i <= TF_COUNT; i++)
2138 		elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1];
2139 
2140 	cycles = trifilter(elapsed);
2141 	pr_info("%s: preemption dispatch latency %d cycles, %lluns\n",
2142 		ce->engine->name, cycles >> TF_BIAS,
2143 		cycles_to_ns(ce->engine, cycles));
2144 
2145 	for (i = 1; i <= TF_COUNT; i++)
2146 		elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0];
2147 
2148 	cycles = trifilter(elapsed);
2149 	pr_info("%s: preemption switch latency %d cycles, %lluns\n",
2150 		ce->engine->name, cycles >> TF_BIAS,
2151 		cycles_to_ns(ce->engine, cycles));
2152 
2153 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2154 
2155 err:
2156 	intel_gt_set_wedged(ce->engine->gt);
2157 	return err;
2158 }
2159 
2160 struct signal_cb {
2161 	struct dma_fence_cb base;
2162 	bool seen;
2163 };
2164 
2165 static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
2166 {
2167 	struct signal_cb *s = container_of(cb, typeof(*s), base);
2168 
2169 	smp_store_mb(s->seen, true); /* be safe, be strong */
2170 }
2171 
2172 static int measure_completion(struct intel_context *ce)
2173 {
2174 	u32 *sema = hwsp_scratch(ce);
2175 	const u32 offset = hwsp_offset(ce, sema);
2176 	u32 elapsed[TF_COUNT], cycles;
2177 	u32 *cs;
2178 	int err;
2179 	int i;
2180 
2181 	/*
2182 	 * Measure how long it takes for the signal (interrupt) to be
2183 	 * sent from the GPU to be processed by the CPU.
2184 	 *
2185 	 *    A: read CS_TIMESTAMP on GPU
2186 	 *    signal
2187 	 *    B: read CS_TIMESTAMP from CPU
2188 	 *
2189 	 * Completion latency: B - A
2190 	 */
2191 
2192 	for (i = 1; i <= ARRAY_SIZE(elapsed); i++) {
2193 		struct signal_cb cb = { .seen = false };
2194 		struct i915_request *rq;
2195 
2196 		rq = i915_request_create(ce);
2197 		if (IS_ERR(rq)) {
2198 			err = PTR_ERR(rq);
2199 			goto err;
2200 		}
2201 
2202 		cs = intel_ring_begin(rq, 12);
2203 		if (IS_ERR(cs)) {
2204 			i915_request_add(rq);
2205 			err = PTR_ERR(cs);
2206 			goto err;
2207 		}
2208 
2209 		cs = emit_store_dw(cs, offset + i * sizeof(u32), -1);
2210 		cs = emit_semaphore_poll_until(cs, offset, i);
2211 		cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32));
2212 
2213 		intel_ring_advance(rq, cs);
2214 
2215 		dma_fence_add_callback(&rq->fence, &cb.base, signal_cb);
2216 
2217 		local_bh_disable();
2218 		i915_request_add(rq);
2219 		local_bh_enable();
2220 
2221 		if (wait_for(READ_ONCE(sema[i]) == -1, 50)) {
2222 			err = -EIO;
2223 			goto err;
2224 		}
2225 
2226 		preempt_disable();
2227 		semaphore_set(sema, i);
2228 		while (!READ_ONCE(cb.seen))
2229 			cpu_relax();
2230 
2231 		elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP);
2232 		preempt_enable();
2233 	}
2234 
2235 	err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2);
2236 	if (err)
2237 		goto err;
2238 
2239 	for (i = 0; i < ARRAY_SIZE(elapsed); i++) {
2240 		GEM_BUG_ON(sema[i + 1] == -1);
2241 		elapsed[i] = elapsed[i] - sema[i + 1];
2242 	}
2243 
2244 	cycles = trifilter(elapsed);
2245 	pr_info("%s: completion latency %d cycles, %lluns\n",
2246 		ce->engine->name, cycles >> TF_BIAS,
2247 		cycles_to_ns(ce->engine, cycles));
2248 
2249 	return intel_gt_wait_for_idle(ce->engine->gt, HZ);
2250 
2251 err:
2252 	intel_gt_set_wedged(ce->engine->gt);
2253 	return err;
2254 }
2255 
2256 static void rps_pin(struct intel_gt *gt)
2257 {
2258 	/* Pin the frequency to max */
2259 	atomic_inc(&gt->rps.num_waiters);
2260 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
2261 
2262 	mutex_lock(&gt->rps.lock);
2263 	intel_rps_set(&gt->rps, gt->rps.max_freq);
2264 	mutex_unlock(&gt->rps.lock);
2265 }
2266 
2267 static void rps_unpin(struct intel_gt *gt)
2268 {
2269 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
2270 	atomic_dec(&gt->rps.num_waiters);
2271 }
2272 
2273 static void engine_heartbeat_disable(struct intel_engine_cs *engine)
2274 {
2275 	engine->props.heartbeat_interval_ms = 0;
2276 
2277 	intel_engine_pm_get(engine);
2278 	intel_engine_park_heartbeat(engine);
2279 }
2280 
2281 static void engine_heartbeat_enable(struct intel_engine_cs *engine)
2282 {
2283 	intel_engine_pm_put(engine);
2284 
2285 	engine->props.heartbeat_interval_ms =
2286 		engine->defaults.heartbeat_interval_ms;
2287 }
2288 
2289 static int perf_request_latency(void *arg)
2290 {
2291 	struct drm_i915_private *i915 = arg;
2292 	struct intel_engine_cs *engine;
2293 	struct pm_qos_request qos;
2294 	int err = 0;
2295 
2296 	if (INTEL_GEN(i915) < 8) /* per-engine CS timestamp, semaphores */
2297 		return 0;
2298 
2299 	cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2300 
2301 	for_each_uabi_engine(engine, i915) {
2302 		struct intel_context *ce;
2303 
2304 		ce = intel_context_create(engine);
2305 		if (IS_ERR(ce))
2306 			goto out;
2307 
2308 		err = intel_context_pin(ce);
2309 		if (err) {
2310 			intel_context_put(ce);
2311 			goto out;
2312 		}
2313 
2314 		engine_heartbeat_disable(engine);
2315 		rps_pin(engine->gt);
2316 
2317 		if (err == 0)
2318 			err = measure_semaphore_response(ce);
2319 		if (err == 0)
2320 			err = measure_idle_dispatch(ce);
2321 		if (err == 0)
2322 			err = measure_busy_dispatch(ce);
2323 		if (err == 0)
2324 			err = measure_inter_request(ce);
2325 		if (err == 0)
2326 			err = measure_context_switch(ce);
2327 		if (err == 0)
2328 			err = measure_preemption(ce);
2329 		if (err == 0)
2330 			err = measure_completion(ce);
2331 
2332 		rps_unpin(engine->gt);
2333 		engine_heartbeat_enable(engine);
2334 
2335 		intel_context_unpin(ce);
2336 		intel_context_put(ce);
2337 		if (err)
2338 			goto out;
2339 	}
2340 
2341 out:
2342 	if (igt_flush_test(i915))
2343 		err = -EIO;
2344 
2345 	cpu_latency_qos_remove_request(&qos);
2346 	return err;
2347 }
2348 
2349 static int s_sync0(void *arg)
2350 {
2351 	struct perf_series *ps = arg;
2352 	IGT_TIMEOUT(end_time);
2353 	unsigned int idx = 0;
2354 	int err = 0;
2355 
2356 	GEM_BUG_ON(!ps->nengines);
2357 	do {
2358 		struct i915_request *rq;
2359 
2360 		rq = i915_request_create(ps->ce[idx]);
2361 		if (IS_ERR(rq)) {
2362 			err = PTR_ERR(rq);
2363 			break;
2364 		}
2365 
2366 		i915_request_get(rq);
2367 		i915_request_add(rq);
2368 
2369 		if (i915_request_wait(rq, 0, HZ / 5) < 0)
2370 			err = -ETIME;
2371 		i915_request_put(rq);
2372 		if (err)
2373 			break;
2374 
2375 		if (++idx == ps->nengines)
2376 			idx = 0;
2377 	} while (!__igt_timeout(end_time, NULL));
2378 
2379 	return err;
2380 }
2381 
2382 static int s_sync1(void *arg)
2383 {
2384 	struct perf_series *ps = arg;
2385 	struct i915_request *prev = NULL;
2386 	IGT_TIMEOUT(end_time);
2387 	unsigned int idx = 0;
2388 	int err = 0;
2389 
2390 	GEM_BUG_ON(!ps->nengines);
2391 	do {
2392 		struct i915_request *rq;
2393 
2394 		rq = i915_request_create(ps->ce[idx]);
2395 		if (IS_ERR(rq)) {
2396 			err = PTR_ERR(rq);
2397 			break;
2398 		}
2399 
2400 		i915_request_get(rq);
2401 		i915_request_add(rq);
2402 
2403 		if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
2404 			err = -ETIME;
2405 		i915_request_put(prev);
2406 		prev = rq;
2407 		if (err)
2408 			break;
2409 
2410 		if (++idx == ps->nengines)
2411 			idx = 0;
2412 	} while (!__igt_timeout(end_time, NULL));
2413 	i915_request_put(prev);
2414 
2415 	return err;
2416 }
2417 
2418 static int s_many(void *arg)
2419 {
2420 	struct perf_series *ps = arg;
2421 	IGT_TIMEOUT(end_time);
2422 	unsigned int idx = 0;
2423 
2424 	GEM_BUG_ON(!ps->nengines);
2425 	do {
2426 		struct i915_request *rq;
2427 
2428 		rq = i915_request_create(ps->ce[idx]);
2429 		if (IS_ERR(rq))
2430 			return PTR_ERR(rq);
2431 
2432 		i915_request_add(rq);
2433 
2434 		if (++idx == ps->nengines)
2435 			idx = 0;
2436 	} while (!__igt_timeout(end_time, NULL));
2437 
2438 	return 0;
2439 }
2440 
2441 static int perf_series_engines(void *arg)
2442 {
2443 	struct drm_i915_private *i915 = arg;
2444 	static int (* const func[])(void *arg) = {
2445 		s_sync0,
2446 		s_sync1,
2447 		s_many,
2448 		NULL,
2449 	};
2450 	const unsigned int nengines = num_uabi_engines(i915);
2451 	struct intel_engine_cs *engine;
2452 	int (* const *fn)(void *arg);
2453 	struct pm_qos_request qos;
2454 	struct perf_stats *stats;
2455 	struct perf_series *ps;
2456 	unsigned int idx;
2457 	int err = 0;
2458 
2459 	stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL);
2460 	if (!stats)
2461 		return -ENOMEM;
2462 
2463 	ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL);
2464 	if (!ps) {
2465 		kfree(stats);
2466 		return -ENOMEM;
2467 	}
2468 
2469 	cpu_latency_qos_add_request(&qos, 0); /* disable cstates */
2470 
2471 	ps->i915 = i915;
2472 	ps->nengines = nengines;
2473 
2474 	idx = 0;
2475 	for_each_uabi_engine(engine, i915) {
2476 		struct intel_context *ce;
2477 
2478 		ce = intel_context_create(engine);
2479 		if (IS_ERR(ce))
2480 			goto out;
2481 
2482 		err = intel_context_pin(ce);
2483 		if (err) {
2484 			intel_context_put(ce);
2485 			goto out;
2486 		}
2487 
2488 		ps->ce[idx++] = ce;
2489 	}
2490 	GEM_BUG_ON(idx != ps->nengines);
2491 
2492 	for (fn = func; *fn && !err; fn++) {
2493 		char name[KSYM_NAME_LEN];
2494 		struct igt_live_test t;
2495 
2496 		snprintf(name, sizeof(name), "%ps", *fn);
2497 		err = igt_live_test_begin(&t, i915, __func__, name);
2498 		if (err)
2499 			break;
2500 
2501 		for (idx = 0; idx < nengines; idx++) {
2502 			struct perf_stats *p =
2503 				memset(&stats[idx], 0, sizeof(stats[idx]));
2504 			struct intel_context *ce = ps->ce[idx];
2505 
2506 			p->engine = ps->ce[idx]->engine;
2507 			intel_engine_pm_get(p->engine);
2508 
2509 			if (intel_engine_supports_stats(p->engine))
2510 				p->busy = intel_engine_get_busy_time(p->engine) + 1;
2511 			p->runtime = -intel_context_get_total_runtime_ns(ce);
2512 			p->time = ktime_get();
2513 		}
2514 
2515 		err = (*fn)(ps);
2516 		if (igt_live_test_end(&t))
2517 			err = -EIO;
2518 
2519 		for (idx = 0; idx < nengines; idx++) {
2520 			struct perf_stats *p = &stats[idx];
2521 			struct intel_context *ce = ps->ce[idx];
2522 			int integer, decimal;
2523 			u64 busy, dt;
2524 
2525 			p->time = ktime_sub(ktime_get(), p->time);
2526 			if (p->busy) {
2527 				p->busy = ktime_sub(intel_engine_get_busy_time(p->engine),
2528 						    p->busy - 1);
2529 			}
2530 
2531 			err = switch_to_kernel_sync(ce, err);
2532 			p->runtime += intel_context_get_total_runtime_ns(ce);
2533 			intel_engine_pm_put(p->engine);
2534 
2535 			busy = 100 * ktime_to_ns(p->busy);
2536 			dt = ktime_to_ns(p->time);
2537 			if (dt) {
2538 				integer = div64_u64(busy, dt);
2539 				busy -= integer * dt;
2540 				decimal = div64_u64(100 * busy, dt);
2541 			} else {
2542 				integer = 0;
2543 				decimal = 0;
2544 			}
2545 
2546 			pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
2547 				name, p->engine->name, ce->timeline->seqno,
2548 				integer, decimal,
2549 				div_u64(p->runtime, 1000 * 1000),
2550 				div_u64(ktime_to_ns(p->time), 1000 * 1000));
2551 		}
2552 	}
2553 
2554 out:
2555 	for (idx = 0; idx < nengines; idx++) {
2556 		if (IS_ERR_OR_NULL(ps->ce[idx]))
2557 			break;
2558 
2559 		intel_context_unpin(ps->ce[idx]);
2560 		intel_context_put(ps->ce[idx]);
2561 	}
2562 	kfree(ps);
2563 
2564 	cpu_latency_qos_remove_request(&qos);
2565 	kfree(stats);
2566 	return err;
2567 }
2568 
2569 static int p_sync0(void *arg)
2570 {
2571 	struct perf_stats *p = arg;
2572 	struct intel_engine_cs *engine = p->engine;
2573 	struct intel_context *ce;
2574 	IGT_TIMEOUT(end_time);
2575 	unsigned long count;
2576 	bool busy;
2577 	int err = 0;
2578 
2579 	ce = intel_context_create(engine);
2580 	if (IS_ERR(ce))
2581 		return PTR_ERR(ce);
2582 
2583 	err = intel_context_pin(ce);
2584 	if (err) {
2585 		intel_context_put(ce);
2586 		return err;
2587 	}
2588 
2589 	busy = false;
2590 	if (intel_engine_supports_stats(engine)) {
2591 		p->busy = intel_engine_get_busy_time(engine);
2592 		busy = true;
2593 	}
2594 
2595 	p->time = ktime_get();
2596 	count = 0;
2597 	do {
2598 		struct i915_request *rq;
2599 
2600 		rq = i915_request_create(ce);
2601 		if (IS_ERR(rq)) {
2602 			err = PTR_ERR(rq);
2603 			break;
2604 		}
2605 
2606 		i915_request_get(rq);
2607 		i915_request_add(rq);
2608 
2609 		err = 0;
2610 		if (i915_request_wait(rq, 0, HZ / 5) < 0)
2611 			err = -ETIME;
2612 		i915_request_put(rq);
2613 		if (err)
2614 			break;
2615 
2616 		count++;
2617 	} while (!__igt_timeout(end_time, NULL));
2618 	p->time = ktime_sub(ktime_get(), p->time);
2619 
2620 	if (busy) {
2621 		p->busy = ktime_sub(intel_engine_get_busy_time(engine),
2622 				    p->busy);
2623 	}
2624 
2625 	err = switch_to_kernel_sync(ce, err);
2626 	p->runtime = intel_context_get_total_runtime_ns(ce);
2627 	p->count = count;
2628 
2629 	intel_context_unpin(ce);
2630 	intel_context_put(ce);
2631 	return err;
2632 }
2633 
2634 static int p_sync1(void *arg)
2635 {
2636 	struct perf_stats *p = arg;
2637 	struct intel_engine_cs *engine = p->engine;
2638 	struct i915_request *prev = NULL;
2639 	struct intel_context *ce;
2640 	IGT_TIMEOUT(end_time);
2641 	unsigned long count;
2642 	bool busy;
2643 	int err = 0;
2644 
2645 	ce = intel_context_create(engine);
2646 	if (IS_ERR(ce))
2647 		return PTR_ERR(ce);
2648 
2649 	err = intel_context_pin(ce);
2650 	if (err) {
2651 		intel_context_put(ce);
2652 		return err;
2653 	}
2654 
2655 	busy = false;
2656 	if (intel_engine_supports_stats(engine)) {
2657 		p->busy = intel_engine_get_busy_time(engine);
2658 		busy = true;
2659 	}
2660 
2661 	p->time = ktime_get();
2662 	count = 0;
2663 	do {
2664 		struct i915_request *rq;
2665 
2666 		rq = i915_request_create(ce);
2667 		if (IS_ERR(rq)) {
2668 			err = PTR_ERR(rq);
2669 			break;
2670 		}
2671 
2672 		i915_request_get(rq);
2673 		i915_request_add(rq);
2674 
2675 		err = 0;
2676 		if (prev && i915_request_wait(prev, 0, HZ / 5) < 0)
2677 			err = -ETIME;
2678 		i915_request_put(prev);
2679 		prev = rq;
2680 		if (err)
2681 			break;
2682 
2683 		count++;
2684 	} while (!__igt_timeout(end_time, NULL));
2685 	i915_request_put(prev);
2686 	p->time = ktime_sub(ktime_get(), p->time);
2687 
2688 	if (busy) {
2689 		p->busy = ktime_sub(intel_engine_get_busy_time(engine),
2690 				    p->busy);
2691 	}
2692 
2693 	err = switch_to_kernel_sync(ce, err);
2694 	p->runtime = intel_context_get_total_runtime_ns(ce);
2695 	p->count = count;
2696 
2697 	intel_context_unpin(ce);
2698 	intel_context_put(ce);
2699 	return err;
2700 }
2701 
2702 static int p_many(void *arg)
2703 {
2704 	struct perf_stats *p = arg;
2705 	struct intel_engine_cs *engine = p->engine;
2706 	struct intel_context *ce;
2707 	IGT_TIMEOUT(end_time);
2708 	unsigned long count;
2709 	int err = 0;
2710 	bool busy;
2711 
2712 	ce = intel_context_create(engine);
2713 	if (IS_ERR(ce))
2714 		return PTR_ERR(ce);
2715 
2716 	err = intel_context_pin(ce);
2717 	if (err) {
2718 		intel_context_put(ce);
2719 		return err;
2720 	}
2721 
2722 	busy = false;
2723 	if (intel_engine_supports_stats(engine)) {
2724 		p->busy = intel_engine_get_busy_time(engine);
2725 		busy = true;
2726 	}
2727 
2728 	count = 0;
2729 	p->time = ktime_get();
2730 	do {
2731 		struct i915_request *rq;
2732 
2733 		rq = i915_request_create(ce);
2734 		if (IS_ERR(rq)) {
2735 			err = PTR_ERR(rq);
2736 			break;
2737 		}
2738 
2739 		i915_request_add(rq);
2740 		count++;
2741 	} while (!__igt_timeout(end_time, NULL));
2742 	p->time = ktime_sub(ktime_get(), p->time);
2743 
2744 	if (busy) {
2745 		p->busy = ktime_sub(intel_engine_get_busy_time(engine),
2746 				    p->busy);
2747 	}
2748 
2749 	err = switch_to_kernel_sync(ce, err);
2750 	p->runtime = intel_context_get_total_runtime_ns(ce);
2751 	p->count = count;
2752 
2753 	intel_context_unpin(ce);
2754 	intel_context_put(ce);
2755 	return err;
2756 }
2757 
2758 static int perf_parallel_engines(void *arg)
2759 {
2760 	struct drm_i915_private *i915 = arg;
2761 	static int (* const func[])(void *arg) = {
2762 		p_sync0,
2763 		p_sync1,
2764 		p_many,
2765 		NULL,
2766 	};
2767 	const unsigned int nengines = num_uabi_engines(i915);
2768 	struct intel_engine_cs *engine;
2769 	int (* const *fn)(void *arg);
2770 	struct pm_qos_request qos;
2771 	struct {
2772 		struct perf_stats p;
2773 		struct task_struct *tsk;
2774 	} *engines;
2775 	int err = 0;
2776 
2777 	engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL);
2778 	if (!engines)
2779 		return -ENOMEM;
2780 
2781 	cpu_latency_qos_add_request(&qos, 0);
2782 
2783 	for (fn = func; *fn; fn++) {
2784 		char name[KSYM_NAME_LEN];
2785 		struct igt_live_test t;
2786 		unsigned int idx;
2787 
2788 		snprintf(name, sizeof(name), "%ps", *fn);
2789 		err = igt_live_test_begin(&t, i915, __func__, name);
2790 		if (err)
2791 			break;
2792 
2793 		atomic_set(&i915->selftest.counter, nengines);
2794 
2795 		idx = 0;
2796 		for_each_uabi_engine(engine, i915) {
2797 			intel_engine_pm_get(engine);
2798 
2799 			memset(&engines[idx].p, 0, sizeof(engines[idx].p));
2800 			engines[idx].p.engine = engine;
2801 
2802 			engines[idx].tsk = kthread_run(*fn, &engines[idx].p,
2803 						       "igt:%s", engine->name);
2804 			if (IS_ERR(engines[idx].tsk)) {
2805 				err = PTR_ERR(engines[idx].tsk);
2806 				intel_engine_pm_put(engine);
2807 				break;
2808 			}
2809 			get_task_struct(engines[idx++].tsk);
2810 		}
2811 
2812 		yield(); /* start all threads before we kthread_stop() */
2813 
2814 		idx = 0;
2815 		for_each_uabi_engine(engine, i915) {
2816 			int status;
2817 
2818 			if (IS_ERR(engines[idx].tsk))
2819 				break;
2820 
2821 			status = kthread_stop(engines[idx].tsk);
2822 			if (status && !err)
2823 				err = status;
2824 
2825 			intel_engine_pm_put(engine);
2826 			put_task_struct(engines[idx++].tsk);
2827 		}
2828 
2829 		if (igt_live_test_end(&t))
2830 			err = -EIO;
2831 		if (err)
2832 			break;
2833 
2834 		idx = 0;
2835 		for_each_uabi_engine(engine, i915) {
2836 			struct perf_stats *p = &engines[idx].p;
2837 			u64 busy = 100 * ktime_to_ns(p->busy);
2838 			u64 dt = ktime_to_ns(p->time);
2839 			int integer, decimal;
2840 
2841 			if (dt) {
2842 				integer = div64_u64(busy, dt);
2843 				busy -= integer * dt;
2844 				decimal = div64_u64(100 * busy, dt);
2845 			} else {
2846 				integer = 0;
2847 				decimal = 0;
2848 			}
2849 
2850 			GEM_BUG_ON(engine != p->engine);
2851 			pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n",
2852 				name, engine->name, p->count, integer, decimal,
2853 				div_u64(p->runtime, 1000 * 1000),
2854 				div_u64(ktime_to_ns(p->time), 1000 * 1000));
2855 			idx++;
2856 		}
2857 	}
2858 
2859 	cpu_latency_qos_remove_request(&qos);
2860 	kfree(engines);
2861 	return err;
2862 }
2863 
2864 int i915_request_perf_selftests(struct drm_i915_private *i915)
2865 {
2866 	static const struct i915_subtest tests[] = {
2867 		SUBTEST(perf_request_latency),
2868 		SUBTEST(perf_series_engines),
2869 		SUBTEST(perf_parallel_engines),
2870 	};
2871 
2872 	if (intel_gt_is_wedged(&i915->gt))
2873 		return 0;
2874 
2875 	return i915_subtests(tests, i915);
2876 }
2877