1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright(c) 2020 Intel Corporation. 4 */ 5 #include <linux/workqueue.h> 6 7 #include "gem/i915_gem_context.h" 8 9 #include "gt/intel_context.h" 10 #include "gt/intel_gt.h" 11 12 #include "i915_drv.h" 13 14 #include "intel_pxp.h" 15 #include "intel_pxp_gsccs.h" 16 #include "intel_pxp_irq.h" 17 #include "intel_pxp_regs.h" 18 #include "intel_pxp_session.h" 19 #include "intel_pxp_tee.h" 20 #include "intel_pxp_types.h" 21 22 /** 23 * DOC: PXP 24 * 25 * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms. 26 * It allows execution and flip to display of protected (i.e. encrypted) 27 * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig. 28 * 29 * Objects can opt-in to PXP encryption at creation time via the 30 * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be 31 * correctly protected they must be used in conjunction with a context created 32 * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation 33 * of those two uapi flags for details and restrictions. 34 * 35 * Protected objects are tied to a pxp session; currently we only support one 36 * session, which i915 manages and whose index is available in the uapi 37 * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting 38 * protected objects. 39 * The session is invalidated by the HW when certain events occur (e.g. 40 * suspend/resume). When this happens, all the objects that were used with the 41 * session are marked as invalid and all contexts marked as using protected 42 * content are banned. Any further attempt at using them in an execbuf call is 43 * rejected, while flips are converted to black frames. 44 * 45 * Some of the PXP setup operations are performed by the Management Engine, 46 * which is handled by the mei driver; communication between i915 and mei is 47 * performed via the mei_pxp component module. 48 */ 49 50 bool intel_pxp_is_supported(const struct intel_pxp *pxp) 51 { 52 return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp; 53 } 54 55 bool intel_pxp_is_enabled(const struct intel_pxp *pxp) 56 { 57 return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp && pxp->ce; 58 } 59 60 bool intel_pxp_is_active(const struct intel_pxp *pxp) 61 { 62 return IS_ENABLED(CONFIG_DRM_I915_PXP) && pxp && pxp->arb_is_valid; 63 } 64 65 static void kcr_pxp_set_status(const struct intel_pxp *pxp, bool enable) 66 { 67 u32 val = enable ? _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES) : 68 _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES); 69 70 intel_uncore_write(pxp->ctrl_gt->uncore, KCR_INIT(pxp->kcr_base), val); 71 } 72 73 static void kcr_pxp_enable(const struct intel_pxp *pxp) 74 { 75 kcr_pxp_set_status(pxp, true); 76 } 77 78 static void kcr_pxp_disable(const struct intel_pxp *pxp) 79 { 80 kcr_pxp_set_status(pxp, false); 81 } 82 83 static int create_vcs_context(struct intel_pxp *pxp) 84 { 85 static struct lock_class_key pxp_lock; 86 struct intel_gt *gt = pxp->ctrl_gt; 87 struct intel_engine_cs *engine; 88 struct intel_context *ce; 89 int i; 90 91 /* 92 * Find the first VCS engine present. We're guaranteed there is one 93 * if we're in this function due to the check in has_pxp 94 */ 95 for (i = 0, engine = NULL; !engine; i++) 96 engine = gt->engine_class[VIDEO_DECODE_CLASS][i]; 97 98 GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS); 99 100 ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K, 101 I915_GEM_HWS_PXP_ADDR, 102 &pxp_lock, "pxp_context"); 103 if (IS_ERR(ce)) { 104 drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n"); 105 return PTR_ERR(ce); 106 } 107 108 pxp->ce = ce; 109 110 return 0; 111 } 112 113 static void destroy_vcs_context(struct intel_pxp *pxp) 114 { 115 if (pxp->ce) 116 intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce)); 117 } 118 119 static void pxp_init_full(struct intel_pxp *pxp) 120 { 121 struct intel_gt *gt = pxp->ctrl_gt; 122 int ret; 123 124 /* 125 * we'll use the completion to check if there is a termination pending, 126 * so we start it as completed and we reinit it when a termination 127 * is triggered. 128 */ 129 init_completion(&pxp->termination); 130 complete_all(&pxp->termination); 131 132 if (pxp->ctrl_gt->type == GT_MEDIA) 133 pxp->kcr_base = MTL_KCR_BASE; 134 else 135 pxp->kcr_base = GEN12_KCR_BASE; 136 137 intel_pxp_session_management_init(pxp); 138 139 ret = create_vcs_context(pxp); 140 if (ret) 141 return; 142 143 if (HAS_ENGINE(pxp->ctrl_gt, GSC0)) 144 ret = intel_pxp_gsccs_init(pxp); 145 else 146 ret = intel_pxp_tee_component_init(pxp); 147 if (ret) 148 goto out_context; 149 150 drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n"); 151 152 return; 153 154 out_context: 155 destroy_vcs_context(pxp); 156 } 157 158 static struct intel_gt *find_gt_for_required_teelink(struct drm_i915_private *i915) 159 { 160 /* 161 * NOTE: Only certain platforms require PXP-tee-backend dependencies 162 * for HuC authentication. For now, its limited to DG2. 163 */ 164 if (IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC) && 165 intel_huc_is_loaded_by_gsc(&to_gt(i915)->uc.huc) && intel_uc_uses_huc(&to_gt(i915)->uc)) 166 return to_gt(i915); 167 168 return NULL; 169 } 170 171 static struct intel_gt *find_gt_for_required_protected_content(struct drm_i915_private *i915) 172 { 173 if (!HAS_PXP(i915)) 174 return NULL; 175 176 /* 177 * For MTL onwards, PXP-controller-GT needs to have a valid GSC engine 178 * on the media GT. NOTE: if we have a media-tile with a GSC-engine, 179 * the VDBOX is already present so skip that check. We also have to 180 * ensure the GSC and HUC firmware are coming online 181 */ 182 if (i915->media_gt && HAS_ENGINE(i915->media_gt, GSC0) && 183 intel_uc_fw_is_loadable(&i915->media_gt->uc.gsc.fw) && 184 intel_uc_fw_is_loadable(&i915->media_gt->uc.huc.fw)) 185 return i915->media_gt; 186 187 /* 188 * Else we rely on mei-pxp module but only on legacy platforms 189 * prior to having separate media GTs and has a valid VDBOX. 190 */ 191 if (IS_ENABLED(CONFIG_INTEL_MEI_PXP) && !i915->media_gt && VDBOX_MASK(to_gt(i915))) 192 return to_gt(i915); 193 194 return NULL; 195 } 196 197 int intel_pxp_init(struct drm_i915_private *i915) 198 { 199 struct intel_gt *gt; 200 bool is_full_feature = false; 201 202 if (intel_gt_is_wedged(to_gt(i915))) 203 return -ENOTCONN; 204 205 /* 206 * NOTE: Get the ctrl_gt before checking intel_pxp_is_supported since 207 * we still need it if PXP's backend tee transport is needed. 208 */ 209 gt = find_gt_for_required_protected_content(i915); 210 if (gt) 211 is_full_feature = true; 212 else 213 gt = find_gt_for_required_teelink(i915); 214 215 if (!gt) 216 return -ENODEV; 217 218 /* 219 * At this point, we will either enable full featured PXP capabilities 220 * including session and object management, or we will init the backend tee 221 * channel for internal users such as HuC loading by GSC 222 */ 223 i915->pxp = kzalloc(sizeof(*i915->pxp), GFP_KERNEL); 224 if (!i915->pxp) 225 return -ENOMEM; 226 227 /* init common info used by all feature-mode usages*/ 228 i915->pxp->ctrl_gt = gt; 229 mutex_init(&i915->pxp->tee_mutex); 230 231 /* 232 * If full PXP feature is not available but HuC is loaded by GSC on pre-MTL 233 * such as DG2, we can skip the init of the full PXP session/object management 234 * and just init the tee channel. 235 */ 236 if (is_full_feature) 237 pxp_init_full(i915->pxp); 238 else 239 intel_pxp_tee_component_init(i915->pxp); 240 241 return 0; 242 } 243 244 void intel_pxp_fini(struct drm_i915_private *i915) 245 { 246 if (!i915->pxp) 247 return; 248 249 i915->pxp->arb_is_valid = false; 250 251 if (HAS_ENGINE(i915->pxp->ctrl_gt, GSC0)) 252 intel_pxp_gsccs_fini(i915->pxp); 253 else 254 intel_pxp_tee_component_fini(i915->pxp); 255 256 destroy_vcs_context(i915->pxp); 257 258 kfree(i915->pxp); 259 i915->pxp = NULL; 260 } 261 262 void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp) 263 { 264 pxp->arb_is_valid = false; 265 reinit_completion(&pxp->termination); 266 } 267 268 static void pxp_queue_termination(struct intel_pxp *pxp) 269 { 270 struct intel_gt *gt = pxp->ctrl_gt; 271 272 /* 273 * We want to get the same effect as if we received a termination 274 * interrupt, so just pretend that we did. 275 */ 276 spin_lock_irq(gt->irq_lock); 277 intel_pxp_mark_termination_in_progress(pxp); 278 pxp->session_events |= PXP_TERMINATION_REQUEST; 279 queue_work(system_unbound_wq, &pxp->session_work); 280 spin_unlock_irq(gt->irq_lock); 281 } 282 283 static bool pxp_component_bound(struct intel_pxp *pxp) 284 { 285 bool bound = false; 286 287 mutex_lock(&pxp->tee_mutex); 288 if (pxp->pxp_component) 289 bound = true; 290 mutex_unlock(&pxp->tee_mutex); 291 292 return bound; 293 } 294 295 int intel_pxp_get_backend_timeout_ms(struct intel_pxp *pxp) 296 { 297 if (HAS_ENGINE(pxp->ctrl_gt, GSC0)) 298 return GSCFW_MAX_ROUND_TRIP_LATENCY_MS; 299 else 300 return 250; 301 } 302 303 static int __pxp_global_teardown_final(struct intel_pxp *pxp) 304 { 305 int timeout; 306 307 if (!pxp->arb_is_valid) 308 return 0; 309 310 drm_dbg(&pxp->ctrl_gt->i915->drm, "PXP: teardown for suspend/fini"); 311 /* 312 * To ensure synchronous and coherent session teardown completion 313 * in response to suspend or shutdown triggers, don't use a worker. 314 */ 315 intel_pxp_mark_termination_in_progress(pxp); 316 intel_pxp_terminate(pxp, false); 317 318 timeout = intel_pxp_get_backend_timeout_ms(pxp); 319 320 if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(timeout))) 321 return -ETIMEDOUT; 322 323 return 0; 324 } 325 326 static int __pxp_global_teardown_restart(struct intel_pxp *pxp) 327 { 328 int timeout; 329 330 if (pxp->arb_is_valid) 331 return 0; 332 333 drm_dbg(&pxp->ctrl_gt->i915->drm, "PXP: teardown for restart"); 334 /* 335 * The arb-session is currently inactive and we are doing a reset and restart 336 * due to a runtime event. Use the worker that was designed for this. 337 */ 338 pxp_queue_termination(pxp); 339 340 timeout = intel_pxp_get_backend_timeout_ms(pxp); 341 342 if (!wait_for_completion_timeout(&pxp->termination, msecs_to_jiffies(timeout))) { 343 drm_dbg(&pxp->ctrl_gt->i915->drm, "PXP: restart backend timed out (%d ms)", 344 timeout); 345 return -ETIMEDOUT; 346 } 347 348 return 0; 349 } 350 351 void intel_pxp_end(struct intel_pxp *pxp) 352 { 353 struct drm_i915_private *i915 = pxp->ctrl_gt->i915; 354 intel_wakeref_t wakeref; 355 356 if (!intel_pxp_is_enabled(pxp)) 357 return; 358 359 wakeref = intel_runtime_pm_get(&i915->runtime_pm); 360 361 mutex_lock(&pxp->arb_mutex); 362 363 if (__pxp_global_teardown_final(pxp)) 364 drm_dbg(&i915->drm, "PXP end timed out\n"); 365 366 mutex_unlock(&pxp->arb_mutex); 367 368 intel_pxp_fini_hw(pxp); 369 intel_runtime_pm_put(&i915->runtime_pm, wakeref); 370 } 371 372 static bool pxp_required_fw_failed(struct intel_pxp *pxp) 373 { 374 if (__intel_uc_fw_status(&pxp->ctrl_gt->uc.huc.fw) == INTEL_UC_FIRMWARE_LOAD_FAIL) 375 return true; 376 if (HAS_ENGINE(pxp->ctrl_gt, GSC0) && 377 __intel_uc_fw_status(&pxp->ctrl_gt->uc.gsc.fw) == INTEL_UC_FIRMWARE_LOAD_FAIL) 378 return true; 379 380 return false; 381 } 382 383 static bool pxp_fw_dependencies_completed(struct intel_pxp *pxp) 384 { 385 if (HAS_ENGINE(pxp->ctrl_gt, GSC0)) 386 return intel_pxp_gsccs_is_ready_for_sessions(pxp); 387 388 return pxp_component_bound(pxp); 389 } 390 391 /* 392 * this helper is used by both intel_pxp_start and by 393 * the GET_PARAM IOCTL that user space calls. Thus, the 394 * return values here should match the UAPI spec. 395 */ 396 int intel_pxp_get_readiness_status(struct intel_pxp *pxp, int timeout_ms) 397 { 398 if (!intel_pxp_is_enabled(pxp)) 399 return -ENODEV; 400 401 if (pxp_required_fw_failed(pxp)) 402 return -ENODEV; 403 404 if (pxp->platform_cfg_is_bad) 405 return -ENODEV; 406 407 if (timeout_ms) { 408 if (wait_for(pxp_fw_dependencies_completed(pxp), timeout_ms)) 409 return 2; 410 } else if (!pxp_fw_dependencies_completed(pxp)) { 411 return 2; 412 } 413 return 1; 414 } 415 416 /* 417 * the arb session is restarted from the irq work when we receive the 418 * termination completion interrupt 419 */ 420 #define PXP_READINESS_TIMEOUT 250 421 422 int intel_pxp_start(struct intel_pxp *pxp) 423 { 424 int ret = 0; 425 426 ret = intel_pxp_get_readiness_status(pxp, PXP_READINESS_TIMEOUT); 427 if (ret < 0) { 428 drm_dbg(&pxp->ctrl_gt->i915->drm, "PXP: tried but not-avail (%d)", ret); 429 return ret; 430 } else if (ret > 1) { 431 return -EIO; /* per UAPI spec, user may retry later */ 432 } 433 434 mutex_lock(&pxp->arb_mutex); 435 436 ret = __pxp_global_teardown_restart(pxp); 437 if (ret) 438 goto unlock; 439 440 /* make sure the compiler doesn't optimize the double access */ 441 barrier(); 442 443 if (!pxp->arb_is_valid) 444 ret = -EIO; 445 446 unlock: 447 mutex_unlock(&pxp->arb_mutex); 448 return ret; 449 } 450 451 void intel_pxp_init_hw(struct intel_pxp *pxp) 452 { 453 kcr_pxp_enable(pxp); 454 intel_pxp_irq_enable(pxp); 455 } 456 457 void intel_pxp_fini_hw(struct intel_pxp *pxp) 458 { 459 kcr_pxp_disable(pxp); 460 intel_pxp_irq_disable(pxp); 461 } 462 463 int intel_pxp_key_check(struct intel_pxp *pxp, 464 struct drm_gem_object *_obj, 465 bool assign) 466 { 467 struct drm_i915_gem_object *obj = to_intel_bo(_obj); 468 469 if (!intel_pxp_is_active(pxp)) 470 return -ENODEV; 471 472 if (!i915_gem_object_is_protected(obj)) 473 return -EINVAL; 474 475 GEM_BUG_ON(!pxp->key_instance); 476 477 /* 478 * If this is the first time we're using this object, it's not 479 * encrypted yet; it will be encrypted with the current key, so mark it 480 * as such. If the object is already encrypted, check instead if the 481 * used key is still valid. 482 */ 483 if (!obj->pxp_key_instance && assign) 484 obj->pxp_key_instance = pxp->key_instance; 485 486 if (obj->pxp_key_instance != pxp->key_instance) 487 return -ENOEXEC; 488 489 return 0; 490 } 491 492 void intel_pxp_invalidate(struct intel_pxp *pxp) 493 { 494 struct drm_i915_private *i915 = pxp->ctrl_gt->i915; 495 struct i915_gem_context *ctx, *cn; 496 497 /* ban all contexts marked as protected */ 498 spin_lock_irq(&i915->gem.contexts.lock); 499 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) { 500 struct i915_gem_engines_iter it; 501 struct intel_context *ce; 502 503 if (!kref_get_unless_zero(&ctx->ref)) 504 continue; 505 506 if (likely(!i915_gem_context_uses_protected_content(ctx))) { 507 i915_gem_context_put(ctx); 508 continue; 509 } 510 511 spin_unlock_irq(&i915->gem.contexts.lock); 512 513 /* 514 * By the time we get here we are either going to suspend with 515 * quiesced execution or the HW keys are already long gone and 516 * in this case it is worthless to attempt to close the context 517 * and wait for its execution. It will hang the GPU if it has 518 * not already. So, as a fast mitigation, we can ban the 519 * context as quick as we can. That might race with the 520 * execbuffer, but currently this is the best that can be done. 521 */ 522 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) 523 intel_context_ban(ce, NULL); 524 i915_gem_context_unlock_engines(ctx); 525 526 /* 527 * The context has been banned, no need to keep the wakeref. 528 * This is safe from races because the only other place this 529 * is touched is context_release and we're holding a ctx ref 530 */ 531 if (ctx->pxp_wakeref) { 532 intel_runtime_pm_put(&i915->runtime_pm, 533 ctx->pxp_wakeref); 534 ctx->pxp_wakeref = NULL; 535 } 536 537 spin_lock_irq(&i915->gem.contexts.lock); 538 list_safe_reset_next(ctx, cn, link); 539 i915_gem_context_put(ctx); 540 } 541 spin_unlock_irq(&i915->gem.contexts.lock); 542 } 543