xref: /linux/drivers/gpu/drm/i915/pxp/intel_pxp.c (revision 156010ed9c2ac1e9df6c11b1f688cf8a6e0152e6)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright(c) 2020 Intel Corporation.
4  */
5 #include <linux/workqueue.h>
6 #include "intel_pxp.h"
7 #include "intel_pxp_irq.h"
8 #include "intel_pxp_session.h"
9 #include "intel_pxp_tee.h"
10 #include "gem/i915_gem_context.h"
11 #include "gt/intel_context.h"
12 #include "i915_drv.h"
13 
14 /**
15  * DOC: PXP
16  *
17  * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
18  * It allows execution and flip to display of protected (i.e. encrypted)
19  * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
20  *
21  * Objects can opt-in to PXP encryption at creation time via the
22  * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
23  * correctly protected they must be used in conjunction with a context created
24  * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
25  * of those two uapi flags for details and restrictions.
26  *
27  * Protected objects are tied to a pxp session; currently we only support one
28  * session, which i915 manages and whose index is available in the uapi
29  * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
30  * protected objects.
31  * The session is invalidated by the HW when certain events occur (e.g.
32  * suspend/resume). When this happens, all the objects that were used with the
33  * session are marked as invalid and all contexts marked as using protected
34  * content are banned. Any further attempt at using them in an execbuf call is
35  * rejected, while flips are converted to black frames.
36  *
37  * Some of the PXP setup operations are performed by the Management Engine,
38  * which is handled by the mei driver; communication between i915 and mei is
39  * performed via the mei_pxp component module.
40  */
41 
42 struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp)
43 {
44 	return container_of(pxp, struct intel_gt, pxp);
45 }
46 
47 bool intel_pxp_is_enabled(const struct intel_pxp *pxp)
48 {
49 	return pxp->ce;
50 }
51 
52 bool intel_pxp_is_active(const struct intel_pxp *pxp)
53 {
54 	return pxp->arb_is_valid;
55 }
56 
57 /* KCR register definitions */
58 #define KCR_INIT _MMIO(0x320f0)
59 /* Setting KCR Init bit is required after system boot */
60 #define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14)
61 
62 static void kcr_pxp_enable(struct intel_gt *gt)
63 {
64 	intel_uncore_write(gt->uncore, KCR_INIT,
65 			   _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
66 }
67 
68 static void kcr_pxp_disable(struct intel_gt *gt)
69 {
70 	intel_uncore_write(gt->uncore, KCR_INIT,
71 			   _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
72 }
73 
74 static int create_vcs_context(struct intel_pxp *pxp)
75 {
76 	static struct lock_class_key pxp_lock;
77 	struct intel_gt *gt = pxp_to_gt(pxp);
78 	struct intel_engine_cs *engine;
79 	struct intel_context *ce;
80 	int i;
81 
82 	/*
83 	 * Find the first VCS engine present. We're guaranteed there is one
84 	 * if we're in this function due to the check in has_pxp
85 	 */
86 	for (i = 0, engine = NULL; !engine; i++)
87 		engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
88 
89 	GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
90 
91 	ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
92 						I915_GEM_HWS_PXP_ADDR,
93 						&pxp_lock, "pxp_context");
94 	if (IS_ERR(ce)) {
95 		drm_err(&gt->i915->drm, "failed to create VCS ctx for PXP\n");
96 		return PTR_ERR(ce);
97 	}
98 
99 	pxp->ce = ce;
100 
101 	return 0;
102 }
103 
104 static void destroy_vcs_context(struct intel_pxp *pxp)
105 {
106 	if (pxp->ce)
107 		intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
108 }
109 
110 static void pxp_init_full(struct intel_pxp *pxp)
111 {
112 	struct intel_gt *gt = pxp_to_gt(pxp);
113 	int ret;
114 
115 	/*
116 	 * we'll use the completion to check if there is a termination pending,
117 	 * so we start it as completed and we reinit it when a termination
118 	 * is triggered.
119 	 */
120 	init_completion(&pxp->termination);
121 	complete_all(&pxp->termination);
122 
123 	intel_pxp_session_management_init(pxp);
124 
125 	ret = create_vcs_context(pxp);
126 	if (ret)
127 		return;
128 
129 	ret = intel_pxp_tee_component_init(pxp);
130 	if (ret)
131 		goto out_context;
132 
133 	drm_info(&gt->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
134 
135 	return;
136 
137 out_context:
138 	destroy_vcs_context(pxp);
139 }
140 
141 void intel_pxp_init(struct intel_pxp *pxp)
142 {
143 	struct intel_gt *gt = pxp_to_gt(pxp);
144 
145 	/* we rely on the mei PXP module */
146 	if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP))
147 		return;
148 
149 	/*
150 	 * If HuC is loaded by GSC but PXP is disabled, we can skip the init of
151 	 * the full PXP session/object management and just init the tee channel.
152 	 */
153 	if (HAS_PXP(gt->i915))
154 		pxp_init_full(pxp);
155 	else if (intel_huc_is_loaded_by_gsc(&gt->uc.huc) && intel_uc_uses_huc(&gt->uc))
156 		intel_pxp_tee_component_init(pxp);
157 }
158 
159 void intel_pxp_fini(struct intel_pxp *pxp)
160 {
161 	pxp->arb_is_valid = false;
162 
163 	intel_pxp_tee_component_fini(pxp);
164 
165 	destroy_vcs_context(pxp);
166 }
167 
168 void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
169 {
170 	pxp->arb_is_valid = false;
171 	reinit_completion(&pxp->termination);
172 }
173 
174 static void pxp_queue_termination(struct intel_pxp *pxp)
175 {
176 	struct intel_gt *gt = pxp_to_gt(pxp);
177 
178 	/*
179 	 * We want to get the same effect as if we received a termination
180 	 * interrupt, so just pretend that we did.
181 	 */
182 	spin_lock_irq(gt->irq_lock);
183 	intel_pxp_mark_termination_in_progress(pxp);
184 	pxp->session_events |= PXP_TERMINATION_REQUEST;
185 	queue_work(system_unbound_wq, &pxp->session_work);
186 	spin_unlock_irq(gt->irq_lock);
187 }
188 
189 static bool pxp_component_bound(struct intel_pxp *pxp)
190 {
191 	bool bound = false;
192 
193 	mutex_lock(&pxp->tee_mutex);
194 	if (pxp->pxp_component)
195 		bound = true;
196 	mutex_unlock(&pxp->tee_mutex);
197 
198 	return bound;
199 }
200 
201 /*
202  * the arb session is restarted from the irq work when we receive the
203  * termination completion interrupt
204  */
205 int intel_pxp_start(struct intel_pxp *pxp)
206 {
207 	int ret = 0;
208 
209 	if (!intel_pxp_is_enabled(pxp))
210 		return -ENODEV;
211 
212 	if (wait_for(pxp_component_bound(pxp), 250))
213 		return -ENXIO;
214 
215 	mutex_lock(&pxp->arb_mutex);
216 
217 	if (pxp->arb_is_valid)
218 		goto unlock;
219 
220 	pxp_queue_termination(pxp);
221 
222 	if (!wait_for_completion_timeout(&pxp->termination,
223 					msecs_to_jiffies(250))) {
224 		ret = -ETIMEDOUT;
225 		goto unlock;
226 	}
227 
228 	/* make sure the compiler doesn't optimize the double access */
229 	barrier();
230 
231 	if (!pxp->arb_is_valid)
232 		ret = -EIO;
233 
234 unlock:
235 	mutex_unlock(&pxp->arb_mutex);
236 	return ret;
237 }
238 
239 void intel_pxp_init_hw(struct intel_pxp *pxp)
240 {
241 	kcr_pxp_enable(pxp_to_gt(pxp));
242 	intel_pxp_irq_enable(pxp);
243 }
244 
245 void intel_pxp_fini_hw(struct intel_pxp *pxp)
246 {
247 	kcr_pxp_disable(pxp_to_gt(pxp));
248 
249 	intel_pxp_irq_disable(pxp);
250 }
251 
252 int intel_pxp_key_check(struct intel_pxp *pxp,
253 			struct drm_i915_gem_object *obj,
254 			bool assign)
255 {
256 	if (!intel_pxp_is_active(pxp))
257 		return -ENODEV;
258 
259 	if (!i915_gem_object_is_protected(obj))
260 		return -EINVAL;
261 
262 	GEM_BUG_ON(!pxp->key_instance);
263 
264 	/*
265 	 * If this is the first time we're using this object, it's not
266 	 * encrypted yet; it will be encrypted with the current key, so mark it
267 	 * as such. If the object is already encrypted, check instead if the
268 	 * used key is still valid.
269 	 */
270 	if (!obj->pxp_key_instance && assign)
271 		obj->pxp_key_instance = pxp->key_instance;
272 
273 	if (obj->pxp_key_instance != pxp->key_instance)
274 		return -ENOEXEC;
275 
276 	return 0;
277 }
278 
279 void intel_pxp_invalidate(struct intel_pxp *pxp)
280 {
281 	struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915;
282 	struct i915_gem_context *ctx, *cn;
283 
284 	/* ban all contexts marked as protected */
285 	spin_lock_irq(&i915->gem.contexts.lock);
286 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
287 		struct i915_gem_engines_iter it;
288 		struct intel_context *ce;
289 
290 		if (!kref_get_unless_zero(&ctx->ref))
291 			continue;
292 
293 		if (likely(!i915_gem_context_uses_protected_content(ctx))) {
294 			i915_gem_context_put(ctx);
295 			continue;
296 		}
297 
298 		spin_unlock_irq(&i915->gem.contexts.lock);
299 
300 		/*
301 		 * By the time we get here we are either going to suspend with
302 		 * quiesced execution or the HW keys are already long gone and
303 		 * in this case it is worthless to attempt to close the context
304 		 * and wait for its execution. It will hang the GPU if it has
305 		 * not already. So, as a fast mitigation, we can ban the
306 		 * context as quick as we can. That might race with the
307 		 * execbuffer, but currently this is the best that can be done.
308 		 */
309 		for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
310 			intel_context_ban(ce, NULL);
311 		i915_gem_context_unlock_engines(ctx);
312 
313 		/*
314 		 * The context has been banned, no need to keep the wakeref.
315 		 * This is safe from races because the only other place this
316 		 * is touched is context_release and we're holding a ctx ref
317 		 */
318 		if (ctx->pxp_wakeref) {
319 			intel_runtime_pm_put(&i915->runtime_pm,
320 					     ctx->pxp_wakeref);
321 			ctx->pxp_wakeref = 0;
322 		}
323 
324 		spin_lock_irq(&i915->gem.contexts.lock);
325 		list_safe_reset_next(ctx, cn, link);
326 		i915_gem_context_put(ctx);
327 	}
328 	spin_unlock_irq(&i915->gem.contexts.lock);
329 }
330