xref: /linux/drivers/gpu/drm/i915/intel_runtime_pm.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 /*
2  * Copyright © 2012-2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *    Daniel Vetter <daniel.vetter@ffwll.ch>
26  *
27  */
28 
29 #include <linux/pm_runtime.h>
30 #include <linux/vgaarb.h>
31 
32 #include "i915_drv.h"
33 #include "intel_drv.h"
34 
35 /**
36  * DOC: runtime pm
37  *
38  * The i915 driver supports dynamic enabling and disabling of entire hardware
39  * blocks at runtime. This is especially important on the display side where
40  * software is supposed to control many power gates manually on recent hardware,
41  * since on the GT side a lot of the power management is done by the hardware.
42  * But even there some manual control at the device level is required.
43  *
44  * Since i915 supports a diverse set of platforms with a unified codebase and
45  * hardware engineers just love to shuffle functionality around between power
46  * domains there's a sizeable amount of indirection required. This file provides
47  * generic functions to the driver for grabbing and releasing references for
48  * abstract power domains. It then maps those to the actual power wells
49  * present for a given platform.
50  */
51 
52 #define for_each_power_well(i, power_well, domain_mask, power_domains)	\
53 	for (i = 0;							\
54 	     i < (power_domains)->power_well_count &&			\
55 		 ((power_well) = &(power_domains)->power_wells[i]);	\
56 	     i++)							\
57 		for_each_if ((power_well)->domains & (domain_mask))
58 
59 #define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
60 	for (i = (power_domains)->power_well_count - 1;			 \
61 	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
62 	     i--)							 \
63 		for_each_if ((power_well)->domains & (domain_mask))
64 
65 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
66 				    int power_well_id);
67 
68 static struct i915_power_well *
69 lookup_power_well(struct drm_i915_private *dev_priv, int power_well_id);
70 
71 const char *
72 intel_display_power_domain_str(enum intel_display_power_domain domain)
73 {
74 	switch (domain) {
75 	case POWER_DOMAIN_PIPE_A:
76 		return "PIPE_A";
77 	case POWER_DOMAIN_PIPE_B:
78 		return "PIPE_B";
79 	case POWER_DOMAIN_PIPE_C:
80 		return "PIPE_C";
81 	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
82 		return "PIPE_A_PANEL_FITTER";
83 	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
84 		return "PIPE_B_PANEL_FITTER";
85 	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
86 		return "PIPE_C_PANEL_FITTER";
87 	case POWER_DOMAIN_TRANSCODER_A:
88 		return "TRANSCODER_A";
89 	case POWER_DOMAIN_TRANSCODER_B:
90 		return "TRANSCODER_B";
91 	case POWER_DOMAIN_TRANSCODER_C:
92 		return "TRANSCODER_C";
93 	case POWER_DOMAIN_TRANSCODER_EDP:
94 		return "TRANSCODER_EDP";
95 	case POWER_DOMAIN_TRANSCODER_DSI_A:
96 		return "TRANSCODER_DSI_A";
97 	case POWER_DOMAIN_TRANSCODER_DSI_C:
98 		return "TRANSCODER_DSI_C";
99 	case POWER_DOMAIN_PORT_DDI_A_LANES:
100 		return "PORT_DDI_A_LANES";
101 	case POWER_DOMAIN_PORT_DDI_B_LANES:
102 		return "PORT_DDI_B_LANES";
103 	case POWER_DOMAIN_PORT_DDI_C_LANES:
104 		return "PORT_DDI_C_LANES";
105 	case POWER_DOMAIN_PORT_DDI_D_LANES:
106 		return "PORT_DDI_D_LANES";
107 	case POWER_DOMAIN_PORT_DDI_E_LANES:
108 		return "PORT_DDI_E_LANES";
109 	case POWER_DOMAIN_PORT_DSI:
110 		return "PORT_DSI";
111 	case POWER_DOMAIN_PORT_CRT:
112 		return "PORT_CRT";
113 	case POWER_DOMAIN_PORT_OTHER:
114 		return "PORT_OTHER";
115 	case POWER_DOMAIN_VGA:
116 		return "VGA";
117 	case POWER_DOMAIN_AUDIO:
118 		return "AUDIO";
119 	case POWER_DOMAIN_PLLS:
120 		return "PLLS";
121 	case POWER_DOMAIN_AUX_A:
122 		return "AUX_A";
123 	case POWER_DOMAIN_AUX_B:
124 		return "AUX_B";
125 	case POWER_DOMAIN_AUX_C:
126 		return "AUX_C";
127 	case POWER_DOMAIN_AUX_D:
128 		return "AUX_D";
129 	case POWER_DOMAIN_GMBUS:
130 		return "GMBUS";
131 	case POWER_DOMAIN_INIT:
132 		return "INIT";
133 	case POWER_DOMAIN_MODESET:
134 		return "MODESET";
135 	default:
136 		MISSING_CASE(domain);
137 		return "?";
138 	}
139 }
140 
141 static void intel_power_well_enable(struct drm_i915_private *dev_priv,
142 				    struct i915_power_well *power_well)
143 {
144 	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
145 	power_well->ops->enable(dev_priv, power_well);
146 	power_well->hw_enabled = true;
147 }
148 
149 static void intel_power_well_disable(struct drm_i915_private *dev_priv,
150 				     struct i915_power_well *power_well)
151 {
152 	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
153 	power_well->hw_enabled = false;
154 	power_well->ops->disable(dev_priv, power_well);
155 }
156 
157 static void intel_power_well_get(struct drm_i915_private *dev_priv,
158 				 struct i915_power_well *power_well)
159 {
160 	if (!power_well->count++)
161 		intel_power_well_enable(dev_priv, power_well);
162 }
163 
164 static void intel_power_well_put(struct drm_i915_private *dev_priv,
165 				 struct i915_power_well *power_well)
166 {
167 	WARN(!power_well->count, "Use count on power well %s is already zero",
168 	     power_well->name);
169 
170 	if (!--power_well->count)
171 		intel_power_well_disable(dev_priv, power_well);
172 }
173 
174 /*
175  * We should only use the power well if we explicitly asked the hardware to
176  * enable it, so check if it's enabled and also check if we've requested it to
177  * be enabled.
178  */
179 static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
180 				   struct i915_power_well *power_well)
181 {
182 	return I915_READ(HSW_PWR_WELL_DRIVER) ==
183 		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
184 }
185 
186 /**
187  * __intel_display_power_is_enabled - unlocked check for a power domain
188  * @dev_priv: i915 device instance
189  * @domain: power domain to check
190  *
191  * This is the unlocked version of intel_display_power_is_enabled() and should
192  * only be used from error capture and recovery code where deadlocks are
193  * possible.
194  *
195  * Returns:
196  * True when the power domain is enabled, false otherwise.
197  */
198 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
199 				      enum intel_display_power_domain domain)
200 {
201 	struct i915_power_domains *power_domains;
202 	struct i915_power_well *power_well;
203 	bool is_enabled;
204 	int i;
205 
206 	if (dev_priv->pm.suspended)
207 		return false;
208 
209 	power_domains = &dev_priv->power_domains;
210 
211 	is_enabled = true;
212 
213 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
214 		if (power_well->always_on)
215 			continue;
216 
217 		if (!power_well->hw_enabled) {
218 			is_enabled = false;
219 			break;
220 		}
221 	}
222 
223 	return is_enabled;
224 }
225 
226 /**
227  * intel_display_power_is_enabled - check for a power domain
228  * @dev_priv: i915 device instance
229  * @domain: power domain to check
230  *
231  * This function can be used to check the hw power domain state. It is mostly
232  * used in hardware state readout functions. Everywhere else code should rely
233  * upon explicit power domain reference counting to ensure that the hardware
234  * block is powered up before accessing it.
235  *
236  * Callers must hold the relevant modesetting locks to ensure that concurrent
237  * threads can't disable the power well while the caller tries to read a few
238  * registers.
239  *
240  * Returns:
241  * True when the power domain is enabled, false otherwise.
242  */
243 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
244 				    enum intel_display_power_domain domain)
245 {
246 	struct i915_power_domains *power_domains;
247 	bool ret;
248 
249 	power_domains = &dev_priv->power_domains;
250 
251 	mutex_lock(&power_domains->lock);
252 	ret = __intel_display_power_is_enabled(dev_priv, domain);
253 	mutex_unlock(&power_domains->lock);
254 
255 	return ret;
256 }
257 
258 /**
259  * intel_display_set_init_power - set the initial power domain state
260  * @dev_priv: i915 device instance
261  * @enable: whether to enable or disable the initial power domain state
262  *
263  * For simplicity our driver load/unload and system suspend/resume code assumes
264  * that all power domains are always enabled. This functions controls the state
265  * of this little hack. While the initial power domain state is enabled runtime
266  * pm is effectively disabled.
267  */
268 void intel_display_set_init_power(struct drm_i915_private *dev_priv,
269 				  bool enable)
270 {
271 	if (dev_priv->power_domains.init_power_on == enable)
272 		return;
273 
274 	if (enable)
275 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
276 	else
277 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
278 
279 	dev_priv->power_domains.init_power_on = enable;
280 }
281 
282 /*
283  * Starting with Haswell, we have a "Power Down Well" that can be turned off
284  * when not needed anymore. We have 4 registers that can request the power well
285  * to be enabled, and it will only be disabled if none of the registers is
286  * requesting it to be enabled.
287  */
288 static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
289 {
290 	struct pci_dev *pdev = dev_priv->drm.pdev;
291 	struct drm_device *dev = &dev_priv->drm;
292 
293 	/*
294 	 * After we re-enable the power well, if we touch VGA register 0x3d5
295 	 * we'll get unclaimed register interrupts. This stops after we write
296 	 * anything to the VGA MSR register. The vgacon module uses this
297 	 * register all the time, so if we unbind our driver and, as a
298 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
299 	 * console_unlock(). So make here we touch the VGA MSR register, making
300 	 * sure vgacon can keep working normally without triggering interrupts
301 	 * and error messages.
302 	 */
303 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
304 	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
305 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
306 
307 	if (IS_BROADWELL(dev))
308 		gen8_irq_power_well_post_enable(dev_priv,
309 						1 << PIPE_C | 1 << PIPE_B);
310 }
311 
312 static void hsw_power_well_pre_disable(struct drm_i915_private *dev_priv)
313 {
314 	if (IS_BROADWELL(dev_priv))
315 		gen8_irq_power_well_pre_disable(dev_priv,
316 						1 << PIPE_C | 1 << PIPE_B);
317 }
318 
319 static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
320 				       struct i915_power_well *power_well)
321 {
322 	struct pci_dev *pdev = dev_priv->drm.pdev;
323 
324 	/*
325 	 * After we re-enable the power well, if we touch VGA register 0x3d5
326 	 * we'll get unclaimed register interrupts. This stops after we write
327 	 * anything to the VGA MSR register. The vgacon module uses this
328 	 * register all the time, so if we unbind our driver and, as a
329 	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
330 	 * console_unlock(). So make here we touch the VGA MSR register, making
331 	 * sure vgacon can keep working normally without triggering interrupts
332 	 * and error messages.
333 	 */
334 	if (power_well->data == SKL_DISP_PW_2) {
335 		vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
336 		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
337 		vga_put(pdev, VGA_RSRC_LEGACY_IO);
338 
339 		gen8_irq_power_well_post_enable(dev_priv,
340 						1 << PIPE_C | 1 << PIPE_B);
341 	}
342 }
343 
344 static void skl_power_well_pre_disable(struct drm_i915_private *dev_priv,
345 				       struct i915_power_well *power_well)
346 {
347 	if (power_well->data == SKL_DISP_PW_2)
348 		gen8_irq_power_well_pre_disable(dev_priv,
349 						1 << PIPE_C | 1 << PIPE_B);
350 }
351 
352 static void hsw_set_power_well(struct drm_i915_private *dev_priv,
353 			       struct i915_power_well *power_well, bool enable)
354 {
355 	bool is_enabled, enable_requested;
356 	uint32_t tmp;
357 
358 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
359 	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
360 	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
361 
362 	if (enable) {
363 		if (!enable_requested)
364 			I915_WRITE(HSW_PWR_WELL_DRIVER,
365 				   HSW_PWR_WELL_ENABLE_REQUEST);
366 
367 		if (!is_enabled) {
368 			DRM_DEBUG_KMS("Enabling power well\n");
369 			if (intel_wait_for_register(dev_priv,
370 						    HSW_PWR_WELL_DRIVER,
371 						    HSW_PWR_WELL_STATE_ENABLED,
372 						    HSW_PWR_WELL_STATE_ENABLED,
373 						    20))
374 				DRM_ERROR("Timeout enabling power well\n");
375 			hsw_power_well_post_enable(dev_priv);
376 		}
377 
378 	} else {
379 		if (enable_requested) {
380 			hsw_power_well_pre_disable(dev_priv);
381 			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
382 			POSTING_READ(HSW_PWR_WELL_DRIVER);
383 			DRM_DEBUG_KMS("Requesting to disable the power well\n");
384 		}
385 	}
386 }
387 
388 #define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
389 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
390 	BIT(POWER_DOMAIN_PIPE_B) |			\
391 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
392 	BIT(POWER_DOMAIN_PIPE_C) |			\
393 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
394 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
395 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
396 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
397 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
398 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
399 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
400 	BIT(POWER_DOMAIN_AUX_B) |                       \
401 	BIT(POWER_DOMAIN_AUX_C) |			\
402 	BIT(POWER_DOMAIN_AUX_D) |			\
403 	BIT(POWER_DOMAIN_AUDIO) |			\
404 	BIT(POWER_DOMAIN_VGA) |				\
405 	BIT(POWER_DOMAIN_INIT))
406 #define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
407 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
408 	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
409 	BIT(POWER_DOMAIN_INIT))
410 #define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
411 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
412 	BIT(POWER_DOMAIN_INIT))
413 #define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
414 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
415 	BIT(POWER_DOMAIN_INIT))
416 #define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
417 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
418 	BIT(POWER_DOMAIN_INIT))
419 #define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
420 	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
421 	BIT(POWER_DOMAIN_MODESET) |			\
422 	BIT(POWER_DOMAIN_AUX_A) |			\
423 	BIT(POWER_DOMAIN_INIT))
424 
425 #define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
426 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
427 	BIT(POWER_DOMAIN_PIPE_B) |			\
428 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
429 	BIT(POWER_DOMAIN_PIPE_C) |			\
430 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
431 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
432 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
433 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
434 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
435 	BIT(POWER_DOMAIN_AUX_B) |			\
436 	BIT(POWER_DOMAIN_AUX_C) |			\
437 	BIT(POWER_DOMAIN_AUDIO) |			\
438 	BIT(POWER_DOMAIN_VGA) |				\
439 	BIT(POWER_DOMAIN_GMBUS) |			\
440 	BIT(POWER_DOMAIN_INIT))
441 #define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
442 	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
443 	BIT(POWER_DOMAIN_MODESET) |			\
444 	BIT(POWER_DOMAIN_AUX_A) |			\
445 	BIT(POWER_DOMAIN_INIT))
446 #define BXT_DPIO_CMN_A_POWER_DOMAINS (			\
447 	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
448 	BIT(POWER_DOMAIN_AUX_A) |			\
449 	BIT(POWER_DOMAIN_INIT))
450 #define BXT_DPIO_CMN_BC_POWER_DOMAINS (			\
451 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
452 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
453 	BIT(POWER_DOMAIN_AUX_B) |			\
454 	BIT(POWER_DOMAIN_AUX_C) |			\
455 	BIT(POWER_DOMAIN_INIT))
456 
457 static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
458 {
459 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
460 		  "DC9 already programmed to be enabled.\n");
461 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
462 		  "DC5 still not disabled to enable DC9.\n");
463 	WARN_ONCE(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
464 	WARN_ONCE(intel_irqs_enabled(dev_priv),
465 		  "Interrupts not disabled yet.\n");
466 
467 	 /*
468 	  * TODO: check for the following to verify the conditions to enter DC9
469 	  * state are satisfied:
470 	  * 1] Check relevant display engine registers to verify if mode set
471 	  * disable sequence was followed.
472 	  * 2] Check if display uninitialize sequence is initialized.
473 	  */
474 }
475 
476 static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
477 {
478 	WARN_ONCE(intel_irqs_enabled(dev_priv),
479 		  "Interrupts not disabled yet.\n");
480 	WARN_ONCE(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
481 		  "DC5 still not disabled.\n");
482 
483 	 /*
484 	  * TODO: check for the following to verify DC9 state was indeed
485 	  * entered before programming to disable it:
486 	  * 1] Check relevant display engine registers to verify if mode
487 	  *  set disable sequence was followed.
488 	  * 2] Check if display uninitialize sequence is initialized.
489 	  */
490 }
491 
492 static void gen9_write_dc_state(struct drm_i915_private *dev_priv,
493 				u32 state)
494 {
495 	int rewrites = 0;
496 	int rereads = 0;
497 	u32 v;
498 
499 	I915_WRITE(DC_STATE_EN, state);
500 
501 	/* It has been observed that disabling the dc6 state sometimes
502 	 * doesn't stick and dmc keeps returning old value. Make sure
503 	 * the write really sticks enough times and also force rewrite until
504 	 * we are confident that state is exactly what we want.
505 	 */
506 	do  {
507 		v = I915_READ(DC_STATE_EN);
508 
509 		if (v != state) {
510 			I915_WRITE(DC_STATE_EN, state);
511 			rewrites++;
512 			rereads = 0;
513 		} else if (rereads++ > 5) {
514 			break;
515 		}
516 
517 	} while (rewrites < 100);
518 
519 	if (v != state)
520 		DRM_ERROR("Writing dc state to 0x%x failed, now 0x%x\n",
521 			  state, v);
522 
523 	/* Most of the times we need one retry, avoid spam */
524 	if (rewrites > 1)
525 		DRM_DEBUG_KMS("Rewrote dc state to 0x%x %d times\n",
526 			      state, rewrites);
527 }
528 
529 static u32 gen9_dc_mask(struct drm_i915_private *dev_priv)
530 {
531 	u32 mask;
532 
533 	mask = DC_STATE_EN_UPTO_DC5;
534 	if (IS_BROXTON(dev_priv))
535 		mask |= DC_STATE_EN_DC9;
536 	else
537 		mask |= DC_STATE_EN_UPTO_DC6;
538 
539 	return mask;
540 }
541 
542 void gen9_sanitize_dc_state(struct drm_i915_private *dev_priv)
543 {
544 	u32 val;
545 
546 	val = I915_READ(DC_STATE_EN) & gen9_dc_mask(dev_priv);
547 
548 	DRM_DEBUG_KMS("Resetting DC state tracking from %02x to %02x\n",
549 		      dev_priv->csr.dc_state, val);
550 	dev_priv->csr.dc_state = val;
551 }
552 
553 static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
554 {
555 	uint32_t val;
556 	uint32_t mask;
557 
558 	if (WARN_ON_ONCE(state & ~dev_priv->csr.allowed_dc_mask))
559 		state &= dev_priv->csr.allowed_dc_mask;
560 
561 	val = I915_READ(DC_STATE_EN);
562 	mask = gen9_dc_mask(dev_priv);
563 	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
564 		      val & mask, state);
565 
566 	/* Check if DMC is ignoring our DC state requests */
567 	if ((val & mask) != dev_priv->csr.dc_state)
568 		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
569 			  dev_priv->csr.dc_state, val & mask);
570 
571 	val &= ~mask;
572 	val |= state;
573 
574 	gen9_write_dc_state(dev_priv, val);
575 
576 	dev_priv->csr.dc_state = val & mask;
577 }
578 
579 void bxt_enable_dc9(struct drm_i915_private *dev_priv)
580 {
581 	assert_can_enable_dc9(dev_priv);
582 
583 	DRM_DEBUG_KMS("Enabling DC9\n");
584 
585 	intel_power_sequencer_reset(dev_priv);
586 	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
587 }
588 
589 void bxt_disable_dc9(struct drm_i915_private *dev_priv)
590 {
591 	assert_can_disable_dc9(dev_priv);
592 
593 	DRM_DEBUG_KMS("Disabling DC9\n");
594 
595 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
596 
597 	intel_pps_unlock_regs_wa(dev_priv);
598 }
599 
600 static void assert_csr_loaded(struct drm_i915_private *dev_priv)
601 {
602 	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
603 		  "CSR program storage start is NULL\n");
604 	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
605 	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
606 }
607 
608 static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
609 {
610 	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
611 					SKL_DISP_PW_2);
612 
613 	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
614 
615 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
616 		  "DC5 already programmed to be enabled.\n");
617 	assert_rpm_wakelock_held(dev_priv);
618 
619 	assert_csr_loaded(dev_priv);
620 }
621 
622 void gen9_enable_dc5(struct drm_i915_private *dev_priv)
623 {
624 	assert_can_enable_dc5(dev_priv);
625 
626 	DRM_DEBUG_KMS("Enabling DC5\n");
627 
628 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
629 }
630 
631 static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
632 {
633 	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
634 		  "Backlight is not disabled.\n");
635 	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
636 		  "DC6 already programmed to be enabled.\n");
637 
638 	assert_csr_loaded(dev_priv);
639 }
640 
641 void skl_enable_dc6(struct drm_i915_private *dev_priv)
642 {
643 	assert_can_enable_dc6(dev_priv);
644 
645 	DRM_DEBUG_KMS("Enabling DC6\n");
646 
647 	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
648 
649 }
650 
651 void skl_disable_dc6(struct drm_i915_private *dev_priv)
652 {
653 	DRM_DEBUG_KMS("Disabling DC6\n");
654 
655 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
656 }
657 
658 static void
659 gen9_sanitize_power_well_requests(struct drm_i915_private *dev_priv,
660 				  struct i915_power_well *power_well)
661 {
662 	enum skl_disp_power_wells power_well_id = power_well->data;
663 	u32 val;
664 	u32 mask;
665 
666 	mask = SKL_POWER_WELL_REQ(power_well_id);
667 
668 	val = I915_READ(HSW_PWR_WELL_KVMR);
669 	if (WARN_ONCE(val & mask, "Clearing unexpected KVMR request for %s\n",
670 		      power_well->name))
671 		I915_WRITE(HSW_PWR_WELL_KVMR, val & ~mask);
672 
673 	val = I915_READ(HSW_PWR_WELL_BIOS);
674 	val |= I915_READ(HSW_PWR_WELL_DEBUG);
675 
676 	if (!(val & mask))
677 		return;
678 
679 	/*
680 	 * DMC is known to force on the request bits for power well 1 on SKL
681 	 * and BXT and the misc IO power well on SKL but we don't expect any
682 	 * other request bits to be set, so WARN for those.
683 	 */
684 	if (power_well_id == SKL_DISP_PW_1 ||
685 	    ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
686 	     power_well_id == SKL_DISP_PW_MISC_IO))
687 		DRM_DEBUG_DRIVER("Clearing auxiliary requests for %s forced on "
688 				 "by DMC\n", power_well->name);
689 	else
690 		WARN_ONCE(1, "Clearing unexpected auxiliary requests for %s\n",
691 			  power_well->name);
692 
693 	I915_WRITE(HSW_PWR_WELL_BIOS, val & ~mask);
694 	I915_WRITE(HSW_PWR_WELL_DEBUG, val & ~mask);
695 }
696 
697 static void skl_set_power_well(struct drm_i915_private *dev_priv,
698 			struct i915_power_well *power_well, bool enable)
699 {
700 	uint32_t tmp, fuse_status;
701 	uint32_t req_mask, state_mask;
702 	bool is_enabled, enable_requested, check_fuse_status = false;
703 
704 	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
705 	fuse_status = I915_READ(SKL_FUSE_STATUS);
706 
707 	switch (power_well->data) {
708 	case SKL_DISP_PW_1:
709 		if (intel_wait_for_register(dev_priv,
710 					    SKL_FUSE_STATUS,
711 					    SKL_FUSE_PG0_DIST_STATUS,
712 					    SKL_FUSE_PG0_DIST_STATUS,
713 					    1)) {
714 			DRM_ERROR("PG0 not enabled\n");
715 			return;
716 		}
717 		break;
718 	case SKL_DISP_PW_2:
719 		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
720 			DRM_ERROR("PG1 in disabled state\n");
721 			return;
722 		}
723 		break;
724 	case SKL_DISP_PW_DDI_A_E:
725 	case SKL_DISP_PW_DDI_B:
726 	case SKL_DISP_PW_DDI_C:
727 	case SKL_DISP_PW_DDI_D:
728 	case SKL_DISP_PW_MISC_IO:
729 		break;
730 	default:
731 		WARN(1, "Unknown power well %lu\n", power_well->data);
732 		return;
733 	}
734 
735 	req_mask = SKL_POWER_WELL_REQ(power_well->data);
736 	enable_requested = tmp & req_mask;
737 	state_mask = SKL_POWER_WELL_STATE(power_well->data);
738 	is_enabled = tmp & state_mask;
739 
740 	if (!enable && enable_requested)
741 		skl_power_well_pre_disable(dev_priv, power_well);
742 
743 	if (enable) {
744 		if (!enable_requested) {
745 			WARN((tmp & state_mask) &&
746 				!I915_READ(HSW_PWR_WELL_BIOS),
747 				"Invalid for power well status to be enabled, unless done by the BIOS, \
748 				when request is to disable!\n");
749 			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
750 		}
751 
752 		if (!is_enabled) {
753 			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
754 			check_fuse_status = true;
755 		}
756 	} else {
757 		if (enable_requested) {
758 			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
759 			POSTING_READ(HSW_PWR_WELL_DRIVER);
760 			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
761 		}
762 
763 		if (IS_GEN9(dev_priv))
764 			gen9_sanitize_power_well_requests(dev_priv, power_well);
765 	}
766 
767 	if (wait_for(!!(I915_READ(HSW_PWR_WELL_DRIVER) & state_mask) == enable,
768 		     1))
769 		DRM_ERROR("%s %s timeout\n",
770 			  power_well->name, enable ? "enable" : "disable");
771 
772 	if (check_fuse_status) {
773 		if (power_well->data == SKL_DISP_PW_1) {
774 			if (intel_wait_for_register(dev_priv,
775 						    SKL_FUSE_STATUS,
776 						    SKL_FUSE_PG1_DIST_STATUS,
777 						    SKL_FUSE_PG1_DIST_STATUS,
778 						    1))
779 				DRM_ERROR("PG1 distributing status timeout\n");
780 		} else if (power_well->data == SKL_DISP_PW_2) {
781 			if (intel_wait_for_register(dev_priv,
782 						    SKL_FUSE_STATUS,
783 						    SKL_FUSE_PG2_DIST_STATUS,
784 						    SKL_FUSE_PG2_DIST_STATUS,
785 						    1))
786 				DRM_ERROR("PG2 distributing status timeout\n");
787 		}
788 	}
789 
790 	if (enable && !is_enabled)
791 		skl_power_well_post_enable(dev_priv, power_well);
792 }
793 
794 static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
795 				   struct i915_power_well *power_well)
796 {
797 	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);
798 
799 	/*
800 	 * We're taking over the BIOS, so clear any requests made by it since
801 	 * the driver is in charge now.
802 	 */
803 	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
804 		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
805 }
806 
807 static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
808 				  struct i915_power_well *power_well)
809 {
810 	hsw_set_power_well(dev_priv, power_well, true);
811 }
812 
813 static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
814 				   struct i915_power_well *power_well)
815 {
816 	hsw_set_power_well(dev_priv, power_well, false);
817 }
818 
819 static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
820 					struct i915_power_well *power_well)
821 {
822 	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
823 		SKL_POWER_WELL_STATE(power_well->data);
824 
825 	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
826 }
827 
828 static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
829 				struct i915_power_well *power_well)
830 {
831 	skl_set_power_well(dev_priv, power_well, power_well->count > 0);
832 
833 	/* Clear any request made by BIOS as driver is taking over */
834 	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
835 }
836 
837 static void skl_power_well_enable(struct drm_i915_private *dev_priv,
838 				struct i915_power_well *power_well)
839 {
840 	skl_set_power_well(dev_priv, power_well, true);
841 }
842 
843 static void skl_power_well_disable(struct drm_i915_private *dev_priv,
844 				struct i915_power_well *power_well)
845 {
846 	skl_set_power_well(dev_priv, power_well, false);
847 }
848 
849 static enum dpio_phy bxt_power_well_to_phy(struct i915_power_well *power_well)
850 {
851 	enum skl_disp_power_wells power_well_id = power_well->data;
852 
853 	return power_well_id == BXT_DPIO_CMN_A ? DPIO_PHY1 : DPIO_PHY0;
854 }
855 
856 static void bxt_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
857 					   struct i915_power_well *power_well)
858 {
859 	enum skl_disp_power_wells power_well_id = power_well->data;
860 	struct i915_power_well *cmn_a_well = NULL;
861 
862 	if (power_well_id == BXT_DPIO_CMN_BC) {
863 		/*
864 		 * We need to copy the GRC calibration value from the eDP PHY,
865 		 * so make sure it's powered up.
866 		 */
867 		cmn_a_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
868 		intel_power_well_get(dev_priv, cmn_a_well);
869 	}
870 
871 	bxt_ddi_phy_init(dev_priv, bxt_power_well_to_phy(power_well));
872 
873 	if (cmn_a_well)
874 		intel_power_well_put(dev_priv, cmn_a_well);
875 }
876 
877 static void bxt_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
878 					    struct i915_power_well *power_well)
879 {
880 	bxt_ddi_phy_uninit(dev_priv, bxt_power_well_to_phy(power_well));
881 }
882 
883 static bool bxt_dpio_cmn_power_well_enabled(struct drm_i915_private *dev_priv,
884 					    struct i915_power_well *power_well)
885 {
886 	return bxt_ddi_phy_is_enabled(dev_priv,
887 				      bxt_power_well_to_phy(power_well));
888 }
889 
890 static void bxt_dpio_cmn_power_well_sync_hw(struct drm_i915_private *dev_priv,
891 					    struct i915_power_well *power_well)
892 {
893 	if (power_well->count > 0)
894 		bxt_dpio_cmn_power_well_enable(dev_priv, power_well);
895 	else
896 		bxt_dpio_cmn_power_well_disable(dev_priv, power_well);
897 }
898 
899 
900 static void bxt_verify_ddi_phy_power_wells(struct drm_i915_private *dev_priv)
901 {
902 	struct i915_power_well *power_well;
903 
904 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_A);
905 	if (power_well->count > 0)
906 		bxt_ddi_phy_verify_state(dev_priv,
907 					 bxt_power_well_to_phy(power_well));
908 
909 	power_well = lookup_power_well(dev_priv, BXT_DPIO_CMN_BC);
910 	if (power_well->count > 0)
911 		bxt_ddi_phy_verify_state(dev_priv,
912 					 bxt_power_well_to_phy(power_well));
913 }
914 
915 static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
916 					   struct i915_power_well *power_well)
917 {
918 	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
919 }
920 
921 static void gen9_assert_dbuf_enabled(struct drm_i915_private *dev_priv)
922 {
923 	u32 tmp = I915_READ(DBUF_CTL);
924 
925 	WARN((tmp & (DBUF_POWER_STATE | DBUF_POWER_REQUEST)) !=
926 	     (DBUF_POWER_STATE | DBUF_POWER_REQUEST),
927 	     "Unexpected DBuf power power state (0x%08x)\n", tmp);
928 }
929 
930 static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
931 					  struct i915_power_well *power_well)
932 {
933 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
934 
935 	WARN_ON(dev_priv->cdclk_freq !=
936 		dev_priv->display.get_display_clock_speed(&dev_priv->drm));
937 
938 	gen9_assert_dbuf_enabled(dev_priv);
939 
940 	if (IS_BROXTON(dev_priv))
941 		bxt_verify_ddi_phy_power_wells(dev_priv);
942 }
943 
944 static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
945 					   struct i915_power_well *power_well)
946 {
947 	if (!dev_priv->csr.dmc_payload)
948 		return;
949 
950 	if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
951 		skl_enable_dc6(dev_priv);
952 	else if (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
953 		gen9_enable_dc5(dev_priv);
954 }
955 
956 static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
957 					   struct i915_power_well *power_well)
958 {
959 	if (power_well->count > 0)
960 		gen9_dc_off_power_well_enable(dev_priv, power_well);
961 	else
962 		gen9_dc_off_power_well_disable(dev_priv, power_well);
963 }
964 
965 static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
966 					   struct i915_power_well *power_well)
967 {
968 }
969 
970 static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
971 					     struct i915_power_well *power_well)
972 {
973 	return true;
974 }
975 
976 static void vlv_set_power_well(struct drm_i915_private *dev_priv,
977 			       struct i915_power_well *power_well, bool enable)
978 {
979 	enum punit_power_well power_well_id = power_well->data;
980 	u32 mask;
981 	u32 state;
982 	u32 ctrl;
983 
984 	mask = PUNIT_PWRGT_MASK(power_well_id);
985 	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
986 			 PUNIT_PWRGT_PWR_GATE(power_well_id);
987 
988 	mutex_lock(&dev_priv->rps.hw_lock);
989 
990 #define COND \
991 	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)
992 
993 	if (COND)
994 		goto out;
995 
996 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
997 	ctrl &= ~mask;
998 	ctrl |= state;
999 	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);
1000 
1001 	if (wait_for(COND, 100))
1002 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1003 			  state,
1004 			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));
1005 
1006 #undef COND
1007 
1008 out:
1009 	mutex_unlock(&dev_priv->rps.hw_lock);
1010 }
1011 
1012 static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
1013 				   struct i915_power_well *power_well)
1014 {
1015 	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
1016 }
1017 
1018 static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
1019 				  struct i915_power_well *power_well)
1020 {
1021 	vlv_set_power_well(dev_priv, power_well, true);
1022 }
1023 
1024 static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
1025 				   struct i915_power_well *power_well)
1026 {
1027 	vlv_set_power_well(dev_priv, power_well, false);
1028 }
1029 
1030 static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
1031 				   struct i915_power_well *power_well)
1032 {
1033 	int power_well_id = power_well->data;
1034 	bool enabled = false;
1035 	u32 mask;
1036 	u32 state;
1037 	u32 ctrl;
1038 
1039 	mask = PUNIT_PWRGT_MASK(power_well_id);
1040 	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);
1041 
1042 	mutex_lock(&dev_priv->rps.hw_lock);
1043 
1044 	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
1045 	/*
1046 	 * We only ever set the power-on and power-gate states, anything
1047 	 * else is unexpected.
1048 	 */
1049 	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
1050 		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
1051 	if (state == ctrl)
1052 		enabled = true;
1053 
1054 	/*
1055 	 * A transient state at this point would mean some unexpected party
1056 	 * is poking at the power controls too.
1057 	 */
1058 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
1059 	WARN_ON(ctrl != state);
1060 
1061 	mutex_unlock(&dev_priv->rps.hw_lock);
1062 
1063 	return enabled;
1064 }
1065 
1066 static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
1067 {
1068 	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
1069 
1070 	/*
1071 	 * Disable trickle feed and enable pnd deadline calculation
1072 	 */
1073 	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
1074 	I915_WRITE(CBR1_VLV, 0);
1075 
1076 	WARN_ON(dev_priv->rawclk_freq == 0);
1077 
1078 	I915_WRITE(RAWCLK_FREQ_VLV,
1079 		   DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 1000));
1080 }
1081 
1082 static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
1083 {
1084 	struct intel_encoder *encoder;
1085 	enum pipe pipe;
1086 
1087 	/*
1088 	 * Enable the CRI clock source so we can get at the
1089 	 * display and the reference clock for VGA
1090 	 * hotplug / manual detection. Supposedly DSI also
1091 	 * needs the ref clock up and running.
1092 	 *
1093 	 * CHV DPLL B/C have some issues if VGA mode is enabled.
1094 	 */
1095 	for_each_pipe(&dev_priv->drm, pipe) {
1096 		u32 val = I915_READ(DPLL(pipe));
1097 
1098 		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1099 		if (pipe != PIPE_A)
1100 			val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1101 
1102 		I915_WRITE(DPLL(pipe), val);
1103 	}
1104 
1105 	vlv_init_display_clock_gating(dev_priv);
1106 
1107 	spin_lock_irq(&dev_priv->irq_lock);
1108 	valleyview_enable_display_irqs(dev_priv);
1109 	spin_unlock_irq(&dev_priv->irq_lock);
1110 
1111 	/*
1112 	 * During driver initialization/resume we can avoid restoring the
1113 	 * part of the HW/SW state that will be inited anyway explicitly.
1114 	 */
1115 	if (dev_priv->power_domains.initializing)
1116 		return;
1117 
1118 	intel_hpd_init(dev_priv);
1119 
1120 	/* Re-enable the ADPA, if we have one */
1121 	for_each_intel_encoder(&dev_priv->drm, encoder) {
1122 		if (encoder->type == INTEL_OUTPUT_ANALOG)
1123 			intel_crt_reset(&encoder->base);
1124 	}
1125 
1126 	i915_redisable_vga_power_on(&dev_priv->drm);
1127 
1128 	intel_pps_unlock_regs_wa(dev_priv);
1129 }
1130 
1131 static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
1132 {
1133 	spin_lock_irq(&dev_priv->irq_lock);
1134 	valleyview_disable_display_irqs(dev_priv);
1135 	spin_unlock_irq(&dev_priv->irq_lock);
1136 
1137 	/* make sure we're done processing display irqs */
1138 	synchronize_irq(dev_priv->drm.irq);
1139 
1140 	intel_power_sequencer_reset(dev_priv);
1141 
1142 	intel_hpd_poll_init(dev_priv);
1143 }
1144 
1145 static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
1146 					  struct i915_power_well *power_well)
1147 {
1148 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1149 
1150 	vlv_set_power_well(dev_priv, power_well, true);
1151 
1152 	vlv_display_power_well_init(dev_priv);
1153 }
1154 
1155 static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
1156 					   struct i915_power_well *power_well)
1157 {
1158 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);
1159 
1160 	vlv_display_power_well_deinit(dev_priv);
1161 
1162 	vlv_set_power_well(dev_priv, power_well, false);
1163 }
1164 
1165 static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1166 					   struct i915_power_well *power_well)
1167 {
1168 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1169 
1170 	/* since ref/cri clock was enabled */
1171 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1172 
1173 	vlv_set_power_well(dev_priv, power_well, true);
1174 
1175 	/*
1176 	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1177 	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
1178 	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
1179 	 *   b.	The other bits such as sfr settings / modesel may all
1180 	 *	be set to 0.
1181 	 *
1182 	 * This should only be done on init and resume from S3 with
1183 	 * both PLLs disabled, or we risk losing DPIO and PLL
1184 	 * synchronization.
1185 	 */
1186 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1187 }
1188 
1189 static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1190 					    struct i915_power_well *power_well)
1191 {
1192 	enum pipe pipe;
1193 
1194 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);
1195 
1196 	for_each_pipe(dev_priv, pipe)
1197 		assert_pll_disabled(dev_priv, pipe);
1198 
1199 	/* Assert common reset */
1200 	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);
1201 
1202 	vlv_set_power_well(dev_priv, power_well, false);
1203 }
1204 
1205 #define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)
1206 
1207 static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
1208 						 int power_well_id)
1209 {
1210 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1211 	int i;
1212 
1213 	for (i = 0; i < power_domains->power_well_count; i++) {
1214 		struct i915_power_well *power_well;
1215 
1216 		power_well = &power_domains->power_wells[i];
1217 		if (power_well->data == power_well_id)
1218 			return power_well;
1219 	}
1220 
1221 	return NULL;
1222 }
1223 
1224 #define BITS_SET(val, bits) (((val) & (bits)) == (bits))
1225 
1226 static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
1227 {
1228 	struct i915_power_well *cmn_bc =
1229 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
1230 	struct i915_power_well *cmn_d =
1231 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
1232 	u32 phy_control = dev_priv->chv_phy_control;
1233 	u32 phy_status = 0;
1234 	u32 phy_status_mask = 0xffffffff;
1235 
1236 	/*
1237 	 * The BIOS can leave the PHY is some weird state
1238 	 * where it doesn't fully power down some parts.
1239 	 * Disable the asserts until the PHY has been fully
1240 	 * reset (ie. the power well has been disabled at
1241 	 * least once).
1242 	 */
1243 	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
1244 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
1245 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
1246 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
1247 				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
1248 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
1249 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));
1250 
1251 	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
1252 		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
1253 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
1254 				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));
1255 
1256 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
1257 		phy_status |= PHY_POWERGOOD(DPIO_PHY0);
1258 
1259 		/* this assumes override is only used to enable lanes */
1260 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
1261 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);
1262 
1263 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
1264 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);
1265 
1266 		/* CL1 is on whenever anything is on in either channel */
1267 		if (BITS_SET(phy_control,
1268 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
1269 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
1270 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);
1271 
1272 		/*
1273 		 * The DPLLB check accounts for the pipe B + port A usage
1274 		 * with CL2 powered up but all the lanes in the second channel
1275 		 * powered down.
1276 		 */
1277 		if (BITS_SET(phy_control,
1278 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
1279 		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
1280 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);
1281 
1282 		if (BITS_SET(phy_control,
1283 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
1284 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
1285 		if (BITS_SET(phy_control,
1286 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
1287 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);
1288 
1289 		if (BITS_SET(phy_control,
1290 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
1291 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
1292 		if (BITS_SET(phy_control,
1293 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
1294 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
1295 	}
1296 
1297 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
1298 		phy_status |= PHY_POWERGOOD(DPIO_PHY1);
1299 
1300 		/* this assumes override is only used to enable lanes */
1301 		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
1302 			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);
1303 
1304 		if (BITS_SET(phy_control,
1305 			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
1306 			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);
1307 
1308 		if (BITS_SET(phy_control,
1309 			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
1310 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
1311 		if (BITS_SET(phy_control,
1312 			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
1313 			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
1314 	}
1315 
1316 	phy_status &= phy_status_mask;
1317 
1318 	/*
1319 	 * The PHY may be busy with some initial calibration and whatnot,
1320 	 * so the power state can take a while to actually change.
1321 	 */
1322 	if (intel_wait_for_register(dev_priv,
1323 				    DISPLAY_PHY_STATUS,
1324 				    phy_status_mask,
1325 				    phy_status,
1326 				    10))
1327 		DRM_ERROR("Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
1328 			  I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask,
1329 			   phy_status, dev_priv->chv_phy_control);
1330 }
1331 
1332 #undef BITS_SET
1333 
1334 static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
1335 					   struct i915_power_well *power_well)
1336 {
1337 	enum dpio_phy phy;
1338 	enum pipe pipe;
1339 	uint32_t tmp;
1340 
1341 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1342 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1343 
1344 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1345 		pipe = PIPE_A;
1346 		phy = DPIO_PHY0;
1347 	} else {
1348 		pipe = PIPE_C;
1349 		phy = DPIO_PHY1;
1350 	}
1351 
1352 	/* since ref/cri clock was enabled */
1353 	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
1354 	vlv_set_power_well(dev_priv, power_well, true);
1355 
1356 	/* Poll for phypwrgood signal */
1357 	if (intel_wait_for_register(dev_priv,
1358 				    DISPLAY_PHY_STATUS,
1359 				    PHY_POWERGOOD(phy),
1360 				    PHY_POWERGOOD(phy),
1361 				    1))
1362 		DRM_ERROR("Display PHY %d is not power up\n", phy);
1363 
1364 	mutex_lock(&dev_priv->sb_lock);
1365 
1366 	/* Enable dynamic power down */
1367 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1368 	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
1369 		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1370 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);
1371 
1372 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1373 		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
1374 		tmp |= DPIO_DYNPWRDOWNEN_CH1;
1375 		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1376 	} else {
1377 		/*
1378 		 * Force the non-existing CL2 off. BXT does this
1379 		 * too, so maybe it saves some power even though
1380 		 * CL2 doesn't exist?
1381 		 */
1382 		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
1383 		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
1384 		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1385 	}
1386 
1387 	mutex_unlock(&dev_priv->sb_lock);
1388 
1389 	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
1390 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1391 
1392 	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1393 		      phy, dev_priv->chv_phy_control);
1394 
1395 	assert_chv_phy_status(dev_priv);
1396 }
1397 
1398 static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
1399 					    struct i915_power_well *power_well)
1400 {
1401 	enum dpio_phy phy;
1402 
1403 	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
1404 		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);
1405 
1406 	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
1407 		phy = DPIO_PHY0;
1408 		assert_pll_disabled(dev_priv, PIPE_A);
1409 		assert_pll_disabled(dev_priv, PIPE_B);
1410 	} else {
1411 		phy = DPIO_PHY1;
1412 		assert_pll_disabled(dev_priv, PIPE_C);
1413 	}
1414 
1415 	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
1416 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1417 
1418 	vlv_set_power_well(dev_priv, power_well, false);
1419 
1420 	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
1421 		      phy, dev_priv->chv_phy_control);
1422 
1423 	/* PHY is fully reset now, so we can enable the PHY state asserts */
1424 	dev_priv->chv_phy_assert[phy] = true;
1425 
1426 	assert_chv_phy_status(dev_priv);
1427 }
1428 
1429 static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1430 				     enum dpio_channel ch, bool override, unsigned int mask)
1431 {
1432 	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
1433 	u32 reg, val, expected, actual;
1434 
1435 	/*
1436 	 * The BIOS can leave the PHY is some weird state
1437 	 * where it doesn't fully power down some parts.
1438 	 * Disable the asserts until the PHY has been fully
1439 	 * reset (ie. the power well has been disabled at
1440 	 * least once).
1441 	 */
1442 	if (!dev_priv->chv_phy_assert[phy])
1443 		return;
1444 
1445 	if (ch == DPIO_CH0)
1446 		reg = _CHV_CMN_DW0_CH0;
1447 	else
1448 		reg = _CHV_CMN_DW6_CH1;
1449 
1450 	mutex_lock(&dev_priv->sb_lock);
1451 	val = vlv_dpio_read(dev_priv, pipe, reg);
1452 	mutex_unlock(&dev_priv->sb_lock);
1453 
1454 	/*
1455 	 * This assumes !override is only used when the port is disabled.
1456 	 * All lanes should power down even without the override when
1457 	 * the port is disabled.
1458 	 */
1459 	if (!override || mask == 0xf) {
1460 		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1461 		/*
1462 		 * If CH1 common lane is not active anymore
1463 		 * (eg. for pipe B DPLL) the entire channel will
1464 		 * shut down, which causes the common lane registers
1465 		 * to read as 0. That means we can't actually check
1466 		 * the lane power down status bits, but as the entire
1467 		 * register reads as 0 it's a good indication that the
1468 		 * channel is indeed entirely powered down.
1469 		 */
1470 		if (ch == DPIO_CH1 && val == 0)
1471 			expected = 0;
1472 	} else if (mask != 0x0) {
1473 		expected = DPIO_ANYDL_POWERDOWN;
1474 	} else {
1475 		expected = 0;
1476 	}
1477 
1478 	if (ch == DPIO_CH0)
1479 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
1480 	else
1481 		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
1482 	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
1483 
1484 	WARN(actual != expected,
1485 	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
1486 	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
1487 	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
1488 	     reg, val);
1489 }
1490 
1491 bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
1492 			  enum dpio_channel ch, bool override)
1493 {
1494 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1495 	bool was_override;
1496 
1497 	mutex_lock(&power_domains->lock);
1498 
1499 	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1500 
1501 	if (override == was_override)
1502 		goto out;
1503 
1504 	if (override)
1505 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1506 	else
1507 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1508 
1509 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1510 
1511 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
1512 		      phy, ch, dev_priv->chv_phy_control);
1513 
1514 	assert_chv_phy_status(dev_priv);
1515 
1516 out:
1517 	mutex_unlock(&power_domains->lock);
1518 
1519 	return was_override;
1520 }
1521 
1522 void chv_phy_powergate_lanes(struct intel_encoder *encoder,
1523 			     bool override, unsigned int mask)
1524 {
1525 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1526 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1527 	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
1528 	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
1529 
1530 	mutex_lock(&power_domains->lock);
1531 
1532 	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
1533 	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);
1534 
1535 	if (override)
1536 		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1537 	else
1538 		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
1539 
1540 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1541 
1542 	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
1543 		      phy, ch, mask, dev_priv->chv_phy_control);
1544 
1545 	assert_chv_phy_status(dev_priv);
1546 
1547 	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);
1548 
1549 	mutex_unlock(&power_domains->lock);
1550 }
1551 
1552 static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
1553 					struct i915_power_well *power_well)
1554 {
1555 	enum pipe pipe = power_well->data;
1556 	bool enabled;
1557 	u32 state, ctrl;
1558 
1559 	mutex_lock(&dev_priv->rps.hw_lock);
1560 
1561 	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
1562 	/*
1563 	 * We only ever set the power-on and power-gate states, anything
1564 	 * else is unexpected.
1565 	 */
1566 	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
1567 	enabled = state == DP_SSS_PWR_ON(pipe);
1568 
1569 	/*
1570 	 * A transient state at this point would mean some unexpected party
1571 	 * is poking at the power controls too.
1572 	 */
1573 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
1574 	WARN_ON(ctrl << 16 != state);
1575 
1576 	mutex_unlock(&dev_priv->rps.hw_lock);
1577 
1578 	return enabled;
1579 }
1580 
1581 static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
1582 				    struct i915_power_well *power_well,
1583 				    bool enable)
1584 {
1585 	enum pipe pipe = power_well->data;
1586 	u32 state;
1587 	u32 ctrl;
1588 
1589 	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);
1590 
1591 	mutex_lock(&dev_priv->rps.hw_lock);
1592 
1593 #define COND \
1594 	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)
1595 
1596 	if (COND)
1597 		goto out;
1598 
1599 	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
1600 	ctrl &= ~DP_SSC_MASK(pipe);
1601 	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
1602 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);
1603 
1604 	if (wait_for(COND, 100))
1605 		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1606 			  state,
1607 			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));
1608 
1609 #undef COND
1610 
1611 out:
1612 	mutex_unlock(&dev_priv->rps.hw_lock);
1613 }
1614 
1615 static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
1616 					struct i915_power_well *power_well)
1617 {
1618 	WARN_ON_ONCE(power_well->data != PIPE_A);
1619 
1620 	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
1621 }
1622 
1623 static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
1624 				       struct i915_power_well *power_well)
1625 {
1626 	WARN_ON_ONCE(power_well->data != PIPE_A);
1627 
1628 	chv_set_pipe_power_well(dev_priv, power_well, true);
1629 
1630 	vlv_display_power_well_init(dev_priv);
1631 }
1632 
1633 static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
1634 					struct i915_power_well *power_well)
1635 {
1636 	WARN_ON_ONCE(power_well->data != PIPE_A);
1637 
1638 	vlv_display_power_well_deinit(dev_priv);
1639 
1640 	chv_set_pipe_power_well(dev_priv, power_well, false);
1641 }
1642 
1643 static void
1644 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
1645 				 enum intel_display_power_domain domain)
1646 {
1647 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1648 	struct i915_power_well *power_well;
1649 	int i;
1650 
1651 	for_each_power_well(i, power_well, BIT(domain), power_domains)
1652 		intel_power_well_get(dev_priv, power_well);
1653 
1654 	power_domains->domain_use_count[domain]++;
1655 }
1656 
1657 /**
1658  * intel_display_power_get - grab a power domain reference
1659  * @dev_priv: i915 device instance
1660  * @domain: power domain to reference
1661  *
1662  * This function grabs a power domain reference for @domain and ensures that the
1663  * power domain and all its parents are powered up. Therefore users should only
1664  * grab a reference to the innermost power domain they need.
1665  *
1666  * Any power domain reference obtained by this function must have a symmetric
1667  * call to intel_display_power_put() to release the reference again.
1668  */
1669 void intel_display_power_get(struct drm_i915_private *dev_priv,
1670 			     enum intel_display_power_domain domain)
1671 {
1672 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1673 
1674 	intel_runtime_pm_get(dev_priv);
1675 
1676 	mutex_lock(&power_domains->lock);
1677 
1678 	__intel_display_power_get_domain(dev_priv, domain);
1679 
1680 	mutex_unlock(&power_domains->lock);
1681 }
1682 
1683 /**
1684  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
1685  * @dev_priv: i915 device instance
1686  * @domain: power domain to reference
1687  *
1688  * This function grabs a power domain reference for @domain and ensures that the
1689  * power domain and all its parents are powered up. Therefore users should only
1690  * grab a reference to the innermost power domain they need.
1691  *
1692  * Any power domain reference obtained by this function must have a symmetric
1693  * call to intel_display_power_put() to release the reference again.
1694  */
1695 bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
1696 					enum intel_display_power_domain domain)
1697 {
1698 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1699 	bool is_enabled;
1700 
1701 	if (!intel_runtime_pm_get_if_in_use(dev_priv))
1702 		return false;
1703 
1704 	mutex_lock(&power_domains->lock);
1705 
1706 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
1707 		__intel_display_power_get_domain(dev_priv, domain);
1708 		is_enabled = true;
1709 	} else {
1710 		is_enabled = false;
1711 	}
1712 
1713 	mutex_unlock(&power_domains->lock);
1714 
1715 	if (!is_enabled)
1716 		intel_runtime_pm_put(dev_priv);
1717 
1718 	return is_enabled;
1719 }
1720 
1721 /**
1722  * intel_display_power_put - release a power domain reference
1723  * @dev_priv: i915 device instance
1724  * @domain: power domain to reference
1725  *
1726  * This function drops the power domain reference obtained by
1727  * intel_display_power_get() and might power down the corresponding hardware
1728  * block right away if this is the last reference.
1729  */
1730 void intel_display_power_put(struct drm_i915_private *dev_priv,
1731 			     enum intel_display_power_domain domain)
1732 {
1733 	struct i915_power_domains *power_domains;
1734 	struct i915_power_well *power_well;
1735 	int i;
1736 
1737 	power_domains = &dev_priv->power_domains;
1738 
1739 	mutex_lock(&power_domains->lock);
1740 
1741 	WARN(!power_domains->domain_use_count[domain],
1742 	     "Use count on domain %s is already zero\n",
1743 	     intel_display_power_domain_str(domain));
1744 	power_domains->domain_use_count[domain]--;
1745 
1746 	for_each_power_well_rev(i, power_well, BIT(domain), power_domains)
1747 		intel_power_well_put(dev_priv, power_well);
1748 
1749 	mutex_unlock(&power_domains->lock);
1750 
1751 	intel_runtime_pm_put(dev_priv);
1752 }
1753 
1754 #define HSW_DISPLAY_POWER_DOMAINS (			\
1755 	BIT(POWER_DOMAIN_PIPE_B) |			\
1756 	BIT(POWER_DOMAIN_PIPE_C) |			\
1757 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
1758 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1759 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1760 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1761 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1762 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1763 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1764 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1765 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1766 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1767 	BIT(POWER_DOMAIN_VGA) |				\
1768 	BIT(POWER_DOMAIN_AUDIO) |			\
1769 	BIT(POWER_DOMAIN_INIT))
1770 
1771 #define BDW_DISPLAY_POWER_DOMAINS (			\
1772 	BIT(POWER_DOMAIN_PIPE_B) |			\
1773 	BIT(POWER_DOMAIN_PIPE_C) |			\
1774 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
1775 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
1776 	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
1777 	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
1778 	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
1779 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
1780 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
1781 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1782 	BIT(POWER_DOMAIN_PORT_CRT) | /* DDI E */	\
1783 	BIT(POWER_DOMAIN_VGA) |				\
1784 	BIT(POWER_DOMAIN_AUDIO) |			\
1785 	BIT(POWER_DOMAIN_INIT))
1786 
1787 #define VLV_DISPLAY_POWER_DOMAINS (		\
1788 	BIT(POWER_DOMAIN_PIPE_A) |		\
1789 	BIT(POWER_DOMAIN_PIPE_B) |		\
1790 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1791 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1792 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1793 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1794 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1795 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1796 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1797 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1798 	BIT(POWER_DOMAIN_VGA) |			\
1799 	BIT(POWER_DOMAIN_AUDIO) |		\
1800 	BIT(POWER_DOMAIN_AUX_B) |		\
1801 	BIT(POWER_DOMAIN_AUX_C) |		\
1802 	BIT(POWER_DOMAIN_GMBUS) |		\
1803 	BIT(POWER_DOMAIN_INIT))
1804 
1805 #define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1806 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1807 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1808 	BIT(POWER_DOMAIN_PORT_CRT) |		\
1809 	BIT(POWER_DOMAIN_AUX_B) |		\
1810 	BIT(POWER_DOMAIN_AUX_C) |		\
1811 	BIT(POWER_DOMAIN_INIT))
1812 
1813 #define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1814 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1815 	BIT(POWER_DOMAIN_AUX_B) |		\
1816 	BIT(POWER_DOMAIN_INIT))
1817 
1818 #define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1819 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1820 	BIT(POWER_DOMAIN_AUX_B) |		\
1821 	BIT(POWER_DOMAIN_INIT))
1822 
1823 #define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1824 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1825 	BIT(POWER_DOMAIN_AUX_C) |		\
1826 	BIT(POWER_DOMAIN_INIT))
1827 
1828 #define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1829 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1830 	BIT(POWER_DOMAIN_AUX_C) |		\
1831 	BIT(POWER_DOMAIN_INIT))
1832 
1833 #define CHV_DISPLAY_POWER_DOMAINS (		\
1834 	BIT(POWER_DOMAIN_PIPE_A) |		\
1835 	BIT(POWER_DOMAIN_PIPE_B) |		\
1836 	BIT(POWER_DOMAIN_PIPE_C) |		\
1837 	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |	\
1838 	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |	\
1839 	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |	\
1840 	BIT(POWER_DOMAIN_TRANSCODER_A) |	\
1841 	BIT(POWER_DOMAIN_TRANSCODER_B) |	\
1842 	BIT(POWER_DOMAIN_TRANSCODER_C) |	\
1843 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1844 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1845 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1846 	BIT(POWER_DOMAIN_PORT_DSI) |		\
1847 	BIT(POWER_DOMAIN_VGA) |			\
1848 	BIT(POWER_DOMAIN_AUDIO) |		\
1849 	BIT(POWER_DOMAIN_AUX_B) |		\
1850 	BIT(POWER_DOMAIN_AUX_C) |		\
1851 	BIT(POWER_DOMAIN_AUX_D) |		\
1852 	BIT(POWER_DOMAIN_GMBUS) |		\
1853 	BIT(POWER_DOMAIN_INIT))
1854 
1855 #define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1856 	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1857 	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1858 	BIT(POWER_DOMAIN_AUX_B) |		\
1859 	BIT(POWER_DOMAIN_AUX_C) |		\
1860 	BIT(POWER_DOMAIN_INIT))
1861 
1862 #define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1863 	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1864 	BIT(POWER_DOMAIN_AUX_D) |		\
1865 	BIT(POWER_DOMAIN_INIT))
1866 
1867 static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
1868 	.sync_hw = i9xx_always_on_power_well_noop,
1869 	.enable = i9xx_always_on_power_well_noop,
1870 	.disable = i9xx_always_on_power_well_noop,
1871 	.is_enabled = i9xx_always_on_power_well_enabled,
1872 };
1873 
1874 static const struct i915_power_well_ops chv_pipe_power_well_ops = {
1875 	.sync_hw = chv_pipe_power_well_sync_hw,
1876 	.enable = chv_pipe_power_well_enable,
1877 	.disable = chv_pipe_power_well_disable,
1878 	.is_enabled = chv_pipe_power_well_enabled,
1879 };
1880 
1881 static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
1882 	.sync_hw = vlv_power_well_sync_hw,
1883 	.enable = chv_dpio_cmn_power_well_enable,
1884 	.disable = chv_dpio_cmn_power_well_disable,
1885 	.is_enabled = vlv_power_well_enabled,
1886 };
1887 
1888 static struct i915_power_well i9xx_always_on_power_well[] = {
1889 	{
1890 		.name = "always-on",
1891 		.always_on = 1,
1892 		.domains = POWER_DOMAIN_MASK,
1893 		.ops = &i9xx_always_on_power_well_ops,
1894 	},
1895 };
1896 
1897 static const struct i915_power_well_ops hsw_power_well_ops = {
1898 	.sync_hw = hsw_power_well_sync_hw,
1899 	.enable = hsw_power_well_enable,
1900 	.disable = hsw_power_well_disable,
1901 	.is_enabled = hsw_power_well_enabled,
1902 };
1903 
1904 static const struct i915_power_well_ops skl_power_well_ops = {
1905 	.sync_hw = skl_power_well_sync_hw,
1906 	.enable = skl_power_well_enable,
1907 	.disable = skl_power_well_disable,
1908 	.is_enabled = skl_power_well_enabled,
1909 };
1910 
1911 static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
1912 	.sync_hw = gen9_dc_off_power_well_sync_hw,
1913 	.enable = gen9_dc_off_power_well_enable,
1914 	.disable = gen9_dc_off_power_well_disable,
1915 	.is_enabled = gen9_dc_off_power_well_enabled,
1916 };
1917 
1918 static const struct i915_power_well_ops bxt_dpio_cmn_power_well_ops = {
1919 	.sync_hw = bxt_dpio_cmn_power_well_sync_hw,
1920 	.enable = bxt_dpio_cmn_power_well_enable,
1921 	.disable = bxt_dpio_cmn_power_well_disable,
1922 	.is_enabled = bxt_dpio_cmn_power_well_enabled,
1923 };
1924 
1925 static struct i915_power_well hsw_power_wells[] = {
1926 	{
1927 		.name = "always-on",
1928 		.always_on = 1,
1929 		.domains = POWER_DOMAIN_MASK,
1930 		.ops = &i9xx_always_on_power_well_ops,
1931 	},
1932 	{
1933 		.name = "display",
1934 		.domains = HSW_DISPLAY_POWER_DOMAINS,
1935 		.ops = &hsw_power_well_ops,
1936 	},
1937 };
1938 
1939 static struct i915_power_well bdw_power_wells[] = {
1940 	{
1941 		.name = "always-on",
1942 		.always_on = 1,
1943 		.domains = POWER_DOMAIN_MASK,
1944 		.ops = &i9xx_always_on_power_well_ops,
1945 	},
1946 	{
1947 		.name = "display",
1948 		.domains = BDW_DISPLAY_POWER_DOMAINS,
1949 		.ops = &hsw_power_well_ops,
1950 	},
1951 };
1952 
1953 static const struct i915_power_well_ops vlv_display_power_well_ops = {
1954 	.sync_hw = vlv_power_well_sync_hw,
1955 	.enable = vlv_display_power_well_enable,
1956 	.disable = vlv_display_power_well_disable,
1957 	.is_enabled = vlv_power_well_enabled,
1958 };
1959 
1960 static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
1961 	.sync_hw = vlv_power_well_sync_hw,
1962 	.enable = vlv_dpio_cmn_power_well_enable,
1963 	.disable = vlv_dpio_cmn_power_well_disable,
1964 	.is_enabled = vlv_power_well_enabled,
1965 };
1966 
1967 static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
1968 	.sync_hw = vlv_power_well_sync_hw,
1969 	.enable = vlv_power_well_enable,
1970 	.disable = vlv_power_well_disable,
1971 	.is_enabled = vlv_power_well_enabled,
1972 };
1973 
1974 static struct i915_power_well vlv_power_wells[] = {
1975 	{
1976 		.name = "always-on",
1977 		.always_on = 1,
1978 		.domains = POWER_DOMAIN_MASK,
1979 		.ops = &i9xx_always_on_power_well_ops,
1980 		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1981 	},
1982 	{
1983 		.name = "display",
1984 		.domains = VLV_DISPLAY_POWER_DOMAINS,
1985 		.data = PUNIT_POWER_WELL_DISP2D,
1986 		.ops = &vlv_display_power_well_ops,
1987 	},
1988 	{
1989 		.name = "dpio-tx-b-01",
1990 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
1991 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
1992 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
1993 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
1994 		.ops = &vlv_dpio_power_well_ops,
1995 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
1996 	},
1997 	{
1998 		.name = "dpio-tx-b-23",
1999 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2000 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2001 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2002 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2003 		.ops = &vlv_dpio_power_well_ops,
2004 		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
2005 	},
2006 	{
2007 		.name = "dpio-tx-c-01",
2008 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2009 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2010 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2011 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2012 		.ops = &vlv_dpio_power_well_ops,
2013 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
2014 	},
2015 	{
2016 		.name = "dpio-tx-c-23",
2017 		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
2018 			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
2019 			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
2020 			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
2021 		.ops = &vlv_dpio_power_well_ops,
2022 		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
2023 	},
2024 	{
2025 		.name = "dpio-common",
2026 		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
2027 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2028 		.ops = &vlv_dpio_cmn_power_well_ops,
2029 	},
2030 };
2031 
2032 static struct i915_power_well chv_power_wells[] = {
2033 	{
2034 		.name = "always-on",
2035 		.always_on = 1,
2036 		.domains = POWER_DOMAIN_MASK,
2037 		.ops = &i9xx_always_on_power_well_ops,
2038 	},
2039 	{
2040 		.name = "display",
2041 		/*
2042 		 * Pipe A power well is the new disp2d well. Pipe B and C
2043 		 * power wells don't actually exist. Pipe A power well is
2044 		 * required for any pipe to work.
2045 		 */
2046 		.domains = CHV_DISPLAY_POWER_DOMAINS,
2047 		.data = PIPE_A,
2048 		.ops = &chv_pipe_power_well_ops,
2049 	},
2050 	{
2051 		.name = "dpio-common-bc",
2052 		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
2053 		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
2054 		.ops = &chv_dpio_cmn_power_well_ops,
2055 	},
2056 	{
2057 		.name = "dpio-common-d",
2058 		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
2059 		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
2060 		.ops = &chv_dpio_cmn_power_well_ops,
2061 	},
2062 };
2063 
2064 bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
2065 				    int power_well_id)
2066 {
2067 	struct i915_power_well *power_well;
2068 	bool ret;
2069 
2070 	power_well = lookup_power_well(dev_priv, power_well_id);
2071 	ret = power_well->ops->is_enabled(dev_priv, power_well);
2072 
2073 	return ret;
2074 }
2075 
2076 static struct i915_power_well skl_power_wells[] = {
2077 	{
2078 		.name = "always-on",
2079 		.always_on = 1,
2080 		.domains = POWER_DOMAIN_MASK,
2081 		.ops = &i9xx_always_on_power_well_ops,
2082 		.data = SKL_DISP_PW_ALWAYS_ON,
2083 	},
2084 	{
2085 		.name = "power well 1",
2086 		/* Handled by the DMC firmware */
2087 		.domains = 0,
2088 		.ops = &skl_power_well_ops,
2089 		.data = SKL_DISP_PW_1,
2090 	},
2091 	{
2092 		.name = "MISC IO power well",
2093 		/* Handled by the DMC firmware */
2094 		.domains = 0,
2095 		.ops = &skl_power_well_ops,
2096 		.data = SKL_DISP_PW_MISC_IO,
2097 	},
2098 	{
2099 		.name = "DC off",
2100 		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
2101 		.ops = &gen9_dc_off_power_well_ops,
2102 		.data = SKL_DISP_PW_DC_OFF,
2103 	},
2104 	{
2105 		.name = "power well 2",
2106 		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2107 		.ops = &skl_power_well_ops,
2108 		.data = SKL_DISP_PW_2,
2109 	},
2110 	{
2111 		.name = "DDI A/E power well",
2112 		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
2113 		.ops = &skl_power_well_ops,
2114 		.data = SKL_DISP_PW_DDI_A_E,
2115 	},
2116 	{
2117 		.name = "DDI B power well",
2118 		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
2119 		.ops = &skl_power_well_ops,
2120 		.data = SKL_DISP_PW_DDI_B,
2121 	},
2122 	{
2123 		.name = "DDI C power well",
2124 		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
2125 		.ops = &skl_power_well_ops,
2126 		.data = SKL_DISP_PW_DDI_C,
2127 	},
2128 	{
2129 		.name = "DDI D power well",
2130 		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
2131 		.ops = &skl_power_well_ops,
2132 		.data = SKL_DISP_PW_DDI_D,
2133 	},
2134 };
2135 
2136 static struct i915_power_well bxt_power_wells[] = {
2137 	{
2138 		.name = "always-on",
2139 		.always_on = 1,
2140 		.domains = POWER_DOMAIN_MASK,
2141 		.ops = &i9xx_always_on_power_well_ops,
2142 	},
2143 	{
2144 		.name = "power well 1",
2145 		.domains = 0,
2146 		.ops = &skl_power_well_ops,
2147 		.data = SKL_DISP_PW_1,
2148 	},
2149 	{
2150 		.name = "DC off",
2151 		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
2152 		.ops = &gen9_dc_off_power_well_ops,
2153 		.data = SKL_DISP_PW_DC_OFF,
2154 	},
2155 	{
2156 		.name = "power well 2",
2157 		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
2158 		.ops = &skl_power_well_ops,
2159 		.data = SKL_DISP_PW_2,
2160 	},
2161 	{
2162 		.name = "dpio-common-a",
2163 		.domains = BXT_DPIO_CMN_A_POWER_DOMAINS,
2164 		.ops = &bxt_dpio_cmn_power_well_ops,
2165 		.data = BXT_DPIO_CMN_A,
2166 	},
2167 	{
2168 		.name = "dpio-common-bc",
2169 		.domains = BXT_DPIO_CMN_BC_POWER_DOMAINS,
2170 		.ops = &bxt_dpio_cmn_power_well_ops,
2171 		.data = BXT_DPIO_CMN_BC,
2172 	},
2173 };
2174 
2175 static int
2176 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
2177 				   int disable_power_well)
2178 {
2179 	if (disable_power_well >= 0)
2180 		return !!disable_power_well;
2181 
2182 	return 1;
2183 }
2184 
2185 static uint32_t get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
2186 				    int enable_dc)
2187 {
2188 	uint32_t mask;
2189 	int requested_dc;
2190 	int max_dc;
2191 
2192 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2193 		max_dc = 2;
2194 		mask = 0;
2195 	} else if (IS_BROXTON(dev_priv)) {
2196 		max_dc = 1;
2197 		/*
2198 		 * DC9 has a separate HW flow from the rest of the DC states,
2199 		 * not depending on the DMC firmware. It's needed by system
2200 		 * suspend/resume, so allow it unconditionally.
2201 		 */
2202 		mask = DC_STATE_EN_DC9;
2203 	} else {
2204 		max_dc = 0;
2205 		mask = 0;
2206 	}
2207 
2208 	if (!i915.disable_power_well)
2209 		max_dc = 0;
2210 
2211 	if (enable_dc >= 0 && enable_dc <= max_dc) {
2212 		requested_dc = enable_dc;
2213 	} else if (enable_dc == -1) {
2214 		requested_dc = max_dc;
2215 	} else if (enable_dc > max_dc && enable_dc <= 2) {
2216 		DRM_DEBUG_KMS("Adjusting requested max DC state (%d->%d)\n",
2217 			      enable_dc, max_dc);
2218 		requested_dc = max_dc;
2219 	} else {
2220 		DRM_ERROR("Unexpected value for enable_dc (%d)\n", enable_dc);
2221 		requested_dc = max_dc;
2222 	}
2223 
2224 	if (requested_dc > 1)
2225 		mask |= DC_STATE_EN_UPTO_DC6;
2226 	if (requested_dc > 0)
2227 		mask |= DC_STATE_EN_UPTO_DC5;
2228 
2229 	DRM_DEBUG_KMS("Allowed DC state mask %02x\n", mask);
2230 
2231 	return mask;
2232 }
2233 
2234 #define set_power_wells(power_domains, __power_wells) ({		\
2235 	(power_domains)->power_wells = (__power_wells);			\
2236 	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
2237 })
2238 
2239 /**
2240  * intel_power_domains_init - initializes the power domain structures
2241  * @dev_priv: i915 device instance
2242  *
2243  * Initializes the power domain structures for @dev_priv depending upon the
2244  * supported platform.
2245  */
2246 int intel_power_domains_init(struct drm_i915_private *dev_priv)
2247 {
2248 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2249 
2250 	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
2251 						     i915.disable_power_well);
2252 	dev_priv->csr.allowed_dc_mask = get_allowed_dc_mask(dev_priv,
2253 							    i915.enable_dc);
2254 
2255 	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);
2256 
2257 	mutex_init(&power_domains->lock);
2258 
2259 	/*
2260 	 * The enabling order will be from lower to higher indexed wells,
2261 	 * the disabling order is reversed.
2262 	 */
2263 	if (IS_HASWELL(dev_priv)) {
2264 		set_power_wells(power_domains, hsw_power_wells);
2265 	} else if (IS_BROADWELL(dev_priv)) {
2266 		set_power_wells(power_domains, bdw_power_wells);
2267 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
2268 		set_power_wells(power_domains, skl_power_wells);
2269 	} else if (IS_BROXTON(dev_priv)) {
2270 		set_power_wells(power_domains, bxt_power_wells);
2271 	} else if (IS_CHERRYVIEW(dev_priv)) {
2272 		set_power_wells(power_domains, chv_power_wells);
2273 	} else if (IS_VALLEYVIEW(dev_priv)) {
2274 		set_power_wells(power_domains, vlv_power_wells);
2275 	} else {
2276 		set_power_wells(power_domains, i9xx_always_on_power_well);
2277 	}
2278 
2279 	return 0;
2280 }
2281 
2282 /**
2283  * intel_power_domains_fini - finalizes the power domain structures
2284  * @dev_priv: i915 device instance
2285  *
2286  * Finalizes the power domain structures for @dev_priv depending upon the
2287  * supported platform. This function also disables runtime pm and ensures that
2288  * the device stays powered up so that the driver can be reloaded.
2289  */
2290 void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2291 {
2292 	struct device *kdev = &dev_priv->drm.pdev->dev;
2293 
2294 	/*
2295 	 * The i915.ko module is still not prepared to be loaded when
2296 	 * the power well is not enabled, so just enable it in case
2297 	 * we're going to unload/reload.
2298 	 * The following also reacquires the RPM reference the core passed
2299 	 * to the driver during loading, which is dropped in
2300 	 * intel_runtime_pm_enable(). We have to hand back the control of the
2301 	 * device to the core with this reference held.
2302 	 */
2303 	intel_display_set_init_power(dev_priv, true);
2304 
2305 	/* Remove the refcount we took to keep power well support disabled. */
2306 	if (!i915.disable_power_well)
2307 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2308 
2309 	/*
2310 	 * Remove the refcount we took in intel_runtime_pm_enable() in case
2311 	 * the platform doesn't support runtime PM.
2312 	 */
2313 	if (!HAS_RUNTIME_PM(dev_priv))
2314 		pm_runtime_put(kdev);
2315 }
2316 
2317 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2318 {
2319 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2320 	struct i915_power_well *power_well;
2321 	int i;
2322 
2323 	mutex_lock(&power_domains->lock);
2324 	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
2325 		power_well->ops->sync_hw(dev_priv, power_well);
2326 		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
2327 								     power_well);
2328 	}
2329 	mutex_unlock(&power_domains->lock);
2330 }
2331 
2332 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
2333 {
2334 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
2335 	POSTING_READ(DBUF_CTL);
2336 
2337 	udelay(10);
2338 
2339 	if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
2340 		DRM_ERROR("DBuf power enable timeout\n");
2341 }
2342 
2343 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
2344 {
2345 	I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
2346 	POSTING_READ(DBUF_CTL);
2347 
2348 	udelay(10);
2349 
2350 	if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
2351 		DRM_ERROR("DBuf power disable timeout!\n");
2352 }
2353 
2354 static void skl_display_core_init(struct drm_i915_private *dev_priv,
2355 				   bool resume)
2356 {
2357 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2358 	struct i915_power_well *well;
2359 	uint32_t val;
2360 
2361 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2362 
2363 	/* enable PCH reset handshake */
2364 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2365 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
2366 
2367 	/* enable PG1 and Misc I/O */
2368 	mutex_lock(&power_domains->lock);
2369 
2370 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2371 	intel_power_well_enable(dev_priv, well);
2372 
2373 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2374 	intel_power_well_enable(dev_priv, well);
2375 
2376 	mutex_unlock(&power_domains->lock);
2377 
2378 	skl_init_cdclk(dev_priv);
2379 
2380 	gen9_dbuf_enable(dev_priv);
2381 
2382 	if (resume && dev_priv->csr.dmc_payload)
2383 		intel_csr_load_program(dev_priv);
2384 }
2385 
2386 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
2387 {
2388 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2389 	struct i915_power_well *well;
2390 
2391 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2392 
2393 	gen9_dbuf_disable(dev_priv);
2394 
2395 	skl_uninit_cdclk(dev_priv);
2396 
2397 	/* The spec doesn't call for removing the reset handshake flag */
2398 	/* disable PG1 and Misc I/O */
2399 
2400 	mutex_lock(&power_domains->lock);
2401 
2402 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
2403 	intel_power_well_disable(dev_priv, well);
2404 
2405 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2406 	intel_power_well_disable(dev_priv, well);
2407 
2408 	mutex_unlock(&power_domains->lock);
2409 }
2410 
2411 void bxt_display_core_init(struct drm_i915_private *dev_priv,
2412 			   bool resume)
2413 {
2414 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2415 	struct i915_power_well *well;
2416 	uint32_t val;
2417 
2418 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2419 
2420 	/*
2421 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
2422 	 * or else the reset will hang because there is no PCH to respond.
2423 	 * Move the handshake programming to initialization sequence.
2424 	 * Previously was left up to BIOS.
2425 	 */
2426 	val = I915_READ(HSW_NDE_RSTWRN_OPT);
2427 	val &= ~RESET_PCH_HANDSHAKE_ENABLE;
2428 	I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
2429 
2430 	/* Enable PG1 */
2431 	mutex_lock(&power_domains->lock);
2432 
2433 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2434 	intel_power_well_enable(dev_priv, well);
2435 
2436 	mutex_unlock(&power_domains->lock);
2437 
2438 	bxt_init_cdclk(dev_priv);
2439 
2440 	gen9_dbuf_enable(dev_priv);
2441 
2442 	if (resume && dev_priv->csr.dmc_payload)
2443 		intel_csr_load_program(dev_priv);
2444 }
2445 
2446 void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
2447 {
2448 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2449 	struct i915_power_well *well;
2450 
2451 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
2452 
2453 	gen9_dbuf_disable(dev_priv);
2454 
2455 	bxt_uninit_cdclk(dev_priv);
2456 
2457 	/* The spec doesn't call for removing the reset handshake flag */
2458 
2459 	/* Disable PG1 */
2460 	mutex_lock(&power_domains->lock);
2461 
2462 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
2463 	intel_power_well_disable(dev_priv, well);
2464 
2465 	mutex_unlock(&power_domains->lock);
2466 }
2467 
2468 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
2469 {
2470 	struct i915_power_well *cmn_bc =
2471 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2472 	struct i915_power_well *cmn_d =
2473 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
2474 
2475 	/*
2476 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
2477 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
2478 	 * instead maintain a shadow copy ourselves. Use the actual
2479 	 * power well state and lane status to reconstruct the
2480 	 * expected initial value.
2481 	 */
2482 	dev_priv->chv_phy_control =
2483 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
2484 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2485 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
2486 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
2487 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
2488 
2489 	/*
2490 	 * If all lanes are disabled we leave the override disabled
2491 	 * with all power down bits cleared to match the state we
2492 	 * would use after disabling the port. Otherwise enable the
2493 	 * override and set the lane powerdown bits accding to the
2494 	 * current lane status.
2495 	 */
2496 	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
2497 		uint32_t status = I915_READ(DPLL(PIPE_A));
2498 		unsigned int mask;
2499 
2500 		mask = status & DPLL_PORTB_READY_MASK;
2501 		if (mask == 0xf)
2502 			mask = 0x0;
2503 		else
2504 			dev_priv->chv_phy_control |=
2505 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
2506 
2507 		dev_priv->chv_phy_control |=
2508 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
2509 
2510 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
2511 		if (mask == 0xf)
2512 			mask = 0x0;
2513 		else
2514 			dev_priv->chv_phy_control |=
2515 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
2516 
2517 		dev_priv->chv_phy_control |=
2518 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
2519 
2520 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2521 
2522 		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
2523 	} else {
2524 		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2525 	}
2526 
2527 	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
2528 		uint32_t status = I915_READ(DPIO_PHY_STATUS);
2529 		unsigned int mask;
2530 
2531 		mask = status & DPLL_PORTD_READY_MASK;
2532 
2533 		if (mask == 0xf)
2534 			mask = 0x0;
2535 		else
2536 			dev_priv->chv_phy_control |=
2537 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
2538 
2539 		dev_priv->chv_phy_control |=
2540 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
2541 
2542 		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2543 
2544 		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
2545 	} else {
2546 		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2547 	}
2548 
2549 	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
2550 
2551 	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
2552 		      dev_priv->chv_phy_control);
2553 }
2554 
2555 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
2556 {
2557 	struct i915_power_well *cmn =
2558 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
2559 	struct i915_power_well *disp2d =
2560 		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);
2561 
2562 	/* If the display might be already active skip this */
2563 	if (cmn->ops->is_enabled(dev_priv, cmn) &&
2564 	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2565 	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
2566 		return;
2567 
2568 	DRM_DEBUG_KMS("toggling display PHY side reset\n");
2569 
2570 	/* cmnlane needs DPLL registers */
2571 	disp2d->ops->enable(dev_priv, disp2d);
2572 
2573 	/*
2574 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
2575 	 * Need to assert and de-assert PHY SB reset by gating the
2576 	 * common lane power, then un-gating it.
2577 	 * Simply ungating isn't enough to reset the PHY enough to get
2578 	 * ports and lanes running.
2579 	 */
2580 	cmn->ops->disable(dev_priv, cmn);
2581 }
2582 
2583 /**
2584  * intel_power_domains_init_hw - initialize hardware power domain state
2585  * @dev_priv: i915 device instance
2586  * @resume: Called from resume code paths or not
2587  *
2588  * This function initializes the hardware power domain state and enables all
2589  * power domains using intel_display_set_init_power().
2590  */
2591 void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2592 {
2593 	struct drm_device *dev = &dev_priv->drm;
2594 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
2595 
2596 	power_domains->initializing = true;
2597 
2598 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
2599 		skl_display_core_init(dev_priv, resume);
2600 	} else if (IS_BROXTON(dev)) {
2601 		bxt_display_core_init(dev_priv, resume);
2602 	} else if (IS_CHERRYVIEW(dev)) {
2603 		mutex_lock(&power_domains->lock);
2604 		chv_phy_control_init(dev_priv);
2605 		mutex_unlock(&power_domains->lock);
2606 	} else if (IS_VALLEYVIEW(dev)) {
2607 		mutex_lock(&power_domains->lock);
2608 		vlv_cmnlane_wa(dev_priv);
2609 		mutex_unlock(&power_domains->lock);
2610 	}
2611 
2612 	/* For now, we need the power well to be always enabled. */
2613 	intel_display_set_init_power(dev_priv, true);
2614 	/* Disable power support if the user asked so. */
2615 	if (!i915.disable_power_well)
2616 		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2617 	intel_power_domains_sync_hw(dev_priv);
2618 	power_domains->initializing = false;
2619 }
2620 
2621 /**
2622  * intel_power_domains_suspend - suspend power domain state
2623  * @dev_priv: i915 device instance
2624  *
2625  * This function prepares the hardware power domain state before entering
2626  * system suspend. It must be paired with intel_power_domains_init_hw().
2627  */
2628 void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
2629 {
2630 	/*
2631 	 * Even if power well support was disabled we still want to disable
2632 	 * power wells while we are system suspended.
2633 	 */
2634 	if (!i915.disable_power_well)
2635 		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2636 
2637 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
2638 		skl_display_core_uninit(dev_priv);
2639 	else if (IS_BROXTON(dev_priv))
2640 		bxt_display_core_uninit(dev_priv);
2641 }
2642 
2643 /**
2644  * intel_runtime_pm_get - grab a runtime pm reference
2645  * @dev_priv: i915 device instance
2646  *
2647  * This function grabs a device-level runtime pm reference (mostly used for GEM
2648  * code to ensure the GTT or GT is on) and ensures that it is powered up.
2649  *
2650  * Any runtime pm reference obtained by this function must have a symmetric
2651  * call to intel_runtime_pm_put() to release the reference again.
2652  */
2653 void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
2654 {
2655 	struct pci_dev *pdev = dev_priv->drm.pdev;
2656 	struct device *kdev = &pdev->dev;
2657 
2658 	pm_runtime_get_sync(kdev);
2659 
2660 	atomic_inc(&dev_priv->pm.wakeref_count);
2661 	assert_rpm_wakelock_held(dev_priv);
2662 }
2663 
2664 /**
2665  * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
2666  * @dev_priv: i915 device instance
2667  *
2668  * This function grabs a device-level runtime pm reference if the device is
2669  * already in use and ensures that it is powered up.
2670  *
2671  * Any runtime pm reference obtained by this function must have a symmetric
2672  * call to intel_runtime_pm_put() to release the reference again.
2673  */
2674 bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
2675 {
2676 	struct pci_dev *pdev = dev_priv->drm.pdev;
2677 	struct device *kdev = &pdev->dev;
2678 
2679 	if (IS_ENABLED(CONFIG_PM)) {
2680 		int ret = pm_runtime_get_if_in_use(kdev);
2681 
2682 		/*
2683 		 * In cases runtime PM is disabled by the RPM core and we get
2684 		 * an -EINVAL return value we are not supposed to call this
2685 		 * function, since the power state is undefined. This applies
2686 		 * atm to the late/early system suspend/resume handlers.
2687 		 */
2688 		WARN_ON_ONCE(ret < 0);
2689 		if (ret <= 0)
2690 			return false;
2691 	}
2692 
2693 	atomic_inc(&dev_priv->pm.wakeref_count);
2694 	assert_rpm_wakelock_held(dev_priv);
2695 
2696 	return true;
2697 }
2698 
2699 /**
2700  * intel_runtime_pm_get_noresume - grab a runtime pm reference
2701  * @dev_priv: i915 device instance
2702  *
2703  * This function grabs a device-level runtime pm reference (mostly used for GEM
2704  * code to ensure the GTT or GT is on).
2705  *
2706  * It will _not_ power up the device but instead only check that it's powered
2707  * on.  Therefore it is only valid to call this functions from contexts where
2708  * the device is known to be powered up and where trying to power it up would
2709  * result in hilarity and deadlocks. That pretty much means only the system
2710  * suspend/resume code where this is used to grab runtime pm references for
2711  * delayed setup down in work items.
2712  *
2713  * Any runtime pm reference obtained by this function must have a symmetric
2714  * call to intel_runtime_pm_put() to release the reference again.
2715  */
2716 void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
2717 {
2718 	struct pci_dev *pdev = dev_priv->drm.pdev;
2719 	struct device *kdev = &pdev->dev;
2720 
2721 	assert_rpm_wakelock_held(dev_priv);
2722 	pm_runtime_get_noresume(kdev);
2723 
2724 	atomic_inc(&dev_priv->pm.wakeref_count);
2725 }
2726 
2727 /**
2728  * intel_runtime_pm_put - release a runtime pm reference
2729  * @dev_priv: i915 device instance
2730  *
2731  * This function drops the device-level runtime pm reference obtained by
2732  * intel_runtime_pm_get() and might power down the corresponding
2733  * hardware block right away if this is the last reference.
2734  */
2735 void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
2736 {
2737 	struct pci_dev *pdev = dev_priv->drm.pdev;
2738 	struct device *kdev = &pdev->dev;
2739 
2740 	assert_rpm_wakelock_held(dev_priv);
2741 	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
2742 		atomic_inc(&dev_priv->pm.atomic_seq);
2743 
2744 	pm_runtime_mark_last_busy(kdev);
2745 	pm_runtime_put_autosuspend(kdev);
2746 }
2747 
2748 /**
2749  * intel_runtime_pm_enable - enable runtime pm
2750  * @dev_priv: i915 device instance
2751  *
2752  * This function enables runtime pm at the end of the driver load sequence.
2753  *
2754  * Note that this function does currently not enable runtime pm for the
2755  * subordinate display power domains. That is only done on the first modeset
2756  * using intel_display_set_init_power().
2757  */
2758 void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2759 {
2760 	struct pci_dev *pdev = dev_priv->drm.pdev;
2761 	struct drm_device *dev = &dev_priv->drm;
2762 	struct device *kdev = &pdev->dev;
2763 
2764 	pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
2765 	pm_runtime_mark_last_busy(kdev);
2766 
2767 	/*
2768 	 * Take a permanent reference to disable the RPM functionality and drop
2769 	 * it only when unloading the driver. Use the low level get/put helpers,
2770 	 * so the driver's own RPM reference tracking asserts also work on
2771 	 * platforms without RPM support.
2772 	 */
2773 	if (!HAS_RUNTIME_PM(dev)) {
2774 		pm_runtime_dont_use_autosuspend(kdev);
2775 		pm_runtime_get_sync(kdev);
2776 	} else {
2777 		pm_runtime_use_autosuspend(kdev);
2778 	}
2779 
2780 	/*
2781 	 * The core calls the driver load handler with an RPM reference held.
2782 	 * We drop that here and will reacquire it during unloading in
2783 	 * intel_power_domains_fini().
2784 	 */
2785 	pm_runtime_put_autosuspend(kdev);
2786 }
2787