xref: /linux/drivers/gpu/drm/i915/intel_device_info.c (revision 5a7eeb8ba143d860050ecea924a8f074f02d8023)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 #include <drm/i915_pciids.h>
27 
28 #include "display/intel_cdclk.h"
29 #include "intel_device_info.h"
30 #include "i915_drv.h"
31 
32 #define PLATFORM_NAME(x) [INTEL_##x] = #x
33 static const char * const platform_names[] = {
34 	PLATFORM_NAME(I830),
35 	PLATFORM_NAME(I845G),
36 	PLATFORM_NAME(I85X),
37 	PLATFORM_NAME(I865G),
38 	PLATFORM_NAME(I915G),
39 	PLATFORM_NAME(I915GM),
40 	PLATFORM_NAME(I945G),
41 	PLATFORM_NAME(I945GM),
42 	PLATFORM_NAME(G33),
43 	PLATFORM_NAME(PINEVIEW),
44 	PLATFORM_NAME(I965G),
45 	PLATFORM_NAME(I965GM),
46 	PLATFORM_NAME(G45),
47 	PLATFORM_NAME(GM45),
48 	PLATFORM_NAME(IRONLAKE),
49 	PLATFORM_NAME(SANDYBRIDGE),
50 	PLATFORM_NAME(IVYBRIDGE),
51 	PLATFORM_NAME(VALLEYVIEW),
52 	PLATFORM_NAME(HASWELL),
53 	PLATFORM_NAME(BROADWELL),
54 	PLATFORM_NAME(CHERRYVIEW),
55 	PLATFORM_NAME(SKYLAKE),
56 	PLATFORM_NAME(BROXTON),
57 	PLATFORM_NAME(KABYLAKE),
58 	PLATFORM_NAME(GEMINILAKE),
59 	PLATFORM_NAME(COFFEELAKE),
60 	PLATFORM_NAME(COMETLAKE),
61 	PLATFORM_NAME(CANNONLAKE),
62 	PLATFORM_NAME(ICELAKE),
63 	PLATFORM_NAME(ELKHARTLAKE),
64 	PLATFORM_NAME(TIGERLAKE),
65 	PLATFORM_NAME(ROCKETLAKE),
66 };
67 #undef PLATFORM_NAME
68 
69 const char *intel_platform_name(enum intel_platform platform)
70 {
71 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
72 
73 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
74 			 platform_names[platform] == NULL))
75 		return "<unknown>";
76 
77 	return platform_names[platform];
78 }
79 
80 static const char *iommu_name(void)
81 {
82 	const char *msg = "n/a";
83 
84 #ifdef CONFIG_INTEL_IOMMU
85 	msg = enableddisabled(intel_iommu_gfx_mapped);
86 #endif
87 
88 	return msg;
89 }
90 
91 void intel_device_info_print_static(const struct intel_device_info *info,
92 				    struct drm_printer *p)
93 {
94 	drm_printf(p, "engines: %x\n", info->engine_mask);
95 	drm_printf(p, "gen: %d\n", info->gen);
96 	drm_printf(p, "gt: %d\n", info->gt);
97 	drm_printf(p, "iommu: %s\n", iommu_name());
98 	drm_printf(p, "memory-regions: %x\n", info->memory_regions);
99 	drm_printf(p, "page-sizes: %x\n", info->page_sizes);
100 	drm_printf(p, "platform: %s\n", intel_platform_name(info->platform));
101 	drm_printf(p, "ppgtt-size: %d\n", info->ppgtt_size);
102 	drm_printf(p, "ppgtt-type: %d\n", info->ppgtt_type);
103 	drm_printf(p, "dma_mask_size: %u\n", info->dma_mask_size);
104 
105 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
106 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
107 #undef PRINT_FLAG
108 
109 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name));
110 	DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG);
111 #undef PRINT_FLAG
112 }
113 
114 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
115 {
116 	int s;
117 
118 	drm_printf(p, "slice total: %u, mask=%04x\n",
119 		   hweight8(sseu->slice_mask), sseu->slice_mask);
120 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
121 	for (s = 0; s < sseu->max_slices; s++) {
122 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
123 			   s, intel_sseu_subslices_per_slice(sseu, s),
124 			   intel_sseu_get_subslices(sseu, s));
125 	}
126 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
127 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
128 	drm_printf(p, "has slice power gating: %s\n",
129 		   yesno(sseu->has_slice_pg));
130 	drm_printf(p, "has subslice power gating: %s\n",
131 		   yesno(sseu->has_subslice_pg));
132 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
133 }
134 
135 void intel_device_info_print_runtime(const struct intel_runtime_info *info,
136 				     struct drm_printer *p)
137 {
138 	sseu_dump(&info->sseu, p);
139 
140 	drm_printf(p, "rawclk rate: %u kHz\n", info->rawclk_freq);
141 	drm_printf(p, "CS timestamp frequency: %u Hz\n",
142 		   info->cs_timestamp_frequency_hz);
143 }
144 
145 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
146 		       int subslice)
147 {
148 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
149 
150 	return slice * slice_stride + subslice * sseu->eu_stride;
151 }
152 
153 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
154 			int subslice)
155 {
156 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
157 	u16 eu_mask = 0;
158 
159 	for (i = 0; i < sseu->eu_stride; i++) {
160 		eu_mask |= ((u16)sseu->eu_mask[offset + i]) <<
161 			(i * BITS_PER_BYTE);
162 	}
163 
164 	return eu_mask;
165 }
166 
167 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
168 			 u16 eu_mask)
169 {
170 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
171 
172 	for (i = 0; i < sseu->eu_stride; i++) {
173 		sseu->eu_mask[offset + i] =
174 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
175 	}
176 }
177 
178 void intel_device_info_print_topology(const struct sseu_dev_info *sseu,
179 				      struct drm_printer *p)
180 {
181 	int s, ss;
182 
183 	if (sseu->max_slices == 0) {
184 		drm_printf(p, "Unavailable\n");
185 		return;
186 	}
187 
188 	for (s = 0; s < sseu->max_slices; s++) {
189 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
190 			   s, intel_sseu_subslices_per_slice(sseu, s),
191 			   intel_sseu_get_subslices(sseu, s));
192 
193 		for (ss = 0; ss < sseu->max_subslices; ss++) {
194 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
195 
196 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
197 				   ss, hweight16(enabled_eus), enabled_eus);
198 		}
199 	}
200 }
201 
202 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
203 {
204 	u16 i, total = 0;
205 
206 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
207 		total += hweight8(sseu->eu_mask[i]);
208 
209 	return total;
210 }
211 
212 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
213 				    u8 s_en, u32 ss_en, u16 eu_en)
214 {
215 	int s, ss;
216 
217 	/* ss_en represents entire subslice mask across all slices */
218 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
219 		   sizeof(ss_en) * BITS_PER_BYTE);
220 
221 	for (s = 0; s < sseu->max_slices; s++) {
222 		if ((s_en & BIT(s)) == 0)
223 			continue;
224 
225 		sseu->slice_mask |= BIT(s);
226 
227 		intel_sseu_set_subslices(sseu, s, ss_en);
228 
229 		for (ss = 0; ss < sseu->max_subslices; ss++)
230 			if (intel_sseu_has_subslice(sseu, s, ss))
231 				sseu_set_eus(sseu, s, ss, eu_en);
232 	}
233 	sseu->eu_per_subslice = hweight16(eu_en);
234 	sseu->eu_total = compute_eu_total(sseu);
235 }
236 
237 static void gen12_sseu_info_init(struct drm_i915_private *dev_priv)
238 {
239 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
240 	u8 s_en;
241 	u32 dss_en;
242 	u16 eu_en = 0;
243 	u8 eu_en_fuse;
244 	int eu;
245 
246 	/*
247 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
248 	 * Instead of splitting these, provide userspace with an array
249 	 * of DSS to more closely represent the hardware resource.
250 	 */
251 	intel_sseu_set_info(sseu, 1, 6, 16);
252 
253 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
254 
255 	dss_en = I915_READ(GEN12_GT_DSS_ENABLE);
256 
257 	/* one bit per pair of EUs */
258 	eu_en_fuse = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
259 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
260 		if (eu_en_fuse & BIT(eu))
261 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
262 
263 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
264 
265 	/* TGL only supports slice-level power gating */
266 	sseu->has_slice_pg = 1;
267 }
268 
269 static void gen11_sseu_info_init(struct drm_i915_private *dev_priv)
270 {
271 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
272 	u8 s_en;
273 	u32 ss_en;
274 	u8 eu_en;
275 
276 	if (IS_ELKHARTLAKE(dev_priv))
277 		intel_sseu_set_info(sseu, 1, 4, 8);
278 	else
279 		intel_sseu_set_info(sseu, 1, 8, 8);
280 
281 	s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK;
282 	ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE);
283 	eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK);
284 
285 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
286 
287 	/* ICL has no power gating restrictions. */
288 	sseu->has_slice_pg = 1;
289 	sseu->has_subslice_pg = 1;
290 	sseu->has_eu_pg = 1;
291 }
292 
293 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
294 {
295 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
296 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
297 	int s, ss;
298 	const int eu_mask = 0xff;
299 	u32 subslice_mask, eu_en;
300 
301 	intel_sseu_set_info(sseu, 6, 4, 8);
302 
303 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
304 			    GEN10_F2_S_ENA_SHIFT;
305 
306 	/* Slice0 */
307 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
308 	for (ss = 0; ss < sseu->max_subslices; ss++)
309 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
310 	/* Slice1 */
311 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
312 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
313 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
314 	/* Slice2 */
315 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
316 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
317 	/* Slice3 */
318 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
319 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
320 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
321 	/* Slice4 */
322 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
323 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
324 	/* Slice5 */
325 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
326 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
327 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
328 
329 	subslice_mask = (1 << 4) - 1;
330 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
331 			   GEN10_F2_SS_DIS_SHIFT);
332 
333 	for (s = 0; s < sseu->max_slices; s++) {
334 		u32 subslice_mask_with_eus = subslice_mask;
335 
336 		for (ss = 0; ss < sseu->max_subslices; ss++) {
337 			if (sseu_get_eus(sseu, s, ss) == 0)
338 				subslice_mask_with_eus &= ~BIT(ss);
339 		}
340 
341 		/*
342 		 * Slice0 can have up to 3 subslices, but there are only 2 in
343 		 * slice1/2.
344 		 */
345 		intel_sseu_set_subslices(sseu, s, s == 0 ?
346 						  subslice_mask_with_eus :
347 						  subslice_mask_with_eus & 0x3);
348 	}
349 
350 	sseu->eu_total = compute_eu_total(sseu);
351 
352 	/*
353 	 * CNL is expected to always have a uniform distribution
354 	 * of EU across subslices with the exception that any one
355 	 * EU in any one subslice may be fused off for die
356 	 * recovery.
357 	 */
358 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
359 				DIV_ROUND_UP(sseu->eu_total,
360 					     intel_sseu_subslice_total(sseu)) :
361 				0;
362 
363 	/* No restrictions on Power Gating */
364 	sseu->has_slice_pg = 1;
365 	sseu->has_subslice_pg = 1;
366 	sseu->has_eu_pg = 1;
367 }
368 
369 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
370 {
371 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
372 	u32 fuse;
373 	u8 subslice_mask = 0;
374 
375 	fuse = I915_READ(CHV_FUSE_GT);
376 
377 	sseu->slice_mask = BIT(0);
378 	intel_sseu_set_info(sseu, 1, 2, 8);
379 
380 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
381 		u8 disabled_mask =
382 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
383 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
384 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
385 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
386 
387 		subslice_mask |= BIT(0);
388 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
389 	}
390 
391 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
392 		u8 disabled_mask =
393 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
394 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
395 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
396 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
397 
398 		subslice_mask |= BIT(1);
399 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
400 	}
401 
402 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
403 
404 	sseu->eu_total = compute_eu_total(sseu);
405 
406 	/*
407 	 * CHV expected to always have a uniform distribution of EU
408 	 * across subslices.
409 	*/
410 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
411 				sseu->eu_total /
412 					intel_sseu_subslice_total(sseu) :
413 				0;
414 	/*
415 	 * CHV supports subslice power gating on devices with more than
416 	 * one subslice, and supports EU power gating on devices with
417 	 * more than one EU pair per subslice.
418 	*/
419 	sseu->has_slice_pg = 0;
420 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
421 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
422 }
423 
424 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
425 {
426 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
427 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
428 	int s, ss;
429 	u32 fuse2, eu_disable, subslice_mask;
430 	const u8 eu_mask = 0xff;
431 
432 	fuse2 = I915_READ(GEN8_FUSE2);
433 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
434 
435 	/* BXT has a single slice and at most 3 subslices. */
436 	intel_sseu_set_info(sseu, IS_GEN9_LP(dev_priv) ? 1 : 3,
437 			    IS_GEN9_LP(dev_priv) ? 3 : 4, 8);
438 
439 	/*
440 	 * The subslice disable field is global, i.e. it applies
441 	 * to each of the enabled slices.
442 	*/
443 	subslice_mask = (1 << sseu->max_subslices) - 1;
444 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
445 			   GEN9_F2_SS_DIS_SHIFT);
446 
447 	/*
448 	 * Iterate through enabled slices and subslices to
449 	 * count the total enabled EU.
450 	*/
451 	for (s = 0; s < sseu->max_slices; s++) {
452 		if (!(sseu->slice_mask & BIT(s)))
453 			/* skip disabled slice */
454 			continue;
455 
456 		intel_sseu_set_subslices(sseu, s, subslice_mask);
457 
458 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
459 		for (ss = 0; ss < sseu->max_subslices; ss++) {
460 			int eu_per_ss;
461 			u8 eu_disabled_mask;
462 
463 			if (!intel_sseu_has_subslice(sseu, s, ss))
464 				/* skip disabled subslice */
465 				continue;
466 
467 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
468 
469 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
470 
471 			eu_per_ss = sseu->max_eus_per_subslice -
472 				hweight8(eu_disabled_mask);
473 
474 			/*
475 			 * Record which subslice(s) has(have) 7 EUs. we
476 			 * can tune the hash used to spread work among
477 			 * subslices if they are unbalanced.
478 			 */
479 			if (eu_per_ss == 7)
480 				sseu->subslice_7eu[s] |= BIT(ss);
481 		}
482 	}
483 
484 	sseu->eu_total = compute_eu_total(sseu);
485 
486 	/*
487 	 * SKL is expected to always have a uniform distribution
488 	 * of EU across subslices with the exception that any one
489 	 * EU in any one subslice may be fused off for die
490 	 * recovery. BXT is expected to be perfectly uniform in EU
491 	 * distribution.
492 	*/
493 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
494 				DIV_ROUND_UP(sseu->eu_total,
495 					     intel_sseu_subslice_total(sseu)) :
496 				0;
497 	/*
498 	 * SKL+ supports slice power gating on devices with more than
499 	 * one slice, and supports EU power gating on devices with
500 	 * more than one EU pair per subslice. BXT+ supports subslice
501 	 * power gating on devices with more than one subslice, and
502 	 * supports EU power gating on devices with more than one EU
503 	 * pair per subslice.
504 	*/
505 	sseu->has_slice_pg =
506 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
507 	sseu->has_subslice_pg =
508 		IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1;
509 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
510 
511 	if (IS_GEN9_LP(dev_priv)) {
512 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
513 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
514 
515 		sseu->min_eu_in_pool = 0;
516 		if (info->has_pooled_eu) {
517 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
518 				sseu->min_eu_in_pool = 3;
519 			else if (IS_SS_DISABLED(1))
520 				sseu->min_eu_in_pool = 6;
521 			else
522 				sseu->min_eu_in_pool = 9;
523 		}
524 #undef IS_SS_DISABLED
525 	}
526 }
527 
528 static void bdw_sseu_info_init(struct drm_i915_private *dev_priv)
529 {
530 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
531 	int s, ss;
532 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
533 
534 	fuse2 = I915_READ(GEN8_FUSE2);
535 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
536 	intel_sseu_set_info(sseu, 3, 3, 8);
537 
538 	/*
539 	 * The subslice disable field is global, i.e. it applies
540 	 * to each of the enabled slices.
541 	 */
542 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
543 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
544 			   GEN8_F2_SS_DIS_SHIFT);
545 
546 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
547 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
548 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
549 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
550 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
551 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
552 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
553 
554 	/*
555 	 * Iterate through enabled slices and subslices to
556 	 * count the total enabled EU.
557 	 */
558 	for (s = 0; s < sseu->max_slices; s++) {
559 		if (!(sseu->slice_mask & BIT(s)))
560 			/* skip disabled slice */
561 			continue;
562 
563 		intel_sseu_set_subslices(sseu, s, subslice_mask);
564 
565 		for (ss = 0; ss < sseu->max_subslices; ss++) {
566 			u8 eu_disabled_mask;
567 			u32 n_disabled;
568 
569 			if (!intel_sseu_has_subslice(sseu, s, ss))
570 				/* skip disabled subslice */
571 				continue;
572 
573 			eu_disabled_mask =
574 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
575 
576 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
577 
578 			n_disabled = hweight8(eu_disabled_mask);
579 
580 			/*
581 			 * Record which subslices have 7 EUs.
582 			 */
583 			if (sseu->max_eus_per_subslice - n_disabled == 7)
584 				sseu->subslice_7eu[s] |= 1 << ss;
585 		}
586 	}
587 
588 	sseu->eu_total = compute_eu_total(sseu);
589 
590 	/*
591 	 * BDW is expected to always have a uniform distribution of EU across
592 	 * subslices with the exception that any one EU in any one subslice may
593 	 * be fused off for die recovery.
594 	 */
595 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
596 				DIV_ROUND_UP(sseu->eu_total,
597 					     intel_sseu_subslice_total(sseu)) :
598 				0;
599 
600 	/*
601 	 * BDW supports slice power gating on devices with more than
602 	 * one slice.
603 	 */
604 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
605 	sseu->has_subslice_pg = 0;
606 	sseu->has_eu_pg = 0;
607 }
608 
609 static void hsw_sseu_info_init(struct drm_i915_private *dev_priv)
610 {
611 	struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
612 	u32 fuse1;
613 	u8 subslice_mask = 0;
614 	int s, ss;
615 
616 	/*
617 	 * There isn't a register to tell us how many slices/subslices. We
618 	 * work off the PCI-ids here.
619 	 */
620 	switch (INTEL_INFO(dev_priv)->gt) {
621 	default:
622 		MISSING_CASE(INTEL_INFO(dev_priv)->gt);
623 		/* fall through */
624 	case 1:
625 		sseu->slice_mask = BIT(0);
626 		subslice_mask = BIT(0);
627 		break;
628 	case 2:
629 		sseu->slice_mask = BIT(0);
630 		subslice_mask = BIT(0) | BIT(1);
631 		break;
632 	case 3:
633 		sseu->slice_mask = BIT(0) | BIT(1);
634 		subslice_mask = BIT(0) | BIT(1);
635 		break;
636 	}
637 
638 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
639 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
640 	default:
641 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
642 			     HSW_F1_EU_DIS_SHIFT);
643 		/* fall through */
644 	case HSW_F1_EU_DIS_10EUS:
645 		sseu->eu_per_subslice = 10;
646 		break;
647 	case HSW_F1_EU_DIS_8EUS:
648 		sseu->eu_per_subslice = 8;
649 		break;
650 	case HSW_F1_EU_DIS_6EUS:
651 		sseu->eu_per_subslice = 6;
652 		break;
653 	}
654 
655 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
656 			    hweight8(subslice_mask),
657 			    sseu->eu_per_subslice);
658 
659 	for (s = 0; s < sseu->max_slices; s++) {
660 		intel_sseu_set_subslices(sseu, s, subslice_mask);
661 
662 		for (ss = 0; ss < sseu->max_subslices; ss++) {
663 			sseu_set_eus(sseu, s, ss,
664 				     (1UL << sseu->eu_per_subslice) - 1);
665 		}
666 	}
667 
668 	sseu->eu_total = compute_eu_total(sseu);
669 
670 	/* No powergating for you. */
671 	sseu->has_slice_pg = 0;
672 	sseu->has_subslice_pg = 0;
673 	sseu->has_eu_pg = 0;
674 }
675 
676 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
677 {
678 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
679 	u32 base_freq, frac_freq;
680 
681 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
682 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
683 	base_freq *= 1000000;
684 
685 	frac_freq = ((ts_override &
686 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
687 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
688 	frac_freq = 1000000 / (frac_freq + 1);
689 
690 	return base_freq + frac_freq;
691 }
692 
693 static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
694 					u32 rpm_config_reg)
695 {
696 	u32 f19_2_mhz = 19200000;
697 	u32 f24_mhz = 24000000;
698 	u32 crystal_clock = (rpm_config_reg &
699 			     GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
700 			    GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
701 
702 	switch (crystal_clock) {
703 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
704 		return f19_2_mhz;
705 	case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
706 		return f24_mhz;
707 	default:
708 		MISSING_CASE(crystal_clock);
709 		return 0;
710 	}
711 }
712 
713 static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv,
714 					u32 rpm_config_reg)
715 {
716 	u32 f19_2_mhz = 19200000;
717 	u32 f24_mhz = 24000000;
718 	u32 f25_mhz = 25000000;
719 	u32 f38_4_mhz = 38400000;
720 	u32 crystal_clock = (rpm_config_reg &
721 			     GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
722 			    GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
723 
724 	switch (crystal_clock) {
725 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
726 		return f24_mhz;
727 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
728 		return f19_2_mhz;
729 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
730 		return f38_4_mhz;
731 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
732 		return f25_mhz;
733 	default:
734 		MISSING_CASE(crystal_clock);
735 		return 0;
736 	}
737 }
738 
739 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
740 {
741 	u32 f12_5_mhz = 12500000;
742 	u32 f19_2_mhz = 19200000;
743 	u32 f24_mhz = 24000000;
744 
745 	if (INTEL_GEN(dev_priv) <= 4) {
746 		/* PRMs say:
747 		 *
748 		 *     "The value in this register increments once every 16
749 		 *      hclks." (through the “Clocking Configuration”
750 		 *      (“CLKCFG”) MCHBAR register)
751 		 */
752 		return RUNTIME_INFO(dev_priv)->rawclk_freq * 1000 / 16;
753 	} else if (INTEL_GEN(dev_priv) <= 8) {
754 		/* PRMs say:
755 		 *
756 		 *     "The PCU TSC counts 10ns increments; this timestamp
757 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
758 		 *      rolling over every 1.5 hours).
759 		 */
760 		return f12_5_mhz;
761 	} else if (INTEL_GEN(dev_priv) <= 9) {
762 		u32 ctc_reg = I915_READ(CTC_MODE);
763 		u32 freq = 0;
764 
765 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
766 			freq = read_reference_ts_freq(dev_priv);
767 		} else {
768 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
769 
770 			/* Now figure out how the command stream's timestamp
771 			 * register increments from this frequency (it might
772 			 * increment only every few clock cycle).
773 			 */
774 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
775 				      CTC_SHIFT_PARAMETER_SHIFT);
776 		}
777 
778 		return freq;
779 	} else if (INTEL_GEN(dev_priv) <= 12) {
780 		u32 ctc_reg = I915_READ(CTC_MODE);
781 		u32 freq = 0;
782 
783 		/* First figure out the reference frequency. There are 2 ways
784 		 * we can compute the frequency, either through the
785 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
786 		 * tells us which one we should use.
787 		 */
788 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
789 			freq = read_reference_ts_freq(dev_priv);
790 		} else {
791 			u32 rpm_config_reg = I915_READ(RPM_CONFIG0);
792 
793 			if (INTEL_GEN(dev_priv) <= 10)
794 				freq = gen10_get_crystal_clock_freq(dev_priv,
795 								rpm_config_reg);
796 			else
797 				freq = gen11_get_crystal_clock_freq(dev_priv,
798 								rpm_config_reg);
799 
800 			/* Now figure out how the command stream's timestamp
801 			 * register increments from this frequency (it might
802 			 * increment only every few clock cycle).
803 			 */
804 			freq >>= 3 - ((rpm_config_reg &
805 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
806 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
807 		}
808 
809 		return freq;
810 	}
811 
812 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
813 	return 0;
814 }
815 
816 #undef INTEL_VGA_DEVICE
817 #define INTEL_VGA_DEVICE(id, info) (id)
818 
819 static const u16 subplatform_ult_ids[] = {
820 	INTEL_HSW_ULT_GT1_IDS(0),
821 	INTEL_HSW_ULT_GT2_IDS(0),
822 	INTEL_HSW_ULT_GT3_IDS(0),
823 	INTEL_BDW_ULT_GT1_IDS(0),
824 	INTEL_BDW_ULT_GT2_IDS(0),
825 	INTEL_BDW_ULT_GT3_IDS(0),
826 	INTEL_BDW_ULT_RSVD_IDS(0),
827 	INTEL_SKL_ULT_GT1_IDS(0),
828 	INTEL_SKL_ULT_GT2_IDS(0),
829 	INTEL_SKL_ULT_GT3_IDS(0),
830 	INTEL_KBL_ULT_GT1_IDS(0),
831 	INTEL_KBL_ULT_GT2_IDS(0),
832 	INTEL_KBL_ULT_GT3_IDS(0),
833 	INTEL_CFL_U_GT2_IDS(0),
834 	INTEL_CFL_U_GT3_IDS(0),
835 	INTEL_WHL_U_GT1_IDS(0),
836 	INTEL_WHL_U_GT2_IDS(0),
837 	INTEL_WHL_U_GT3_IDS(0),
838 	INTEL_CML_U_GT1_IDS(0),
839 	INTEL_CML_U_GT2_IDS(0),
840 };
841 
842 static const u16 subplatform_ulx_ids[] = {
843 	INTEL_HSW_ULX_GT1_IDS(0),
844 	INTEL_HSW_ULX_GT2_IDS(0),
845 	INTEL_BDW_ULX_GT1_IDS(0),
846 	INTEL_BDW_ULX_GT2_IDS(0),
847 	INTEL_BDW_ULX_GT3_IDS(0),
848 	INTEL_BDW_ULX_RSVD_IDS(0),
849 	INTEL_SKL_ULX_GT1_IDS(0),
850 	INTEL_SKL_ULX_GT2_IDS(0),
851 	INTEL_KBL_ULX_GT1_IDS(0),
852 	INTEL_KBL_ULX_GT2_IDS(0),
853 	INTEL_AML_KBL_GT2_IDS(0),
854 	INTEL_AML_CFL_GT2_IDS(0),
855 };
856 
857 static const u16 subplatform_portf_ids[] = {
858 	INTEL_CNL_PORT_F_IDS(0),
859 	INTEL_ICL_PORT_F_IDS(0),
860 };
861 
862 static bool find_devid(u16 id, const u16 *p, unsigned int num)
863 {
864 	for (; num; num--, p++) {
865 		if (*p == id)
866 			return true;
867 	}
868 
869 	return false;
870 }
871 
872 void intel_device_info_subplatform_init(struct drm_i915_private *i915)
873 {
874 	const struct intel_device_info *info = INTEL_INFO(i915);
875 	const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915);
876 	const unsigned int pi = __platform_mask_index(rinfo, info->platform);
877 	const unsigned int pb = __platform_mask_bit(rinfo, info->platform);
878 	u16 devid = INTEL_DEVID(i915);
879 	u32 mask = 0;
880 
881 	/* Make sure IS_<platform> checks are working. */
882 	RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb);
883 
884 	/* Find and mark subplatform bits based on the PCI device id. */
885 	if (find_devid(devid, subplatform_ult_ids,
886 		       ARRAY_SIZE(subplatform_ult_ids))) {
887 		mask = BIT(INTEL_SUBPLATFORM_ULT);
888 	} else if (find_devid(devid, subplatform_ulx_ids,
889 			      ARRAY_SIZE(subplatform_ulx_ids))) {
890 		mask = BIT(INTEL_SUBPLATFORM_ULX);
891 		if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
892 			/* ULX machines are also considered ULT. */
893 			mask |= BIT(INTEL_SUBPLATFORM_ULT);
894 		}
895 	} else if (find_devid(devid, subplatform_portf_ids,
896 			      ARRAY_SIZE(subplatform_portf_ids))) {
897 		mask = BIT(INTEL_SUBPLATFORM_PORTF);
898 	}
899 
900 	GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS);
901 
902 	RUNTIME_INFO(i915)->platform_mask[pi] |= mask;
903 }
904 
905 /**
906  * intel_device_info_runtime_init - initialize runtime info
907  * @dev_priv: the i915 device
908  *
909  * Determine various intel_device_info fields at runtime.
910  *
911  * Use it when either:
912  *   - it's judged too laborious to fill n static structures with the limit
913  *     when a simple if statement does the job,
914  *   - run-time checks (eg read fuse/strap registers) are needed.
915  *
916  * This function needs to be called:
917  *   - after the MMIO has been setup as we are reading registers,
918  *   - after the PCH has been detected,
919  *   - before the first usage of the fields it can tweak.
920  */
921 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv)
922 {
923 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
924 	struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv);
925 	enum pipe pipe;
926 
927 	if (INTEL_GEN(dev_priv) >= 10) {
928 		for_each_pipe(dev_priv, pipe)
929 			runtime->num_scalers[pipe] = 2;
930 	} else if (IS_GEN(dev_priv, 9)) {
931 		runtime->num_scalers[PIPE_A] = 2;
932 		runtime->num_scalers[PIPE_B] = 2;
933 		runtime->num_scalers[PIPE_C] = 1;
934 	}
935 
936 	BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES);
937 
938 	if (IS_ROCKETLAKE(dev_priv))
939 		for_each_pipe(dev_priv, pipe)
940 			runtime->num_sprites[pipe] = 4;
941 	else if (INTEL_GEN(dev_priv) >= 11)
942 		for_each_pipe(dev_priv, pipe)
943 			runtime->num_sprites[pipe] = 6;
944 	else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv))
945 		for_each_pipe(dev_priv, pipe)
946 			runtime->num_sprites[pipe] = 3;
947 	else if (IS_BROXTON(dev_priv)) {
948 		/*
949 		 * Skylake and Broxton currently don't expose the topmost plane as its
950 		 * use is exclusive with the legacy cursor and we only want to expose
951 		 * one of those, not both. Until we can safely expose the topmost plane
952 		 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
953 		 * we don't expose the topmost plane at all to prevent ABI breakage
954 		 * down the line.
955 		 */
956 
957 		runtime->num_sprites[PIPE_A] = 2;
958 		runtime->num_sprites[PIPE_B] = 2;
959 		runtime->num_sprites[PIPE_C] = 1;
960 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
961 		for_each_pipe(dev_priv, pipe)
962 			runtime->num_sprites[pipe] = 2;
963 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
964 		for_each_pipe(dev_priv, pipe)
965 			runtime->num_sprites[pipe] = 1;
966 	}
967 
968 	if (HAS_DISPLAY(dev_priv) && IS_GEN_RANGE(dev_priv, 7, 8) &&
969 	    HAS_PCH_SPLIT(dev_priv)) {
970 		u32 fuse_strap = I915_READ(FUSE_STRAP);
971 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
972 
973 		/*
974 		 * SFUSE_STRAP is supposed to have a bit signalling the display
975 		 * is fused off. Unfortunately it seems that, at least in
976 		 * certain cases, fused off display means that PCH display
977 		 * reads don't land anywhere. In that case, we read 0s.
978 		 *
979 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
980 		 * should be set when taking over after the firmware.
981 		 */
982 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
983 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
984 		    (HAS_PCH_CPT(dev_priv) &&
985 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
986 			drm_info(&dev_priv->drm,
987 				 "Display fused off, disabling\n");
988 			info->pipe_mask = 0;
989 			info->cpu_transcoder_mask = 0;
990 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
991 			drm_info(&dev_priv->drm, "PipeC fused off\n");
992 			info->pipe_mask &= ~BIT(PIPE_C);
993 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
994 		}
995 	} else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) {
996 		u32 dfsm = I915_READ(SKL_DFSM);
997 
998 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE) {
999 			info->pipe_mask &= ~BIT(PIPE_A);
1000 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_A);
1001 		}
1002 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE) {
1003 			info->pipe_mask &= ~BIT(PIPE_B);
1004 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_B);
1005 		}
1006 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE) {
1007 			info->pipe_mask &= ~BIT(PIPE_C);
1008 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_C);
1009 		}
1010 		if (INTEL_GEN(dev_priv) >= 12 &&
1011 		    (dfsm & TGL_DFSM_PIPE_D_DISABLE)) {
1012 			info->pipe_mask &= ~BIT(PIPE_D);
1013 			info->cpu_transcoder_mask &= ~BIT(TRANSCODER_D);
1014 		}
1015 
1016 		if (dfsm & SKL_DFSM_DISPLAY_HDCP_DISABLE)
1017 			info->display.has_hdcp = 0;
1018 
1019 		if (dfsm & SKL_DFSM_DISPLAY_PM_DISABLE)
1020 			info->display.has_fbc = 0;
1021 
1022 		if (INTEL_GEN(dev_priv) >= 11 && (dfsm & ICL_DFSM_DMC_DISABLE))
1023 			info->display.has_csr = 0;
1024 
1025 		if (INTEL_GEN(dev_priv) >= 10 &&
1026 		    (dfsm & CNL_DFSM_DISPLAY_DSC_DISABLE))
1027 			info->display.has_dsc = 0;
1028 	}
1029 
1030 	/* Initialize slice/subslice/EU info */
1031 	if (IS_HASWELL(dev_priv))
1032 		hsw_sseu_info_init(dev_priv);
1033 	else if (IS_CHERRYVIEW(dev_priv))
1034 		cherryview_sseu_info_init(dev_priv);
1035 	else if (IS_BROADWELL(dev_priv))
1036 		bdw_sseu_info_init(dev_priv);
1037 	else if (IS_GEN(dev_priv, 9))
1038 		gen9_sseu_info_init(dev_priv);
1039 	else if (IS_GEN(dev_priv, 10))
1040 		gen10_sseu_info_init(dev_priv);
1041 	else if (IS_GEN(dev_priv, 11))
1042 		gen11_sseu_info_init(dev_priv);
1043 	else if (INTEL_GEN(dev_priv) >= 12)
1044 		gen12_sseu_info_init(dev_priv);
1045 
1046 	if (IS_GEN(dev_priv, 6) && intel_vtd_active()) {
1047 		drm_info(&dev_priv->drm,
1048 			 "Disabling ppGTT for VT-d support\n");
1049 		info->ppgtt_type = INTEL_PPGTT_NONE;
1050 	}
1051 
1052 	runtime->rawclk_freq = intel_read_rawclk(dev_priv);
1053 	drm_dbg(&dev_priv->drm, "rawclk rate: %d kHz\n", runtime->rawclk_freq);
1054 
1055 	/* Initialize command stream timestamp frequency */
1056 	runtime->cs_timestamp_frequency_hz =
1057 		read_timestamp_frequency(dev_priv);
1058 	if (runtime->cs_timestamp_frequency_hz) {
1059 		runtime->cs_timestamp_period_ns =
1060 			i915_cs_timestamp_ticks_to_ns(dev_priv, 1);
1061 		drm_dbg(&dev_priv->drm,
1062 			"CS timestamp wraparound in %lldms\n",
1063 			div_u64(mul_u32_u32(runtime->cs_timestamp_period_ns,
1064 					    S32_MAX),
1065 				USEC_PER_SEC));
1066 	}
1067 }
1068 
1069 void intel_driver_caps_print(const struct intel_driver_caps *caps,
1070 			     struct drm_printer *p)
1071 {
1072 	drm_printf(p, "Has logical contexts? %s\n",
1073 		   yesno(caps->has_logical_contexts));
1074 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
1075 }
1076 
1077 /*
1078  * Determine which engines are fused off in our particular hardware. Since the
1079  * fuse register is in the blitter powerwell, we need forcewake to be ready at
1080  * this point (but later we need to prune the forcewake domains for engines that
1081  * are indeed fused off).
1082  */
1083 void intel_device_info_init_mmio(struct drm_i915_private *dev_priv)
1084 {
1085 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
1086 	unsigned int logical_vdbox = 0;
1087 	unsigned int i;
1088 	u32 media_fuse;
1089 	u16 vdbox_mask;
1090 	u16 vebox_mask;
1091 
1092 	if (INTEL_GEN(dev_priv) < 11)
1093 		return;
1094 
1095 	media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE);
1096 
1097 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
1098 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
1099 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
1100 
1101 	for (i = 0; i < I915_MAX_VCS; i++) {
1102 		if (!HAS_ENGINE(dev_priv, _VCS(i))) {
1103 			vdbox_mask &= ~BIT(i);
1104 			continue;
1105 		}
1106 
1107 		if (!(BIT(i) & vdbox_mask)) {
1108 			info->engine_mask &= ~BIT(_VCS(i));
1109 			drm_dbg(&dev_priv->drm, "vcs%u fused off\n", i);
1110 			continue;
1111 		}
1112 
1113 		/*
1114 		 * In Gen11, only even numbered logical VDBOXes are
1115 		 * hooked up to an SFC (Scaler & Format Converter) unit.
1116 		 * In TGL each VDBOX has access to an SFC.
1117 		 */
1118 		if (INTEL_GEN(dev_priv) >= 12 || logical_vdbox++ % 2 == 0)
1119 			RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i);
1120 	}
1121 	drm_dbg(&dev_priv->drm, "vdbox enable: %04x, instances: %04lx\n",
1122 		vdbox_mask, VDBOX_MASK(dev_priv));
1123 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv));
1124 
1125 	for (i = 0; i < I915_MAX_VECS; i++) {
1126 		if (!HAS_ENGINE(dev_priv, _VECS(i))) {
1127 			vebox_mask &= ~BIT(i);
1128 			continue;
1129 		}
1130 
1131 		if (!(BIT(i) & vebox_mask)) {
1132 			info->engine_mask &= ~BIT(_VECS(i));
1133 			drm_dbg(&dev_priv->drm, "vecs%u fused off\n", i);
1134 		}
1135 	}
1136 	drm_dbg(&dev_priv->drm, "vebox enable: %04x, instances: %04lx\n",
1137 		vebox_mask, VEBOX_MASK(dev_priv));
1138 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv));
1139 }
1140