1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drm_print.h> 26 27 #include "intel_device_info.h" 28 #include "i915_drv.h" 29 30 #define PLATFORM_NAME(x) [INTEL_##x] = #x 31 static const char * const platform_names[] = { 32 PLATFORM_NAME(I830), 33 PLATFORM_NAME(I845G), 34 PLATFORM_NAME(I85X), 35 PLATFORM_NAME(I865G), 36 PLATFORM_NAME(I915G), 37 PLATFORM_NAME(I915GM), 38 PLATFORM_NAME(I945G), 39 PLATFORM_NAME(I945GM), 40 PLATFORM_NAME(G33), 41 PLATFORM_NAME(PINEVIEW), 42 PLATFORM_NAME(I965G), 43 PLATFORM_NAME(I965GM), 44 PLATFORM_NAME(G45), 45 PLATFORM_NAME(GM45), 46 PLATFORM_NAME(IRONLAKE), 47 PLATFORM_NAME(SANDYBRIDGE), 48 PLATFORM_NAME(IVYBRIDGE), 49 PLATFORM_NAME(VALLEYVIEW), 50 PLATFORM_NAME(HASWELL), 51 PLATFORM_NAME(BROADWELL), 52 PLATFORM_NAME(CHERRYVIEW), 53 PLATFORM_NAME(SKYLAKE), 54 PLATFORM_NAME(BROXTON), 55 PLATFORM_NAME(KABYLAKE), 56 PLATFORM_NAME(GEMINILAKE), 57 PLATFORM_NAME(COFFEELAKE), 58 PLATFORM_NAME(CANNONLAKE), 59 PLATFORM_NAME(ICELAKE), 60 }; 61 #undef PLATFORM_NAME 62 63 const char *intel_platform_name(enum intel_platform platform) 64 { 65 BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); 66 67 if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || 68 platform_names[platform] == NULL)) 69 return "<unknown>"; 70 71 return platform_names[platform]; 72 } 73 74 void intel_device_info_dump_flags(const struct intel_device_info *info, 75 struct drm_printer *p) 76 { 77 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); 78 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); 79 #undef PRINT_FLAG 80 } 81 82 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) 83 { 84 int s; 85 86 drm_printf(p, "slice mask: %04x\n", sseu->slice_mask); 87 drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask)); 88 drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu)); 89 for (s = 0; s < ARRAY_SIZE(sseu->subslice_mask); s++) { 90 drm_printf(p, "slice%d %u subslices mask=%04x\n", 91 s, hweight8(sseu->subslice_mask[s]), 92 sseu->subslice_mask[s]); 93 } 94 drm_printf(p, "EU total: %u\n", sseu->eu_total); 95 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); 96 drm_printf(p, "has slice power gating: %s\n", 97 yesno(sseu->has_slice_pg)); 98 drm_printf(p, "has subslice power gating: %s\n", 99 yesno(sseu->has_subslice_pg)); 100 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); 101 } 102 103 void intel_device_info_dump_runtime(const struct intel_device_info *info, 104 struct drm_printer *p) 105 { 106 sseu_dump(&info->sseu, p); 107 108 drm_printf(p, "CS timestamp frequency: %u kHz\n", 109 info->cs_timestamp_frequency_khz); 110 } 111 112 void intel_device_info_dump(const struct intel_device_info *info, 113 struct drm_printer *p) 114 { 115 struct drm_i915_private *dev_priv = 116 container_of(info, struct drm_i915_private, info); 117 118 drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n", 119 INTEL_DEVID(dev_priv), 120 INTEL_REVID(dev_priv), 121 intel_platform_name(info->platform), 122 info->gen); 123 124 intel_device_info_dump_flags(info, p); 125 } 126 127 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu, 128 struct drm_printer *p) 129 { 130 int s, ss; 131 132 if (sseu->max_slices == 0) { 133 drm_printf(p, "Unavailable\n"); 134 return; 135 } 136 137 for (s = 0; s < sseu->max_slices; s++) { 138 drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n", 139 s, hweight8(sseu->subslice_mask[s]), 140 sseu->subslice_mask[s]); 141 142 for (ss = 0; ss < sseu->max_subslices; ss++) { 143 u16 enabled_eus = sseu_get_eus(sseu, s, ss); 144 145 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", 146 ss, hweight16(enabled_eus), enabled_eus); 147 } 148 } 149 } 150 151 static u16 compute_eu_total(const struct sseu_dev_info *sseu) 152 { 153 u16 i, total = 0; 154 155 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) 156 total += hweight8(sseu->eu_mask[i]); 157 158 return total; 159 } 160 161 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) 162 { 163 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 164 const u32 fuse2 = I915_READ(GEN8_FUSE2); 165 int s, ss; 166 const int eu_mask = 0xff; 167 u32 subslice_mask, eu_en; 168 169 sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> 170 GEN10_F2_S_ENA_SHIFT; 171 sseu->max_slices = 6; 172 sseu->max_subslices = 4; 173 sseu->max_eus_per_subslice = 8; 174 175 subslice_mask = (1 << 4) - 1; 176 subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> 177 GEN10_F2_SS_DIS_SHIFT); 178 179 /* 180 * Slice0 can have up to 3 subslices, but there are only 2 in 181 * slice1/2. 182 */ 183 sseu->subslice_mask[0] = subslice_mask; 184 for (s = 1; s < sseu->max_slices; s++) 185 sseu->subslice_mask[s] = subslice_mask & 0x3; 186 187 /* Slice0 */ 188 eu_en = ~I915_READ(GEN8_EU_DISABLE0); 189 for (ss = 0; ss < sseu->max_subslices; ss++) 190 sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask); 191 /* Slice1 */ 192 sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask); 193 eu_en = ~I915_READ(GEN8_EU_DISABLE1); 194 sseu_set_eus(sseu, 1, 1, eu_en & eu_mask); 195 /* Slice2 */ 196 sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask); 197 sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask); 198 /* Slice3 */ 199 sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask); 200 eu_en = ~I915_READ(GEN8_EU_DISABLE2); 201 sseu_set_eus(sseu, 3, 1, eu_en & eu_mask); 202 /* Slice4 */ 203 sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask); 204 sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask); 205 /* Slice5 */ 206 sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask); 207 eu_en = ~I915_READ(GEN10_EU_DISABLE3); 208 sseu_set_eus(sseu, 5, 1, eu_en & eu_mask); 209 210 /* Do a second pass where we mark the subslices disabled if all their 211 * eus are off. 212 */ 213 for (s = 0; s < sseu->max_slices; s++) { 214 for (ss = 0; ss < sseu->max_subslices; ss++) { 215 if (sseu_get_eus(sseu, s, ss) == 0) 216 sseu->subslice_mask[s] &= ~BIT(ss); 217 } 218 } 219 220 sseu->eu_total = compute_eu_total(sseu); 221 222 /* 223 * CNL is expected to always have a uniform distribution 224 * of EU across subslices with the exception that any one 225 * EU in any one subslice may be fused off for die 226 * recovery. 227 */ 228 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 229 DIV_ROUND_UP(sseu->eu_total, 230 sseu_subslice_total(sseu)) : 0; 231 232 /* No restrictions on Power Gating */ 233 sseu->has_slice_pg = 1; 234 sseu->has_subslice_pg = 1; 235 sseu->has_eu_pg = 1; 236 } 237 238 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) 239 { 240 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 241 u32 fuse; 242 243 fuse = I915_READ(CHV_FUSE_GT); 244 245 sseu->slice_mask = BIT(0); 246 sseu->max_slices = 1; 247 sseu->max_subslices = 2; 248 sseu->max_eus_per_subslice = 8; 249 250 if (!(fuse & CHV_FGT_DISABLE_SS0)) { 251 u8 disabled_mask = 252 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> 253 CHV_FGT_EU_DIS_SS0_R0_SHIFT) | 254 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> 255 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); 256 257 sseu->subslice_mask[0] |= BIT(0); 258 sseu_set_eus(sseu, 0, 0, ~disabled_mask); 259 } 260 261 if (!(fuse & CHV_FGT_DISABLE_SS1)) { 262 u8 disabled_mask = 263 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> 264 CHV_FGT_EU_DIS_SS1_R0_SHIFT) | 265 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> 266 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); 267 268 sseu->subslice_mask[0] |= BIT(1); 269 sseu_set_eus(sseu, 0, 1, ~disabled_mask); 270 } 271 272 sseu->eu_total = compute_eu_total(sseu); 273 274 /* 275 * CHV expected to always have a uniform distribution of EU 276 * across subslices. 277 */ 278 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 279 sseu->eu_total / sseu_subslice_total(sseu) : 280 0; 281 /* 282 * CHV supports subslice power gating on devices with more than 283 * one subslice, and supports EU power gating on devices with 284 * more than one EU pair per subslice. 285 */ 286 sseu->has_slice_pg = 0; 287 sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1; 288 sseu->has_eu_pg = (sseu->eu_per_subslice > 2); 289 } 290 291 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) 292 { 293 struct intel_device_info *info = mkwrite_device_info(dev_priv); 294 struct sseu_dev_info *sseu = &info->sseu; 295 int s, ss; 296 u32 fuse2, eu_disable, subslice_mask; 297 const u8 eu_mask = 0xff; 298 299 fuse2 = I915_READ(GEN8_FUSE2); 300 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 301 302 /* BXT has a single slice and at most 3 subslices. */ 303 sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3; 304 sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4; 305 sseu->max_eus_per_subslice = 8; 306 307 /* 308 * The subslice disable field is global, i.e. it applies 309 * to each of the enabled slices. 310 */ 311 subslice_mask = (1 << sseu->max_subslices) - 1; 312 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> 313 GEN9_F2_SS_DIS_SHIFT); 314 315 /* 316 * Iterate through enabled slices and subslices to 317 * count the total enabled EU. 318 */ 319 for (s = 0; s < sseu->max_slices; s++) { 320 if (!(sseu->slice_mask & BIT(s))) 321 /* skip disabled slice */ 322 continue; 323 324 sseu->subslice_mask[s] = subslice_mask; 325 326 eu_disable = I915_READ(GEN9_EU_DISABLE(s)); 327 for (ss = 0; ss < sseu->max_subslices; ss++) { 328 int eu_per_ss; 329 u8 eu_disabled_mask; 330 331 if (!(sseu->subslice_mask[s] & BIT(ss))) 332 /* skip disabled subslice */ 333 continue; 334 335 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; 336 337 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); 338 339 eu_per_ss = sseu->max_eus_per_subslice - 340 hweight8(eu_disabled_mask); 341 342 /* 343 * Record which subslice(s) has(have) 7 EUs. we 344 * can tune the hash used to spread work among 345 * subslices if they are unbalanced. 346 */ 347 if (eu_per_ss == 7) 348 sseu->subslice_7eu[s] |= BIT(ss); 349 } 350 } 351 352 sseu->eu_total = compute_eu_total(sseu); 353 354 /* 355 * SKL is expected to always have a uniform distribution 356 * of EU across subslices with the exception that any one 357 * EU in any one subslice may be fused off for die 358 * recovery. BXT is expected to be perfectly uniform in EU 359 * distribution. 360 */ 361 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 362 DIV_ROUND_UP(sseu->eu_total, 363 sseu_subslice_total(sseu)) : 0; 364 /* 365 * SKL+ supports slice power gating on devices with more than 366 * one slice, and supports EU power gating on devices with 367 * more than one EU pair per subslice. BXT+ supports subslice 368 * power gating on devices with more than one subslice, and 369 * supports EU power gating on devices with more than one EU 370 * pair per subslice. 371 */ 372 sseu->has_slice_pg = 373 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; 374 sseu->has_subslice_pg = 375 IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1; 376 sseu->has_eu_pg = sseu->eu_per_subslice > 2; 377 378 if (IS_GEN9_LP(dev_priv)) { 379 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss))) 380 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; 381 382 sseu->min_eu_in_pool = 0; 383 if (info->has_pooled_eu) { 384 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) 385 sseu->min_eu_in_pool = 3; 386 else if (IS_SS_DISABLED(1)) 387 sseu->min_eu_in_pool = 6; 388 else 389 sseu->min_eu_in_pool = 9; 390 } 391 #undef IS_SS_DISABLED 392 } 393 } 394 395 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv) 396 { 397 struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu; 398 int s, ss; 399 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ 400 401 fuse2 = I915_READ(GEN8_FUSE2); 402 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 403 sseu->max_slices = 3; 404 sseu->max_subslices = 3; 405 sseu->max_eus_per_subslice = 8; 406 407 /* 408 * The subslice disable field is global, i.e. it applies 409 * to each of the enabled slices. 410 */ 411 subslice_mask = GENMASK(sseu->max_subslices - 1, 0); 412 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> 413 GEN8_F2_SS_DIS_SHIFT); 414 415 eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; 416 eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | 417 ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << 418 (32 - GEN8_EU_DIS0_S1_SHIFT)); 419 eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | 420 ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << 421 (32 - GEN8_EU_DIS1_S2_SHIFT)); 422 423 /* 424 * Iterate through enabled slices and subslices to 425 * count the total enabled EU. 426 */ 427 for (s = 0; s < sseu->max_slices; s++) { 428 if (!(sseu->slice_mask & BIT(s))) 429 /* skip disabled slice */ 430 continue; 431 432 sseu->subslice_mask[s] = subslice_mask; 433 434 for (ss = 0; ss < sseu->max_subslices; ss++) { 435 u8 eu_disabled_mask; 436 u32 n_disabled; 437 438 if (!(sseu->subslice_mask[ss] & BIT(ss))) 439 /* skip disabled subslice */ 440 continue; 441 442 eu_disabled_mask = 443 eu_disable[s] >> (ss * sseu->max_eus_per_subslice); 444 445 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); 446 447 n_disabled = hweight8(eu_disabled_mask); 448 449 /* 450 * Record which subslices have 7 EUs. 451 */ 452 if (sseu->max_eus_per_subslice - n_disabled == 7) 453 sseu->subslice_7eu[s] |= 1 << ss; 454 } 455 } 456 457 sseu->eu_total = compute_eu_total(sseu); 458 459 /* 460 * BDW is expected to always have a uniform distribution of EU across 461 * subslices with the exception that any one EU in any one subslice may 462 * be fused off for die recovery. 463 */ 464 sseu->eu_per_subslice = sseu_subslice_total(sseu) ? 465 DIV_ROUND_UP(sseu->eu_total, 466 sseu_subslice_total(sseu)) : 0; 467 468 /* 469 * BDW supports slice power gating on devices with more than 470 * one slice. 471 */ 472 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; 473 sseu->has_subslice_pg = 0; 474 sseu->has_eu_pg = 0; 475 } 476 477 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv) 478 { 479 struct intel_device_info *info = mkwrite_device_info(dev_priv); 480 struct sseu_dev_info *sseu = &info->sseu; 481 u32 fuse1; 482 int s, ss; 483 484 /* 485 * There isn't a register to tell us how many slices/subslices. We 486 * work off the PCI-ids here. 487 */ 488 switch (info->gt) { 489 default: 490 MISSING_CASE(info->gt); 491 /* fall through */ 492 case 1: 493 sseu->slice_mask = BIT(0); 494 sseu->subslice_mask[0] = BIT(0); 495 break; 496 case 2: 497 sseu->slice_mask = BIT(0); 498 sseu->subslice_mask[0] = BIT(0) | BIT(1); 499 break; 500 case 3: 501 sseu->slice_mask = BIT(0) | BIT(1); 502 sseu->subslice_mask[0] = BIT(0) | BIT(1); 503 sseu->subslice_mask[1] = BIT(0) | BIT(1); 504 break; 505 } 506 507 sseu->max_slices = hweight8(sseu->slice_mask); 508 sseu->max_subslices = hweight8(sseu->subslice_mask[0]); 509 510 fuse1 = I915_READ(HSW_PAVP_FUSE1); 511 switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { 512 default: 513 MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> 514 HSW_F1_EU_DIS_SHIFT); 515 /* fall through */ 516 case HSW_F1_EU_DIS_10EUS: 517 sseu->eu_per_subslice = 10; 518 break; 519 case HSW_F1_EU_DIS_8EUS: 520 sseu->eu_per_subslice = 8; 521 break; 522 case HSW_F1_EU_DIS_6EUS: 523 sseu->eu_per_subslice = 6; 524 break; 525 } 526 sseu->max_eus_per_subslice = sseu->eu_per_subslice; 527 528 for (s = 0; s < sseu->max_slices; s++) { 529 for (ss = 0; ss < sseu->max_subslices; ss++) { 530 sseu_set_eus(sseu, s, ss, 531 (1UL << sseu->eu_per_subslice) - 1); 532 } 533 } 534 535 sseu->eu_total = compute_eu_total(sseu); 536 537 /* No powergating for you. */ 538 sseu->has_slice_pg = 0; 539 sseu->has_subslice_pg = 0; 540 sseu->has_eu_pg = 0; 541 } 542 543 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) 544 { 545 u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); 546 u32 base_freq, frac_freq; 547 548 base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> 549 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; 550 base_freq *= 1000; 551 552 frac_freq = ((ts_override & 553 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> 554 GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); 555 frac_freq = 1000 / (frac_freq + 1); 556 557 return base_freq + frac_freq; 558 } 559 560 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) 561 { 562 u32 f12_5_mhz = 12500; 563 u32 f19_2_mhz = 19200; 564 u32 f24_mhz = 24000; 565 566 if (INTEL_GEN(dev_priv) <= 4) { 567 /* PRMs say: 568 * 569 * "The value in this register increments once every 16 570 * hclks." (through the “Clocking Configuration” 571 * (“CLKCFG”) MCHBAR register) 572 */ 573 return dev_priv->rawclk_freq / 16; 574 } else if (INTEL_GEN(dev_priv) <= 8) { 575 /* PRMs say: 576 * 577 * "The PCU TSC counts 10ns increments; this timestamp 578 * reflects bits 38:3 of the TSC (i.e. 80ns granularity, 579 * rolling over every 1.5 hours). 580 */ 581 return f12_5_mhz; 582 } else if (INTEL_GEN(dev_priv) <= 9) { 583 u32 ctc_reg = I915_READ(CTC_MODE); 584 u32 freq = 0; 585 586 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { 587 freq = read_reference_ts_freq(dev_priv); 588 } else { 589 freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; 590 591 /* Now figure out how the command stream's timestamp 592 * register increments from this frequency (it might 593 * increment only every few clock cycle). 594 */ 595 freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> 596 CTC_SHIFT_PARAMETER_SHIFT); 597 } 598 599 return freq; 600 } else if (INTEL_GEN(dev_priv) <= 10) { 601 u32 ctc_reg = I915_READ(CTC_MODE); 602 u32 freq = 0; 603 u32 rpm_config_reg = 0; 604 605 /* First figure out the reference frequency. There are 2 ways 606 * we can compute the frequency, either through the 607 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE 608 * tells us which one we should use. 609 */ 610 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { 611 freq = read_reference_ts_freq(dev_priv); 612 } else { 613 u32 crystal_clock; 614 615 rpm_config_reg = I915_READ(RPM_CONFIG0); 616 crystal_clock = (rpm_config_reg & 617 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> 618 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; 619 switch (crystal_clock) { 620 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: 621 freq = f19_2_mhz; 622 break; 623 case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: 624 freq = f24_mhz; 625 break; 626 } 627 628 /* Now figure out how the command stream's timestamp 629 * register increments from this frequency (it might 630 * increment only every few clock cycle). 631 */ 632 freq >>= 3 - ((rpm_config_reg & 633 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 634 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); 635 } 636 637 return freq; 638 } 639 640 MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); 641 return 0; 642 } 643 644 /** 645 * intel_device_info_runtime_init - initialize runtime info 646 * @info: intel device info struct 647 * 648 * Determine various intel_device_info fields at runtime. 649 * 650 * Use it when either: 651 * - it's judged too laborious to fill n static structures with the limit 652 * when a simple if statement does the job, 653 * - run-time checks (eg read fuse/strap registers) are needed. 654 * 655 * This function needs to be called: 656 * - after the MMIO has been setup as we are reading registers, 657 * - after the PCH has been detected, 658 * - before the first usage of the fields it can tweak. 659 */ 660 void intel_device_info_runtime_init(struct intel_device_info *info) 661 { 662 struct drm_i915_private *dev_priv = 663 container_of(info, struct drm_i915_private, info); 664 enum pipe pipe; 665 666 if (INTEL_GEN(dev_priv) >= 10) { 667 for_each_pipe(dev_priv, pipe) 668 info->num_scalers[pipe] = 2; 669 } else if (INTEL_GEN(dev_priv) == 9) { 670 info->num_scalers[PIPE_A] = 2; 671 info->num_scalers[PIPE_B] = 2; 672 info->num_scalers[PIPE_C] = 1; 673 } 674 675 BUILD_BUG_ON(I915_NUM_ENGINES > 676 sizeof(intel_ring_mask_t) * BITS_PER_BYTE); 677 678 /* 679 * Skylake and Broxton currently don't expose the topmost plane as its 680 * use is exclusive with the legacy cursor and we only want to expose 681 * one of those, not both. Until we can safely expose the topmost plane 682 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, 683 * we don't expose the topmost plane at all to prevent ABI breakage 684 * down the line. 685 */ 686 if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv)) 687 for_each_pipe(dev_priv, pipe) 688 info->num_sprites[pipe] = 3; 689 else if (IS_BROXTON(dev_priv)) { 690 info->num_sprites[PIPE_A] = 2; 691 info->num_sprites[PIPE_B] = 2; 692 info->num_sprites[PIPE_C] = 1; 693 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { 694 for_each_pipe(dev_priv, pipe) 695 info->num_sprites[pipe] = 2; 696 } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { 697 for_each_pipe(dev_priv, pipe) 698 info->num_sprites[pipe] = 1; 699 } 700 701 if (i915_modparams.disable_display) { 702 DRM_INFO("Display disabled (module parameter)\n"); 703 info->num_pipes = 0; 704 } else if (info->num_pipes > 0 && 705 (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) && 706 HAS_PCH_SPLIT(dev_priv)) { 707 u32 fuse_strap = I915_READ(FUSE_STRAP); 708 u32 sfuse_strap = I915_READ(SFUSE_STRAP); 709 710 /* 711 * SFUSE_STRAP is supposed to have a bit signalling the display 712 * is fused off. Unfortunately it seems that, at least in 713 * certain cases, fused off display means that PCH display 714 * reads don't land anywhere. In that case, we read 0s. 715 * 716 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK 717 * should be set when taking over after the firmware. 718 */ 719 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || 720 sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || 721 (HAS_PCH_CPT(dev_priv) && 722 !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { 723 DRM_INFO("Display fused off, disabling\n"); 724 info->num_pipes = 0; 725 } else if (fuse_strap & IVB_PIPE_C_DISABLE) { 726 DRM_INFO("PipeC fused off\n"); 727 info->num_pipes -= 1; 728 } 729 } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) { 730 u32 dfsm = I915_READ(SKL_DFSM); 731 u8 disabled_mask = 0; 732 bool invalid; 733 int num_bits; 734 735 if (dfsm & SKL_DFSM_PIPE_A_DISABLE) 736 disabled_mask |= BIT(PIPE_A); 737 if (dfsm & SKL_DFSM_PIPE_B_DISABLE) 738 disabled_mask |= BIT(PIPE_B); 739 if (dfsm & SKL_DFSM_PIPE_C_DISABLE) 740 disabled_mask |= BIT(PIPE_C); 741 742 num_bits = hweight8(disabled_mask); 743 744 switch (disabled_mask) { 745 case BIT(PIPE_A): 746 case BIT(PIPE_B): 747 case BIT(PIPE_A) | BIT(PIPE_B): 748 case BIT(PIPE_A) | BIT(PIPE_C): 749 invalid = true; 750 break; 751 default: 752 invalid = false; 753 } 754 755 if (num_bits > info->num_pipes || invalid) 756 DRM_ERROR("invalid pipe fuse configuration: 0x%x\n", 757 disabled_mask); 758 else 759 info->num_pipes -= num_bits; 760 } 761 762 /* Initialize slice/subslice/EU info */ 763 if (IS_HASWELL(dev_priv)) 764 haswell_sseu_info_init(dev_priv); 765 else if (IS_CHERRYVIEW(dev_priv)) 766 cherryview_sseu_info_init(dev_priv); 767 else if (IS_BROADWELL(dev_priv)) 768 broadwell_sseu_info_init(dev_priv); 769 else if (INTEL_GEN(dev_priv) == 9) 770 gen9_sseu_info_init(dev_priv); 771 else if (INTEL_GEN(dev_priv) >= 10) 772 gen10_sseu_info_init(dev_priv); 773 774 /* Initialize command stream timestamp frequency */ 775 info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); 776 } 777 778 void intel_driver_caps_print(const struct intel_driver_caps *caps, 779 struct drm_printer *p) 780 { 781 drm_printf(p, "scheduler: %x\n", caps->scheduler); 782 } 783