xref: /linux/drivers/gpu/drm/i915/intel_device_info.c (revision 2359ccddc1c3f4752f43cc19b3db189710b15791)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29 
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32 	PLATFORM_NAME(I830),
33 	PLATFORM_NAME(I845G),
34 	PLATFORM_NAME(I85X),
35 	PLATFORM_NAME(I865G),
36 	PLATFORM_NAME(I915G),
37 	PLATFORM_NAME(I915GM),
38 	PLATFORM_NAME(I945G),
39 	PLATFORM_NAME(I945GM),
40 	PLATFORM_NAME(G33),
41 	PLATFORM_NAME(PINEVIEW),
42 	PLATFORM_NAME(I965G),
43 	PLATFORM_NAME(I965GM),
44 	PLATFORM_NAME(G45),
45 	PLATFORM_NAME(GM45),
46 	PLATFORM_NAME(IRONLAKE),
47 	PLATFORM_NAME(SANDYBRIDGE),
48 	PLATFORM_NAME(IVYBRIDGE),
49 	PLATFORM_NAME(VALLEYVIEW),
50 	PLATFORM_NAME(HASWELL),
51 	PLATFORM_NAME(BROADWELL),
52 	PLATFORM_NAME(CHERRYVIEW),
53 	PLATFORM_NAME(SKYLAKE),
54 	PLATFORM_NAME(BROXTON),
55 	PLATFORM_NAME(KABYLAKE),
56 	PLATFORM_NAME(GEMINILAKE),
57 	PLATFORM_NAME(COFFEELAKE),
58 	PLATFORM_NAME(CANNONLAKE),
59 	PLATFORM_NAME(ICELAKE),
60 };
61 #undef PLATFORM_NAME
62 
63 const char *intel_platform_name(enum intel_platform platform)
64 {
65 	BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
66 
67 	if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
68 			 platform_names[platform] == NULL))
69 		return "<unknown>";
70 
71 	return platform_names[platform];
72 }
73 
74 void intel_device_info_dump_flags(const struct intel_device_info *info,
75 				  struct drm_printer *p)
76 {
77 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
78 	DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
79 #undef PRINT_FLAG
80 }
81 
82 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
83 {
84 	int s;
85 
86 	drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
87 	drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
88 	drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
89 	for (s = 0; s < ARRAY_SIZE(sseu->subslice_mask); s++) {
90 		drm_printf(p, "slice%d %u subslices mask=%04x\n",
91 			   s, hweight8(sseu->subslice_mask[s]),
92 			   sseu->subslice_mask[s]);
93 	}
94 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
95 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
96 	drm_printf(p, "has slice power gating: %s\n",
97 		   yesno(sseu->has_slice_pg));
98 	drm_printf(p, "has subslice power gating: %s\n",
99 		   yesno(sseu->has_subslice_pg));
100 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
101 }
102 
103 void intel_device_info_dump_runtime(const struct intel_device_info *info,
104 				    struct drm_printer *p)
105 {
106 	sseu_dump(&info->sseu, p);
107 
108 	drm_printf(p, "CS timestamp frequency: %u kHz\n",
109 		   info->cs_timestamp_frequency_khz);
110 }
111 
112 void intel_device_info_dump(const struct intel_device_info *info,
113 			    struct drm_printer *p)
114 {
115 	struct drm_i915_private *dev_priv =
116 		container_of(info, struct drm_i915_private, info);
117 
118 	drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
119 		   INTEL_DEVID(dev_priv),
120 		   INTEL_REVID(dev_priv),
121 		   intel_platform_name(info->platform),
122 		   info->gen);
123 
124 	intel_device_info_dump_flags(info, p);
125 }
126 
127 void intel_device_info_dump_topology(const struct sseu_dev_info *sseu,
128 				     struct drm_printer *p)
129 {
130 	int s, ss;
131 
132 	if (sseu->max_slices == 0) {
133 		drm_printf(p, "Unavailable\n");
134 		return;
135 	}
136 
137 	for (s = 0; s < sseu->max_slices; s++) {
138 		drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n",
139 			   s, hweight8(sseu->subslice_mask[s]),
140 			   sseu->subslice_mask[s]);
141 
142 		for (ss = 0; ss < sseu->max_subslices; ss++) {
143 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
144 
145 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
146 				   ss, hweight16(enabled_eus), enabled_eus);
147 		}
148 	}
149 }
150 
151 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
152 {
153 	u16 i, total = 0;
154 
155 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
156 		total += hweight8(sseu->eu_mask[i]);
157 
158 	return total;
159 }
160 
161 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
162 {
163 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
164 	const u32 fuse2 = I915_READ(GEN8_FUSE2);
165 	int s, ss;
166 	const int eu_mask = 0xff;
167 	u32 subslice_mask, eu_en;
168 
169 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
170 			    GEN10_F2_S_ENA_SHIFT;
171 	sseu->max_slices = 6;
172 	sseu->max_subslices = 4;
173 	sseu->max_eus_per_subslice = 8;
174 
175 	subslice_mask = (1 << 4) - 1;
176 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
177 			   GEN10_F2_SS_DIS_SHIFT);
178 
179 	/*
180 	 * Slice0 can have up to 3 subslices, but there are only 2 in
181 	 * slice1/2.
182 	 */
183 	sseu->subslice_mask[0] = subslice_mask;
184 	for (s = 1; s < sseu->max_slices; s++)
185 		sseu->subslice_mask[s] = subslice_mask & 0x3;
186 
187 	/* Slice0 */
188 	eu_en = ~I915_READ(GEN8_EU_DISABLE0);
189 	for (ss = 0; ss < sseu->max_subslices; ss++)
190 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
191 	/* Slice1 */
192 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
193 	eu_en = ~I915_READ(GEN8_EU_DISABLE1);
194 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
195 	/* Slice2 */
196 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
197 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
198 	/* Slice3 */
199 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
200 	eu_en = ~I915_READ(GEN8_EU_DISABLE2);
201 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
202 	/* Slice4 */
203 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
204 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
205 	/* Slice5 */
206 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
207 	eu_en = ~I915_READ(GEN10_EU_DISABLE3);
208 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
209 
210 	/* Do a second pass where we mark the subslices disabled if all their
211 	 * eus are off.
212 	 */
213 	for (s = 0; s < sseu->max_slices; s++) {
214 		for (ss = 0; ss < sseu->max_subslices; ss++) {
215 			if (sseu_get_eus(sseu, s, ss) == 0)
216 				sseu->subslice_mask[s] &= ~BIT(ss);
217 		}
218 	}
219 
220 	sseu->eu_total = compute_eu_total(sseu);
221 
222 	/*
223 	 * CNL is expected to always have a uniform distribution
224 	 * of EU across subslices with the exception that any one
225 	 * EU in any one subslice may be fused off for die
226 	 * recovery.
227 	 */
228 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
229 				DIV_ROUND_UP(sseu->eu_total,
230 					     sseu_subslice_total(sseu)) : 0;
231 
232 	/* No restrictions on Power Gating */
233 	sseu->has_slice_pg = 1;
234 	sseu->has_subslice_pg = 1;
235 	sseu->has_eu_pg = 1;
236 }
237 
238 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
239 {
240 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
241 	u32 fuse;
242 
243 	fuse = I915_READ(CHV_FUSE_GT);
244 
245 	sseu->slice_mask = BIT(0);
246 	sseu->max_slices = 1;
247 	sseu->max_subslices = 2;
248 	sseu->max_eus_per_subslice = 8;
249 
250 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
251 		u8 disabled_mask =
252 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
253 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
254 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
255 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
256 
257 		sseu->subslice_mask[0] |= BIT(0);
258 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
259 	}
260 
261 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
262 		u8 disabled_mask =
263 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
264 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
265 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
266 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
267 
268 		sseu->subslice_mask[0] |= BIT(1);
269 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
270 	}
271 
272 	sseu->eu_total = compute_eu_total(sseu);
273 
274 	/*
275 	 * CHV expected to always have a uniform distribution of EU
276 	 * across subslices.
277 	*/
278 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
279 				sseu->eu_total / sseu_subslice_total(sseu) :
280 				0;
281 	/*
282 	 * CHV supports subslice power gating on devices with more than
283 	 * one subslice, and supports EU power gating on devices with
284 	 * more than one EU pair per subslice.
285 	*/
286 	sseu->has_slice_pg = 0;
287 	sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
288 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
289 }
290 
291 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
292 {
293 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
294 	struct sseu_dev_info *sseu = &info->sseu;
295 	int s, ss;
296 	u32 fuse2, eu_disable, subslice_mask;
297 	const u8 eu_mask = 0xff;
298 
299 	fuse2 = I915_READ(GEN8_FUSE2);
300 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
301 
302 	/* BXT has a single slice and at most 3 subslices. */
303 	sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3;
304 	sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4;
305 	sseu->max_eus_per_subslice = 8;
306 
307 	/*
308 	 * The subslice disable field is global, i.e. it applies
309 	 * to each of the enabled slices.
310 	*/
311 	subslice_mask = (1 << sseu->max_subslices) - 1;
312 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
313 			   GEN9_F2_SS_DIS_SHIFT);
314 
315 	/*
316 	 * Iterate through enabled slices and subslices to
317 	 * count the total enabled EU.
318 	*/
319 	for (s = 0; s < sseu->max_slices; s++) {
320 		if (!(sseu->slice_mask & BIT(s)))
321 			/* skip disabled slice */
322 			continue;
323 
324 		sseu->subslice_mask[s] = subslice_mask;
325 
326 		eu_disable = I915_READ(GEN9_EU_DISABLE(s));
327 		for (ss = 0; ss < sseu->max_subslices; ss++) {
328 			int eu_per_ss;
329 			u8 eu_disabled_mask;
330 
331 			if (!(sseu->subslice_mask[s] & BIT(ss)))
332 				/* skip disabled subslice */
333 				continue;
334 
335 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
336 
337 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
338 
339 			eu_per_ss = sseu->max_eus_per_subslice -
340 				hweight8(eu_disabled_mask);
341 
342 			/*
343 			 * Record which subslice(s) has(have) 7 EUs. we
344 			 * can tune the hash used to spread work among
345 			 * subslices if they are unbalanced.
346 			 */
347 			if (eu_per_ss == 7)
348 				sseu->subslice_7eu[s] |= BIT(ss);
349 		}
350 	}
351 
352 	sseu->eu_total = compute_eu_total(sseu);
353 
354 	/*
355 	 * SKL is expected to always have a uniform distribution
356 	 * of EU across subslices with the exception that any one
357 	 * EU in any one subslice may be fused off for die
358 	 * recovery. BXT is expected to be perfectly uniform in EU
359 	 * distribution.
360 	*/
361 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
362 				DIV_ROUND_UP(sseu->eu_total,
363 					     sseu_subslice_total(sseu)) : 0;
364 	/*
365 	 * SKL+ supports slice power gating on devices with more than
366 	 * one slice, and supports EU power gating on devices with
367 	 * more than one EU pair per subslice. BXT+ supports subslice
368 	 * power gating on devices with more than one subslice, and
369 	 * supports EU power gating on devices with more than one EU
370 	 * pair per subslice.
371 	*/
372 	sseu->has_slice_pg =
373 		!IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
374 	sseu->has_subslice_pg =
375 		IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
376 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
377 
378 	if (IS_GEN9_LP(dev_priv)) {
379 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
380 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
381 
382 		sseu->min_eu_in_pool = 0;
383 		if (info->has_pooled_eu) {
384 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
385 				sseu->min_eu_in_pool = 3;
386 			else if (IS_SS_DISABLED(1))
387 				sseu->min_eu_in_pool = 6;
388 			else
389 				sseu->min_eu_in_pool = 9;
390 		}
391 #undef IS_SS_DISABLED
392 	}
393 }
394 
395 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
396 {
397 	struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
398 	int s, ss;
399 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
400 
401 	fuse2 = I915_READ(GEN8_FUSE2);
402 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
403 	sseu->max_slices = 3;
404 	sseu->max_subslices = 3;
405 	sseu->max_eus_per_subslice = 8;
406 
407 	/*
408 	 * The subslice disable field is global, i.e. it applies
409 	 * to each of the enabled slices.
410 	 */
411 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
412 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
413 			   GEN8_F2_SS_DIS_SHIFT);
414 
415 	eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
416 	eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
417 			((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
418 			 (32 - GEN8_EU_DIS0_S1_SHIFT));
419 	eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
420 			((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
421 			 (32 - GEN8_EU_DIS1_S2_SHIFT));
422 
423 	/*
424 	 * Iterate through enabled slices and subslices to
425 	 * count the total enabled EU.
426 	 */
427 	for (s = 0; s < sseu->max_slices; s++) {
428 		if (!(sseu->slice_mask & BIT(s)))
429 			/* skip disabled slice */
430 			continue;
431 
432 		sseu->subslice_mask[s] = subslice_mask;
433 
434 		for (ss = 0; ss < sseu->max_subslices; ss++) {
435 			u8 eu_disabled_mask;
436 			u32 n_disabled;
437 
438 			if (!(sseu->subslice_mask[ss] & BIT(ss)))
439 				/* skip disabled subslice */
440 				continue;
441 
442 			eu_disabled_mask =
443 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
444 
445 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
446 
447 			n_disabled = hweight8(eu_disabled_mask);
448 
449 			/*
450 			 * Record which subslices have 7 EUs.
451 			 */
452 			if (sseu->max_eus_per_subslice - n_disabled == 7)
453 				sseu->subslice_7eu[s] |= 1 << ss;
454 		}
455 	}
456 
457 	sseu->eu_total = compute_eu_total(sseu);
458 
459 	/*
460 	 * BDW is expected to always have a uniform distribution of EU across
461 	 * subslices with the exception that any one EU in any one subslice may
462 	 * be fused off for die recovery.
463 	 */
464 	sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
465 				DIV_ROUND_UP(sseu->eu_total,
466 					     sseu_subslice_total(sseu)) : 0;
467 
468 	/*
469 	 * BDW supports slice power gating on devices with more than
470 	 * one slice.
471 	 */
472 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
473 	sseu->has_subslice_pg = 0;
474 	sseu->has_eu_pg = 0;
475 }
476 
477 static void haswell_sseu_info_init(struct drm_i915_private *dev_priv)
478 {
479 	struct intel_device_info *info = mkwrite_device_info(dev_priv);
480 	struct sseu_dev_info *sseu = &info->sseu;
481 	u32 fuse1;
482 	int s, ss;
483 
484 	/*
485 	 * There isn't a register to tell us how many slices/subslices. We
486 	 * work off the PCI-ids here.
487 	 */
488 	switch (info->gt) {
489 	default:
490 		MISSING_CASE(info->gt);
491 		/* fall through */
492 	case 1:
493 		sseu->slice_mask = BIT(0);
494 		sseu->subslice_mask[0] = BIT(0);
495 		break;
496 	case 2:
497 		sseu->slice_mask = BIT(0);
498 		sseu->subslice_mask[0] = BIT(0) | BIT(1);
499 		break;
500 	case 3:
501 		sseu->slice_mask = BIT(0) | BIT(1);
502 		sseu->subslice_mask[0] = BIT(0) | BIT(1);
503 		sseu->subslice_mask[1] = BIT(0) | BIT(1);
504 		break;
505 	}
506 
507 	sseu->max_slices = hweight8(sseu->slice_mask);
508 	sseu->max_subslices = hweight8(sseu->subslice_mask[0]);
509 
510 	fuse1 = I915_READ(HSW_PAVP_FUSE1);
511 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
512 	default:
513 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
514 			     HSW_F1_EU_DIS_SHIFT);
515 		/* fall through */
516 	case HSW_F1_EU_DIS_10EUS:
517 		sseu->eu_per_subslice = 10;
518 		break;
519 	case HSW_F1_EU_DIS_8EUS:
520 		sseu->eu_per_subslice = 8;
521 		break;
522 	case HSW_F1_EU_DIS_6EUS:
523 		sseu->eu_per_subslice = 6;
524 		break;
525 	}
526 	sseu->max_eus_per_subslice = sseu->eu_per_subslice;
527 
528 	for (s = 0; s < sseu->max_slices; s++) {
529 		for (ss = 0; ss < sseu->max_subslices; ss++) {
530 			sseu_set_eus(sseu, s, ss,
531 				     (1UL << sseu->eu_per_subslice) - 1);
532 		}
533 	}
534 
535 	sseu->eu_total = compute_eu_total(sseu);
536 
537 	/* No powergating for you. */
538 	sseu->has_slice_pg = 0;
539 	sseu->has_subslice_pg = 0;
540 	sseu->has_eu_pg = 0;
541 }
542 
543 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
544 {
545 	u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
546 	u32 base_freq, frac_freq;
547 
548 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
549 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
550 	base_freq *= 1000;
551 
552 	frac_freq = ((ts_override &
553 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
554 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
555 	frac_freq = 1000 / (frac_freq + 1);
556 
557 	return base_freq + frac_freq;
558 }
559 
560 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
561 {
562 	u32 f12_5_mhz = 12500;
563 	u32 f19_2_mhz = 19200;
564 	u32 f24_mhz = 24000;
565 
566 	if (INTEL_GEN(dev_priv) <= 4) {
567 		/* PRMs say:
568 		 *
569 		 *     "The value in this register increments once every 16
570 		 *      hclks." (through the “Clocking Configuration”
571 		 *      (“CLKCFG”) MCHBAR register)
572 		 */
573 		return dev_priv->rawclk_freq / 16;
574 	} else if (INTEL_GEN(dev_priv) <= 8) {
575 		/* PRMs say:
576 		 *
577 		 *     "The PCU TSC counts 10ns increments; this timestamp
578 		 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
579 		 *      rolling over every 1.5 hours).
580 		 */
581 		return f12_5_mhz;
582 	} else if (INTEL_GEN(dev_priv) <= 9) {
583 		u32 ctc_reg = I915_READ(CTC_MODE);
584 		u32 freq = 0;
585 
586 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
587 			freq = read_reference_ts_freq(dev_priv);
588 		} else {
589 			freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
590 
591 			/* Now figure out how the command stream's timestamp
592 			 * register increments from this frequency (it might
593 			 * increment only every few clock cycle).
594 			 */
595 			freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
596 				      CTC_SHIFT_PARAMETER_SHIFT);
597 		}
598 
599 		return freq;
600 	} else if (INTEL_GEN(dev_priv) <= 10) {
601 		u32 ctc_reg = I915_READ(CTC_MODE);
602 		u32 freq = 0;
603 		u32 rpm_config_reg = 0;
604 
605 		/* First figure out the reference frequency. There are 2 ways
606 		 * we can compute the frequency, either through the
607 		 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
608 		 * tells us which one we should use.
609 		 */
610 		if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
611 			freq = read_reference_ts_freq(dev_priv);
612 		} else {
613 			u32 crystal_clock;
614 
615 			rpm_config_reg = I915_READ(RPM_CONFIG0);
616 			crystal_clock = (rpm_config_reg &
617 					 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
618 				GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
619 			switch (crystal_clock) {
620 			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
621 				freq = f19_2_mhz;
622 				break;
623 			case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
624 				freq = f24_mhz;
625 				break;
626 			}
627 
628 			/* Now figure out how the command stream's timestamp
629 			 * register increments from this frequency (it might
630 			 * increment only every few clock cycle).
631 			 */
632 			freq >>= 3 - ((rpm_config_reg &
633 				       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
634 				      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
635 		}
636 
637 		return freq;
638 	}
639 
640 	MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
641 	return 0;
642 }
643 
644 /**
645  * intel_device_info_runtime_init - initialize runtime info
646  * @info: intel device info struct
647  *
648  * Determine various intel_device_info fields at runtime.
649  *
650  * Use it when either:
651  *   - it's judged too laborious to fill n static structures with the limit
652  *     when a simple if statement does the job,
653  *   - run-time checks (eg read fuse/strap registers) are needed.
654  *
655  * This function needs to be called:
656  *   - after the MMIO has been setup as we are reading registers,
657  *   - after the PCH has been detected,
658  *   - before the first usage of the fields it can tweak.
659  */
660 void intel_device_info_runtime_init(struct intel_device_info *info)
661 {
662 	struct drm_i915_private *dev_priv =
663 		container_of(info, struct drm_i915_private, info);
664 	enum pipe pipe;
665 
666 	if (INTEL_GEN(dev_priv) >= 10) {
667 		for_each_pipe(dev_priv, pipe)
668 			info->num_scalers[pipe] = 2;
669 	} else if (INTEL_GEN(dev_priv) == 9) {
670 		info->num_scalers[PIPE_A] = 2;
671 		info->num_scalers[PIPE_B] = 2;
672 		info->num_scalers[PIPE_C] = 1;
673 	}
674 
675 	BUILD_BUG_ON(I915_NUM_ENGINES >
676 		     sizeof(intel_ring_mask_t) * BITS_PER_BYTE);
677 
678 	/*
679 	 * Skylake and Broxton currently don't expose the topmost plane as its
680 	 * use is exclusive with the legacy cursor and we only want to expose
681 	 * one of those, not both. Until we can safely expose the topmost plane
682 	 * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
683 	 * we don't expose the topmost plane at all to prevent ABI breakage
684 	 * down the line.
685 	 */
686 	if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
687 		for_each_pipe(dev_priv, pipe)
688 			info->num_sprites[pipe] = 3;
689 	else if (IS_BROXTON(dev_priv)) {
690 		info->num_sprites[PIPE_A] = 2;
691 		info->num_sprites[PIPE_B] = 2;
692 		info->num_sprites[PIPE_C] = 1;
693 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
694 		for_each_pipe(dev_priv, pipe)
695 			info->num_sprites[pipe] = 2;
696 	} else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
697 		for_each_pipe(dev_priv, pipe)
698 			info->num_sprites[pipe] = 1;
699 	}
700 
701 	if (i915_modparams.disable_display) {
702 		DRM_INFO("Display disabled (module parameter)\n");
703 		info->num_pipes = 0;
704 	} else if (info->num_pipes > 0 &&
705 		   (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
706 		   HAS_PCH_SPLIT(dev_priv)) {
707 		u32 fuse_strap = I915_READ(FUSE_STRAP);
708 		u32 sfuse_strap = I915_READ(SFUSE_STRAP);
709 
710 		/*
711 		 * SFUSE_STRAP is supposed to have a bit signalling the display
712 		 * is fused off. Unfortunately it seems that, at least in
713 		 * certain cases, fused off display means that PCH display
714 		 * reads don't land anywhere. In that case, we read 0s.
715 		 *
716 		 * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
717 		 * should be set when taking over after the firmware.
718 		 */
719 		if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
720 		    sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
721 		    (HAS_PCH_CPT(dev_priv) &&
722 		     !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
723 			DRM_INFO("Display fused off, disabling\n");
724 			info->num_pipes = 0;
725 		} else if (fuse_strap & IVB_PIPE_C_DISABLE) {
726 			DRM_INFO("PipeC fused off\n");
727 			info->num_pipes -= 1;
728 		}
729 	} else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
730 		u32 dfsm = I915_READ(SKL_DFSM);
731 		u8 disabled_mask = 0;
732 		bool invalid;
733 		int num_bits;
734 
735 		if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
736 			disabled_mask |= BIT(PIPE_A);
737 		if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
738 			disabled_mask |= BIT(PIPE_B);
739 		if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
740 			disabled_mask |= BIT(PIPE_C);
741 
742 		num_bits = hweight8(disabled_mask);
743 
744 		switch (disabled_mask) {
745 		case BIT(PIPE_A):
746 		case BIT(PIPE_B):
747 		case BIT(PIPE_A) | BIT(PIPE_B):
748 		case BIT(PIPE_A) | BIT(PIPE_C):
749 			invalid = true;
750 			break;
751 		default:
752 			invalid = false;
753 		}
754 
755 		if (num_bits > info->num_pipes || invalid)
756 			DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
757 				  disabled_mask);
758 		else
759 			info->num_pipes -= num_bits;
760 	}
761 
762 	/* Initialize slice/subslice/EU info */
763 	if (IS_HASWELL(dev_priv))
764 		haswell_sseu_info_init(dev_priv);
765 	else if (IS_CHERRYVIEW(dev_priv))
766 		cherryview_sseu_info_init(dev_priv);
767 	else if (IS_BROADWELL(dev_priv))
768 		broadwell_sseu_info_init(dev_priv);
769 	else if (INTEL_GEN(dev_priv) == 9)
770 		gen9_sseu_info_init(dev_priv);
771 	else if (INTEL_GEN(dev_priv) >= 10)
772 		gen10_sseu_info_init(dev_priv);
773 
774 	/* Initialize command stream timestamp frequency */
775 	info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
776 }
777 
778 void intel_driver_caps_print(const struct intel_driver_caps *caps,
779 			     struct drm_printer *p)
780 {
781 	drm_printf(p, "scheduler: %x\n", caps->scheduler);
782 }
783