xref: /linux/drivers/gpu/drm/i915/i915_vma.c (revision f217d94fc632fece2a41030c2eebc4ed34a48b2a)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_tiling.h"
33 #include "gt/intel_engine.h"
34 #include "gt/intel_engine_heartbeat.h"
35 #include "gt/intel_gt.h"
36 #include "gt/intel_gt_requests.h"
37 
38 #include "i915_drv.h"
39 #include "i915_gem_evict.h"
40 #include "i915_sw_fence_work.h"
41 #include "i915_trace.h"
42 #include "i915_vma.h"
43 #include "i915_vma_resource.h"
44 
45 static inline void assert_vma_held_evict(const struct i915_vma *vma)
46 {
47 	/*
48 	 * We may be forced to unbind when the vm is dead, to clean it up.
49 	 * This is the only exception to the requirement of the object lock
50 	 * being held.
51 	 */
52 	if (kref_read(&vma->vm->ref))
53 		assert_object_held_shared(vma->obj);
54 }
55 
56 static struct kmem_cache *slab_vmas;
57 
58 static struct i915_vma *i915_vma_alloc(void)
59 {
60 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
61 }
62 
63 static void i915_vma_free(struct i915_vma *vma)
64 {
65 	return kmem_cache_free(slab_vmas, vma);
66 }
67 
68 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
69 
70 #include <linux/stackdepot.h>
71 
72 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
73 {
74 	char buf[512];
75 
76 	if (!vma->node.stack) {
77 		drm_dbg(&to_i915(vma->obj->base.dev)->drm,
78 			"vma.node [%08llx + %08llx] %s: unknown owner\n",
79 			vma->node.start, vma->node.size, reason);
80 		return;
81 	}
82 
83 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
84 	drm_dbg(&to_i915(vma->obj->base.dev)->drm,
85 		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
86 		vma->node.start, vma->node.size, reason, buf);
87 }
88 
89 #else
90 
91 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
92 {
93 }
94 
95 #endif
96 
97 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
98 {
99 	return container_of(ref, typeof(struct i915_vma), active);
100 }
101 
102 static int __i915_vma_active(struct i915_active *ref)
103 {
104 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
105 }
106 
107 static void __i915_vma_retire(struct i915_active *ref)
108 {
109 	i915_vma_put(active_to_vma(ref));
110 }
111 
112 static struct i915_vma *
113 vma_create(struct drm_i915_gem_object *obj,
114 	   struct i915_address_space *vm,
115 	   const struct i915_gtt_view *view)
116 {
117 	struct i915_vma *pos = ERR_PTR(-E2BIG);
118 	struct i915_vma *vma;
119 	struct rb_node *rb, **p;
120 	int err;
121 
122 	/* The aliasing_ppgtt should never be used directly! */
123 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
124 
125 	vma = i915_vma_alloc();
126 	if (vma == NULL)
127 		return ERR_PTR(-ENOMEM);
128 
129 	vma->ops = &vm->vma_ops;
130 	vma->obj = obj;
131 	vma->size = obj->base.size;
132 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
133 
134 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
135 
136 	/* Declare ourselves safe for use inside shrinkers */
137 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
138 		fs_reclaim_acquire(GFP_KERNEL);
139 		might_lock(&vma->active.mutex);
140 		fs_reclaim_release(GFP_KERNEL);
141 	}
142 
143 	INIT_LIST_HEAD(&vma->closed_link);
144 	INIT_LIST_HEAD(&vma->obj_link);
145 	RB_CLEAR_NODE(&vma->obj_node);
146 
147 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
148 		vma->gtt_view = *view;
149 		if (view->type == I915_GTT_VIEW_PARTIAL) {
150 			GEM_BUG_ON(range_overflows_t(u64,
151 						     view->partial.offset,
152 						     view->partial.size,
153 						     obj->base.size >> PAGE_SHIFT));
154 			vma->size = view->partial.size;
155 			vma->size <<= PAGE_SHIFT;
156 			GEM_BUG_ON(vma->size > obj->base.size);
157 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
158 			vma->size = intel_rotation_info_size(&view->rotated);
159 			vma->size <<= PAGE_SHIFT;
160 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
161 			vma->size = intel_remapped_info_size(&view->remapped);
162 			vma->size <<= PAGE_SHIFT;
163 		}
164 	}
165 
166 	if (unlikely(vma->size > vm->total))
167 		goto err_vma;
168 
169 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
170 
171 	err = mutex_lock_interruptible(&vm->mutex);
172 	if (err) {
173 		pos = ERR_PTR(err);
174 		goto err_vma;
175 	}
176 
177 	vma->vm = vm;
178 	list_add_tail(&vma->vm_link, &vm->unbound_list);
179 
180 	spin_lock(&obj->vma.lock);
181 	if (i915_is_ggtt(vm)) {
182 		if (unlikely(overflows_type(vma->size, u32)))
183 			goto err_unlock;
184 
185 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
186 						      i915_gem_object_get_tiling(obj),
187 						      i915_gem_object_get_stride(obj));
188 		if (unlikely(vma->fence_size < vma->size || /* overflow */
189 			     vma->fence_size > vm->total))
190 			goto err_unlock;
191 
192 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
193 
194 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
195 								i915_gem_object_get_tiling(obj),
196 								i915_gem_object_get_stride(obj));
197 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
198 
199 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
200 	}
201 
202 	rb = NULL;
203 	p = &obj->vma.tree.rb_node;
204 	while (*p) {
205 		long cmp;
206 
207 		rb = *p;
208 		pos = rb_entry(rb, struct i915_vma, obj_node);
209 
210 		/*
211 		 * If the view already exists in the tree, another thread
212 		 * already created a matching vma, so return the older instance
213 		 * and dispose of ours.
214 		 */
215 		cmp = i915_vma_compare(pos, vm, view);
216 		if (cmp < 0)
217 			p = &rb->rb_right;
218 		else if (cmp > 0)
219 			p = &rb->rb_left;
220 		else
221 			goto err_unlock;
222 	}
223 	rb_link_node(&vma->obj_node, rb, p);
224 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
225 
226 	if (i915_vma_is_ggtt(vma))
227 		/*
228 		 * We put the GGTT vma at the start of the vma-list, followed
229 		 * by the ppGGTT vma. This allows us to break early when
230 		 * iterating over only the GGTT vma for an object, see
231 		 * for_each_ggtt_vma()
232 		 */
233 		list_add(&vma->obj_link, &obj->vma.list);
234 	else
235 		list_add_tail(&vma->obj_link, &obj->vma.list);
236 
237 	spin_unlock(&obj->vma.lock);
238 	mutex_unlock(&vm->mutex);
239 
240 	return vma;
241 
242 err_unlock:
243 	spin_unlock(&obj->vma.lock);
244 	list_del_init(&vma->vm_link);
245 	mutex_unlock(&vm->mutex);
246 err_vma:
247 	i915_vma_free(vma);
248 	return pos;
249 }
250 
251 static struct i915_vma *
252 i915_vma_lookup(struct drm_i915_gem_object *obj,
253 	   struct i915_address_space *vm,
254 	   const struct i915_gtt_view *view)
255 {
256 	struct rb_node *rb;
257 
258 	rb = obj->vma.tree.rb_node;
259 	while (rb) {
260 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
261 		long cmp;
262 
263 		cmp = i915_vma_compare(vma, vm, view);
264 		if (cmp == 0)
265 			return vma;
266 
267 		if (cmp < 0)
268 			rb = rb->rb_right;
269 		else
270 			rb = rb->rb_left;
271 	}
272 
273 	return NULL;
274 }
275 
276 /**
277  * i915_vma_instance - return the singleton instance of the VMA
278  * @obj: parent &struct drm_i915_gem_object to be mapped
279  * @vm: address space in which the mapping is located
280  * @view: additional mapping requirements
281  *
282  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
283  * the same @view characteristics. If a match is not found, one is created.
284  * Once created, the VMA is kept until either the object is freed, or the
285  * address space is closed.
286  *
287  * Returns the vma, or an error pointer.
288  */
289 struct i915_vma *
290 i915_vma_instance(struct drm_i915_gem_object *obj,
291 		  struct i915_address_space *vm,
292 		  const struct i915_gtt_view *view)
293 {
294 	struct i915_vma *vma;
295 
296 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
297 	GEM_BUG_ON(!kref_read(&vm->ref));
298 
299 	spin_lock(&obj->vma.lock);
300 	vma = i915_vma_lookup(obj, vm, view);
301 	spin_unlock(&obj->vma.lock);
302 
303 	/* vma_create() will resolve the race if another creates the vma */
304 	if (unlikely(!vma))
305 		vma = vma_create(obj, vm, view);
306 
307 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
308 	return vma;
309 }
310 
311 struct i915_vma_work {
312 	struct dma_fence_work base;
313 	struct i915_address_space *vm;
314 	struct i915_vm_pt_stash stash;
315 	struct i915_vma_resource *vma_res;
316 	struct drm_i915_gem_object *obj;
317 	struct i915_sw_dma_fence_cb cb;
318 	enum i915_cache_level cache_level;
319 	unsigned int flags;
320 };
321 
322 static void __vma_bind(struct dma_fence_work *work)
323 {
324 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
325 	struct i915_vma_resource *vma_res = vw->vma_res;
326 
327 	/*
328 	 * We are about the bind the object, which must mean we have already
329 	 * signaled the work to potentially clear/move the pages underneath. If
330 	 * something went wrong at that stage then the object should have
331 	 * unknown_state set, in which case we need to skip the bind.
332 	 */
333 	if (i915_gem_object_has_unknown_state(vw->obj))
334 		return;
335 
336 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
337 			       vma_res, vw->cache_level, vw->flags);
338 }
339 
340 static void __vma_release(struct dma_fence_work *work)
341 {
342 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
343 
344 	if (vw->obj)
345 		i915_gem_object_put(vw->obj);
346 
347 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
348 	if (vw->vma_res)
349 		i915_vma_resource_put(vw->vma_res);
350 }
351 
352 static const struct dma_fence_work_ops bind_ops = {
353 	.name = "bind",
354 	.work = __vma_bind,
355 	.release = __vma_release,
356 };
357 
358 struct i915_vma_work *i915_vma_work(void)
359 {
360 	struct i915_vma_work *vw;
361 
362 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
363 	if (!vw)
364 		return NULL;
365 
366 	dma_fence_work_init(&vw->base, &bind_ops);
367 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
368 
369 	return vw;
370 }
371 
372 int i915_vma_wait_for_bind(struct i915_vma *vma)
373 {
374 	int err = 0;
375 
376 	if (rcu_access_pointer(vma->active.excl.fence)) {
377 		struct dma_fence *fence;
378 
379 		rcu_read_lock();
380 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
381 		rcu_read_unlock();
382 		if (fence) {
383 			err = dma_fence_wait(fence, true);
384 			dma_fence_put(fence);
385 		}
386 	}
387 
388 	return err;
389 }
390 
391 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
392 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
393 {
394 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
395 	int err;
396 
397 	if (!fence)
398 		return 0;
399 
400 	if (dma_fence_is_signaled(fence))
401 		err = fence->error;
402 	else
403 		err = -EBUSY;
404 
405 	dma_fence_put(fence);
406 
407 	return err;
408 }
409 #else
410 #define i915_vma_verify_bind_complete(_vma) 0
411 #endif
412 
413 I915_SELFTEST_EXPORT void
414 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
415 				struct i915_vma *vma)
416 {
417 	struct drm_i915_gem_object *obj = vma->obj;
418 
419 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
420 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
421 			       i915_gem_object_is_lmem(obj), obj->mm.region,
422 			       vma->ops, vma->private, __i915_vma_offset(vma),
423 			       __i915_vma_size(vma), vma->size, vma->guard);
424 }
425 
426 /**
427  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
428  * @vma: VMA to map
429  * @cache_level: mapping cache level
430  * @flags: flags like global or local mapping
431  * @work: preallocated worker for allocating and binding the PTE
432  * @vma_res: pointer to a preallocated vma resource. The resource is either
433  * consumed or freed.
434  *
435  * DMA addresses are taken from the scatter-gather table of this object (or of
436  * this VMA in case of non-default GGTT views) and PTE entries set up.
437  * Note that DMA addresses are also the only part of the SG table we care about.
438  */
439 int i915_vma_bind(struct i915_vma *vma,
440 		  enum i915_cache_level cache_level,
441 		  u32 flags,
442 		  struct i915_vma_work *work,
443 		  struct i915_vma_resource *vma_res)
444 {
445 	u32 bind_flags;
446 	u32 vma_flags;
447 	int ret;
448 
449 	lockdep_assert_held(&vma->vm->mutex);
450 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
451 	GEM_BUG_ON(vma->size > i915_vma_size(vma));
452 
453 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
454 					      vma->node.size,
455 					      vma->vm->total))) {
456 		i915_vma_resource_free(vma_res);
457 		return -ENODEV;
458 	}
459 
460 	if (GEM_DEBUG_WARN_ON(!flags)) {
461 		i915_vma_resource_free(vma_res);
462 		return -EINVAL;
463 	}
464 
465 	bind_flags = flags;
466 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
467 
468 	vma_flags = atomic_read(&vma->flags);
469 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
470 
471 	bind_flags &= ~vma_flags;
472 	if (bind_flags == 0) {
473 		i915_vma_resource_free(vma_res);
474 		return 0;
475 	}
476 
477 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
478 
479 	/* Wait for or await async unbinds touching our range */
480 	if (work && bind_flags & vma->vm->bind_async_flags)
481 		ret = i915_vma_resource_bind_dep_await(vma->vm,
482 						       &work->base.chain,
483 						       vma->node.start,
484 						       vma->node.size,
485 						       true,
486 						       GFP_NOWAIT |
487 						       __GFP_RETRY_MAYFAIL |
488 						       __GFP_NOWARN);
489 	else
490 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
491 						      vma->node.size, true);
492 	if (ret) {
493 		i915_vma_resource_free(vma_res);
494 		return ret;
495 	}
496 
497 	if (vma->resource || !vma_res) {
498 		/* Rebinding with an additional I915_VMA_*_BIND */
499 		GEM_WARN_ON(!vma_flags);
500 		i915_vma_resource_free(vma_res);
501 	} else {
502 		i915_vma_resource_init_from_vma(vma_res, vma);
503 		vma->resource = vma_res;
504 	}
505 	trace_i915_vma_bind(vma, bind_flags);
506 	if (work && bind_flags & vma->vm->bind_async_flags) {
507 		struct dma_fence *prev;
508 
509 		work->vma_res = i915_vma_resource_get(vma->resource);
510 		work->cache_level = cache_level;
511 		work->flags = bind_flags;
512 
513 		/*
514 		 * Note we only want to chain up to the migration fence on
515 		 * the pages (not the object itself). As we don't track that,
516 		 * yet, we have to use the exclusive fence instead.
517 		 *
518 		 * Also note that we do not want to track the async vma as
519 		 * part of the obj->resv->excl_fence as it only affects
520 		 * execution and not content or object's backing store lifetime.
521 		 */
522 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
523 		if (prev) {
524 			__i915_sw_fence_await_dma_fence(&work->base.chain,
525 							prev,
526 							&work->cb);
527 			dma_fence_put(prev);
528 		}
529 
530 		work->base.dma.error = 0; /* enable the queue_work() */
531 		work->obj = i915_gem_object_get(vma->obj);
532 	} else {
533 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
534 		if (ret) {
535 			i915_vma_resource_free(vma->resource);
536 			vma->resource = NULL;
537 
538 			return ret;
539 		}
540 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
541 				   bind_flags);
542 	}
543 
544 	atomic_or(bind_flags, &vma->flags);
545 	return 0;
546 }
547 
548 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
549 {
550 	void __iomem *ptr;
551 	int err;
552 
553 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
554 		return IOMEM_ERR_PTR(-EINVAL);
555 
556 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
557 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
558 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
559 
560 	ptr = READ_ONCE(vma->iomap);
561 	if (ptr == NULL) {
562 		/*
563 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
564 		 * instead, which already supports mapping non-contiguous chunks
565 		 * of pages, that way we can also drop the
566 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
567 		 */
568 		if (i915_gem_object_is_lmem(vma->obj)) {
569 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
570 							  vma->obj->base.size);
571 		} else if (i915_vma_is_map_and_fenceable(vma)) {
572 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
573 						i915_vma_offset(vma),
574 						i915_vma_size(vma));
575 		} else {
576 			ptr = (void __iomem *)
577 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
578 			if (IS_ERR(ptr)) {
579 				err = PTR_ERR(ptr);
580 				goto err;
581 			}
582 			ptr = page_pack_bits(ptr, 1);
583 		}
584 
585 		if (ptr == NULL) {
586 			err = -ENOMEM;
587 			goto err;
588 		}
589 
590 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
591 			if (page_unmask_bits(ptr))
592 				__i915_gem_object_release_map(vma->obj);
593 			else
594 				io_mapping_unmap(ptr);
595 			ptr = vma->iomap;
596 		}
597 	}
598 
599 	__i915_vma_pin(vma);
600 
601 	err = i915_vma_pin_fence(vma);
602 	if (err)
603 		goto err_unpin;
604 
605 	i915_vma_set_ggtt_write(vma);
606 
607 	/* NB Access through the GTT requires the device to be awake. */
608 	return page_mask_bits(ptr);
609 
610 err_unpin:
611 	__i915_vma_unpin(vma);
612 err:
613 	return IOMEM_ERR_PTR(err);
614 }
615 
616 void i915_vma_flush_writes(struct i915_vma *vma)
617 {
618 	if (i915_vma_unset_ggtt_write(vma))
619 		intel_gt_flush_ggtt_writes(vma->vm->gt);
620 }
621 
622 void i915_vma_unpin_iomap(struct i915_vma *vma)
623 {
624 	GEM_BUG_ON(vma->iomap == NULL);
625 
626 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
627 
628 	i915_vma_flush_writes(vma);
629 
630 	i915_vma_unpin_fence(vma);
631 	i915_vma_unpin(vma);
632 }
633 
634 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
635 {
636 	struct i915_vma *vma;
637 	struct drm_i915_gem_object *obj;
638 
639 	vma = fetch_and_zero(p_vma);
640 	if (!vma)
641 		return;
642 
643 	obj = vma->obj;
644 	GEM_BUG_ON(!obj);
645 
646 	i915_vma_unpin(vma);
647 
648 	if (flags & I915_VMA_RELEASE_MAP)
649 		i915_gem_object_unpin_map(obj);
650 
651 	i915_gem_object_put(obj);
652 }
653 
654 bool i915_vma_misplaced(const struct i915_vma *vma,
655 			u64 size, u64 alignment, u64 flags)
656 {
657 	if (!drm_mm_node_allocated(&vma->node))
658 		return false;
659 
660 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
661 		return true;
662 
663 	if (i915_vma_size(vma) < size)
664 		return true;
665 
666 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
667 	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
668 		return true;
669 
670 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
671 		return true;
672 
673 	if (flags & PIN_OFFSET_BIAS &&
674 	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
675 		return true;
676 
677 	if (flags & PIN_OFFSET_FIXED &&
678 	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
679 		return true;
680 
681 	if (flags & PIN_OFFSET_GUARD &&
682 	    vma->guard < (flags & PIN_OFFSET_MASK))
683 		return true;
684 
685 	return false;
686 }
687 
688 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
689 {
690 	bool mappable, fenceable;
691 
692 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
693 	GEM_BUG_ON(!vma->fence_size);
694 
695 	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
696 		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
697 
698 	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
699 		   i915_vm_to_ggtt(vma->vm)->mappable_end;
700 
701 	if (mappable && fenceable)
702 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
703 	else
704 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
705 }
706 
707 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
708 {
709 	struct drm_mm_node *node = &vma->node;
710 	struct drm_mm_node *other;
711 
712 	/*
713 	 * On some machines we have to be careful when putting differing types
714 	 * of snoopable memory together to avoid the prefetcher crossing memory
715 	 * domains and dying. During vm initialisation, we decide whether or not
716 	 * these constraints apply and set the drm_mm.color_adjust
717 	 * appropriately.
718 	 */
719 	if (!i915_vm_has_cache_coloring(vma->vm))
720 		return true;
721 
722 	/* Only valid to be called on an already inserted vma */
723 	GEM_BUG_ON(!drm_mm_node_allocated(node));
724 	GEM_BUG_ON(list_empty(&node->node_list));
725 
726 	other = list_prev_entry(node, node_list);
727 	if (i915_node_color_differs(other, color) &&
728 	    !drm_mm_hole_follows(other))
729 		return false;
730 
731 	other = list_next_entry(node, node_list);
732 	if (i915_node_color_differs(other, color) &&
733 	    !drm_mm_hole_follows(node))
734 		return false;
735 
736 	return true;
737 }
738 
739 /**
740  * i915_vma_insert - finds a slot for the vma in its address space
741  * @vma: the vma
742  * @ww: An optional struct i915_gem_ww_ctx
743  * @size: requested size in bytes (can be larger than the VMA)
744  * @alignment: required alignment
745  * @flags: mask of PIN_* flags to use
746  *
747  * First we try to allocate some free space that meets the requirements for
748  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
749  * preferrably the oldest idle entry to make room for the new VMA.
750  *
751  * Returns:
752  * 0 on success, negative error code otherwise.
753  */
754 static int
755 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
756 		u64 size, u64 alignment, u64 flags)
757 {
758 	unsigned long color, guard;
759 	u64 start, end;
760 	int ret;
761 
762 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
763 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
764 	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
765 
766 	size = max(size, vma->size);
767 	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
768 	if (flags & PIN_MAPPABLE) {
769 		size = max_t(typeof(size), size, vma->fence_size);
770 		alignment = max_t(typeof(alignment),
771 				  alignment, vma->fence_alignment);
772 	}
773 
774 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
775 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
776 	GEM_BUG_ON(!is_power_of_2(alignment));
777 
778 	guard = vma->guard; /* retain guard across rebinds */
779 	if (flags & PIN_OFFSET_GUARD) {
780 		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
781 		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
782 	}
783 	/*
784 	 * As we align the node upon insertion, but the hardware gets
785 	 * node.start + guard, the easiest way to make that work is
786 	 * to make the guard a multiple of the alignment size.
787 	 */
788 	guard = ALIGN(guard, alignment);
789 
790 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
791 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
792 
793 	end = vma->vm->total;
794 	if (flags & PIN_MAPPABLE)
795 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
796 	if (flags & PIN_ZONE_4G)
797 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
798 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
799 
800 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
801 
802 	/*
803 	 * If binding the object/GGTT view requires more space than the entire
804 	 * aperture has, reject it early before evicting everything in a vain
805 	 * attempt to find space.
806 	 */
807 	if (size > end - 2 * guard) {
808 		drm_dbg(&to_i915(vma->obj->base.dev)->drm,
809 			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
810 			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
811 		return -ENOSPC;
812 	}
813 
814 	color = 0;
815 
816 	if (i915_vm_has_cache_coloring(vma->vm))
817 		color = vma->obj->cache_level;
818 
819 	if (flags & PIN_OFFSET_FIXED) {
820 		u64 offset = flags & PIN_OFFSET_MASK;
821 		if (!IS_ALIGNED(offset, alignment) ||
822 		    range_overflows(offset, size, end))
823 			return -EINVAL;
824 		/*
825 		 * The caller knows not of the guard added by others and
826 		 * requests for the offset of the start of its buffer
827 		 * to be fixed, which may not be the same as the position
828 		 * of the vma->node due to the guard pages.
829 		 */
830 		if (offset < guard || offset + size > end - guard)
831 			return -ENOSPC;
832 
833 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
834 					   size + 2 * guard,
835 					   offset - guard,
836 					   color, flags);
837 		if (ret)
838 			return ret;
839 	} else {
840 		size += 2 * guard;
841 		/*
842 		 * We only support huge gtt pages through the 48b PPGTT,
843 		 * however we also don't want to force any alignment for
844 		 * objects which need to be tightly packed into the low 32bits.
845 		 *
846 		 * Note that we assume that GGTT are limited to 4GiB for the
847 		 * forseeable future. See also i915_ggtt_offset().
848 		 */
849 		if (upper_32_bits(end - 1) &&
850 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
851 		    !HAS_64K_PAGES(vma->vm->i915)) {
852 			/*
853 			 * We can't mix 64K and 4K PTEs in the same page-table
854 			 * (2M block), and so to avoid the ugliness and
855 			 * complexity of coloring we opt for just aligning 64K
856 			 * objects to 2M.
857 			 */
858 			u64 page_alignment =
859 				rounddown_pow_of_two(vma->page_sizes.sg |
860 						     I915_GTT_PAGE_SIZE_2M);
861 
862 			/*
863 			 * Check we don't expand for the limited Global GTT
864 			 * (mappable aperture is even more precious!). This
865 			 * also checks that we exclude the aliasing-ppgtt.
866 			 */
867 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
868 
869 			alignment = max(alignment, page_alignment);
870 
871 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
872 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
873 		}
874 
875 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
876 					  size, alignment, color,
877 					  start, end, flags);
878 		if (ret)
879 			return ret;
880 
881 		GEM_BUG_ON(vma->node.start < start);
882 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
883 	}
884 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
885 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
886 
887 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
888 	vma->guard = guard;
889 
890 	return 0;
891 }
892 
893 static void
894 i915_vma_detach(struct i915_vma *vma)
895 {
896 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
897 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
898 
899 	/*
900 	 * And finally now the object is completely decoupled from this
901 	 * vma, we can drop its hold on the backing storage and allow
902 	 * it to be reaped by the shrinker.
903 	 */
904 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
905 }
906 
907 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
908 {
909 	unsigned int bound;
910 
911 	bound = atomic_read(&vma->flags);
912 
913 	if (flags & PIN_VALIDATE) {
914 		flags &= I915_VMA_BIND_MASK;
915 
916 		return (flags & bound) == flags;
917 	}
918 
919 	/* with the lock mandatory for unbind, we don't race here */
920 	flags &= I915_VMA_BIND_MASK;
921 	do {
922 		if (unlikely(flags & ~bound))
923 			return false;
924 
925 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
926 			return false;
927 
928 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
929 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
930 
931 	return true;
932 }
933 
934 static struct scatterlist *
935 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
936 	     unsigned int width, unsigned int height,
937 	     unsigned int src_stride, unsigned int dst_stride,
938 	     struct sg_table *st, struct scatterlist *sg)
939 {
940 	unsigned int column, row;
941 	pgoff_t src_idx;
942 
943 	for (column = 0; column < width; column++) {
944 		unsigned int left;
945 
946 		src_idx = src_stride * (height - 1) + column + offset;
947 		for (row = 0; row < height; row++) {
948 			st->nents++;
949 			/*
950 			 * We don't need the pages, but need to initialize
951 			 * the entries so the sg list can be happily traversed.
952 			 * The only thing we need are DMA addresses.
953 			 */
954 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
955 			sg_dma_address(sg) =
956 				i915_gem_object_get_dma_address(obj, src_idx);
957 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
958 			sg = sg_next(sg);
959 			src_idx -= src_stride;
960 		}
961 
962 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
963 
964 		if (!left)
965 			continue;
966 
967 		st->nents++;
968 
969 		/*
970 		 * The DE ignores the PTEs for the padding tiles, the sg entry
971 		 * here is just a conenience to indicate how many padding PTEs
972 		 * to insert at this spot.
973 		 */
974 		sg_set_page(sg, NULL, left, 0);
975 		sg_dma_address(sg) = 0;
976 		sg_dma_len(sg) = left;
977 		sg = sg_next(sg);
978 	}
979 
980 	return sg;
981 }
982 
983 static noinline struct sg_table *
984 intel_rotate_pages(struct intel_rotation_info *rot_info,
985 		   struct drm_i915_gem_object *obj)
986 {
987 	unsigned int size = intel_rotation_info_size(rot_info);
988 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
989 	struct sg_table *st;
990 	struct scatterlist *sg;
991 	int ret = -ENOMEM;
992 	int i;
993 
994 	/* Allocate target SG list. */
995 	st = kmalloc(sizeof(*st), GFP_KERNEL);
996 	if (!st)
997 		goto err_st_alloc;
998 
999 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1000 	if (ret)
1001 		goto err_sg_alloc;
1002 
1003 	st->nents = 0;
1004 	sg = st->sgl;
1005 
1006 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1007 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1008 				  rot_info->plane[i].width, rot_info->plane[i].height,
1009 				  rot_info->plane[i].src_stride,
1010 				  rot_info->plane[i].dst_stride,
1011 				  st, sg);
1012 
1013 	return st;
1014 
1015 err_sg_alloc:
1016 	kfree(st);
1017 err_st_alloc:
1018 
1019 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1020 		obj->base.size, rot_info->plane[0].width,
1021 		rot_info->plane[0].height, size);
1022 
1023 	return ERR_PTR(ret);
1024 }
1025 
1026 static struct scatterlist *
1027 add_padding_pages(unsigned int count,
1028 		  struct sg_table *st, struct scatterlist *sg)
1029 {
1030 	st->nents++;
1031 
1032 	/*
1033 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1034 	 * here is just a convenience to indicate how many padding PTEs
1035 	 * to insert at this spot.
1036 	 */
1037 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1038 	sg_dma_address(sg) = 0;
1039 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1040 	sg = sg_next(sg);
1041 
1042 	return sg;
1043 }
1044 
1045 static struct scatterlist *
1046 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1047 			      unsigned long offset, unsigned int alignment_pad,
1048 			      unsigned int width, unsigned int height,
1049 			      unsigned int src_stride, unsigned int dst_stride,
1050 			      struct sg_table *st, struct scatterlist *sg,
1051 			      unsigned int *gtt_offset)
1052 {
1053 	unsigned int row;
1054 
1055 	if (!width || !height)
1056 		return sg;
1057 
1058 	if (alignment_pad)
1059 		sg = add_padding_pages(alignment_pad, st, sg);
1060 
1061 	for (row = 0; row < height; row++) {
1062 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1063 
1064 		while (left) {
1065 			dma_addr_t addr;
1066 			unsigned int length;
1067 
1068 			/*
1069 			 * We don't need the pages, but need to initialize
1070 			 * the entries so the sg list can be happily traversed.
1071 			 * The only thing we need are DMA addresses.
1072 			 */
1073 
1074 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1075 
1076 			length = min(left, length);
1077 
1078 			st->nents++;
1079 
1080 			sg_set_page(sg, NULL, length, 0);
1081 			sg_dma_address(sg) = addr;
1082 			sg_dma_len(sg) = length;
1083 			sg = sg_next(sg);
1084 
1085 			offset += length / I915_GTT_PAGE_SIZE;
1086 			left -= length;
1087 		}
1088 
1089 		offset += src_stride - width;
1090 
1091 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1092 
1093 		if (!left)
1094 			continue;
1095 
1096 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1097 	}
1098 
1099 	*gtt_offset += alignment_pad + dst_stride * height;
1100 
1101 	return sg;
1102 }
1103 
1104 static struct scatterlist *
1105 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1106 		       pgoff_t obj_offset,
1107 		       unsigned int count,
1108 		       struct sg_table *st, struct scatterlist *sg)
1109 {
1110 	struct scatterlist *iter;
1111 	unsigned int offset;
1112 
1113 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1114 	GEM_BUG_ON(!iter);
1115 
1116 	do {
1117 		unsigned int len;
1118 
1119 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1120 			  count << PAGE_SHIFT);
1121 		sg_set_page(sg, NULL, len, 0);
1122 		sg_dma_address(sg) =
1123 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1124 		sg_dma_len(sg) = len;
1125 
1126 		st->nents++;
1127 		count -= len >> PAGE_SHIFT;
1128 		if (count == 0)
1129 			return sg;
1130 
1131 		sg = __sg_next(sg);
1132 		iter = __sg_next(iter);
1133 		offset = 0;
1134 	} while (1);
1135 }
1136 
1137 static struct scatterlist *
1138 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1139 			       pgoff_t obj_offset, unsigned int alignment_pad,
1140 			       unsigned int size,
1141 			       struct sg_table *st, struct scatterlist *sg,
1142 			       unsigned int *gtt_offset)
1143 {
1144 	if (!size)
1145 		return sg;
1146 
1147 	if (alignment_pad)
1148 		sg = add_padding_pages(alignment_pad, st, sg);
1149 
1150 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1151 	sg = sg_next(sg);
1152 
1153 	*gtt_offset += alignment_pad + size;
1154 
1155 	return sg;
1156 }
1157 
1158 static struct scatterlist *
1159 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1160 			struct drm_i915_gem_object *obj,
1161 			int color_plane,
1162 			struct sg_table *st, struct scatterlist *sg,
1163 			unsigned int *gtt_offset)
1164 {
1165 	unsigned int alignment_pad = 0;
1166 
1167 	if (rem_info->plane_alignment)
1168 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1169 
1170 	if (rem_info->plane[color_plane].linear)
1171 		sg = remap_linear_color_plane_pages(obj,
1172 						    rem_info->plane[color_plane].offset,
1173 						    alignment_pad,
1174 						    rem_info->plane[color_plane].size,
1175 						    st, sg,
1176 						    gtt_offset);
1177 
1178 	else
1179 		sg = remap_tiled_color_plane_pages(obj,
1180 						   rem_info->plane[color_plane].offset,
1181 						   alignment_pad,
1182 						   rem_info->plane[color_plane].width,
1183 						   rem_info->plane[color_plane].height,
1184 						   rem_info->plane[color_plane].src_stride,
1185 						   rem_info->plane[color_plane].dst_stride,
1186 						   st, sg,
1187 						   gtt_offset);
1188 
1189 	return sg;
1190 }
1191 
1192 static noinline struct sg_table *
1193 intel_remap_pages(struct intel_remapped_info *rem_info,
1194 		  struct drm_i915_gem_object *obj)
1195 {
1196 	unsigned int size = intel_remapped_info_size(rem_info);
1197 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1198 	struct sg_table *st;
1199 	struct scatterlist *sg;
1200 	unsigned int gtt_offset = 0;
1201 	int ret = -ENOMEM;
1202 	int i;
1203 
1204 	/* Allocate target SG list. */
1205 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1206 	if (!st)
1207 		goto err_st_alloc;
1208 
1209 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1210 	if (ret)
1211 		goto err_sg_alloc;
1212 
1213 	st->nents = 0;
1214 	sg = st->sgl;
1215 
1216 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1217 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1218 
1219 	i915_sg_trim(st);
1220 
1221 	return st;
1222 
1223 err_sg_alloc:
1224 	kfree(st);
1225 err_st_alloc:
1226 
1227 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1228 		obj->base.size, rem_info->plane[0].width,
1229 		rem_info->plane[0].height, size);
1230 
1231 	return ERR_PTR(ret);
1232 }
1233 
1234 static noinline struct sg_table *
1235 intel_partial_pages(const struct i915_gtt_view *view,
1236 		    struct drm_i915_gem_object *obj)
1237 {
1238 	struct sg_table *st;
1239 	struct scatterlist *sg;
1240 	unsigned int count = view->partial.size;
1241 	int ret = -ENOMEM;
1242 
1243 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1244 	if (!st)
1245 		goto err_st_alloc;
1246 
1247 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1248 	if (ret)
1249 		goto err_sg_alloc;
1250 
1251 	st->nents = 0;
1252 
1253 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1254 
1255 	sg_mark_end(sg);
1256 	i915_sg_trim(st); /* Drop any unused tail entries. */
1257 
1258 	return st;
1259 
1260 err_sg_alloc:
1261 	kfree(st);
1262 err_st_alloc:
1263 	return ERR_PTR(ret);
1264 }
1265 
1266 static int
1267 __i915_vma_get_pages(struct i915_vma *vma)
1268 {
1269 	struct sg_table *pages;
1270 
1271 	/*
1272 	 * The vma->pages are only valid within the lifespan of the borrowed
1273 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1274 	 * must be the vma->pages. A simple rule is that vma->pages must only
1275 	 * be accessed when the obj->mm.pages are pinned.
1276 	 */
1277 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1278 
1279 	switch (vma->gtt_view.type) {
1280 	default:
1281 		GEM_BUG_ON(vma->gtt_view.type);
1282 		fallthrough;
1283 	case I915_GTT_VIEW_NORMAL:
1284 		pages = vma->obj->mm.pages;
1285 		break;
1286 
1287 	case I915_GTT_VIEW_ROTATED:
1288 		pages =
1289 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1290 		break;
1291 
1292 	case I915_GTT_VIEW_REMAPPED:
1293 		pages =
1294 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1295 		break;
1296 
1297 	case I915_GTT_VIEW_PARTIAL:
1298 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1299 		break;
1300 	}
1301 
1302 	if (IS_ERR(pages)) {
1303 		drm_err(&vma->vm->i915->drm,
1304 			"Failed to get pages for VMA view type %u (%ld)!\n",
1305 			vma->gtt_view.type, PTR_ERR(pages));
1306 		return PTR_ERR(pages);
1307 	}
1308 
1309 	vma->pages = pages;
1310 
1311 	return 0;
1312 }
1313 
1314 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1315 {
1316 	int err;
1317 
1318 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1319 		return 0;
1320 
1321 	err = i915_gem_object_pin_pages(vma->obj);
1322 	if (err)
1323 		return err;
1324 
1325 	err = __i915_vma_get_pages(vma);
1326 	if (err)
1327 		goto err_unpin;
1328 
1329 	vma->page_sizes = vma->obj->mm.page_sizes;
1330 	atomic_inc(&vma->pages_count);
1331 
1332 	return 0;
1333 
1334 err_unpin:
1335 	__i915_gem_object_unpin_pages(vma->obj);
1336 
1337 	return err;
1338 }
1339 
1340 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1341 {
1342 	/*
1343 	 * Before we release the pages that were bound by this vma, we
1344 	 * must invalidate all the TLBs that may still have a reference
1345 	 * back to our physical address. It only needs to be done once,
1346 	 * so after updating the PTE to point away from the pages, record
1347 	 * the most recent TLB invalidation seqno, and if we have not yet
1348 	 * flushed the TLBs upon release, perform a full invalidation.
1349 	 */
1350 	WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1351 }
1352 
1353 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1354 {
1355 	/* We allocate under vma_get_pages, so beware the shrinker */
1356 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1357 
1358 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1359 		if (vma->pages != vma->obj->mm.pages) {
1360 			sg_free_table(vma->pages);
1361 			kfree(vma->pages);
1362 		}
1363 		vma->pages = NULL;
1364 
1365 		i915_gem_object_unpin_pages(vma->obj);
1366 	}
1367 }
1368 
1369 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1370 {
1371 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1372 		return;
1373 
1374 	__vma_put_pages(vma, 1);
1375 }
1376 
1377 static void vma_unbind_pages(struct i915_vma *vma)
1378 {
1379 	unsigned int count;
1380 
1381 	lockdep_assert_held(&vma->vm->mutex);
1382 
1383 	/* The upper portion of pages_count is the number of bindings */
1384 	count = atomic_read(&vma->pages_count);
1385 	count >>= I915_VMA_PAGES_BIAS;
1386 	GEM_BUG_ON(!count);
1387 
1388 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1389 }
1390 
1391 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1392 		    u64 size, u64 alignment, u64 flags)
1393 {
1394 	struct i915_vma_work *work = NULL;
1395 	struct dma_fence *moving = NULL;
1396 	struct i915_vma_resource *vma_res = NULL;
1397 	intel_wakeref_t wakeref = 0;
1398 	unsigned int bound;
1399 	int err;
1400 
1401 	assert_vma_held(vma);
1402 	GEM_BUG_ON(!ww);
1403 
1404 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1405 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1406 
1407 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1408 
1409 	/* First try and grab the pin without rebinding the vma */
1410 	if (try_qad_pin(vma, flags))
1411 		return 0;
1412 
1413 	err = i915_vma_get_pages(vma);
1414 	if (err)
1415 		return err;
1416 
1417 	if (flags & PIN_GLOBAL)
1418 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1419 
1420 	if (flags & vma->vm->bind_async_flags) {
1421 		/* lock VM */
1422 		err = i915_vm_lock_objects(vma->vm, ww);
1423 		if (err)
1424 			goto err_rpm;
1425 
1426 		work = i915_vma_work();
1427 		if (!work) {
1428 			err = -ENOMEM;
1429 			goto err_rpm;
1430 		}
1431 
1432 		work->vm = vma->vm;
1433 
1434 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1435 		if (err)
1436 			goto err_rpm;
1437 
1438 		dma_fence_work_chain(&work->base, moving);
1439 
1440 		/* Allocate enough page directories to used PTE */
1441 		if (vma->vm->allocate_va_range) {
1442 			err = i915_vm_alloc_pt_stash(vma->vm,
1443 						     &work->stash,
1444 						     vma->size);
1445 			if (err)
1446 				goto err_fence;
1447 
1448 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1449 			if (err)
1450 				goto err_fence;
1451 		}
1452 	}
1453 
1454 	vma_res = i915_vma_resource_alloc();
1455 	if (IS_ERR(vma_res)) {
1456 		err = PTR_ERR(vma_res);
1457 		goto err_fence;
1458 	}
1459 
1460 	/*
1461 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1462 	 *
1463 	 * We conflate the Global GTT with the user's vma when using the
1464 	 * aliasing-ppgtt, but it is still vitally important to try and
1465 	 * keep the use cases distinct. For example, userptr objects are
1466 	 * not allowed inside the Global GTT as that will cause lock
1467 	 * inversions when we have to evict them the mmu_notifier callbacks -
1468 	 * but they are allowed to be part of the user ppGTT which can never
1469 	 * be mapped. As such we try to give the distinct users of the same
1470 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1471 	 * and i915_ppgtt separate].
1472 	 *
1473 	 * NB this may cause us to mask real lock inversions -- while the
1474 	 * code is safe today, lockdep may not be able to spot future
1475 	 * transgressions.
1476 	 */
1477 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1478 					      !(flags & PIN_GLOBAL));
1479 	if (err)
1480 		goto err_vma_res;
1481 
1482 	/* No more allocations allowed now we hold vm->mutex */
1483 
1484 	if (unlikely(i915_vma_is_closed(vma))) {
1485 		err = -ENOENT;
1486 		goto err_unlock;
1487 	}
1488 
1489 	bound = atomic_read(&vma->flags);
1490 	if (unlikely(bound & I915_VMA_ERROR)) {
1491 		err = -ENOMEM;
1492 		goto err_unlock;
1493 	}
1494 
1495 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1496 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1497 		goto err_unlock;
1498 	}
1499 
1500 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1501 		if (!(flags & PIN_VALIDATE))
1502 			__i915_vma_pin(vma);
1503 		goto err_unlock;
1504 	}
1505 
1506 	err = i915_active_acquire(&vma->active);
1507 	if (err)
1508 		goto err_unlock;
1509 
1510 	if (!(bound & I915_VMA_BIND_MASK)) {
1511 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1512 		if (err)
1513 			goto err_active;
1514 
1515 		if (i915_is_ggtt(vma->vm))
1516 			__i915_vma_set_map_and_fenceable(vma);
1517 	}
1518 
1519 	GEM_BUG_ON(!vma->pages);
1520 	err = i915_vma_bind(vma,
1521 			    vma->obj->cache_level,
1522 			    flags, work, vma_res);
1523 	vma_res = NULL;
1524 	if (err)
1525 		goto err_remove;
1526 
1527 	/* There should only be at most 2 active bindings (user, global) */
1528 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1529 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1530 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1531 
1532 	if (!(flags & PIN_VALIDATE)) {
1533 		__i915_vma_pin(vma);
1534 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1535 	}
1536 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1537 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1538 
1539 err_remove:
1540 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1541 		i915_vma_detach(vma);
1542 		drm_mm_remove_node(&vma->node);
1543 	}
1544 err_active:
1545 	i915_active_release(&vma->active);
1546 err_unlock:
1547 	mutex_unlock(&vma->vm->mutex);
1548 err_vma_res:
1549 	i915_vma_resource_free(vma_res);
1550 err_fence:
1551 	if (work)
1552 		dma_fence_work_commit_imm(&work->base);
1553 err_rpm:
1554 	if (wakeref)
1555 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1556 
1557 	if (moving)
1558 		dma_fence_put(moving);
1559 
1560 	i915_vma_put_pages(vma);
1561 	return err;
1562 }
1563 
1564 static void flush_idle_contexts(struct intel_gt *gt)
1565 {
1566 	struct intel_engine_cs *engine;
1567 	enum intel_engine_id id;
1568 
1569 	for_each_engine(engine, gt, id)
1570 		intel_engine_flush_barriers(engine);
1571 
1572 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1573 }
1574 
1575 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1576 			   u32 align, unsigned int flags)
1577 {
1578 	struct i915_address_space *vm = vma->vm;
1579 	struct intel_gt *gt;
1580 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1581 	int err;
1582 
1583 	do {
1584 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1585 
1586 		if (err != -ENOSPC) {
1587 			if (!err) {
1588 				err = i915_vma_wait_for_bind(vma);
1589 				if (err)
1590 					i915_vma_unpin(vma);
1591 			}
1592 			return err;
1593 		}
1594 
1595 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1596 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1597 			flush_idle_contexts(gt);
1598 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1599 			/*
1600 			 * We pass NULL ww here, as we don't want to unbind
1601 			 * locked objects when called from execbuf when pinning
1602 			 * is removed. This would probably regress badly.
1603 			 */
1604 			i915_gem_evict_vm(vm, NULL, NULL);
1605 			mutex_unlock(&vm->mutex);
1606 		}
1607 	} while (1);
1608 }
1609 
1610 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1611 		  u32 align, unsigned int flags)
1612 {
1613 	struct i915_gem_ww_ctx _ww;
1614 	int err;
1615 
1616 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1617 
1618 	if (ww)
1619 		return __i915_ggtt_pin(vma, ww, align, flags);
1620 
1621 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1622 
1623 	for_i915_gem_ww(&_ww, err, true) {
1624 		err = i915_gem_object_lock(vma->obj, &_ww);
1625 		if (!err)
1626 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1627 	}
1628 
1629 	return err;
1630 }
1631 
1632 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1633 {
1634 	/*
1635 	 * We defer actually closing, unbinding and destroying the VMA until
1636 	 * the next idle point, or if the object is freed in the meantime. By
1637 	 * postponing the unbind, we allow for it to be resurrected by the
1638 	 * client, avoiding the work required to rebind the VMA. This is
1639 	 * advantageous for DRI, where the client/server pass objects
1640 	 * between themselves, temporarily opening a local VMA to the
1641 	 * object, and then closing it again. The same object is then reused
1642 	 * on the next frame (or two, depending on the depth of the swap queue)
1643 	 * causing us to rebind the VMA once more. This ends up being a lot
1644 	 * of wasted work for the steady state.
1645 	 */
1646 	GEM_BUG_ON(i915_vma_is_closed(vma));
1647 	list_add(&vma->closed_link, &gt->closed_vma);
1648 }
1649 
1650 void i915_vma_close(struct i915_vma *vma)
1651 {
1652 	struct intel_gt *gt = vma->vm->gt;
1653 	unsigned long flags;
1654 
1655 	if (i915_vma_is_ggtt(vma))
1656 		return;
1657 
1658 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1659 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1660 					&gt->closed_lock,
1661 					flags)) {
1662 		__vma_close(vma, gt);
1663 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1664 	}
1665 }
1666 
1667 static void __i915_vma_remove_closed(struct i915_vma *vma)
1668 {
1669 	list_del_init(&vma->closed_link);
1670 }
1671 
1672 void i915_vma_reopen(struct i915_vma *vma)
1673 {
1674 	struct intel_gt *gt = vma->vm->gt;
1675 
1676 	spin_lock_irq(&gt->closed_lock);
1677 	if (i915_vma_is_closed(vma))
1678 		__i915_vma_remove_closed(vma);
1679 	spin_unlock_irq(&gt->closed_lock);
1680 }
1681 
1682 static void force_unbind(struct i915_vma *vma)
1683 {
1684 	if (!drm_mm_node_allocated(&vma->node))
1685 		return;
1686 
1687 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1688 	WARN_ON(__i915_vma_unbind(vma));
1689 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1690 }
1691 
1692 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1693 			       bool vm_ddestroy)
1694 {
1695 	struct drm_i915_gem_object *obj = vma->obj;
1696 
1697 	GEM_BUG_ON(i915_vma_is_active(vma));
1698 
1699 	spin_lock(&obj->vma.lock);
1700 	list_del(&vma->obj_link);
1701 	if (!RB_EMPTY_NODE(&vma->obj_node))
1702 		rb_erase(&vma->obj_node, &obj->vma.tree);
1703 
1704 	spin_unlock(&obj->vma.lock);
1705 
1706 	spin_lock_irq(&gt->closed_lock);
1707 	__i915_vma_remove_closed(vma);
1708 	spin_unlock_irq(&gt->closed_lock);
1709 
1710 	if (vm_ddestroy)
1711 		i915_vm_resv_put(vma->vm);
1712 
1713 	i915_active_fini(&vma->active);
1714 	GEM_WARN_ON(vma->resource);
1715 	i915_vma_free(vma);
1716 }
1717 
1718 /*
1719  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1720  * the initial reference.
1721  *
1722  * This function should be called when it's decided the vma isn't needed
1723  * anymore. The caller must assure that it doesn't race with another lookup
1724  * plus destroy, typically by taking an appropriate reference.
1725  *
1726  * Current callsites are
1727  * - __i915_gem_object_pages_fini()
1728  * - __i915_vm_close() - Blocks the above function by taking a reference on
1729  * the object.
1730  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1731  * on the vm and a reference on the object. Also takes the object lock so
1732  * destruction from __i915_vma_parked() can be blocked by holding the
1733  * object lock. Since the object lock is only allowed from within i915 with
1734  * an object refcount, holding the object lock also implicitly blocks the
1735  * vma freeing from __i915_gem_object_pages_fini().
1736  *
1737  * Because of locks taken during destruction, a vma is also guaranteed to
1738  * stay alive while the following locks are held if it was looked up while
1739  * holding one of the locks:
1740  * - vm->mutex
1741  * - obj->vma.lock
1742  * - gt->closed_lock
1743  */
1744 void i915_vma_destroy_locked(struct i915_vma *vma)
1745 {
1746 	lockdep_assert_held(&vma->vm->mutex);
1747 
1748 	force_unbind(vma);
1749 	list_del_init(&vma->vm_link);
1750 	release_references(vma, vma->vm->gt, false);
1751 }
1752 
1753 void i915_vma_destroy(struct i915_vma *vma)
1754 {
1755 	struct intel_gt *gt;
1756 	bool vm_ddestroy;
1757 
1758 	mutex_lock(&vma->vm->mutex);
1759 	force_unbind(vma);
1760 	list_del_init(&vma->vm_link);
1761 	vm_ddestroy = vma->vm_ddestroy;
1762 	vma->vm_ddestroy = false;
1763 
1764 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1765 	gt = vma->vm->gt;
1766 	mutex_unlock(&vma->vm->mutex);
1767 	release_references(vma, gt, vm_ddestroy);
1768 }
1769 
1770 void i915_vma_parked(struct intel_gt *gt)
1771 {
1772 	struct i915_vma *vma, *next;
1773 	LIST_HEAD(closed);
1774 
1775 	spin_lock_irq(&gt->closed_lock);
1776 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1777 		struct drm_i915_gem_object *obj = vma->obj;
1778 		struct i915_address_space *vm = vma->vm;
1779 
1780 		/* XXX All to avoid keeping a reference on i915_vma itself */
1781 
1782 		if (!kref_get_unless_zero(&obj->base.refcount))
1783 			continue;
1784 
1785 		if (!i915_vm_tryget(vm)) {
1786 			i915_gem_object_put(obj);
1787 			continue;
1788 		}
1789 
1790 		list_move(&vma->closed_link, &closed);
1791 	}
1792 	spin_unlock_irq(&gt->closed_lock);
1793 
1794 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1795 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1796 		struct drm_i915_gem_object *obj = vma->obj;
1797 		struct i915_address_space *vm = vma->vm;
1798 
1799 		if (i915_gem_object_trylock(obj, NULL)) {
1800 			INIT_LIST_HEAD(&vma->closed_link);
1801 			i915_vma_destroy(vma);
1802 			i915_gem_object_unlock(obj);
1803 		} else {
1804 			/* back you go.. */
1805 			spin_lock_irq(&gt->closed_lock);
1806 			list_add(&vma->closed_link, &gt->closed_vma);
1807 			spin_unlock_irq(&gt->closed_lock);
1808 		}
1809 
1810 		i915_gem_object_put(obj);
1811 		i915_vm_put(vm);
1812 	}
1813 }
1814 
1815 static void __i915_vma_iounmap(struct i915_vma *vma)
1816 {
1817 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1818 
1819 	if (vma->iomap == NULL)
1820 		return;
1821 
1822 	if (page_unmask_bits(vma->iomap))
1823 		__i915_gem_object_release_map(vma->obj);
1824 	else
1825 		io_mapping_unmap(vma->iomap);
1826 	vma->iomap = NULL;
1827 }
1828 
1829 void i915_vma_revoke_mmap(struct i915_vma *vma)
1830 {
1831 	struct drm_vma_offset_node *node;
1832 	u64 vma_offset;
1833 
1834 	if (!i915_vma_has_userfault(vma))
1835 		return;
1836 
1837 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1838 	GEM_BUG_ON(!vma->obj->userfault_count);
1839 
1840 	node = &vma->mmo->vma_node;
1841 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1842 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1843 			    drm_vma_node_offset_addr(node) + vma_offset,
1844 			    vma->size,
1845 			    1);
1846 
1847 	i915_vma_unset_userfault(vma);
1848 	if (!--vma->obj->userfault_count)
1849 		list_del(&vma->obj->userfault_link);
1850 }
1851 
1852 static int
1853 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1854 {
1855 	return __i915_request_await_exclusive(rq, &vma->active);
1856 }
1857 
1858 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1859 {
1860 	int err;
1861 
1862 	/* Wait for the vma to be bound before we start! */
1863 	err = __i915_request_await_bind(rq, vma);
1864 	if (err)
1865 		return err;
1866 
1867 	return i915_active_add_request(&vma->active, rq);
1868 }
1869 
1870 int _i915_vma_move_to_active(struct i915_vma *vma,
1871 			     struct i915_request *rq,
1872 			     struct dma_fence *fence,
1873 			     unsigned int flags)
1874 {
1875 	struct drm_i915_gem_object *obj = vma->obj;
1876 	int err;
1877 
1878 	assert_object_held(obj);
1879 
1880 	GEM_BUG_ON(!vma->pages);
1881 
1882 	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1883 		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1884 		if (unlikely(err))
1885 			return err;
1886 	}
1887 	err = __i915_vma_move_to_active(vma, rq);
1888 	if (unlikely(err))
1889 		return err;
1890 
1891 	/*
1892 	 * Reserve fences slot early to prevent an allocation after preparing
1893 	 * the workload and associating fences with dma_resv.
1894 	 */
1895 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1896 		struct dma_fence *curr;
1897 		int idx;
1898 
1899 		dma_fence_array_for_each(curr, idx, fence)
1900 			;
1901 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1902 		if (unlikely(err))
1903 			return err;
1904 	}
1905 
1906 	if (flags & EXEC_OBJECT_WRITE) {
1907 		struct intel_frontbuffer *front;
1908 
1909 		front = __intel_frontbuffer_get(obj);
1910 		if (unlikely(front)) {
1911 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1912 				i915_active_add_request(&front->write, rq);
1913 			intel_frontbuffer_put(front);
1914 		}
1915 	}
1916 
1917 	if (fence) {
1918 		struct dma_fence *curr;
1919 		enum dma_resv_usage usage;
1920 		int idx;
1921 
1922 		if (flags & EXEC_OBJECT_WRITE) {
1923 			usage = DMA_RESV_USAGE_WRITE;
1924 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1925 			obj->read_domains = 0;
1926 		} else {
1927 			usage = DMA_RESV_USAGE_READ;
1928 			obj->write_domain = 0;
1929 		}
1930 
1931 		dma_fence_array_for_each(curr, idx, fence)
1932 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1933 	}
1934 
1935 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1936 		i915_active_add_request(&vma->fence->active, rq);
1937 
1938 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1939 	obj->mm.dirty = true;
1940 
1941 	GEM_BUG_ON(!i915_vma_is_active(vma));
1942 	return 0;
1943 }
1944 
1945 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1946 {
1947 	struct i915_vma_resource *vma_res = vma->resource;
1948 	struct dma_fence *unbind_fence;
1949 
1950 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1951 	assert_vma_held_evict(vma);
1952 
1953 	if (i915_vma_is_map_and_fenceable(vma)) {
1954 		/* Force a pagefault for domain tracking on next user access */
1955 		i915_vma_revoke_mmap(vma);
1956 
1957 		/*
1958 		 * Check that we have flushed all writes through the GGTT
1959 		 * before the unbind, other due to non-strict nature of those
1960 		 * indirect writes they may end up referencing the GGTT PTE
1961 		 * after the unbind.
1962 		 *
1963 		 * Note that we may be concurrently poking at the GGTT_WRITE
1964 		 * bit from set-domain, as we mark all GGTT vma associated
1965 		 * with an object. We know this is for another vma, as we
1966 		 * are currently unbinding this one -- so if this vma will be
1967 		 * reused, it will be refaulted and have its dirty bit set
1968 		 * before the next write.
1969 		 */
1970 		i915_vma_flush_writes(vma);
1971 
1972 		/* release the fence reg _after_ flushing */
1973 		i915_vma_revoke_fence(vma);
1974 
1975 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1976 	}
1977 
1978 	__i915_vma_iounmap(vma);
1979 
1980 	GEM_BUG_ON(vma->fence);
1981 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1982 
1983 	/* Object backend must be async capable. */
1984 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1985 
1986 	/* If vm is not open, unbind is a nop. */
1987 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1988 		kref_read(&vma->vm->ref);
1989 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1990 		vma->vm->skip_pte_rewrite;
1991 	trace_i915_vma_unbind(vma);
1992 
1993 	if (async)
1994 		unbind_fence = i915_vma_resource_unbind(vma_res,
1995 							&vma->obj->mm.tlb);
1996 	else
1997 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
1998 
1999 	vma->resource = NULL;
2000 
2001 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2002 		   &vma->flags);
2003 
2004 	i915_vma_detach(vma);
2005 
2006 	if (!async) {
2007 		if (unbind_fence) {
2008 			dma_fence_wait(unbind_fence, false);
2009 			dma_fence_put(unbind_fence);
2010 			unbind_fence = NULL;
2011 		}
2012 		vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
2013 	}
2014 
2015 	/*
2016 	 * Binding itself may not have completed until the unbind fence signals,
2017 	 * so don't drop the pages until that happens, unless the resource is
2018 	 * async_capable.
2019 	 */
2020 
2021 	vma_unbind_pages(vma);
2022 	return unbind_fence;
2023 }
2024 
2025 int __i915_vma_unbind(struct i915_vma *vma)
2026 {
2027 	int ret;
2028 
2029 	lockdep_assert_held(&vma->vm->mutex);
2030 	assert_vma_held_evict(vma);
2031 
2032 	if (!drm_mm_node_allocated(&vma->node))
2033 		return 0;
2034 
2035 	if (i915_vma_is_pinned(vma)) {
2036 		vma_print_allocator(vma, "is pinned");
2037 		return -EAGAIN;
2038 	}
2039 
2040 	/*
2041 	 * After confirming that no one else is pinning this vma, wait for
2042 	 * any laggards who may have crept in during the wait (through
2043 	 * a residual pin skipping the vm->mutex) to complete.
2044 	 */
2045 	ret = i915_vma_sync(vma);
2046 	if (ret)
2047 		return ret;
2048 
2049 	GEM_BUG_ON(i915_vma_is_active(vma));
2050 	__i915_vma_evict(vma, false);
2051 
2052 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2053 	return 0;
2054 }
2055 
2056 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2057 {
2058 	struct dma_fence *fence;
2059 
2060 	lockdep_assert_held(&vma->vm->mutex);
2061 
2062 	if (!drm_mm_node_allocated(&vma->node))
2063 		return NULL;
2064 
2065 	if (i915_vma_is_pinned(vma) ||
2066 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2067 		return ERR_PTR(-EAGAIN);
2068 
2069 	/*
2070 	 * We probably need to replace this with awaiting the fences of the
2071 	 * object's dma_resv when the vma active goes away. When doing that
2072 	 * we need to be careful to not add the vma_resource unbind fence
2073 	 * immediately to the object's dma_resv, because then unbinding
2074 	 * the next vma from the object, in case there are many, will
2075 	 * actually await the unbinding of the previous vmas, which is
2076 	 * undesirable.
2077 	 */
2078 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2079 				       I915_ACTIVE_AWAIT_EXCL |
2080 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2081 		return ERR_PTR(-EBUSY);
2082 	}
2083 
2084 	fence = __i915_vma_evict(vma, true);
2085 
2086 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2087 
2088 	return fence;
2089 }
2090 
2091 int i915_vma_unbind(struct i915_vma *vma)
2092 {
2093 	struct i915_address_space *vm = vma->vm;
2094 	intel_wakeref_t wakeref = 0;
2095 	int err;
2096 
2097 	assert_object_held_shared(vma->obj);
2098 
2099 	/* Optimistic wait before taking the mutex */
2100 	err = i915_vma_sync(vma);
2101 	if (err)
2102 		return err;
2103 
2104 	if (!drm_mm_node_allocated(&vma->node))
2105 		return 0;
2106 
2107 	if (i915_vma_is_pinned(vma)) {
2108 		vma_print_allocator(vma, "is pinned");
2109 		return -EAGAIN;
2110 	}
2111 
2112 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2113 		/* XXX not always required: nop_clear_range */
2114 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2115 
2116 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2117 	if (err)
2118 		goto out_rpm;
2119 
2120 	err = __i915_vma_unbind(vma);
2121 	mutex_unlock(&vm->mutex);
2122 
2123 out_rpm:
2124 	if (wakeref)
2125 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2126 	return err;
2127 }
2128 
2129 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2130 {
2131 	struct drm_i915_gem_object *obj = vma->obj;
2132 	struct i915_address_space *vm = vma->vm;
2133 	intel_wakeref_t wakeref = 0;
2134 	struct dma_fence *fence;
2135 	int err;
2136 
2137 	/*
2138 	 * We need the dma-resv lock since we add the
2139 	 * unbind fence to the dma-resv object.
2140 	 */
2141 	assert_object_held(obj);
2142 
2143 	if (!drm_mm_node_allocated(&vma->node))
2144 		return 0;
2145 
2146 	if (i915_vma_is_pinned(vma)) {
2147 		vma_print_allocator(vma, "is pinned");
2148 		return -EAGAIN;
2149 	}
2150 
2151 	if (!obj->mm.rsgt)
2152 		return -EBUSY;
2153 
2154 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2155 	if (err)
2156 		return -EBUSY;
2157 
2158 	/*
2159 	 * It would be great if we could grab this wakeref from the
2160 	 * async unbind work if needed, but we can't because it uses
2161 	 * kmalloc and it's in the dma-fence signalling critical path.
2162 	 */
2163 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2164 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2165 
2166 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2167 		err = -EBUSY;
2168 		goto out_rpm;
2169 	} else if (!trylock_vm) {
2170 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2171 		if (err)
2172 			goto out_rpm;
2173 	}
2174 
2175 	fence = __i915_vma_unbind_async(vma);
2176 	mutex_unlock(&vm->mutex);
2177 	if (IS_ERR_OR_NULL(fence)) {
2178 		err = PTR_ERR_OR_ZERO(fence);
2179 		goto out_rpm;
2180 	}
2181 
2182 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2183 	dma_fence_put(fence);
2184 
2185 out_rpm:
2186 	if (wakeref)
2187 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2188 	return err;
2189 }
2190 
2191 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2192 {
2193 	int err;
2194 
2195 	i915_gem_object_lock(vma->obj, NULL);
2196 	err = i915_vma_unbind(vma);
2197 	i915_gem_object_unlock(vma->obj);
2198 
2199 	return err;
2200 }
2201 
2202 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2203 {
2204 	i915_gem_object_make_unshrinkable(vma->obj);
2205 	return vma;
2206 }
2207 
2208 void i915_vma_make_shrinkable(struct i915_vma *vma)
2209 {
2210 	i915_gem_object_make_shrinkable(vma->obj);
2211 }
2212 
2213 void i915_vma_make_purgeable(struct i915_vma *vma)
2214 {
2215 	i915_gem_object_make_purgeable(vma->obj);
2216 }
2217 
2218 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2219 #include "selftests/i915_vma.c"
2220 #endif
2221 
2222 void i915_vma_module_exit(void)
2223 {
2224 	kmem_cache_destroy(slab_vmas);
2225 }
2226 
2227 int __init i915_vma_module_init(void)
2228 {
2229 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2230 	if (!slab_vmas)
2231 		return -ENOMEM;
2232 
2233 	return 0;
2234 }
2235