xref: /linux/drivers/gpu/drm/i915/i915_vma.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_object_frontbuffer.h"
33 #include "gem/i915_gem_tiling.h"
34 #include "gt/intel_engine.h"
35 #include "gt/intel_engine_heartbeat.h"
36 #include "gt/intel_gt.h"
37 #include "gt/intel_gt_requests.h"
38 #include "gt/intel_tlb.h"
39 
40 #include "i915_drv.h"
41 #include "i915_gem_evict.h"
42 #include "i915_sw_fence_work.h"
43 #include "i915_trace.h"
44 #include "i915_vma.h"
45 #include "i915_vma_resource.h"
46 
47 static inline void assert_vma_held_evict(const struct i915_vma *vma)
48 {
49 	/*
50 	 * We may be forced to unbind when the vm is dead, to clean it up.
51 	 * This is the only exception to the requirement of the object lock
52 	 * being held.
53 	 */
54 	if (kref_read(&vma->vm->ref))
55 		assert_object_held_shared(vma->obj);
56 }
57 
58 static struct kmem_cache *slab_vmas;
59 
60 static struct i915_vma *i915_vma_alloc(void)
61 {
62 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
63 }
64 
65 static void i915_vma_free(struct i915_vma *vma)
66 {
67 	return kmem_cache_free(slab_vmas, vma);
68 }
69 
70 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
71 
72 #include <linux/stackdepot.h>
73 
74 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
75 {
76 	char buf[512];
77 
78 	if (!vma->node.stack) {
79 		drm_dbg(vma->obj->base.dev,
80 			"vma.node [%08llx + %08llx] %s: unknown owner\n",
81 			vma->node.start, vma->node.size, reason);
82 		return;
83 	}
84 
85 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
86 	drm_dbg(vma->obj->base.dev,
87 		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
88 		vma->node.start, vma->node.size, reason, buf);
89 }
90 
91 #else
92 
93 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
94 {
95 }
96 
97 #endif
98 
99 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
100 {
101 	return container_of(ref, typeof(struct i915_vma), active);
102 }
103 
104 static int __i915_vma_active(struct i915_active *ref)
105 {
106 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
107 }
108 
109 static void __i915_vma_retire(struct i915_active *ref)
110 {
111 	i915_vma_put(active_to_vma(ref));
112 }
113 
114 static struct i915_vma *
115 vma_create(struct drm_i915_gem_object *obj,
116 	   struct i915_address_space *vm,
117 	   const struct i915_gtt_view *view)
118 {
119 	struct i915_vma *pos = ERR_PTR(-E2BIG);
120 	struct i915_vma *vma;
121 	struct rb_node *rb, **p;
122 	int err;
123 
124 	/* The aliasing_ppgtt should never be used directly! */
125 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
126 
127 	vma = i915_vma_alloc();
128 	if (vma == NULL)
129 		return ERR_PTR(-ENOMEM);
130 
131 	vma->ops = &vm->vma_ops;
132 	vma->obj = obj;
133 	vma->size = obj->base.size;
134 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
135 
136 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
137 
138 	/* Declare ourselves safe for use inside shrinkers */
139 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
140 		fs_reclaim_acquire(GFP_KERNEL);
141 		might_lock(&vma->active.mutex);
142 		fs_reclaim_release(GFP_KERNEL);
143 	}
144 
145 	INIT_LIST_HEAD(&vma->closed_link);
146 	INIT_LIST_HEAD(&vma->obj_link);
147 	RB_CLEAR_NODE(&vma->obj_node);
148 
149 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
150 		vma->gtt_view = *view;
151 		if (view->type == I915_GTT_VIEW_PARTIAL) {
152 			GEM_BUG_ON(range_overflows_t(u64,
153 						     view->partial.offset,
154 						     view->partial.size,
155 						     obj->base.size >> PAGE_SHIFT));
156 			vma->size = view->partial.size;
157 			vma->size <<= PAGE_SHIFT;
158 			GEM_BUG_ON(vma->size > obj->base.size);
159 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
160 			vma->size = intel_rotation_info_size(&view->rotated);
161 			vma->size <<= PAGE_SHIFT;
162 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
163 			vma->size = intel_remapped_info_size(&view->remapped);
164 			vma->size <<= PAGE_SHIFT;
165 		}
166 	}
167 
168 	if (unlikely(vma->size > vm->total))
169 		goto err_vma;
170 
171 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
172 
173 	err = mutex_lock_interruptible(&vm->mutex);
174 	if (err) {
175 		pos = ERR_PTR(err);
176 		goto err_vma;
177 	}
178 
179 	vma->vm = vm;
180 	list_add_tail(&vma->vm_link, &vm->unbound_list);
181 
182 	spin_lock(&obj->vma.lock);
183 	if (i915_is_ggtt(vm)) {
184 		if (unlikely(overflows_type(vma->size, u32)))
185 			goto err_unlock;
186 
187 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
188 						      i915_gem_object_get_tiling(obj),
189 						      i915_gem_object_get_stride(obj));
190 		if (unlikely(vma->fence_size < vma->size || /* overflow */
191 			     vma->fence_size > vm->total))
192 			goto err_unlock;
193 
194 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
195 
196 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
197 								i915_gem_object_get_tiling(obj),
198 								i915_gem_object_get_stride(obj));
199 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
200 
201 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
202 	}
203 
204 	rb = NULL;
205 	p = &obj->vma.tree.rb_node;
206 	while (*p) {
207 		long cmp;
208 
209 		rb = *p;
210 		pos = rb_entry(rb, struct i915_vma, obj_node);
211 
212 		/*
213 		 * If the view already exists in the tree, another thread
214 		 * already created a matching vma, so return the older instance
215 		 * and dispose of ours.
216 		 */
217 		cmp = i915_vma_compare(pos, vm, view);
218 		if (cmp < 0)
219 			p = &rb->rb_right;
220 		else if (cmp > 0)
221 			p = &rb->rb_left;
222 		else
223 			goto err_unlock;
224 	}
225 	rb_link_node(&vma->obj_node, rb, p);
226 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
227 
228 	if (i915_vma_is_ggtt(vma))
229 		/*
230 		 * We put the GGTT vma at the start of the vma-list, followed
231 		 * by the ppGGTT vma. This allows us to break early when
232 		 * iterating over only the GGTT vma for an object, see
233 		 * for_each_ggtt_vma()
234 		 */
235 		list_add(&vma->obj_link, &obj->vma.list);
236 	else
237 		list_add_tail(&vma->obj_link, &obj->vma.list);
238 
239 	spin_unlock(&obj->vma.lock);
240 	mutex_unlock(&vm->mutex);
241 
242 	return vma;
243 
244 err_unlock:
245 	spin_unlock(&obj->vma.lock);
246 	list_del_init(&vma->vm_link);
247 	mutex_unlock(&vm->mutex);
248 err_vma:
249 	i915_vma_free(vma);
250 	return pos;
251 }
252 
253 static struct i915_vma *
254 i915_vma_lookup(struct drm_i915_gem_object *obj,
255 	   struct i915_address_space *vm,
256 	   const struct i915_gtt_view *view)
257 {
258 	struct rb_node *rb;
259 
260 	rb = obj->vma.tree.rb_node;
261 	while (rb) {
262 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
263 		long cmp;
264 
265 		cmp = i915_vma_compare(vma, vm, view);
266 		if (cmp == 0)
267 			return vma;
268 
269 		if (cmp < 0)
270 			rb = rb->rb_right;
271 		else
272 			rb = rb->rb_left;
273 	}
274 
275 	return NULL;
276 }
277 
278 /**
279  * i915_vma_instance - return the singleton instance of the VMA
280  * @obj: parent &struct drm_i915_gem_object to be mapped
281  * @vm: address space in which the mapping is located
282  * @view: additional mapping requirements
283  *
284  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
285  * the same @view characteristics. If a match is not found, one is created.
286  * Once created, the VMA is kept until either the object is freed, or the
287  * address space is closed.
288  *
289  * Returns the vma, or an error pointer.
290  */
291 struct i915_vma *
292 i915_vma_instance(struct drm_i915_gem_object *obj,
293 		  struct i915_address_space *vm,
294 		  const struct i915_gtt_view *view)
295 {
296 	struct i915_vma *vma;
297 
298 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
299 	GEM_BUG_ON(!kref_read(&vm->ref));
300 
301 	spin_lock(&obj->vma.lock);
302 	vma = i915_vma_lookup(obj, vm, view);
303 	spin_unlock(&obj->vma.lock);
304 
305 	/* vma_create() will resolve the race if another creates the vma */
306 	if (unlikely(!vma))
307 		vma = vma_create(obj, vm, view);
308 
309 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
310 	return vma;
311 }
312 
313 struct i915_vma_work {
314 	struct dma_fence_work base;
315 	struct i915_address_space *vm;
316 	struct i915_vm_pt_stash stash;
317 	struct i915_vma_resource *vma_res;
318 	struct drm_i915_gem_object *obj;
319 	struct i915_sw_dma_fence_cb cb;
320 	unsigned int pat_index;
321 	unsigned int flags;
322 };
323 
324 static void __vma_bind(struct dma_fence_work *work)
325 {
326 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
327 	struct i915_vma_resource *vma_res = vw->vma_res;
328 
329 	/*
330 	 * We are about the bind the object, which must mean we have already
331 	 * signaled the work to potentially clear/move the pages underneath. If
332 	 * something went wrong at that stage then the object should have
333 	 * unknown_state set, in which case we need to skip the bind.
334 	 */
335 	if (i915_gem_object_has_unknown_state(vw->obj))
336 		return;
337 
338 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
339 			       vma_res, vw->pat_index, vw->flags);
340 }
341 
342 static void __vma_release(struct dma_fence_work *work)
343 {
344 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
345 
346 	if (vw->obj)
347 		i915_gem_object_put(vw->obj);
348 
349 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
350 	if (vw->vma_res)
351 		i915_vma_resource_put(vw->vma_res);
352 }
353 
354 static const struct dma_fence_work_ops bind_ops = {
355 	.name = "bind",
356 	.work = __vma_bind,
357 	.release = __vma_release,
358 };
359 
360 struct i915_vma_work *i915_vma_work(void)
361 {
362 	struct i915_vma_work *vw;
363 
364 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
365 	if (!vw)
366 		return NULL;
367 
368 	dma_fence_work_init(&vw->base, &bind_ops);
369 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
370 
371 	return vw;
372 }
373 
374 int i915_vma_wait_for_bind(struct i915_vma *vma)
375 {
376 	int err = 0;
377 
378 	if (rcu_access_pointer(vma->active.excl.fence)) {
379 		struct dma_fence *fence;
380 
381 		rcu_read_lock();
382 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
383 		rcu_read_unlock();
384 		if (fence) {
385 			err = dma_fence_wait(fence, true);
386 			dma_fence_put(fence);
387 		}
388 	}
389 
390 	return err;
391 }
392 
393 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
394 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
395 {
396 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
397 	int err;
398 
399 	if (!fence)
400 		return 0;
401 
402 	if (dma_fence_is_signaled(fence))
403 		err = fence->error;
404 	else
405 		err = -EBUSY;
406 
407 	dma_fence_put(fence);
408 
409 	return err;
410 }
411 #else
412 #define i915_vma_verify_bind_complete(_vma) 0
413 #endif
414 
415 I915_SELFTEST_EXPORT void
416 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
417 				struct i915_vma *vma)
418 {
419 	struct drm_i915_gem_object *obj = vma->obj;
420 
421 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
422 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
423 			       i915_gem_object_is_lmem(obj), obj->mm.region,
424 			       vma->ops, vma->private, __i915_vma_offset(vma),
425 			       __i915_vma_size(vma), vma->size, vma->guard);
426 }
427 
428 /**
429  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
430  * @vma: VMA to map
431  * @pat_index: PAT index to set in PTE
432  * @flags: flags like global or local mapping
433  * @work: preallocated worker for allocating and binding the PTE
434  * @vma_res: pointer to a preallocated vma resource. The resource is either
435  * consumed or freed.
436  *
437  * DMA addresses are taken from the scatter-gather table of this object (or of
438  * this VMA in case of non-default GGTT views) and PTE entries set up.
439  * Note that DMA addresses are also the only part of the SG table we care about.
440  */
441 int i915_vma_bind(struct i915_vma *vma,
442 		  unsigned int pat_index,
443 		  u32 flags,
444 		  struct i915_vma_work *work,
445 		  struct i915_vma_resource *vma_res)
446 {
447 	u32 bind_flags;
448 	u32 vma_flags;
449 	int ret;
450 
451 	lockdep_assert_held(&vma->vm->mutex);
452 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
453 	GEM_BUG_ON(vma->size > i915_vma_size(vma));
454 
455 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
456 					      vma->node.size,
457 					      vma->vm->total))) {
458 		i915_vma_resource_free(vma_res);
459 		return -ENODEV;
460 	}
461 
462 	if (GEM_DEBUG_WARN_ON(!flags)) {
463 		i915_vma_resource_free(vma_res);
464 		return -EINVAL;
465 	}
466 
467 	bind_flags = flags;
468 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
469 
470 	vma_flags = atomic_read(&vma->flags);
471 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
472 
473 	bind_flags &= ~vma_flags;
474 	if (bind_flags == 0) {
475 		i915_vma_resource_free(vma_res);
476 		return 0;
477 	}
478 
479 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
480 
481 	/* Wait for or await async unbinds touching our range */
482 	if (work && bind_flags & vma->vm->bind_async_flags)
483 		ret = i915_vma_resource_bind_dep_await(vma->vm,
484 						       &work->base.chain,
485 						       vma->node.start,
486 						       vma->node.size,
487 						       true,
488 						       GFP_NOWAIT |
489 						       __GFP_RETRY_MAYFAIL |
490 						       __GFP_NOWARN);
491 	else
492 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
493 						      vma->node.size, true);
494 	if (ret) {
495 		i915_vma_resource_free(vma_res);
496 		return ret;
497 	}
498 
499 	if (vma->resource || !vma_res) {
500 		/* Rebinding with an additional I915_VMA_*_BIND */
501 		GEM_WARN_ON(!vma_flags);
502 		i915_vma_resource_free(vma_res);
503 	} else {
504 		i915_vma_resource_init_from_vma(vma_res, vma);
505 		vma->resource = vma_res;
506 	}
507 	trace_i915_vma_bind(vma, bind_flags);
508 	if (work && bind_flags & vma->vm->bind_async_flags) {
509 		struct dma_fence *prev;
510 
511 		work->vma_res = i915_vma_resource_get(vma->resource);
512 		work->pat_index = pat_index;
513 		work->flags = bind_flags;
514 
515 		/*
516 		 * Note we only want to chain up to the migration fence on
517 		 * the pages (not the object itself). As we don't track that,
518 		 * yet, we have to use the exclusive fence instead.
519 		 *
520 		 * Also note that we do not want to track the async vma as
521 		 * part of the obj->resv->excl_fence as it only affects
522 		 * execution and not content or object's backing store lifetime.
523 		 */
524 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
525 		if (prev) {
526 			__i915_sw_fence_await_dma_fence(&work->base.chain,
527 							prev,
528 							&work->cb);
529 			dma_fence_put(prev);
530 		}
531 
532 		work->base.dma.error = 0; /* enable the queue_work() */
533 		work->obj = i915_gem_object_get(vma->obj);
534 	} else {
535 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
536 		if (ret) {
537 			i915_vma_resource_free(vma->resource);
538 			vma->resource = NULL;
539 
540 			return ret;
541 		}
542 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
543 				   bind_flags);
544 	}
545 
546 	atomic_or(bind_flags, &vma->flags);
547 	return 0;
548 }
549 
550 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
551 {
552 	void __iomem *ptr;
553 	int err;
554 
555 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
556 		return IOMEM_ERR_PTR(-EINVAL);
557 
558 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
559 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
560 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
561 
562 	ptr = READ_ONCE(vma->iomap);
563 	if (ptr == NULL) {
564 		/*
565 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
566 		 * instead, which already supports mapping non-contiguous chunks
567 		 * of pages, that way we can also drop the
568 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
569 		 */
570 		if (i915_gem_object_is_lmem(vma->obj)) {
571 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
572 							  vma->obj->base.size);
573 		} else if (i915_vma_is_map_and_fenceable(vma)) {
574 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
575 						i915_vma_offset(vma),
576 						i915_vma_size(vma));
577 		} else {
578 			ptr = (void __iomem *)
579 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
580 			if (IS_ERR(ptr)) {
581 				err = PTR_ERR(ptr);
582 				goto err;
583 			}
584 			ptr = page_pack_bits(ptr, 1);
585 		}
586 
587 		if (ptr == NULL) {
588 			err = -ENOMEM;
589 			goto err;
590 		}
591 
592 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
593 			if (page_unmask_bits(ptr))
594 				__i915_gem_object_release_map(vma->obj);
595 			else
596 				io_mapping_unmap(ptr);
597 			ptr = vma->iomap;
598 		}
599 	}
600 
601 	__i915_vma_pin(vma);
602 
603 	err = i915_vma_pin_fence(vma);
604 	if (err)
605 		goto err_unpin;
606 
607 	i915_vma_set_ggtt_write(vma);
608 
609 	/* NB Access through the GTT requires the device to be awake. */
610 	return page_mask_bits(ptr);
611 
612 err_unpin:
613 	__i915_vma_unpin(vma);
614 err:
615 	return IOMEM_ERR_PTR(err);
616 }
617 
618 void i915_vma_flush_writes(struct i915_vma *vma)
619 {
620 	if (i915_vma_unset_ggtt_write(vma))
621 		intel_gt_flush_ggtt_writes(vma->vm->gt);
622 }
623 
624 void i915_vma_unpin_iomap(struct i915_vma *vma)
625 {
626 	GEM_BUG_ON(vma->iomap == NULL);
627 
628 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
629 
630 	i915_vma_flush_writes(vma);
631 
632 	i915_vma_unpin_fence(vma);
633 	i915_vma_unpin(vma);
634 }
635 
636 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
637 {
638 	struct i915_vma *vma;
639 	struct drm_i915_gem_object *obj;
640 
641 	vma = fetch_and_zero(p_vma);
642 	if (!vma)
643 		return;
644 
645 	obj = vma->obj;
646 	GEM_BUG_ON(!obj);
647 
648 	i915_vma_unpin(vma);
649 
650 	if (flags & I915_VMA_RELEASE_MAP)
651 		i915_gem_object_unpin_map(obj);
652 
653 	i915_gem_object_put(obj);
654 }
655 
656 bool i915_vma_misplaced(const struct i915_vma *vma,
657 			u64 size, u64 alignment, u64 flags)
658 {
659 	if (!drm_mm_node_allocated(&vma->node))
660 		return false;
661 
662 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
663 		return true;
664 
665 	if (i915_vma_size(vma) < size)
666 		return true;
667 
668 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
669 	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
670 		return true;
671 
672 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
673 		return true;
674 
675 	if (flags & PIN_OFFSET_BIAS &&
676 	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
677 		return true;
678 
679 	if (flags & PIN_OFFSET_FIXED &&
680 	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
681 		return true;
682 
683 	if (flags & PIN_OFFSET_GUARD &&
684 	    vma->guard < (flags & PIN_OFFSET_MASK))
685 		return true;
686 
687 	return false;
688 }
689 
690 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
691 {
692 	bool mappable, fenceable;
693 
694 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
695 	GEM_BUG_ON(!vma->fence_size);
696 
697 	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
698 		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
699 
700 	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
701 		   i915_vm_to_ggtt(vma->vm)->mappable_end;
702 
703 	if (mappable && fenceable)
704 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
705 	else
706 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
707 }
708 
709 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
710 {
711 	struct drm_mm_node *node = &vma->node;
712 	struct drm_mm_node *other;
713 
714 	/*
715 	 * On some machines we have to be careful when putting differing types
716 	 * of snoopable memory together to avoid the prefetcher crossing memory
717 	 * domains and dying. During vm initialisation, we decide whether or not
718 	 * these constraints apply and set the drm_mm.color_adjust
719 	 * appropriately.
720 	 */
721 	if (!i915_vm_has_cache_coloring(vma->vm))
722 		return true;
723 
724 	/* Only valid to be called on an already inserted vma */
725 	GEM_BUG_ON(!drm_mm_node_allocated(node));
726 	GEM_BUG_ON(list_empty(&node->node_list));
727 
728 	other = list_prev_entry(node, node_list);
729 	if (i915_node_color_differs(other, color) &&
730 	    !drm_mm_hole_follows(other))
731 		return false;
732 
733 	other = list_next_entry(node, node_list);
734 	if (i915_node_color_differs(other, color) &&
735 	    !drm_mm_hole_follows(node))
736 		return false;
737 
738 	return true;
739 }
740 
741 /**
742  * i915_vma_insert - finds a slot for the vma in its address space
743  * @vma: the vma
744  * @ww: An optional struct i915_gem_ww_ctx
745  * @size: requested size in bytes (can be larger than the VMA)
746  * @alignment: required alignment
747  * @flags: mask of PIN_* flags to use
748  *
749  * First we try to allocate some free space that meets the requirements for
750  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
751  * preferrably the oldest idle entry to make room for the new VMA.
752  *
753  * Returns:
754  * 0 on success, negative error code otherwise.
755  */
756 static int
757 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
758 		u64 size, u64 alignment, u64 flags)
759 {
760 	unsigned long color, guard;
761 	u64 start, end;
762 	int ret;
763 
764 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
765 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
766 	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
767 
768 	size = max(size, vma->size);
769 	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
770 	if (flags & PIN_MAPPABLE) {
771 		size = max_t(typeof(size), size, vma->fence_size);
772 		alignment = max_t(typeof(alignment),
773 				  alignment, vma->fence_alignment);
774 	}
775 
776 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
777 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
778 	GEM_BUG_ON(!is_power_of_2(alignment));
779 
780 	guard = vma->guard; /* retain guard across rebinds */
781 	if (flags & PIN_OFFSET_GUARD) {
782 		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
783 		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
784 	}
785 	/*
786 	 * As we align the node upon insertion, but the hardware gets
787 	 * node.start + guard, the easiest way to make that work is
788 	 * to make the guard a multiple of the alignment size.
789 	 */
790 	guard = ALIGN(guard, alignment);
791 
792 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
793 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
794 
795 	end = vma->vm->total;
796 	if (flags & PIN_MAPPABLE)
797 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
798 	if (flags & PIN_ZONE_4G)
799 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
800 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
801 
802 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
803 
804 	/*
805 	 * If binding the object/GGTT view requires more space than the entire
806 	 * aperture has, reject it early before evicting everything in a vain
807 	 * attempt to find space.
808 	 */
809 	if (size > end - 2 * guard) {
810 		drm_dbg(vma->obj->base.dev,
811 			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
812 			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
813 		return -ENOSPC;
814 	}
815 
816 	color = 0;
817 
818 	if (i915_vm_has_cache_coloring(vma->vm))
819 		color = vma->obj->pat_index;
820 
821 	if (flags & PIN_OFFSET_FIXED) {
822 		u64 offset = flags & PIN_OFFSET_MASK;
823 		if (!IS_ALIGNED(offset, alignment) ||
824 		    range_overflows(offset, size, end))
825 			return -EINVAL;
826 		/*
827 		 * The caller knows not of the guard added by others and
828 		 * requests for the offset of the start of its buffer
829 		 * to be fixed, which may not be the same as the position
830 		 * of the vma->node due to the guard pages.
831 		 */
832 		if (offset < guard || offset + size > end - guard)
833 			return -ENOSPC;
834 
835 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
836 					   size + 2 * guard,
837 					   offset - guard,
838 					   color, flags);
839 		if (ret)
840 			return ret;
841 	} else {
842 		size += 2 * guard;
843 		/*
844 		 * We only support huge gtt pages through the 48b PPGTT,
845 		 * however we also don't want to force any alignment for
846 		 * objects which need to be tightly packed into the low 32bits.
847 		 *
848 		 * Note that we assume that GGTT are limited to 4GiB for the
849 		 * forseeable future. See also i915_ggtt_offset().
850 		 */
851 		if (upper_32_bits(end - 1) &&
852 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
853 		    !HAS_64K_PAGES(vma->vm->i915)) {
854 			/*
855 			 * We can't mix 64K and 4K PTEs in the same page-table
856 			 * (2M block), and so to avoid the ugliness and
857 			 * complexity of coloring we opt for just aligning 64K
858 			 * objects to 2M.
859 			 */
860 			u64 page_alignment =
861 				rounddown_pow_of_two(vma->page_sizes.sg |
862 						     I915_GTT_PAGE_SIZE_2M);
863 
864 			/*
865 			 * Check we don't expand for the limited Global GTT
866 			 * (mappable aperture is even more precious!). This
867 			 * also checks that we exclude the aliasing-ppgtt.
868 			 */
869 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
870 
871 			alignment = max(alignment, page_alignment);
872 
873 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
874 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
875 		}
876 
877 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
878 					  size, alignment, color,
879 					  start, end, flags);
880 		if (ret)
881 			return ret;
882 
883 		GEM_BUG_ON(vma->node.start < start);
884 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
885 	}
886 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
887 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
888 
889 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
890 	vma->guard = guard;
891 
892 	return 0;
893 }
894 
895 static void
896 i915_vma_detach(struct i915_vma *vma)
897 {
898 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
899 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
900 
901 	/*
902 	 * And finally now the object is completely decoupled from this
903 	 * vma, we can drop its hold on the backing storage and allow
904 	 * it to be reaped by the shrinker.
905 	 */
906 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
907 }
908 
909 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
910 {
911 	unsigned int bound;
912 
913 	bound = atomic_read(&vma->flags);
914 
915 	if (flags & PIN_VALIDATE) {
916 		flags &= I915_VMA_BIND_MASK;
917 
918 		return (flags & bound) == flags;
919 	}
920 
921 	/* with the lock mandatory for unbind, we don't race here */
922 	flags &= I915_VMA_BIND_MASK;
923 	do {
924 		if (unlikely(flags & ~bound))
925 			return false;
926 
927 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
928 			return false;
929 
930 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
931 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
932 
933 	return true;
934 }
935 
936 static struct scatterlist *
937 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
938 	     unsigned int width, unsigned int height,
939 	     unsigned int src_stride, unsigned int dst_stride,
940 	     struct sg_table *st, struct scatterlist *sg)
941 {
942 	unsigned int column, row;
943 	pgoff_t src_idx;
944 
945 	for (column = 0; column < width; column++) {
946 		unsigned int left;
947 
948 		src_idx = src_stride * (height - 1) + column + offset;
949 		for (row = 0; row < height; row++) {
950 			st->nents++;
951 			/*
952 			 * We don't need the pages, but need to initialize
953 			 * the entries so the sg list can be happily traversed.
954 			 * The only thing we need are DMA addresses.
955 			 */
956 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
957 			sg_dma_address(sg) =
958 				i915_gem_object_get_dma_address(obj, src_idx);
959 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
960 			sg = sg_next(sg);
961 			src_idx -= src_stride;
962 		}
963 
964 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
965 
966 		if (!left)
967 			continue;
968 
969 		st->nents++;
970 
971 		/*
972 		 * The DE ignores the PTEs for the padding tiles, the sg entry
973 		 * here is just a conenience to indicate how many padding PTEs
974 		 * to insert at this spot.
975 		 */
976 		sg_set_page(sg, NULL, left, 0);
977 		sg_dma_address(sg) = 0;
978 		sg_dma_len(sg) = left;
979 		sg = sg_next(sg);
980 	}
981 
982 	return sg;
983 }
984 
985 static noinline struct sg_table *
986 intel_rotate_pages(struct intel_rotation_info *rot_info,
987 		   struct drm_i915_gem_object *obj)
988 {
989 	unsigned int size = intel_rotation_info_size(rot_info);
990 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
991 	struct sg_table *st;
992 	struct scatterlist *sg;
993 	int ret = -ENOMEM;
994 	int i;
995 
996 	/* Allocate target SG list. */
997 	st = kmalloc(sizeof(*st), GFP_KERNEL);
998 	if (!st)
999 		goto err_st_alloc;
1000 
1001 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1002 	if (ret)
1003 		goto err_sg_alloc;
1004 
1005 	st->nents = 0;
1006 	sg = st->sgl;
1007 
1008 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1009 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1010 				  rot_info->plane[i].width, rot_info->plane[i].height,
1011 				  rot_info->plane[i].src_stride,
1012 				  rot_info->plane[i].dst_stride,
1013 				  st, sg);
1014 
1015 	return st;
1016 
1017 err_sg_alloc:
1018 	kfree(st);
1019 err_st_alloc:
1020 
1021 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1022 		obj->base.size, rot_info->plane[0].width,
1023 		rot_info->plane[0].height, size);
1024 
1025 	return ERR_PTR(ret);
1026 }
1027 
1028 static struct scatterlist *
1029 add_padding_pages(unsigned int count,
1030 		  struct sg_table *st, struct scatterlist *sg)
1031 {
1032 	st->nents++;
1033 
1034 	/*
1035 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1036 	 * here is just a convenience to indicate how many padding PTEs
1037 	 * to insert at this spot.
1038 	 */
1039 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1040 	sg_dma_address(sg) = 0;
1041 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1042 	sg = sg_next(sg);
1043 
1044 	return sg;
1045 }
1046 
1047 static struct scatterlist *
1048 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1049 			      unsigned long offset, unsigned int alignment_pad,
1050 			      unsigned int width, unsigned int height,
1051 			      unsigned int src_stride, unsigned int dst_stride,
1052 			      struct sg_table *st, struct scatterlist *sg,
1053 			      unsigned int *gtt_offset)
1054 {
1055 	unsigned int row;
1056 
1057 	if (!width || !height)
1058 		return sg;
1059 
1060 	if (alignment_pad)
1061 		sg = add_padding_pages(alignment_pad, st, sg);
1062 
1063 	for (row = 0; row < height; row++) {
1064 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1065 
1066 		while (left) {
1067 			dma_addr_t addr;
1068 			unsigned int length;
1069 
1070 			/*
1071 			 * We don't need the pages, but need to initialize
1072 			 * the entries so the sg list can be happily traversed.
1073 			 * The only thing we need are DMA addresses.
1074 			 */
1075 
1076 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1077 
1078 			length = min(left, length);
1079 
1080 			st->nents++;
1081 
1082 			sg_set_page(sg, NULL, length, 0);
1083 			sg_dma_address(sg) = addr;
1084 			sg_dma_len(sg) = length;
1085 			sg = sg_next(sg);
1086 
1087 			offset += length / I915_GTT_PAGE_SIZE;
1088 			left -= length;
1089 		}
1090 
1091 		offset += src_stride - width;
1092 
1093 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1094 
1095 		if (!left)
1096 			continue;
1097 
1098 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1099 	}
1100 
1101 	*gtt_offset += alignment_pad + dst_stride * height;
1102 
1103 	return sg;
1104 }
1105 
1106 static struct scatterlist *
1107 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1108 		       pgoff_t obj_offset,
1109 		       unsigned int count,
1110 		       struct sg_table *st, struct scatterlist *sg)
1111 {
1112 	struct scatterlist *iter;
1113 	unsigned int offset;
1114 
1115 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1116 	GEM_BUG_ON(!iter);
1117 
1118 	do {
1119 		unsigned int len;
1120 
1121 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1122 			  count << PAGE_SHIFT);
1123 		sg_set_page(sg, NULL, len, 0);
1124 		sg_dma_address(sg) =
1125 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1126 		sg_dma_len(sg) = len;
1127 
1128 		st->nents++;
1129 		count -= len >> PAGE_SHIFT;
1130 		if (count == 0)
1131 			return sg;
1132 
1133 		sg = __sg_next(sg);
1134 		iter = __sg_next(iter);
1135 		offset = 0;
1136 	} while (1);
1137 }
1138 
1139 static struct scatterlist *
1140 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1141 			       pgoff_t obj_offset, unsigned int alignment_pad,
1142 			       unsigned int size,
1143 			       struct sg_table *st, struct scatterlist *sg,
1144 			       unsigned int *gtt_offset)
1145 {
1146 	if (!size)
1147 		return sg;
1148 
1149 	if (alignment_pad)
1150 		sg = add_padding_pages(alignment_pad, st, sg);
1151 
1152 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1153 	sg = sg_next(sg);
1154 
1155 	*gtt_offset += alignment_pad + size;
1156 
1157 	return sg;
1158 }
1159 
1160 static struct scatterlist *
1161 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1162 			struct drm_i915_gem_object *obj,
1163 			int color_plane,
1164 			struct sg_table *st, struct scatterlist *sg,
1165 			unsigned int *gtt_offset)
1166 {
1167 	unsigned int alignment_pad = 0;
1168 
1169 	if (rem_info->plane_alignment)
1170 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1171 
1172 	if (rem_info->plane[color_plane].linear)
1173 		sg = remap_linear_color_plane_pages(obj,
1174 						    rem_info->plane[color_plane].offset,
1175 						    alignment_pad,
1176 						    rem_info->plane[color_plane].size,
1177 						    st, sg,
1178 						    gtt_offset);
1179 
1180 	else
1181 		sg = remap_tiled_color_plane_pages(obj,
1182 						   rem_info->plane[color_plane].offset,
1183 						   alignment_pad,
1184 						   rem_info->plane[color_plane].width,
1185 						   rem_info->plane[color_plane].height,
1186 						   rem_info->plane[color_plane].src_stride,
1187 						   rem_info->plane[color_plane].dst_stride,
1188 						   st, sg,
1189 						   gtt_offset);
1190 
1191 	return sg;
1192 }
1193 
1194 static noinline struct sg_table *
1195 intel_remap_pages(struct intel_remapped_info *rem_info,
1196 		  struct drm_i915_gem_object *obj)
1197 {
1198 	unsigned int size = intel_remapped_info_size(rem_info);
1199 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1200 	struct sg_table *st;
1201 	struct scatterlist *sg;
1202 	unsigned int gtt_offset = 0;
1203 	int ret = -ENOMEM;
1204 	int i;
1205 
1206 	/* Allocate target SG list. */
1207 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1208 	if (!st)
1209 		goto err_st_alloc;
1210 
1211 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1212 	if (ret)
1213 		goto err_sg_alloc;
1214 
1215 	st->nents = 0;
1216 	sg = st->sgl;
1217 
1218 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1219 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1220 
1221 	i915_sg_trim(st);
1222 
1223 	return st;
1224 
1225 err_sg_alloc:
1226 	kfree(st);
1227 err_st_alloc:
1228 
1229 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1230 		obj->base.size, rem_info->plane[0].width,
1231 		rem_info->plane[0].height, size);
1232 
1233 	return ERR_PTR(ret);
1234 }
1235 
1236 static noinline struct sg_table *
1237 intel_partial_pages(const struct i915_gtt_view *view,
1238 		    struct drm_i915_gem_object *obj)
1239 {
1240 	struct sg_table *st;
1241 	struct scatterlist *sg;
1242 	unsigned int count = view->partial.size;
1243 	int ret = -ENOMEM;
1244 
1245 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1246 	if (!st)
1247 		goto err_st_alloc;
1248 
1249 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1250 	if (ret)
1251 		goto err_sg_alloc;
1252 
1253 	st->nents = 0;
1254 
1255 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1256 
1257 	sg_mark_end(sg);
1258 	i915_sg_trim(st); /* Drop any unused tail entries. */
1259 
1260 	return st;
1261 
1262 err_sg_alloc:
1263 	kfree(st);
1264 err_st_alloc:
1265 	return ERR_PTR(ret);
1266 }
1267 
1268 static int
1269 __i915_vma_get_pages(struct i915_vma *vma)
1270 {
1271 	struct sg_table *pages;
1272 
1273 	/*
1274 	 * The vma->pages are only valid within the lifespan of the borrowed
1275 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1276 	 * must be the vma->pages. A simple rule is that vma->pages must only
1277 	 * be accessed when the obj->mm.pages are pinned.
1278 	 */
1279 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1280 
1281 	switch (vma->gtt_view.type) {
1282 	default:
1283 		GEM_BUG_ON(vma->gtt_view.type);
1284 		fallthrough;
1285 	case I915_GTT_VIEW_NORMAL:
1286 		pages = vma->obj->mm.pages;
1287 		break;
1288 
1289 	case I915_GTT_VIEW_ROTATED:
1290 		pages =
1291 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1292 		break;
1293 
1294 	case I915_GTT_VIEW_REMAPPED:
1295 		pages =
1296 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1297 		break;
1298 
1299 	case I915_GTT_VIEW_PARTIAL:
1300 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1301 		break;
1302 	}
1303 
1304 	if (IS_ERR(pages)) {
1305 		drm_err(&vma->vm->i915->drm,
1306 			"Failed to get pages for VMA view type %u (%ld)!\n",
1307 			vma->gtt_view.type, PTR_ERR(pages));
1308 		return PTR_ERR(pages);
1309 	}
1310 
1311 	vma->pages = pages;
1312 
1313 	return 0;
1314 }
1315 
1316 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1317 {
1318 	int err;
1319 
1320 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1321 		return 0;
1322 
1323 	err = i915_gem_object_pin_pages(vma->obj);
1324 	if (err)
1325 		return err;
1326 
1327 	err = __i915_vma_get_pages(vma);
1328 	if (err)
1329 		goto err_unpin;
1330 
1331 	vma->page_sizes = vma->obj->mm.page_sizes;
1332 	atomic_inc(&vma->pages_count);
1333 
1334 	return 0;
1335 
1336 err_unpin:
1337 	__i915_gem_object_unpin_pages(vma->obj);
1338 
1339 	return err;
1340 }
1341 
1342 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1343 {
1344 	struct intel_gt *gt;
1345 	int id;
1346 
1347 	if (!tlb)
1348 		return;
1349 
1350 	/*
1351 	 * Before we release the pages that were bound by this vma, we
1352 	 * must invalidate all the TLBs that may still have a reference
1353 	 * back to our physical address. It only needs to be done once,
1354 	 * so after updating the PTE to point away from the pages, record
1355 	 * the most recent TLB invalidation seqno, and if we have not yet
1356 	 * flushed the TLBs upon release, perform a full invalidation.
1357 	 */
1358 	for_each_gt(gt, vm->i915, id)
1359 		WRITE_ONCE(tlb[id],
1360 			   intel_gt_next_invalidate_tlb_full(gt));
1361 }
1362 
1363 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1364 {
1365 	/* We allocate under vma_get_pages, so beware the shrinker */
1366 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1367 
1368 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1369 		if (vma->pages != vma->obj->mm.pages) {
1370 			sg_free_table(vma->pages);
1371 			kfree(vma->pages);
1372 		}
1373 		vma->pages = NULL;
1374 
1375 		i915_gem_object_unpin_pages(vma->obj);
1376 	}
1377 }
1378 
1379 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1380 {
1381 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1382 		return;
1383 
1384 	__vma_put_pages(vma, 1);
1385 }
1386 
1387 static void vma_unbind_pages(struct i915_vma *vma)
1388 {
1389 	unsigned int count;
1390 
1391 	lockdep_assert_held(&vma->vm->mutex);
1392 
1393 	/* The upper portion of pages_count is the number of bindings */
1394 	count = atomic_read(&vma->pages_count);
1395 	count >>= I915_VMA_PAGES_BIAS;
1396 	GEM_BUG_ON(!count);
1397 
1398 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1399 }
1400 
1401 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1402 		    u64 size, u64 alignment, u64 flags)
1403 {
1404 	struct i915_vma_work *work = NULL;
1405 	struct dma_fence *moving = NULL;
1406 	struct i915_vma_resource *vma_res = NULL;
1407 	intel_wakeref_t wakeref = 0;
1408 	unsigned int bound;
1409 	int err;
1410 
1411 	assert_vma_held(vma);
1412 	GEM_BUG_ON(!ww);
1413 
1414 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1415 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1416 
1417 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1418 
1419 	/* First try and grab the pin without rebinding the vma */
1420 	if (try_qad_pin(vma, flags))
1421 		return 0;
1422 
1423 	err = i915_vma_get_pages(vma);
1424 	if (err)
1425 		return err;
1426 
1427 	if (flags & PIN_GLOBAL)
1428 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1429 
1430 	if (flags & vma->vm->bind_async_flags) {
1431 		/* lock VM */
1432 		err = i915_vm_lock_objects(vma->vm, ww);
1433 		if (err)
1434 			goto err_rpm;
1435 
1436 		work = i915_vma_work();
1437 		if (!work) {
1438 			err = -ENOMEM;
1439 			goto err_rpm;
1440 		}
1441 
1442 		work->vm = vma->vm;
1443 
1444 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1445 		if (err)
1446 			goto err_rpm;
1447 
1448 		dma_fence_work_chain(&work->base, moving);
1449 
1450 		/* Allocate enough page directories to used PTE */
1451 		if (vma->vm->allocate_va_range) {
1452 			err = i915_vm_alloc_pt_stash(vma->vm,
1453 						     &work->stash,
1454 						     vma->size);
1455 			if (err)
1456 				goto err_fence;
1457 
1458 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1459 			if (err)
1460 				goto err_fence;
1461 		}
1462 	}
1463 
1464 	vma_res = i915_vma_resource_alloc();
1465 	if (IS_ERR(vma_res)) {
1466 		err = PTR_ERR(vma_res);
1467 		goto err_fence;
1468 	}
1469 
1470 	/*
1471 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1472 	 *
1473 	 * We conflate the Global GTT with the user's vma when using the
1474 	 * aliasing-ppgtt, but it is still vitally important to try and
1475 	 * keep the use cases distinct. For example, userptr objects are
1476 	 * not allowed inside the Global GTT as that will cause lock
1477 	 * inversions when we have to evict them the mmu_notifier callbacks -
1478 	 * but they are allowed to be part of the user ppGTT which can never
1479 	 * be mapped. As such we try to give the distinct users of the same
1480 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1481 	 * and i915_ppgtt separate].
1482 	 *
1483 	 * NB this may cause us to mask real lock inversions -- while the
1484 	 * code is safe today, lockdep may not be able to spot future
1485 	 * transgressions.
1486 	 */
1487 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1488 					      !(flags & PIN_GLOBAL));
1489 	if (err)
1490 		goto err_vma_res;
1491 
1492 	/* No more allocations allowed now we hold vm->mutex */
1493 
1494 	if (unlikely(i915_vma_is_closed(vma))) {
1495 		err = -ENOENT;
1496 		goto err_unlock;
1497 	}
1498 
1499 	bound = atomic_read(&vma->flags);
1500 	if (unlikely(bound & I915_VMA_ERROR)) {
1501 		err = -ENOMEM;
1502 		goto err_unlock;
1503 	}
1504 
1505 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1506 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1507 		goto err_unlock;
1508 	}
1509 
1510 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1511 		if (!(flags & PIN_VALIDATE))
1512 			__i915_vma_pin(vma);
1513 		goto err_unlock;
1514 	}
1515 
1516 	err = i915_active_acquire(&vma->active);
1517 	if (err)
1518 		goto err_unlock;
1519 
1520 	if (!(bound & I915_VMA_BIND_MASK)) {
1521 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1522 		if (err)
1523 			goto err_active;
1524 
1525 		if (i915_is_ggtt(vma->vm))
1526 			__i915_vma_set_map_and_fenceable(vma);
1527 	}
1528 
1529 	GEM_BUG_ON(!vma->pages);
1530 	err = i915_vma_bind(vma,
1531 			    vma->obj->pat_index,
1532 			    flags, work, vma_res);
1533 	vma_res = NULL;
1534 	if (err)
1535 		goto err_remove;
1536 
1537 	/* There should only be at most 2 active bindings (user, global) */
1538 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1539 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1540 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1541 
1542 	if (!(flags & PIN_VALIDATE)) {
1543 		__i915_vma_pin(vma);
1544 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1545 	}
1546 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1547 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1548 
1549 err_remove:
1550 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1551 		i915_vma_detach(vma);
1552 		drm_mm_remove_node(&vma->node);
1553 	}
1554 err_active:
1555 	i915_active_release(&vma->active);
1556 err_unlock:
1557 	mutex_unlock(&vma->vm->mutex);
1558 err_vma_res:
1559 	i915_vma_resource_free(vma_res);
1560 err_fence:
1561 	if (work)
1562 		dma_fence_work_commit_imm(&work->base);
1563 err_rpm:
1564 	if (wakeref)
1565 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1566 
1567 	if (moving)
1568 		dma_fence_put(moving);
1569 
1570 	i915_vma_put_pages(vma);
1571 	return err;
1572 }
1573 
1574 static void flush_idle_contexts(struct intel_gt *gt)
1575 {
1576 	struct intel_engine_cs *engine;
1577 	enum intel_engine_id id;
1578 
1579 	for_each_engine(engine, gt, id)
1580 		intel_engine_flush_barriers(engine);
1581 
1582 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1583 }
1584 
1585 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1586 			   u32 align, unsigned int flags)
1587 {
1588 	struct i915_address_space *vm = vma->vm;
1589 	struct intel_gt *gt;
1590 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1591 	int err;
1592 
1593 	do {
1594 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1595 
1596 		if (err != -ENOSPC) {
1597 			if (!err) {
1598 				err = i915_vma_wait_for_bind(vma);
1599 				if (err)
1600 					i915_vma_unpin(vma);
1601 			}
1602 			return err;
1603 		}
1604 
1605 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1606 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1607 			flush_idle_contexts(gt);
1608 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1609 			/*
1610 			 * We pass NULL ww here, as we don't want to unbind
1611 			 * locked objects when called from execbuf when pinning
1612 			 * is removed. This would probably regress badly.
1613 			 */
1614 			i915_gem_evict_vm(vm, NULL, NULL);
1615 			mutex_unlock(&vm->mutex);
1616 		}
1617 	} while (1);
1618 }
1619 
1620 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1621 		  u32 align, unsigned int flags)
1622 {
1623 	struct i915_gem_ww_ctx _ww;
1624 	int err;
1625 
1626 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1627 
1628 	if (ww)
1629 		return __i915_ggtt_pin(vma, ww, align, flags);
1630 
1631 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1632 
1633 	for_i915_gem_ww(&_ww, err, true) {
1634 		err = i915_gem_object_lock(vma->obj, &_ww);
1635 		if (!err)
1636 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1637 	}
1638 
1639 	return err;
1640 }
1641 
1642 /**
1643  * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1644  * @obj: i915 GEM object
1645  * This function clears scanout flags for objects ggtt vmas. These flags are set
1646  * when object is pinned for display use and this function to clear them all is
1647  * targeted to be called by frontbuffer tracking code when the frontbuffer is
1648  * about to be released.
1649  */
1650 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1651 {
1652 	struct i915_vma *vma;
1653 
1654 	spin_lock(&obj->vma.lock);
1655 	for_each_ggtt_vma(vma, obj) {
1656 		i915_vma_clear_scanout(vma);
1657 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1658 	}
1659 	spin_unlock(&obj->vma.lock);
1660 }
1661 
1662 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1663 {
1664 	/*
1665 	 * We defer actually closing, unbinding and destroying the VMA until
1666 	 * the next idle point, or if the object is freed in the meantime. By
1667 	 * postponing the unbind, we allow for it to be resurrected by the
1668 	 * client, avoiding the work required to rebind the VMA. This is
1669 	 * advantageous for DRI, where the client/server pass objects
1670 	 * between themselves, temporarily opening a local VMA to the
1671 	 * object, and then closing it again. The same object is then reused
1672 	 * on the next frame (or two, depending on the depth of the swap queue)
1673 	 * causing us to rebind the VMA once more. This ends up being a lot
1674 	 * of wasted work for the steady state.
1675 	 */
1676 	GEM_BUG_ON(i915_vma_is_closed(vma));
1677 	list_add(&vma->closed_link, &gt->closed_vma);
1678 }
1679 
1680 void i915_vma_close(struct i915_vma *vma)
1681 {
1682 	struct intel_gt *gt = vma->vm->gt;
1683 	unsigned long flags;
1684 
1685 	if (i915_vma_is_ggtt(vma))
1686 		return;
1687 
1688 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1689 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1690 					&gt->closed_lock,
1691 					flags)) {
1692 		__vma_close(vma, gt);
1693 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1694 	}
1695 }
1696 
1697 static void __i915_vma_remove_closed(struct i915_vma *vma)
1698 {
1699 	list_del_init(&vma->closed_link);
1700 }
1701 
1702 void i915_vma_reopen(struct i915_vma *vma)
1703 {
1704 	struct intel_gt *gt = vma->vm->gt;
1705 
1706 	spin_lock_irq(&gt->closed_lock);
1707 	if (i915_vma_is_closed(vma))
1708 		__i915_vma_remove_closed(vma);
1709 	spin_unlock_irq(&gt->closed_lock);
1710 }
1711 
1712 static void force_unbind(struct i915_vma *vma)
1713 {
1714 	if (!drm_mm_node_allocated(&vma->node))
1715 		return;
1716 
1717 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1718 	WARN_ON(__i915_vma_unbind(vma));
1719 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1720 }
1721 
1722 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1723 			       bool vm_ddestroy)
1724 {
1725 	struct drm_i915_gem_object *obj = vma->obj;
1726 
1727 	GEM_BUG_ON(i915_vma_is_active(vma));
1728 
1729 	spin_lock(&obj->vma.lock);
1730 	list_del(&vma->obj_link);
1731 	if (!RB_EMPTY_NODE(&vma->obj_node))
1732 		rb_erase(&vma->obj_node, &obj->vma.tree);
1733 
1734 	spin_unlock(&obj->vma.lock);
1735 
1736 	spin_lock_irq(&gt->closed_lock);
1737 	__i915_vma_remove_closed(vma);
1738 	spin_unlock_irq(&gt->closed_lock);
1739 
1740 	if (vm_ddestroy)
1741 		i915_vm_resv_put(vma->vm);
1742 
1743 	/* Wait for async active retire */
1744 	i915_active_wait(&vma->active);
1745 	i915_active_fini(&vma->active);
1746 	GEM_WARN_ON(vma->resource);
1747 	i915_vma_free(vma);
1748 }
1749 
1750 /*
1751  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1752  * the initial reference.
1753  *
1754  * This function should be called when it's decided the vma isn't needed
1755  * anymore. The caller must assure that it doesn't race with another lookup
1756  * plus destroy, typically by taking an appropriate reference.
1757  *
1758  * Current callsites are
1759  * - __i915_gem_object_pages_fini()
1760  * - __i915_vm_close() - Blocks the above function by taking a reference on
1761  * the object.
1762  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1763  * on the vm and a reference on the object. Also takes the object lock so
1764  * destruction from __i915_vma_parked() can be blocked by holding the
1765  * object lock. Since the object lock is only allowed from within i915 with
1766  * an object refcount, holding the object lock also implicitly blocks the
1767  * vma freeing from __i915_gem_object_pages_fini().
1768  *
1769  * Because of locks taken during destruction, a vma is also guaranteed to
1770  * stay alive while the following locks are held if it was looked up while
1771  * holding one of the locks:
1772  * - vm->mutex
1773  * - obj->vma.lock
1774  * - gt->closed_lock
1775  */
1776 void i915_vma_destroy_locked(struct i915_vma *vma)
1777 {
1778 	lockdep_assert_held(&vma->vm->mutex);
1779 
1780 	force_unbind(vma);
1781 	list_del_init(&vma->vm_link);
1782 	release_references(vma, vma->vm->gt, false);
1783 }
1784 
1785 void i915_vma_destroy(struct i915_vma *vma)
1786 {
1787 	struct intel_gt *gt;
1788 	bool vm_ddestroy;
1789 
1790 	mutex_lock(&vma->vm->mutex);
1791 	force_unbind(vma);
1792 	list_del_init(&vma->vm_link);
1793 	vm_ddestroy = vma->vm_ddestroy;
1794 	vma->vm_ddestroy = false;
1795 
1796 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1797 	gt = vma->vm->gt;
1798 	mutex_unlock(&vma->vm->mutex);
1799 	release_references(vma, gt, vm_ddestroy);
1800 }
1801 
1802 void i915_vma_parked(struct intel_gt *gt)
1803 {
1804 	struct i915_vma *vma, *next;
1805 	LIST_HEAD(closed);
1806 
1807 	spin_lock_irq(&gt->closed_lock);
1808 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1809 		struct drm_i915_gem_object *obj = vma->obj;
1810 		struct i915_address_space *vm = vma->vm;
1811 
1812 		/* XXX All to avoid keeping a reference on i915_vma itself */
1813 
1814 		if (!kref_get_unless_zero(&obj->base.refcount))
1815 			continue;
1816 
1817 		if (!i915_vm_tryget(vm)) {
1818 			i915_gem_object_put(obj);
1819 			continue;
1820 		}
1821 
1822 		list_move(&vma->closed_link, &closed);
1823 	}
1824 	spin_unlock_irq(&gt->closed_lock);
1825 
1826 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1827 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1828 		struct drm_i915_gem_object *obj = vma->obj;
1829 		struct i915_address_space *vm = vma->vm;
1830 
1831 		if (i915_gem_object_trylock(obj, NULL)) {
1832 			INIT_LIST_HEAD(&vma->closed_link);
1833 			i915_vma_destroy(vma);
1834 			i915_gem_object_unlock(obj);
1835 		} else {
1836 			/* back you go.. */
1837 			spin_lock_irq(&gt->closed_lock);
1838 			list_add(&vma->closed_link, &gt->closed_vma);
1839 			spin_unlock_irq(&gt->closed_lock);
1840 		}
1841 
1842 		i915_gem_object_put(obj);
1843 		i915_vm_put(vm);
1844 	}
1845 }
1846 
1847 static void __i915_vma_iounmap(struct i915_vma *vma)
1848 {
1849 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1850 
1851 	if (vma->iomap == NULL)
1852 		return;
1853 
1854 	if (page_unmask_bits(vma->iomap))
1855 		__i915_gem_object_release_map(vma->obj);
1856 	else
1857 		io_mapping_unmap(vma->iomap);
1858 	vma->iomap = NULL;
1859 }
1860 
1861 void i915_vma_revoke_mmap(struct i915_vma *vma)
1862 {
1863 	struct drm_vma_offset_node *node;
1864 	u64 vma_offset;
1865 
1866 	if (!i915_vma_has_userfault(vma))
1867 		return;
1868 
1869 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1870 	GEM_BUG_ON(!vma->obj->userfault_count);
1871 
1872 	node = &vma->mmo->vma_node;
1873 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1874 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1875 			    drm_vma_node_offset_addr(node) + vma_offset,
1876 			    vma->size,
1877 			    1);
1878 
1879 	i915_vma_unset_userfault(vma);
1880 	if (!--vma->obj->userfault_count)
1881 		list_del(&vma->obj->userfault_link);
1882 }
1883 
1884 static int
1885 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1886 {
1887 	return __i915_request_await_exclusive(rq, &vma->active);
1888 }
1889 
1890 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1891 {
1892 	int err;
1893 
1894 	/* Wait for the vma to be bound before we start! */
1895 	err = __i915_request_await_bind(rq, vma);
1896 	if (err)
1897 		return err;
1898 
1899 	return i915_active_add_request(&vma->active, rq);
1900 }
1901 
1902 int _i915_vma_move_to_active(struct i915_vma *vma,
1903 			     struct i915_request *rq,
1904 			     struct dma_fence *fence,
1905 			     unsigned int flags)
1906 {
1907 	struct drm_i915_gem_object *obj = vma->obj;
1908 	int err;
1909 
1910 	assert_object_held(obj);
1911 
1912 	GEM_BUG_ON(!vma->pages);
1913 
1914 	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1915 		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1916 		if (unlikely(err))
1917 			return err;
1918 	}
1919 	err = __i915_vma_move_to_active(vma, rq);
1920 	if (unlikely(err))
1921 		return err;
1922 
1923 	/*
1924 	 * Reserve fences slot early to prevent an allocation after preparing
1925 	 * the workload and associating fences with dma_resv.
1926 	 */
1927 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1928 		struct dma_fence *curr;
1929 		int idx;
1930 
1931 		dma_fence_array_for_each(curr, idx, fence)
1932 			;
1933 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1934 		if (unlikely(err))
1935 			return err;
1936 	}
1937 
1938 	if (flags & EXEC_OBJECT_WRITE) {
1939 		struct intel_frontbuffer *front;
1940 
1941 		front = i915_gem_object_get_frontbuffer(obj);
1942 		if (unlikely(front)) {
1943 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1944 				i915_active_add_request(&front->write, rq);
1945 			intel_frontbuffer_put(front);
1946 		}
1947 	}
1948 
1949 	if (fence) {
1950 		struct dma_fence *curr;
1951 		enum dma_resv_usage usage;
1952 		int idx;
1953 
1954 		if (flags & EXEC_OBJECT_WRITE) {
1955 			usage = DMA_RESV_USAGE_WRITE;
1956 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1957 			obj->read_domains = 0;
1958 		} else {
1959 			usage = DMA_RESV_USAGE_READ;
1960 			obj->write_domain = 0;
1961 		}
1962 
1963 		dma_fence_array_for_each(curr, idx, fence)
1964 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1965 	}
1966 
1967 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1968 		i915_active_add_request(&vma->fence->active, rq);
1969 
1970 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1971 	obj->mm.dirty = true;
1972 
1973 	GEM_BUG_ON(!i915_vma_is_active(vma));
1974 	return 0;
1975 }
1976 
1977 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1978 {
1979 	struct i915_vma_resource *vma_res = vma->resource;
1980 	struct dma_fence *unbind_fence;
1981 
1982 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1983 	assert_vma_held_evict(vma);
1984 
1985 	if (i915_vma_is_map_and_fenceable(vma)) {
1986 		/* Force a pagefault for domain tracking on next user access */
1987 		i915_vma_revoke_mmap(vma);
1988 
1989 		/*
1990 		 * Check that we have flushed all writes through the GGTT
1991 		 * before the unbind, other due to non-strict nature of those
1992 		 * indirect writes they may end up referencing the GGTT PTE
1993 		 * after the unbind.
1994 		 *
1995 		 * Note that we may be concurrently poking at the GGTT_WRITE
1996 		 * bit from set-domain, as we mark all GGTT vma associated
1997 		 * with an object. We know this is for another vma, as we
1998 		 * are currently unbinding this one -- so if this vma will be
1999 		 * reused, it will be refaulted and have its dirty bit set
2000 		 * before the next write.
2001 		 */
2002 		i915_vma_flush_writes(vma);
2003 
2004 		/* release the fence reg _after_ flushing */
2005 		i915_vma_revoke_fence(vma);
2006 
2007 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2008 	}
2009 
2010 	__i915_vma_iounmap(vma);
2011 
2012 	GEM_BUG_ON(vma->fence);
2013 	GEM_BUG_ON(i915_vma_has_userfault(vma));
2014 
2015 	/* Object backend must be async capable. */
2016 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2017 
2018 	/* If vm is not open, unbind is a nop. */
2019 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2020 		kref_read(&vma->vm->ref);
2021 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2022 		vma->vm->skip_pte_rewrite;
2023 	trace_i915_vma_unbind(vma);
2024 
2025 	if (async)
2026 		unbind_fence = i915_vma_resource_unbind(vma_res,
2027 							vma->obj->mm.tlb);
2028 	else
2029 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2030 
2031 	vma->resource = NULL;
2032 
2033 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2034 		   &vma->flags);
2035 
2036 	i915_vma_detach(vma);
2037 
2038 	if (!async) {
2039 		if (unbind_fence) {
2040 			dma_fence_wait(unbind_fence, false);
2041 			dma_fence_put(unbind_fence);
2042 			unbind_fence = NULL;
2043 		}
2044 		vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2045 	}
2046 
2047 	/*
2048 	 * Binding itself may not have completed until the unbind fence signals,
2049 	 * so don't drop the pages until that happens, unless the resource is
2050 	 * async_capable.
2051 	 */
2052 
2053 	vma_unbind_pages(vma);
2054 	return unbind_fence;
2055 }
2056 
2057 int __i915_vma_unbind(struct i915_vma *vma)
2058 {
2059 	int ret;
2060 
2061 	lockdep_assert_held(&vma->vm->mutex);
2062 	assert_vma_held_evict(vma);
2063 
2064 	if (!drm_mm_node_allocated(&vma->node))
2065 		return 0;
2066 
2067 	if (i915_vma_is_pinned(vma)) {
2068 		vma_print_allocator(vma, "is pinned");
2069 		return -EAGAIN;
2070 	}
2071 
2072 	/*
2073 	 * After confirming that no one else is pinning this vma, wait for
2074 	 * any laggards who may have crept in during the wait (through
2075 	 * a residual pin skipping the vm->mutex) to complete.
2076 	 */
2077 	ret = i915_vma_sync(vma);
2078 	if (ret)
2079 		return ret;
2080 
2081 	GEM_BUG_ON(i915_vma_is_active(vma));
2082 	__i915_vma_evict(vma, false);
2083 
2084 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2085 	return 0;
2086 }
2087 
2088 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2089 {
2090 	struct dma_fence *fence;
2091 
2092 	lockdep_assert_held(&vma->vm->mutex);
2093 
2094 	if (!drm_mm_node_allocated(&vma->node))
2095 		return NULL;
2096 
2097 	if (i915_vma_is_pinned(vma) ||
2098 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2099 		return ERR_PTR(-EAGAIN);
2100 
2101 	/*
2102 	 * We probably need to replace this with awaiting the fences of the
2103 	 * object's dma_resv when the vma active goes away. When doing that
2104 	 * we need to be careful to not add the vma_resource unbind fence
2105 	 * immediately to the object's dma_resv, because then unbinding
2106 	 * the next vma from the object, in case there are many, will
2107 	 * actually await the unbinding of the previous vmas, which is
2108 	 * undesirable.
2109 	 */
2110 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2111 				       I915_ACTIVE_AWAIT_EXCL |
2112 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2113 		return ERR_PTR(-EBUSY);
2114 	}
2115 
2116 	fence = __i915_vma_evict(vma, true);
2117 
2118 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2119 
2120 	return fence;
2121 }
2122 
2123 int i915_vma_unbind(struct i915_vma *vma)
2124 {
2125 	struct i915_address_space *vm = vma->vm;
2126 	intel_wakeref_t wakeref = 0;
2127 	int err;
2128 
2129 	assert_object_held_shared(vma->obj);
2130 
2131 	/* Optimistic wait before taking the mutex */
2132 	err = i915_vma_sync(vma);
2133 	if (err)
2134 		return err;
2135 
2136 	if (!drm_mm_node_allocated(&vma->node))
2137 		return 0;
2138 
2139 	if (i915_vma_is_pinned(vma)) {
2140 		vma_print_allocator(vma, "is pinned");
2141 		return -EAGAIN;
2142 	}
2143 
2144 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2145 		/* XXX not always required: nop_clear_range */
2146 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2147 
2148 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2149 	if (err)
2150 		goto out_rpm;
2151 
2152 	err = __i915_vma_unbind(vma);
2153 	mutex_unlock(&vm->mutex);
2154 
2155 out_rpm:
2156 	if (wakeref)
2157 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2158 	return err;
2159 }
2160 
2161 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2162 {
2163 	struct drm_i915_gem_object *obj = vma->obj;
2164 	struct i915_address_space *vm = vma->vm;
2165 	intel_wakeref_t wakeref = 0;
2166 	struct dma_fence *fence;
2167 	int err;
2168 
2169 	/*
2170 	 * We need the dma-resv lock since we add the
2171 	 * unbind fence to the dma-resv object.
2172 	 */
2173 	assert_object_held(obj);
2174 
2175 	if (!drm_mm_node_allocated(&vma->node))
2176 		return 0;
2177 
2178 	if (i915_vma_is_pinned(vma)) {
2179 		vma_print_allocator(vma, "is pinned");
2180 		return -EAGAIN;
2181 	}
2182 
2183 	if (!obj->mm.rsgt)
2184 		return -EBUSY;
2185 
2186 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2187 	if (err)
2188 		return -EBUSY;
2189 
2190 	/*
2191 	 * It would be great if we could grab this wakeref from the
2192 	 * async unbind work if needed, but we can't because it uses
2193 	 * kmalloc and it's in the dma-fence signalling critical path.
2194 	 */
2195 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2196 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2197 
2198 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2199 		err = -EBUSY;
2200 		goto out_rpm;
2201 	} else if (!trylock_vm) {
2202 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2203 		if (err)
2204 			goto out_rpm;
2205 	}
2206 
2207 	fence = __i915_vma_unbind_async(vma);
2208 	mutex_unlock(&vm->mutex);
2209 	if (IS_ERR_OR_NULL(fence)) {
2210 		err = PTR_ERR_OR_ZERO(fence);
2211 		goto out_rpm;
2212 	}
2213 
2214 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2215 	dma_fence_put(fence);
2216 
2217 out_rpm:
2218 	if (wakeref)
2219 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2220 	return err;
2221 }
2222 
2223 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2224 {
2225 	int err;
2226 
2227 	i915_gem_object_lock(vma->obj, NULL);
2228 	err = i915_vma_unbind(vma);
2229 	i915_gem_object_unlock(vma->obj);
2230 
2231 	return err;
2232 }
2233 
2234 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2235 {
2236 	i915_gem_object_make_unshrinkable(vma->obj);
2237 	return vma;
2238 }
2239 
2240 void i915_vma_make_shrinkable(struct i915_vma *vma)
2241 {
2242 	i915_gem_object_make_shrinkable(vma->obj);
2243 }
2244 
2245 void i915_vma_make_purgeable(struct i915_vma *vma)
2246 {
2247 	i915_gem_object_make_purgeable(vma->obj);
2248 }
2249 
2250 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2251 #include "selftests/i915_vma.c"
2252 #endif
2253 
2254 void i915_vma_module_exit(void)
2255 {
2256 	kmem_cache_destroy(slab_vmas);
2257 }
2258 
2259 int __init i915_vma_module_init(void)
2260 {
2261 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2262 	if (!slab_vmas)
2263 		return -ENOMEM;
2264 
2265 	return 0;
2266 }
2267