1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <linux/dma-fence-array.h> 27 #include <drm/drm_gem.h> 28 29 #include "display/intel_fb.h" 30 #include "display/intel_frontbuffer.h" 31 #include "gem/i915_gem_lmem.h" 32 #include "gem/i915_gem_object_frontbuffer.h" 33 #include "gem/i915_gem_tiling.h" 34 #include "gt/intel_engine.h" 35 #include "gt/intel_engine_heartbeat.h" 36 #include "gt/intel_gt.h" 37 #include "gt/intel_gt_pm.h" 38 #include "gt/intel_gt_requests.h" 39 #include "gt/intel_tlb.h" 40 41 #include "i915_drv.h" 42 #include "i915_gem_evict.h" 43 #include "i915_sw_fence_work.h" 44 #include "i915_trace.h" 45 #include "i915_vma.h" 46 #include "i915_vma_resource.h" 47 48 static inline void assert_vma_held_evict(const struct i915_vma *vma) 49 { 50 /* 51 * We may be forced to unbind when the vm is dead, to clean it up. 52 * This is the only exception to the requirement of the object lock 53 * being held. 54 */ 55 if (kref_read(&vma->vm->ref)) 56 assert_object_held_shared(vma->obj); 57 } 58 59 static struct kmem_cache *slab_vmas; 60 61 static struct i915_vma *i915_vma_alloc(void) 62 { 63 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); 64 } 65 66 static void i915_vma_free(struct i915_vma *vma) 67 { 68 return kmem_cache_free(slab_vmas, vma); 69 } 70 71 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 72 73 #include <linux/stackdepot.h> 74 75 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 76 { 77 char buf[512]; 78 79 if (!vma->node.stack) { 80 drm_dbg(vma->obj->base.dev, 81 "vma.node [%08llx + %08llx] %s: unknown owner\n", 82 vma->node.start, vma->node.size, reason); 83 return; 84 } 85 86 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); 87 drm_dbg(vma->obj->base.dev, 88 "vma.node [%08llx + %08llx] %s: inserted at %s\n", 89 vma->node.start, vma->node.size, reason, buf); 90 } 91 92 #else 93 94 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 95 { 96 } 97 98 #endif 99 100 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 101 { 102 return container_of(ref, typeof(struct i915_vma), active); 103 } 104 105 static int __i915_vma_active(struct i915_active *ref) 106 { 107 struct i915_vma *vma = active_to_vma(ref); 108 109 if (!i915_vma_tryget(vma)) 110 return -ENOENT; 111 112 /* 113 * Exclude global GTT VMA from holding a GT wakeref 114 * while active, otherwise GPU never goes idle. 115 */ 116 if (!i915_vma_is_ggtt(vma)) { 117 /* 118 * Since we and our _retire() counterpart can be 119 * called asynchronously, storing a wakeref tracking 120 * handle inside struct i915_vma is not safe, and 121 * there is no other good place for that. Hence, 122 * use untracked variants of intel_gt_pm_get/put(). 123 */ 124 intel_gt_pm_get_untracked(vma->vm->gt); 125 } 126 127 return 0; 128 } 129 130 static void __i915_vma_retire(struct i915_active *ref) 131 { 132 struct i915_vma *vma = active_to_vma(ref); 133 134 if (!i915_vma_is_ggtt(vma)) { 135 /* 136 * Since we can be called from atomic contexts, 137 * use an async variant of intel_gt_pm_put(). 138 */ 139 intel_gt_pm_put_async_untracked(vma->vm->gt); 140 } 141 142 i915_vma_put(vma); 143 } 144 145 static struct i915_vma * 146 vma_create(struct drm_i915_gem_object *obj, 147 struct i915_address_space *vm, 148 const struct i915_gtt_view *view) 149 { 150 struct i915_vma *pos = ERR_PTR(-E2BIG); 151 struct i915_vma *vma; 152 struct rb_node *rb, **p; 153 int err; 154 155 /* The aliasing_ppgtt should never be used directly! */ 156 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 157 158 vma = i915_vma_alloc(); 159 if (vma == NULL) 160 return ERR_PTR(-ENOMEM); 161 162 vma->ops = &vm->vma_ops; 163 vma->obj = obj; 164 vma->size = obj->base.size; 165 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 166 167 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); 168 169 /* Declare ourselves safe for use inside shrinkers */ 170 if (IS_ENABLED(CONFIG_LOCKDEP)) { 171 fs_reclaim_acquire(GFP_KERNEL); 172 might_lock(&vma->active.mutex); 173 fs_reclaim_release(GFP_KERNEL); 174 } 175 176 INIT_LIST_HEAD(&vma->closed_link); 177 INIT_LIST_HEAD(&vma->obj_link); 178 RB_CLEAR_NODE(&vma->obj_node); 179 180 if (view && view->type != I915_GTT_VIEW_NORMAL) { 181 vma->gtt_view = *view; 182 if (view->type == I915_GTT_VIEW_PARTIAL) { 183 GEM_BUG_ON(range_overflows_t(u64, 184 view->partial.offset, 185 view->partial.size, 186 obj->base.size >> PAGE_SHIFT)); 187 vma->size = view->partial.size; 188 vma->size <<= PAGE_SHIFT; 189 GEM_BUG_ON(vma->size > obj->base.size); 190 } else if (view->type == I915_GTT_VIEW_ROTATED) { 191 vma->size = intel_rotation_info_size(&view->rotated); 192 vma->size <<= PAGE_SHIFT; 193 } else if (view->type == I915_GTT_VIEW_REMAPPED) { 194 vma->size = intel_remapped_info_size(&view->remapped); 195 vma->size <<= PAGE_SHIFT; 196 } 197 } 198 199 if (unlikely(vma->size > vm->total)) 200 goto err_vma; 201 202 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 203 204 err = mutex_lock_interruptible(&vm->mutex); 205 if (err) { 206 pos = ERR_PTR(err); 207 goto err_vma; 208 } 209 210 vma->vm = vm; 211 list_add_tail(&vma->vm_link, &vm->unbound_list); 212 213 spin_lock(&obj->vma.lock); 214 if (i915_is_ggtt(vm)) { 215 if (unlikely(overflows_type(vma->size, u32))) 216 goto err_unlock; 217 218 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 219 i915_gem_object_get_tiling(obj), 220 i915_gem_object_get_stride(obj)); 221 if (unlikely(vma->fence_size < vma->size || /* overflow */ 222 vma->fence_size > vm->total)) 223 goto err_unlock; 224 225 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 226 227 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 228 i915_gem_object_get_tiling(obj), 229 i915_gem_object_get_stride(obj)); 230 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 231 232 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 233 } 234 235 rb = NULL; 236 p = &obj->vma.tree.rb_node; 237 while (*p) { 238 long cmp; 239 240 rb = *p; 241 pos = rb_entry(rb, struct i915_vma, obj_node); 242 243 /* 244 * If the view already exists in the tree, another thread 245 * already created a matching vma, so return the older instance 246 * and dispose of ours. 247 */ 248 cmp = i915_vma_compare(pos, vm, view); 249 if (cmp < 0) 250 p = &rb->rb_right; 251 else if (cmp > 0) 252 p = &rb->rb_left; 253 else 254 goto err_unlock; 255 } 256 rb_link_node(&vma->obj_node, rb, p); 257 rb_insert_color(&vma->obj_node, &obj->vma.tree); 258 259 if (i915_vma_is_ggtt(vma)) 260 /* 261 * We put the GGTT vma at the start of the vma-list, followed 262 * by the ppGGTT vma. This allows us to break early when 263 * iterating over only the GGTT vma for an object, see 264 * for_each_ggtt_vma() 265 */ 266 list_add(&vma->obj_link, &obj->vma.list); 267 else 268 list_add_tail(&vma->obj_link, &obj->vma.list); 269 270 spin_unlock(&obj->vma.lock); 271 mutex_unlock(&vm->mutex); 272 273 return vma; 274 275 err_unlock: 276 spin_unlock(&obj->vma.lock); 277 list_del_init(&vma->vm_link); 278 mutex_unlock(&vm->mutex); 279 err_vma: 280 i915_vma_free(vma); 281 return pos; 282 } 283 284 static struct i915_vma * 285 i915_vma_lookup(struct drm_i915_gem_object *obj, 286 struct i915_address_space *vm, 287 const struct i915_gtt_view *view) 288 { 289 struct rb_node *rb; 290 291 rb = obj->vma.tree.rb_node; 292 while (rb) { 293 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 294 long cmp; 295 296 cmp = i915_vma_compare(vma, vm, view); 297 if (cmp == 0) 298 return vma; 299 300 if (cmp < 0) 301 rb = rb->rb_right; 302 else 303 rb = rb->rb_left; 304 } 305 306 return NULL; 307 } 308 309 /** 310 * i915_vma_instance - return the singleton instance of the VMA 311 * @obj: parent &struct drm_i915_gem_object to be mapped 312 * @vm: address space in which the mapping is located 313 * @view: additional mapping requirements 314 * 315 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 316 * the same @view characteristics. If a match is not found, one is created. 317 * Once created, the VMA is kept until either the object is freed, or the 318 * address space is closed. 319 * 320 * Returns the vma, or an error pointer. 321 */ 322 struct i915_vma * 323 i915_vma_instance(struct drm_i915_gem_object *obj, 324 struct i915_address_space *vm, 325 const struct i915_gtt_view *view) 326 { 327 struct i915_vma *vma; 328 329 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); 330 GEM_BUG_ON(!kref_read(&vm->ref)); 331 332 spin_lock(&obj->vma.lock); 333 vma = i915_vma_lookup(obj, vm, view); 334 spin_unlock(&obj->vma.lock); 335 336 /* vma_create() will resolve the race if another creates the vma */ 337 if (unlikely(!vma)) 338 vma = vma_create(obj, vm, view); 339 340 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 341 return vma; 342 } 343 344 struct i915_vma_work { 345 struct dma_fence_work base; 346 struct i915_address_space *vm; 347 struct i915_vm_pt_stash stash; 348 struct i915_vma_resource *vma_res; 349 struct drm_i915_gem_object *obj; 350 struct i915_sw_dma_fence_cb cb; 351 unsigned int pat_index; 352 unsigned int flags; 353 }; 354 355 static void __vma_bind(struct dma_fence_work *work) 356 { 357 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 358 struct i915_vma_resource *vma_res = vw->vma_res; 359 360 /* 361 * We are about the bind the object, which must mean we have already 362 * signaled the work to potentially clear/move the pages underneath. If 363 * something went wrong at that stage then the object should have 364 * unknown_state set, in which case we need to skip the bind. 365 */ 366 if (i915_gem_object_has_unknown_state(vw->obj)) 367 return; 368 369 vma_res->ops->bind_vma(vma_res->vm, &vw->stash, 370 vma_res, vw->pat_index, vw->flags); 371 } 372 373 static void __vma_release(struct dma_fence_work *work) 374 { 375 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 376 377 if (vw->obj) 378 i915_gem_object_put(vw->obj); 379 380 i915_vm_free_pt_stash(vw->vm, &vw->stash); 381 if (vw->vma_res) 382 i915_vma_resource_put(vw->vma_res); 383 } 384 385 static const struct dma_fence_work_ops bind_ops = { 386 .name = "bind", 387 .work = __vma_bind, 388 .release = __vma_release, 389 }; 390 391 struct i915_vma_work *i915_vma_work(void) 392 { 393 struct i915_vma_work *vw; 394 395 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 396 if (!vw) 397 return NULL; 398 399 dma_fence_work_init(&vw->base, &bind_ops); 400 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 401 402 return vw; 403 } 404 405 int i915_vma_wait_for_bind(struct i915_vma *vma) 406 { 407 int err = 0; 408 409 if (rcu_access_pointer(vma->active.excl.fence)) { 410 struct dma_fence *fence; 411 412 rcu_read_lock(); 413 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 414 rcu_read_unlock(); 415 if (fence) { 416 err = dma_fence_wait(fence, true); 417 dma_fence_put(fence); 418 } 419 } 420 421 return err; 422 } 423 424 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 425 static int i915_vma_verify_bind_complete(struct i915_vma *vma) 426 { 427 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); 428 int err; 429 430 if (!fence) 431 return 0; 432 433 if (dma_fence_is_signaled(fence)) 434 err = fence->error; 435 else 436 err = -EBUSY; 437 438 dma_fence_put(fence); 439 440 return err; 441 } 442 #else 443 #define i915_vma_verify_bind_complete(_vma) 0 444 #endif 445 446 I915_SELFTEST_EXPORT void 447 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, 448 struct i915_vma *vma) 449 { 450 struct drm_i915_gem_object *obj = vma->obj; 451 452 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, 453 obj->mm.rsgt, i915_gem_object_is_readonly(obj), 454 i915_gem_object_is_lmem(obj), obj->mm.region, 455 vma->ops, vma->private, __i915_vma_offset(vma), 456 __i915_vma_size(vma), vma->size, vma->guard); 457 } 458 459 /** 460 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 461 * @vma: VMA to map 462 * @pat_index: PAT index to set in PTE 463 * @flags: flags like global or local mapping 464 * @work: preallocated worker for allocating and binding the PTE 465 * @vma_res: pointer to a preallocated vma resource. The resource is either 466 * consumed or freed. 467 * 468 * DMA addresses are taken from the scatter-gather table of this object (or of 469 * this VMA in case of non-default GGTT views) and PTE entries set up. 470 * Note that DMA addresses are also the only part of the SG table we care about. 471 */ 472 int i915_vma_bind(struct i915_vma *vma, 473 unsigned int pat_index, 474 u32 flags, 475 struct i915_vma_work *work, 476 struct i915_vma_resource *vma_res) 477 { 478 u32 bind_flags; 479 u32 vma_flags; 480 int ret; 481 482 lockdep_assert_held(&vma->vm->mutex); 483 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 484 GEM_BUG_ON(vma->size > i915_vma_size(vma)); 485 486 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 487 vma->node.size, 488 vma->vm->total))) { 489 i915_vma_resource_free(vma_res); 490 return -ENODEV; 491 } 492 493 if (GEM_DEBUG_WARN_ON(!flags)) { 494 i915_vma_resource_free(vma_res); 495 return -EINVAL; 496 } 497 498 bind_flags = flags; 499 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 500 501 vma_flags = atomic_read(&vma->flags); 502 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 503 504 bind_flags &= ~vma_flags; 505 if (bind_flags == 0) { 506 i915_vma_resource_free(vma_res); 507 return 0; 508 } 509 510 GEM_BUG_ON(!atomic_read(&vma->pages_count)); 511 512 /* Wait for or await async unbinds touching our range */ 513 if (work && bind_flags & vma->vm->bind_async_flags) 514 ret = i915_vma_resource_bind_dep_await(vma->vm, 515 &work->base.chain, 516 vma->node.start, 517 vma->node.size, 518 true, 519 GFP_NOWAIT | 520 __GFP_RETRY_MAYFAIL | 521 __GFP_NOWARN); 522 else 523 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, 524 vma->node.size, true); 525 if (ret) { 526 i915_vma_resource_free(vma_res); 527 return ret; 528 } 529 530 if (vma->resource || !vma_res) { 531 /* Rebinding with an additional I915_VMA_*_BIND */ 532 GEM_WARN_ON(!vma_flags); 533 i915_vma_resource_free(vma_res); 534 } else { 535 i915_vma_resource_init_from_vma(vma_res, vma); 536 vma->resource = vma_res; 537 } 538 trace_i915_vma_bind(vma, bind_flags); 539 if (work && bind_flags & vma->vm->bind_async_flags) { 540 struct dma_fence *prev; 541 542 work->vma_res = i915_vma_resource_get(vma->resource); 543 work->pat_index = pat_index; 544 work->flags = bind_flags; 545 546 /* 547 * Note we only want to chain up to the migration fence on 548 * the pages (not the object itself). As we don't track that, 549 * yet, we have to use the exclusive fence instead. 550 * 551 * Also note that we do not want to track the async vma as 552 * part of the obj->resv->excl_fence as it only affects 553 * execution and not content or object's backing store lifetime. 554 */ 555 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 556 if (prev) { 557 __i915_sw_fence_await_dma_fence(&work->base.chain, 558 prev, 559 &work->cb); 560 dma_fence_put(prev); 561 } 562 563 work->base.dma.error = 0; /* enable the queue_work() */ 564 work->obj = i915_gem_object_get(vma->obj); 565 } else { 566 ret = i915_gem_object_wait_moving_fence(vma->obj, true); 567 if (ret) { 568 i915_vma_resource_free(vma->resource); 569 vma->resource = NULL; 570 571 return ret; 572 } 573 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index, 574 bind_flags); 575 } 576 577 atomic_or(bind_flags, &vma->flags); 578 return 0; 579 } 580 581 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 582 { 583 void __iomem *ptr; 584 int err; 585 586 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) 587 return IOMEM_ERR_PTR(-EINVAL); 588 589 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 590 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 591 GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); 592 593 ptr = READ_ONCE(vma->iomap); 594 if (ptr == NULL) { 595 /* 596 * TODO: consider just using i915_gem_object_pin_map() for lmem 597 * instead, which already supports mapping non-contiguous chunks 598 * of pages, that way we can also drop the 599 * I915_BO_ALLOC_CONTIGUOUS when allocating the object. 600 */ 601 if (i915_gem_object_is_lmem(vma->obj)) { 602 ptr = i915_gem_object_lmem_io_map(vma->obj, 0, 603 vma->obj->base.size); 604 } else if (i915_vma_is_map_and_fenceable(vma)) { 605 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 606 i915_vma_offset(vma), 607 i915_vma_size(vma)); 608 } else { 609 ptr = (void __iomem *) 610 i915_gem_object_pin_map(vma->obj, I915_MAP_WC); 611 if (IS_ERR(ptr)) { 612 err = PTR_ERR(ptr); 613 goto err; 614 } 615 ptr = page_pack_bits(ptr, 1); 616 } 617 618 if (ptr == NULL) { 619 err = -ENOMEM; 620 goto err; 621 } 622 623 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 624 if (page_unmask_bits(ptr)) 625 __i915_gem_object_release_map(vma->obj); 626 else 627 io_mapping_unmap(ptr); 628 ptr = vma->iomap; 629 } 630 } 631 632 __i915_vma_pin(vma); 633 634 err = i915_vma_pin_fence(vma); 635 if (err) 636 goto err_unpin; 637 638 i915_vma_set_ggtt_write(vma); 639 640 /* NB Access through the GTT requires the device to be awake. */ 641 return page_mask_bits(ptr); 642 643 err_unpin: 644 __i915_vma_unpin(vma); 645 err: 646 return IOMEM_ERR_PTR(err); 647 } 648 649 void i915_vma_flush_writes(struct i915_vma *vma) 650 { 651 if (i915_vma_unset_ggtt_write(vma)) 652 intel_gt_flush_ggtt_writes(vma->vm->gt); 653 } 654 655 void i915_vma_unpin_iomap(struct i915_vma *vma) 656 { 657 GEM_BUG_ON(vma->iomap == NULL); 658 659 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */ 660 661 i915_vma_flush_writes(vma); 662 663 i915_vma_unpin_fence(vma); 664 i915_vma_unpin(vma); 665 } 666 667 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 668 { 669 struct i915_vma *vma; 670 struct drm_i915_gem_object *obj; 671 672 vma = fetch_and_zero(p_vma); 673 if (!vma) 674 return; 675 676 obj = vma->obj; 677 GEM_BUG_ON(!obj); 678 679 i915_vma_unpin(vma); 680 681 if (flags & I915_VMA_RELEASE_MAP) 682 i915_gem_object_unpin_map(obj); 683 684 i915_gem_object_put(obj); 685 } 686 687 bool i915_vma_misplaced(const struct i915_vma *vma, 688 u64 size, u64 alignment, u64 flags) 689 { 690 if (!drm_mm_node_allocated(&vma->node)) 691 return false; 692 693 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 694 return true; 695 696 if (i915_vma_size(vma) < size) 697 return true; 698 699 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 700 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment)) 701 return true; 702 703 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 704 return true; 705 706 if (flags & PIN_OFFSET_BIAS && 707 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK)) 708 return true; 709 710 if (flags & PIN_OFFSET_FIXED && 711 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK)) 712 return true; 713 714 if (flags & PIN_OFFSET_GUARD && 715 vma->guard < (flags & PIN_OFFSET_MASK)) 716 return true; 717 718 return false; 719 } 720 721 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 722 { 723 bool mappable, fenceable; 724 725 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 726 GEM_BUG_ON(!vma->fence_size); 727 728 fenceable = (i915_vma_size(vma) >= vma->fence_size && 729 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment)); 730 731 mappable = i915_ggtt_offset(vma) + vma->fence_size <= 732 i915_vm_to_ggtt(vma->vm)->mappable_end; 733 734 if (mappable && fenceable) 735 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 736 else 737 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 738 } 739 740 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 741 { 742 struct drm_mm_node *node = &vma->node; 743 struct drm_mm_node *other; 744 745 /* 746 * On some machines we have to be careful when putting differing types 747 * of snoopable memory together to avoid the prefetcher crossing memory 748 * domains and dying. During vm initialisation, we decide whether or not 749 * these constraints apply and set the drm_mm.color_adjust 750 * appropriately. 751 */ 752 if (!i915_vm_has_cache_coloring(vma->vm)) 753 return true; 754 755 /* Only valid to be called on an already inserted vma */ 756 GEM_BUG_ON(!drm_mm_node_allocated(node)); 757 GEM_BUG_ON(list_empty(&node->node_list)); 758 759 other = list_prev_entry(node, node_list); 760 if (i915_node_color_differs(other, color) && 761 !drm_mm_hole_follows(other)) 762 return false; 763 764 other = list_next_entry(node, node_list); 765 if (i915_node_color_differs(other, color) && 766 !drm_mm_hole_follows(node)) 767 return false; 768 769 return true; 770 } 771 772 /** 773 * i915_vma_insert - finds a slot for the vma in its address space 774 * @vma: the vma 775 * @ww: An optional struct i915_gem_ww_ctx 776 * @size: requested size in bytes (can be larger than the VMA) 777 * @alignment: required alignment 778 * @flags: mask of PIN_* flags to use 779 * 780 * First we try to allocate some free space that meets the requirements for 781 * the VMA. Failing that, if the flags permit, it will evict an old VMA, 782 * preferably the oldest idle entry to make room for the new VMA. 783 * 784 * Returns: 785 * 0 on success, negative error code otherwise. 786 */ 787 static int 788 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 789 u64 size, u64 alignment, u64 flags) 790 { 791 unsigned long color, guard; 792 u64 start, end; 793 int ret; 794 795 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 796 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 797 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1); 798 799 size = max(size, vma->size); 800 alignment = max_t(typeof(alignment), alignment, vma->display_alignment); 801 if (flags & PIN_MAPPABLE) { 802 size = max_t(typeof(size), size, vma->fence_size); 803 alignment = max_t(typeof(alignment), 804 alignment, vma->fence_alignment); 805 } 806 807 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 808 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 809 GEM_BUG_ON(!is_power_of_2(alignment)); 810 811 guard = vma->guard; /* retain guard across rebinds */ 812 if (flags & PIN_OFFSET_GUARD) { 813 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32)); 814 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK); 815 } 816 /* 817 * As we align the node upon insertion, but the hardware gets 818 * node.start + guard, the easiest way to make that work is 819 * to make the guard a multiple of the alignment size. 820 */ 821 guard = ALIGN(guard, alignment); 822 823 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 824 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 825 826 end = vma->vm->total; 827 if (flags & PIN_MAPPABLE) 828 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 829 if (flags & PIN_ZONE_4G) 830 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 831 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 832 833 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); 834 835 /* 836 * If binding the object/GGTT view requires more space than the entire 837 * aperture has, reject it early before evicting everything in a vain 838 * attempt to find space. 839 */ 840 if (size > end - 2 * guard) { 841 drm_dbg(vma->obj->base.dev, 842 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 843 size, flags & PIN_MAPPABLE ? "mappable" : "total", end); 844 return -ENOSPC; 845 } 846 847 color = 0; 848 849 if (i915_vm_has_cache_coloring(vma->vm)) 850 color = vma->obj->pat_index; 851 852 if (flags & PIN_OFFSET_FIXED) { 853 u64 offset = flags & PIN_OFFSET_MASK; 854 if (!IS_ALIGNED(offset, alignment) || 855 range_overflows(offset, size, end)) 856 return -EINVAL; 857 /* 858 * The caller knows not of the guard added by others and 859 * requests for the offset of the start of its buffer 860 * to be fixed, which may not be the same as the position 861 * of the vma->node due to the guard pages. 862 */ 863 if (offset < guard || offset + size > end - guard) 864 return -ENOSPC; 865 866 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, 867 size + 2 * guard, 868 offset - guard, 869 color, flags); 870 if (ret) 871 return ret; 872 } else { 873 size += 2 * guard; 874 /* 875 * We only support huge gtt pages through the 48b PPGTT, 876 * however we also don't want to force any alignment for 877 * objects which need to be tightly packed into the low 32bits. 878 * 879 * Note that we assume that GGTT are limited to 4GiB for the 880 * foreseeable future. See also i915_ggtt_offset(). 881 */ 882 if (upper_32_bits(end - 1) && 883 vma->page_sizes.sg > I915_GTT_PAGE_SIZE && 884 !HAS_64K_PAGES(vma->vm->i915)) { 885 /* 886 * We can't mix 64K and 4K PTEs in the same page-table 887 * (2M block), and so to avoid the ugliness and 888 * complexity of coloring we opt for just aligning 64K 889 * objects to 2M. 890 */ 891 u64 page_alignment = 892 rounddown_pow_of_two(vma->page_sizes.sg | 893 I915_GTT_PAGE_SIZE_2M); 894 895 /* 896 * Check we don't expand for the limited Global GTT 897 * (mappable aperture is even more precious!). This 898 * also checks that we exclude the aliasing-ppgtt. 899 */ 900 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 901 902 alignment = max(alignment, page_alignment); 903 904 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 905 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 906 } 907 908 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, 909 size, alignment, color, 910 start, end, flags); 911 if (ret) 912 return ret; 913 914 GEM_BUG_ON(vma->node.start < start); 915 GEM_BUG_ON(vma->node.start + vma->node.size > end); 916 } 917 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 918 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 919 920 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 921 vma->guard = guard; 922 923 return 0; 924 } 925 926 static void 927 i915_vma_detach(struct i915_vma *vma) 928 { 929 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 930 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 931 932 /* 933 * And finally now the object is completely decoupled from this 934 * vma, we can drop its hold on the backing storage and allow 935 * it to be reaped by the shrinker. 936 */ 937 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 938 } 939 940 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 941 { 942 unsigned int bound; 943 944 bound = atomic_read(&vma->flags); 945 946 if (flags & PIN_VALIDATE) { 947 flags &= I915_VMA_BIND_MASK; 948 949 return (flags & bound) == flags; 950 } 951 952 /* with the lock mandatory for unbind, we don't race here */ 953 flags &= I915_VMA_BIND_MASK; 954 do { 955 if (unlikely(flags & ~bound)) 956 return false; 957 958 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 959 return false; 960 961 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 962 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 963 964 return true; 965 } 966 967 static struct scatterlist * 968 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 969 unsigned int width, unsigned int height, 970 unsigned int src_stride, unsigned int dst_stride, 971 struct sg_table *st, struct scatterlist *sg) 972 { 973 unsigned int column, row; 974 pgoff_t src_idx; 975 976 for (column = 0; column < width; column++) { 977 unsigned int left; 978 979 src_idx = src_stride * (height - 1) + column + offset; 980 for (row = 0; row < height; row++) { 981 st->nents++; 982 /* 983 * We don't need the pages, but need to initialize 984 * the entries so the sg list can be happily traversed. 985 * The only thing we need are DMA addresses. 986 */ 987 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 988 sg_dma_address(sg) = 989 i915_gem_object_get_dma_address(obj, src_idx); 990 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 991 sg = sg_next(sg); 992 src_idx -= src_stride; 993 } 994 995 left = (dst_stride - height) * I915_GTT_PAGE_SIZE; 996 997 if (!left) 998 continue; 999 1000 st->nents++; 1001 1002 /* 1003 * The DE ignores the PTEs for the padding tiles, the sg entry 1004 * here is just a convenience to indicate how many padding PTEs 1005 * to insert at this spot. 1006 */ 1007 sg_set_page(sg, NULL, left, 0); 1008 sg_dma_address(sg) = 0; 1009 sg_dma_len(sg) = left; 1010 sg = sg_next(sg); 1011 } 1012 1013 return sg; 1014 } 1015 1016 static noinline struct sg_table * 1017 intel_rotate_pages(struct intel_rotation_info *rot_info, 1018 struct drm_i915_gem_object *obj) 1019 { 1020 unsigned int size = intel_rotation_info_size(rot_info); 1021 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1022 struct sg_table *st; 1023 struct scatterlist *sg; 1024 int ret = -ENOMEM; 1025 int i; 1026 1027 /* Allocate target SG list. */ 1028 st = kmalloc(sizeof(*st), GFP_KERNEL); 1029 if (!st) 1030 goto err_st_alloc; 1031 1032 ret = sg_alloc_table(st, size, GFP_KERNEL); 1033 if (ret) 1034 goto err_sg_alloc; 1035 1036 st->nents = 0; 1037 sg = st->sgl; 1038 1039 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 1040 sg = rotate_pages(obj, rot_info->plane[i].offset, 1041 rot_info->plane[i].width, rot_info->plane[i].height, 1042 rot_info->plane[i].src_stride, 1043 rot_info->plane[i].dst_stride, 1044 st, sg); 1045 1046 return st; 1047 1048 err_sg_alloc: 1049 kfree(st); 1050 err_st_alloc: 1051 1052 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1053 obj->base.size, rot_info->plane[0].width, 1054 rot_info->plane[0].height, size); 1055 1056 return ERR_PTR(ret); 1057 } 1058 1059 static struct scatterlist * 1060 add_padding_pages(unsigned int count, 1061 struct sg_table *st, struct scatterlist *sg) 1062 { 1063 st->nents++; 1064 1065 /* 1066 * The DE ignores the PTEs for the padding tiles, the sg entry 1067 * here is just a convenience to indicate how many padding PTEs 1068 * to insert at this spot. 1069 */ 1070 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); 1071 sg_dma_address(sg) = 0; 1072 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; 1073 sg = sg_next(sg); 1074 1075 return sg; 1076 } 1077 1078 static struct scatterlist * 1079 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, 1080 unsigned long offset, unsigned int alignment_pad, 1081 unsigned int width, unsigned int height, 1082 unsigned int src_stride, unsigned int dst_stride, 1083 struct sg_table *st, struct scatterlist *sg, 1084 unsigned int *gtt_offset) 1085 { 1086 unsigned int row; 1087 1088 if (!width || !height) 1089 return sg; 1090 1091 if (alignment_pad) 1092 sg = add_padding_pages(alignment_pad, st, sg); 1093 1094 for (row = 0; row < height; row++) { 1095 unsigned int left = width * I915_GTT_PAGE_SIZE; 1096 1097 while (left) { 1098 dma_addr_t addr; 1099 unsigned int length; 1100 1101 /* 1102 * We don't need the pages, but need to initialize 1103 * the entries so the sg list can be happily traversed. 1104 * The only thing we need are DMA addresses. 1105 */ 1106 1107 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1108 1109 length = min(left, length); 1110 1111 st->nents++; 1112 1113 sg_set_page(sg, NULL, length, 0); 1114 sg_dma_address(sg) = addr; 1115 sg_dma_len(sg) = length; 1116 sg = sg_next(sg); 1117 1118 offset += length / I915_GTT_PAGE_SIZE; 1119 left -= length; 1120 } 1121 1122 offset += src_stride - width; 1123 1124 left = (dst_stride - width) * I915_GTT_PAGE_SIZE; 1125 1126 if (!left) 1127 continue; 1128 1129 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); 1130 } 1131 1132 *gtt_offset += alignment_pad + dst_stride * height; 1133 1134 return sg; 1135 } 1136 1137 static struct scatterlist * 1138 remap_contiguous_pages(struct drm_i915_gem_object *obj, 1139 pgoff_t obj_offset, 1140 unsigned int count, 1141 struct sg_table *st, struct scatterlist *sg) 1142 { 1143 struct scatterlist *iter; 1144 unsigned int offset; 1145 1146 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); 1147 GEM_BUG_ON(!iter); 1148 1149 do { 1150 unsigned int len; 1151 1152 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), 1153 count << PAGE_SHIFT); 1154 sg_set_page(sg, NULL, len, 0); 1155 sg_dma_address(sg) = 1156 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1157 sg_dma_len(sg) = len; 1158 1159 st->nents++; 1160 count -= len >> PAGE_SHIFT; 1161 if (count == 0) 1162 return sg; 1163 1164 sg = __sg_next(sg); 1165 iter = __sg_next(iter); 1166 offset = 0; 1167 } while (1); 1168 } 1169 1170 static struct scatterlist * 1171 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, 1172 pgoff_t obj_offset, unsigned int alignment_pad, 1173 unsigned int size, 1174 struct sg_table *st, struct scatterlist *sg, 1175 unsigned int *gtt_offset) 1176 { 1177 if (!size) 1178 return sg; 1179 1180 if (alignment_pad) 1181 sg = add_padding_pages(alignment_pad, st, sg); 1182 1183 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); 1184 sg = sg_next(sg); 1185 1186 *gtt_offset += alignment_pad + size; 1187 1188 return sg; 1189 } 1190 1191 static struct scatterlist * 1192 remap_color_plane_pages(const struct intel_remapped_info *rem_info, 1193 struct drm_i915_gem_object *obj, 1194 int color_plane, 1195 struct sg_table *st, struct scatterlist *sg, 1196 unsigned int *gtt_offset) 1197 { 1198 unsigned int alignment_pad = 0; 1199 1200 if (rem_info->plane_alignment) 1201 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; 1202 1203 if (rem_info->plane[color_plane].linear) 1204 sg = remap_linear_color_plane_pages(obj, 1205 rem_info->plane[color_plane].offset, 1206 alignment_pad, 1207 rem_info->plane[color_plane].size, 1208 st, sg, 1209 gtt_offset); 1210 1211 else 1212 sg = remap_tiled_color_plane_pages(obj, 1213 rem_info->plane[color_plane].offset, 1214 alignment_pad, 1215 rem_info->plane[color_plane].width, 1216 rem_info->plane[color_plane].height, 1217 rem_info->plane[color_plane].src_stride, 1218 rem_info->plane[color_plane].dst_stride, 1219 st, sg, 1220 gtt_offset); 1221 1222 return sg; 1223 } 1224 1225 static noinline struct sg_table * 1226 intel_remap_pages(struct intel_remapped_info *rem_info, 1227 struct drm_i915_gem_object *obj) 1228 { 1229 unsigned int size = intel_remapped_info_size(rem_info); 1230 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1231 struct sg_table *st; 1232 struct scatterlist *sg; 1233 unsigned int gtt_offset = 0; 1234 int ret = -ENOMEM; 1235 int i; 1236 1237 /* Allocate target SG list. */ 1238 st = kmalloc(sizeof(*st), GFP_KERNEL); 1239 if (!st) 1240 goto err_st_alloc; 1241 1242 ret = sg_alloc_table(st, size, GFP_KERNEL); 1243 if (ret) 1244 goto err_sg_alloc; 1245 1246 st->nents = 0; 1247 sg = st->sgl; 1248 1249 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1250 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); 1251 1252 i915_sg_trim(st); 1253 1254 return st; 1255 1256 err_sg_alloc: 1257 kfree(st); 1258 err_st_alloc: 1259 1260 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1261 obj->base.size, rem_info->plane[0].width, 1262 rem_info->plane[0].height, size); 1263 1264 return ERR_PTR(ret); 1265 } 1266 1267 static noinline struct sg_table * 1268 intel_partial_pages(const struct i915_gtt_view *view, 1269 struct drm_i915_gem_object *obj) 1270 { 1271 struct sg_table *st; 1272 struct scatterlist *sg; 1273 unsigned int count = view->partial.size; 1274 int ret = -ENOMEM; 1275 1276 st = kmalloc(sizeof(*st), GFP_KERNEL); 1277 if (!st) 1278 goto err_st_alloc; 1279 1280 ret = sg_alloc_table(st, count, GFP_KERNEL); 1281 if (ret) 1282 goto err_sg_alloc; 1283 1284 st->nents = 0; 1285 1286 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); 1287 1288 sg_mark_end(sg); 1289 i915_sg_trim(st); /* Drop any unused tail entries. */ 1290 1291 return st; 1292 1293 err_sg_alloc: 1294 kfree(st); 1295 err_st_alloc: 1296 return ERR_PTR(ret); 1297 } 1298 1299 static int 1300 __i915_vma_get_pages(struct i915_vma *vma) 1301 { 1302 struct sg_table *pages; 1303 1304 /* 1305 * The vma->pages are only valid within the lifespan of the borrowed 1306 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1307 * must be the vma->pages. A simple rule is that vma->pages must only 1308 * be accessed when the obj->mm.pages are pinned. 1309 */ 1310 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1311 1312 switch (vma->gtt_view.type) { 1313 default: 1314 GEM_BUG_ON(vma->gtt_view.type); 1315 fallthrough; 1316 case I915_GTT_VIEW_NORMAL: 1317 pages = vma->obj->mm.pages; 1318 break; 1319 1320 case I915_GTT_VIEW_ROTATED: 1321 pages = 1322 intel_rotate_pages(&vma->gtt_view.rotated, vma->obj); 1323 break; 1324 1325 case I915_GTT_VIEW_REMAPPED: 1326 pages = 1327 intel_remap_pages(&vma->gtt_view.remapped, vma->obj); 1328 break; 1329 1330 case I915_GTT_VIEW_PARTIAL: 1331 pages = intel_partial_pages(&vma->gtt_view, vma->obj); 1332 break; 1333 } 1334 1335 if (IS_ERR(pages)) { 1336 drm_err(&vma->vm->i915->drm, 1337 "Failed to get pages for VMA view type %u (%ld)!\n", 1338 vma->gtt_view.type, PTR_ERR(pages)); 1339 return PTR_ERR(pages); 1340 } 1341 1342 vma->pages = pages; 1343 1344 return 0; 1345 } 1346 1347 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) 1348 { 1349 int err; 1350 1351 if (atomic_add_unless(&vma->pages_count, 1, 0)) 1352 return 0; 1353 1354 err = i915_gem_object_pin_pages(vma->obj); 1355 if (err) 1356 return err; 1357 1358 err = __i915_vma_get_pages(vma); 1359 if (err) 1360 goto err_unpin; 1361 1362 vma->page_sizes = vma->obj->mm.page_sizes; 1363 atomic_inc(&vma->pages_count); 1364 1365 return 0; 1366 1367 err_unpin: 1368 __i915_gem_object_unpin_pages(vma->obj); 1369 1370 return err; 1371 } 1372 1373 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb) 1374 { 1375 struct intel_gt *gt; 1376 int id; 1377 1378 if (!tlb) 1379 return; 1380 1381 /* 1382 * Before we release the pages that were bound by this vma, we 1383 * must invalidate all the TLBs that may still have a reference 1384 * back to our physical address. It only needs to be done once, 1385 * so after updating the PTE to point away from the pages, record 1386 * the most recent TLB invalidation seqno, and if we have not yet 1387 * flushed the TLBs upon release, perform a full invalidation. 1388 */ 1389 for_each_gt(gt, vm->i915, id) 1390 WRITE_ONCE(tlb[id], 1391 intel_gt_next_invalidate_tlb_full(gt)); 1392 } 1393 1394 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 1395 { 1396 /* We allocate under vma_get_pages, so beware the shrinker */ 1397 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 1398 1399 if (atomic_sub_return(count, &vma->pages_count) == 0) { 1400 if (vma->pages != vma->obj->mm.pages) { 1401 sg_free_table(vma->pages); 1402 kfree(vma->pages); 1403 } 1404 vma->pages = NULL; 1405 1406 i915_gem_object_unpin_pages(vma->obj); 1407 } 1408 } 1409 1410 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) 1411 { 1412 if (atomic_add_unless(&vma->pages_count, -1, 1)) 1413 return; 1414 1415 __vma_put_pages(vma, 1); 1416 } 1417 1418 static void vma_unbind_pages(struct i915_vma *vma) 1419 { 1420 unsigned int count; 1421 1422 lockdep_assert_held(&vma->vm->mutex); 1423 1424 /* The upper portion of pages_count is the number of bindings */ 1425 count = atomic_read(&vma->pages_count); 1426 count >>= I915_VMA_PAGES_BIAS; 1427 GEM_BUG_ON(!count); 1428 1429 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 1430 } 1431 1432 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1433 u64 size, u64 alignment, u64 flags) 1434 { 1435 struct i915_vma_work *work = NULL; 1436 struct dma_fence *moving = NULL; 1437 struct i915_vma_resource *vma_res = NULL; 1438 intel_wakeref_t wakeref; 1439 unsigned int bound; 1440 int err; 1441 1442 assert_vma_held(vma); 1443 GEM_BUG_ON(!ww); 1444 1445 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 1446 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 1447 1448 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 1449 1450 /* First try and grab the pin without rebinding the vma */ 1451 if (try_qad_pin(vma, flags)) 1452 return 0; 1453 1454 err = i915_vma_get_pages(vma); 1455 if (err) 1456 return err; 1457 1458 /* 1459 * In case of a global GTT, we must hold a runtime-pm wakeref 1460 * while global PTEs are updated. In other cases, we hold 1461 * the rpm reference while the VMA is active. Since runtime 1462 * resume may require allocations, which are forbidden inside 1463 * vm->mutex, get the first rpm wakeref outside of the mutex. 1464 */ 1465 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 1466 1467 if (flags & vma->vm->bind_async_flags) { 1468 /* lock VM */ 1469 err = i915_vm_lock_objects(vma->vm, ww); 1470 if (err) 1471 goto err_rpm; 1472 1473 work = i915_vma_work(); 1474 if (!work) { 1475 err = -ENOMEM; 1476 goto err_rpm; 1477 } 1478 1479 work->vm = vma->vm; 1480 1481 err = i915_gem_object_get_moving_fence(vma->obj, &moving); 1482 if (err) 1483 goto err_rpm; 1484 1485 dma_fence_work_chain(&work->base, moving); 1486 1487 /* Allocate enough page directories to used PTE */ 1488 if (vma->vm->allocate_va_range) { 1489 err = i915_vm_alloc_pt_stash(vma->vm, 1490 &work->stash, 1491 vma->size); 1492 if (err) 1493 goto err_fence; 1494 1495 err = i915_vm_map_pt_stash(vma->vm, &work->stash); 1496 if (err) 1497 goto err_fence; 1498 } 1499 } 1500 1501 vma_res = i915_vma_resource_alloc(); 1502 if (IS_ERR(vma_res)) { 1503 err = PTR_ERR(vma_res); 1504 goto err_fence; 1505 } 1506 1507 /* 1508 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 1509 * 1510 * We conflate the Global GTT with the user's vma when using the 1511 * aliasing-ppgtt, but it is still vitally important to try and 1512 * keep the use cases distinct. For example, userptr objects are 1513 * not allowed inside the Global GTT as that will cause lock 1514 * inversions when we have to evict them the mmu_notifier callbacks - 1515 * but they are allowed to be part of the user ppGTT which can never 1516 * be mapped. As such we try to give the distinct users of the same 1517 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 1518 * and i915_ppgtt separate]. 1519 * 1520 * NB this may cause us to mask real lock inversions -- while the 1521 * code is safe today, lockdep may not be able to spot future 1522 * transgressions. 1523 */ 1524 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 1525 !(flags & PIN_GLOBAL)); 1526 if (err) 1527 goto err_vma_res; 1528 1529 /* No more allocations allowed now we hold vm->mutex */ 1530 1531 if (unlikely(i915_vma_is_closed(vma))) { 1532 err = -ENOENT; 1533 goto err_unlock; 1534 } 1535 1536 bound = atomic_read(&vma->flags); 1537 if (unlikely(bound & I915_VMA_ERROR)) { 1538 err = -ENOMEM; 1539 goto err_unlock; 1540 } 1541 1542 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 1543 err = -EAGAIN; /* pins are meant to be fairly temporary */ 1544 goto err_unlock; 1545 } 1546 1547 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 1548 if (!(flags & PIN_VALIDATE)) 1549 __i915_vma_pin(vma); 1550 goto err_unlock; 1551 } 1552 1553 err = i915_active_acquire(&vma->active); 1554 if (err) 1555 goto err_unlock; 1556 1557 if (!(bound & I915_VMA_BIND_MASK)) { 1558 err = i915_vma_insert(vma, ww, size, alignment, flags); 1559 if (err) 1560 goto err_active; 1561 1562 if (i915_is_ggtt(vma->vm)) 1563 __i915_vma_set_map_and_fenceable(vma); 1564 } 1565 1566 GEM_BUG_ON(!vma->pages); 1567 err = i915_vma_bind(vma, 1568 vma->obj->pat_index, 1569 flags, work, vma_res); 1570 vma_res = NULL; 1571 if (err) 1572 goto err_remove; 1573 1574 /* There should only be at most 2 active bindings (user, global) */ 1575 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 1576 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 1577 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 1578 1579 if (!(flags & PIN_VALIDATE)) { 1580 __i915_vma_pin(vma); 1581 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1582 } 1583 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 1584 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 1585 1586 err_remove: 1587 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 1588 i915_vma_detach(vma); 1589 drm_mm_remove_node(&vma->node); 1590 } 1591 err_active: 1592 i915_active_release(&vma->active); 1593 err_unlock: 1594 mutex_unlock(&vma->vm->mutex); 1595 err_vma_res: 1596 i915_vma_resource_free(vma_res); 1597 err_fence: 1598 if (work) 1599 dma_fence_work_commit_imm(&work->base); 1600 err_rpm: 1601 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 1602 1603 if (moving) 1604 dma_fence_put(moving); 1605 1606 i915_vma_put_pages(vma); 1607 return err; 1608 } 1609 1610 int i915_vma_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) 1611 { 1612 struct i915_gem_ww_ctx ww; 1613 int err; 1614 1615 i915_gem_ww_ctx_init(&ww, true); 1616 retry: 1617 err = i915_gem_object_lock(vma->obj, &ww); 1618 if (!err) 1619 err = i915_vma_pin_ww(vma, &ww, size, alignment, flags); 1620 if (err == -EDEADLK) { 1621 err = i915_gem_ww_ctx_backoff(&ww); 1622 if (!err) 1623 goto retry; 1624 } 1625 i915_gem_ww_ctx_fini(&ww); 1626 1627 return err; 1628 } 1629 1630 static void flush_idle_contexts(struct intel_gt *gt) 1631 { 1632 struct intel_engine_cs *engine; 1633 enum intel_engine_id id; 1634 1635 for_each_engine(engine, gt, id) 1636 intel_engine_flush_barriers(engine); 1637 1638 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1639 } 1640 1641 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1642 u32 align, unsigned int flags) 1643 { 1644 struct i915_address_space *vm = vma->vm; 1645 struct intel_gt *gt; 1646 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 1647 int err; 1648 1649 do { 1650 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1651 1652 if (err != -ENOSPC) { 1653 if (!err) { 1654 err = i915_vma_wait_for_bind(vma); 1655 if (err) 1656 i915_vma_unpin(vma); 1657 } 1658 return err; 1659 } 1660 1661 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1662 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1663 flush_idle_contexts(gt); 1664 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1665 /* 1666 * We pass NULL ww here, as we don't want to unbind 1667 * locked objects when called from execbuf when pinning 1668 * is removed. This would probably regress badly. 1669 */ 1670 i915_gem_evict_vm(vm, NULL, NULL); 1671 mutex_unlock(&vm->mutex); 1672 } 1673 } while (1); 1674 } 1675 1676 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1677 u32 align, unsigned int flags) 1678 { 1679 struct i915_gem_ww_ctx _ww; 1680 int err; 1681 1682 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1683 1684 if (ww) 1685 return __i915_ggtt_pin(vma, ww, align, flags); 1686 1687 lockdep_assert_not_held(&vma->obj->base.resv->lock.base); 1688 1689 for_i915_gem_ww(&_ww, err, true) { 1690 err = i915_gem_object_lock(vma->obj, &_ww); 1691 if (!err) 1692 err = __i915_ggtt_pin(vma, &_ww, align, flags); 1693 } 1694 1695 return err; 1696 } 1697 1698 /** 1699 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas 1700 * @obj: i915 GEM object 1701 * This function clears scanout flags for objects ggtt vmas. These flags are set 1702 * when object is pinned for display use and this function to clear them all is 1703 * targeted to be called by frontbuffer tracking code when the frontbuffer is 1704 * about to be released. 1705 */ 1706 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj) 1707 { 1708 struct i915_vma *vma; 1709 1710 spin_lock(&obj->vma.lock); 1711 for_each_ggtt_vma(vma, obj) { 1712 i915_vma_clear_scanout(vma); 1713 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 1714 } 1715 spin_unlock(&obj->vma.lock); 1716 } 1717 1718 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1719 { 1720 /* 1721 * We defer actually closing, unbinding and destroying the VMA until 1722 * the next idle point, or if the object is freed in the meantime. By 1723 * postponing the unbind, we allow for it to be resurrected by the 1724 * client, avoiding the work required to rebind the VMA. This is 1725 * advantageous for DRI, where the client/server pass objects 1726 * between themselves, temporarily opening a local VMA to the 1727 * object, and then closing it again. The same object is then reused 1728 * on the next frame (or two, depending on the depth of the swap queue) 1729 * causing us to rebind the VMA once more. This ends up being a lot 1730 * of wasted work for the steady state. 1731 */ 1732 GEM_BUG_ON(i915_vma_is_closed(vma)); 1733 list_add(&vma->closed_link, >->closed_vma); 1734 } 1735 1736 void i915_vma_close(struct i915_vma *vma) 1737 { 1738 struct intel_gt *gt = vma->vm->gt; 1739 unsigned long flags; 1740 1741 if (i915_vma_is_ggtt(vma)) 1742 return; 1743 1744 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1745 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1746 >->closed_lock, 1747 flags)) { 1748 __vma_close(vma, gt); 1749 spin_unlock_irqrestore(>->closed_lock, flags); 1750 } 1751 } 1752 1753 static void __i915_vma_remove_closed(struct i915_vma *vma) 1754 { 1755 list_del_init(&vma->closed_link); 1756 } 1757 1758 void i915_vma_reopen(struct i915_vma *vma) 1759 { 1760 struct intel_gt *gt = vma->vm->gt; 1761 1762 spin_lock_irq(>->closed_lock); 1763 if (i915_vma_is_closed(vma)) 1764 __i915_vma_remove_closed(vma); 1765 spin_unlock_irq(>->closed_lock); 1766 } 1767 1768 static void force_unbind(struct i915_vma *vma) 1769 { 1770 if (!drm_mm_node_allocated(&vma->node)) 1771 return; 1772 1773 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1774 WARN_ON(__i915_vma_unbind(vma)); 1775 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1776 } 1777 1778 static void release_references(struct i915_vma *vma, struct intel_gt *gt, 1779 bool vm_ddestroy) 1780 { 1781 struct drm_i915_gem_object *obj = vma->obj; 1782 1783 GEM_BUG_ON(i915_vma_is_active(vma)); 1784 1785 spin_lock(&obj->vma.lock); 1786 list_del(&vma->obj_link); 1787 if (!RB_EMPTY_NODE(&vma->obj_node)) 1788 rb_erase(&vma->obj_node, &obj->vma.tree); 1789 1790 spin_unlock(&obj->vma.lock); 1791 1792 spin_lock_irq(>->closed_lock); 1793 __i915_vma_remove_closed(vma); 1794 spin_unlock_irq(>->closed_lock); 1795 1796 if (vm_ddestroy) 1797 i915_vm_resv_put(vma->vm); 1798 1799 i915_active_fini(&vma->active); 1800 GEM_WARN_ON(vma->resource); 1801 i915_vma_free(vma); 1802 } 1803 1804 /* 1805 * i915_vma_destroy_locked - Remove all weak reference to the vma and put 1806 * the initial reference. 1807 * 1808 * This function should be called when it's decided the vma isn't needed 1809 * anymore. The caller must assure that it doesn't race with another lookup 1810 * plus destroy, typically by taking an appropriate reference. 1811 * 1812 * Current callsites are 1813 * - __i915_gem_object_pages_fini() 1814 * - __i915_vm_close() - Blocks the above function by taking a reference on 1815 * the object. 1816 * - __i915_vma_parked() - Blocks the above functions by taking a reference 1817 * on the vm and a reference on the object. Also takes the object lock so 1818 * destruction from __i915_vma_parked() can be blocked by holding the 1819 * object lock. Since the object lock is only allowed from within i915 with 1820 * an object refcount, holding the object lock also implicitly blocks the 1821 * vma freeing from __i915_gem_object_pages_fini(). 1822 * 1823 * Because of locks taken during destruction, a vma is also guaranteed to 1824 * stay alive while the following locks are held if it was looked up while 1825 * holding one of the locks: 1826 * - vm->mutex 1827 * - obj->vma.lock 1828 * - gt->closed_lock 1829 */ 1830 void i915_vma_destroy_locked(struct i915_vma *vma) 1831 { 1832 lockdep_assert_held(&vma->vm->mutex); 1833 1834 force_unbind(vma); 1835 list_del_init(&vma->vm_link); 1836 release_references(vma, vma->vm->gt, false); 1837 } 1838 1839 void i915_vma_destroy(struct i915_vma *vma) 1840 { 1841 struct intel_gt *gt; 1842 bool vm_ddestroy; 1843 1844 mutex_lock(&vma->vm->mutex); 1845 force_unbind(vma); 1846 list_del_init(&vma->vm_link); 1847 vm_ddestroy = vma->vm_ddestroy; 1848 vma->vm_ddestroy = false; 1849 1850 /* vma->vm may be freed when releasing vma->vm->mutex. */ 1851 gt = vma->vm->gt; 1852 mutex_unlock(&vma->vm->mutex); 1853 release_references(vma, gt, vm_ddestroy); 1854 } 1855 1856 void i915_vma_parked(struct intel_gt *gt) 1857 { 1858 struct i915_vma *vma, *next; 1859 LIST_HEAD(closed); 1860 1861 spin_lock_irq(>->closed_lock); 1862 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1863 struct drm_i915_gem_object *obj = vma->obj; 1864 struct i915_address_space *vm = vma->vm; 1865 1866 /* XXX All to avoid keeping a reference on i915_vma itself */ 1867 1868 if (!kref_get_unless_zero(&obj->base.refcount)) 1869 continue; 1870 1871 if (!i915_vm_tryget(vm)) { 1872 i915_gem_object_put(obj); 1873 continue; 1874 } 1875 1876 list_move(&vma->closed_link, &closed); 1877 } 1878 spin_unlock_irq(>->closed_lock); 1879 1880 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1881 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1882 struct drm_i915_gem_object *obj = vma->obj; 1883 struct i915_address_space *vm = vma->vm; 1884 1885 if (i915_gem_object_trylock(obj, NULL)) { 1886 INIT_LIST_HEAD(&vma->closed_link); 1887 i915_vma_destroy(vma); 1888 i915_gem_object_unlock(obj); 1889 } else { 1890 /* back you go.. */ 1891 spin_lock_irq(>->closed_lock); 1892 list_add(&vma->closed_link, >->closed_vma); 1893 spin_unlock_irq(>->closed_lock); 1894 } 1895 1896 i915_gem_object_put(obj); 1897 i915_vm_put(vm); 1898 } 1899 } 1900 1901 static void __i915_vma_iounmap(struct i915_vma *vma) 1902 { 1903 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1904 1905 if (vma->iomap == NULL) 1906 return; 1907 1908 if (page_unmask_bits(vma->iomap)) 1909 __i915_gem_object_release_map(vma->obj); 1910 else 1911 io_mapping_unmap(vma->iomap); 1912 vma->iomap = NULL; 1913 } 1914 1915 void i915_vma_revoke_mmap(struct i915_vma *vma) 1916 { 1917 struct drm_vma_offset_node *node; 1918 u64 vma_offset; 1919 1920 if (!i915_vma_has_userfault(vma)) 1921 return; 1922 1923 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1924 GEM_BUG_ON(!vma->obj->userfault_count); 1925 1926 node = &vma->mmo->vma_node; 1927 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 1928 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1929 drm_vma_node_offset_addr(node) + vma_offset, 1930 vma->size, 1931 1); 1932 1933 i915_vma_unset_userfault(vma); 1934 if (!--vma->obj->userfault_count) 1935 list_del(&vma->obj->userfault_link); 1936 } 1937 1938 static int 1939 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1940 { 1941 return __i915_request_await_exclusive(rq, &vma->active); 1942 } 1943 1944 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1945 { 1946 int err; 1947 1948 /* Wait for the vma to be bound before we start! */ 1949 err = __i915_request_await_bind(rq, vma); 1950 if (err) 1951 return err; 1952 1953 return i915_active_add_request(&vma->active, rq); 1954 } 1955 1956 int _i915_vma_move_to_active(struct i915_vma *vma, 1957 struct i915_request *rq, 1958 struct dma_fence *fence, 1959 unsigned int flags) 1960 { 1961 struct drm_i915_gem_object *obj = vma->obj; 1962 int err; 1963 1964 assert_object_held(obj); 1965 1966 GEM_BUG_ON(!vma->pages); 1967 1968 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) { 1969 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE); 1970 if (unlikely(err)) 1971 return err; 1972 } 1973 err = __i915_vma_move_to_active(vma, rq); 1974 if (unlikely(err)) 1975 return err; 1976 1977 /* 1978 * Reserve fences slot early to prevent an allocation after preparing 1979 * the workload and associating fences with dma_resv. 1980 */ 1981 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) { 1982 struct dma_fence *curr; 1983 int idx; 1984 1985 dma_fence_array_for_each(curr, idx, fence) 1986 ; 1987 err = dma_resv_reserve_fences(vma->obj->base.resv, idx); 1988 if (unlikely(err)) 1989 return err; 1990 } 1991 1992 if (flags & EXEC_OBJECT_WRITE) { 1993 struct intel_frontbuffer *front; 1994 1995 front = i915_gem_object_get_frontbuffer(obj); 1996 if (unlikely(front)) { 1997 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1998 i915_active_add_request(&front->write, rq); 1999 intel_frontbuffer_put(front); 2000 } 2001 } 2002 2003 if (fence) { 2004 struct dma_fence *curr; 2005 enum dma_resv_usage usage; 2006 int idx; 2007 2008 if (flags & EXEC_OBJECT_WRITE) { 2009 usage = DMA_RESV_USAGE_WRITE; 2010 obj->write_domain = I915_GEM_DOMAIN_RENDER; 2011 obj->read_domains = 0; 2012 } else { 2013 usage = DMA_RESV_USAGE_READ; 2014 obj->write_domain = 0; 2015 } 2016 2017 dma_fence_array_for_each(curr, idx, fence) 2018 dma_resv_add_fence(vma->obj->base.resv, curr, usage); 2019 } 2020 2021 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 2022 i915_active_add_request(&vma->fence->active, rq); 2023 2024 obj->read_domains |= I915_GEM_GPU_DOMAINS; 2025 obj->mm.dirty = true; 2026 2027 GEM_BUG_ON(!i915_vma_is_active(vma)); 2028 return 0; 2029 } 2030 2031 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) 2032 { 2033 struct i915_vma_resource *vma_res = vma->resource; 2034 struct dma_fence *unbind_fence; 2035 2036 GEM_BUG_ON(i915_vma_is_pinned(vma)); 2037 assert_vma_held_evict(vma); 2038 2039 if (i915_vma_is_map_and_fenceable(vma)) { 2040 /* Force a pagefault for domain tracking on next user access */ 2041 i915_vma_revoke_mmap(vma); 2042 2043 /* 2044 * Check that we have flushed all writes through the GGTT 2045 * before the unbind, other due to non-strict nature of those 2046 * indirect writes they may end up referencing the GGTT PTE 2047 * after the unbind. 2048 * 2049 * Note that we may be concurrently poking at the GGTT_WRITE 2050 * bit from set-domain, as we mark all GGTT vma associated 2051 * with an object. We know this is for another vma, as we 2052 * are currently unbinding this one -- so if this vma will be 2053 * reused, it will be refaulted and have its dirty bit set 2054 * before the next write. 2055 */ 2056 i915_vma_flush_writes(vma); 2057 2058 /* release the fence reg _after_ flushing */ 2059 i915_vma_revoke_fence(vma); 2060 2061 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 2062 } 2063 2064 __i915_vma_iounmap(vma); 2065 2066 GEM_BUG_ON(vma->fence); 2067 GEM_BUG_ON(i915_vma_has_userfault(vma)); 2068 2069 /* Object backend must be async capable. */ 2070 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); 2071 2072 /* If vm is not open, unbind is a nop. */ 2073 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && 2074 kref_read(&vma->vm->ref); 2075 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || 2076 vma->vm->skip_pte_rewrite; 2077 trace_i915_vma_unbind(vma); 2078 2079 if (async) 2080 unbind_fence = i915_vma_resource_unbind(vma_res, 2081 vma->obj->mm.tlb); 2082 else 2083 unbind_fence = i915_vma_resource_unbind(vma_res, NULL); 2084 2085 vma->resource = NULL; 2086 2087 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 2088 &vma->flags); 2089 2090 i915_vma_detach(vma); 2091 2092 if (!async) { 2093 if (unbind_fence) { 2094 dma_fence_wait(unbind_fence, false); 2095 dma_fence_put(unbind_fence); 2096 unbind_fence = NULL; 2097 } 2098 vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb); 2099 } 2100 2101 /* 2102 * Binding itself may not have completed until the unbind fence signals, 2103 * so don't drop the pages until that happens, unless the resource is 2104 * async_capable. 2105 */ 2106 2107 vma_unbind_pages(vma); 2108 return unbind_fence; 2109 } 2110 2111 int __i915_vma_unbind(struct i915_vma *vma) 2112 { 2113 int ret; 2114 2115 lockdep_assert_held(&vma->vm->mutex); 2116 assert_vma_held_evict(vma); 2117 2118 if (!drm_mm_node_allocated(&vma->node)) 2119 return 0; 2120 2121 if (i915_vma_is_pinned(vma)) { 2122 vma_print_allocator(vma, "is pinned"); 2123 return -EAGAIN; 2124 } 2125 2126 /* 2127 * After confirming that no one else is pinning this vma, wait for 2128 * any laggards who may have crept in during the wait (through 2129 * a residual pin skipping the vm->mutex) to complete. 2130 */ 2131 ret = i915_vma_sync(vma); 2132 if (ret) 2133 return ret; 2134 2135 GEM_BUG_ON(i915_vma_is_active(vma)); 2136 __i915_vma_evict(vma, false); 2137 2138 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2139 return 0; 2140 } 2141 2142 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) 2143 { 2144 struct dma_fence *fence; 2145 2146 lockdep_assert_held(&vma->vm->mutex); 2147 2148 if (!drm_mm_node_allocated(&vma->node)) 2149 return NULL; 2150 2151 if (i915_vma_is_pinned(vma) || 2152 &vma->obj->mm.rsgt->table != vma->resource->bi.pages) 2153 return ERR_PTR(-EAGAIN); 2154 2155 /* 2156 * We probably need to replace this with awaiting the fences of the 2157 * object's dma_resv when the vma active goes away. When doing that 2158 * we need to be careful to not add the vma_resource unbind fence 2159 * immediately to the object's dma_resv, because then unbinding 2160 * the next vma from the object, in case there are many, will 2161 * actually await the unbinding of the previous vmas, which is 2162 * undesirable. 2163 */ 2164 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, 2165 I915_ACTIVE_AWAIT_EXCL | 2166 I915_ACTIVE_AWAIT_ACTIVE) < 0) { 2167 return ERR_PTR(-EBUSY); 2168 } 2169 2170 fence = __i915_vma_evict(vma, true); 2171 2172 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2173 2174 return fence; 2175 } 2176 2177 int i915_vma_unbind(struct i915_vma *vma) 2178 { 2179 struct i915_address_space *vm = vma->vm; 2180 intel_wakeref_t wakeref = NULL; 2181 int err; 2182 2183 assert_object_held_shared(vma->obj); 2184 2185 /* Optimistic wait before taking the mutex */ 2186 err = i915_vma_sync(vma); 2187 if (err) 2188 return err; 2189 2190 if (!drm_mm_node_allocated(&vma->node)) 2191 return 0; 2192 2193 if (i915_vma_is_pinned(vma)) { 2194 vma_print_allocator(vma, "is pinned"); 2195 return -EAGAIN; 2196 } 2197 2198 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2199 /* XXX not always required: nop_clear_range */ 2200 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2201 2202 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 2203 if (err) 2204 goto out_rpm; 2205 2206 err = __i915_vma_unbind(vma); 2207 mutex_unlock(&vm->mutex); 2208 2209 out_rpm: 2210 if (wakeref) 2211 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2212 return err; 2213 } 2214 2215 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) 2216 { 2217 struct drm_i915_gem_object *obj = vma->obj; 2218 struct i915_address_space *vm = vma->vm; 2219 intel_wakeref_t wakeref = NULL; 2220 struct dma_fence *fence; 2221 int err; 2222 2223 /* 2224 * We need the dma-resv lock since we add the 2225 * unbind fence to the dma-resv object. 2226 */ 2227 assert_object_held(obj); 2228 2229 if (!drm_mm_node_allocated(&vma->node)) 2230 return 0; 2231 2232 if (i915_vma_is_pinned(vma)) { 2233 vma_print_allocator(vma, "is pinned"); 2234 return -EAGAIN; 2235 } 2236 2237 if (!obj->mm.rsgt) 2238 return -EBUSY; 2239 2240 err = dma_resv_reserve_fences(obj->base.resv, 2); 2241 if (err) 2242 return -EBUSY; 2243 2244 /* 2245 * It would be great if we could grab this wakeref from the 2246 * async unbind work if needed, but we can't because it uses 2247 * kmalloc and it's in the dma-fence signalling critical path. 2248 */ 2249 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2250 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2251 2252 if (trylock_vm && !mutex_trylock(&vm->mutex)) { 2253 err = -EBUSY; 2254 goto out_rpm; 2255 } else if (!trylock_vm) { 2256 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); 2257 if (err) 2258 goto out_rpm; 2259 } 2260 2261 fence = __i915_vma_unbind_async(vma); 2262 mutex_unlock(&vm->mutex); 2263 if (IS_ERR_OR_NULL(fence)) { 2264 err = PTR_ERR_OR_ZERO(fence); 2265 goto out_rpm; 2266 } 2267 2268 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); 2269 dma_fence_put(fence); 2270 2271 out_rpm: 2272 if (wakeref) 2273 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2274 return err; 2275 } 2276 2277 int i915_vma_unbind_unlocked(struct i915_vma *vma) 2278 { 2279 int err; 2280 2281 i915_gem_object_lock(vma->obj, NULL); 2282 err = i915_vma_unbind(vma); 2283 i915_gem_object_unlock(vma->obj); 2284 2285 return err; 2286 } 2287 2288 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 2289 { 2290 i915_gem_object_make_unshrinkable(vma->obj); 2291 return vma; 2292 } 2293 2294 void i915_vma_make_shrinkable(struct i915_vma *vma) 2295 { 2296 i915_gem_object_make_shrinkable(vma->obj); 2297 } 2298 2299 void i915_vma_make_purgeable(struct i915_vma *vma) 2300 { 2301 i915_gem_object_make_purgeable(vma->obj); 2302 } 2303 2304 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2305 #include "selftests/i915_vma.c" 2306 #endif 2307 2308 void i915_vma_module_exit(void) 2309 { 2310 kmem_cache_destroy(slab_vmas); 2311 } 2312 2313 int __init i915_vma_module_init(void) 2314 { 2315 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 2316 if (!slab_vmas) 2317 return -ENOMEM; 2318 2319 return 0; 2320 } 2321