1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <linux/dma-fence-array.h> 27 #include <drm/drm_gem.h> 28 29 #include "display/intel_frontbuffer.h" 30 #include "gem/i915_gem_lmem.h" 31 #include "gem/i915_gem_tiling.h" 32 #include "gt/intel_engine.h" 33 #include "gt/intel_engine_heartbeat.h" 34 #include "gt/intel_gt.h" 35 #include "gt/intel_gt_requests.h" 36 37 #include "i915_drv.h" 38 #include "i915_gem_evict.h" 39 #include "i915_sw_fence_work.h" 40 #include "i915_trace.h" 41 #include "i915_vma.h" 42 #include "i915_vma_resource.h" 43 44 static inline void assert_vma_held_evict(const struct i915_vma *vma) 45 { 46 /* 47 * We may be forced to unbind when the vm is dead, to clean it up. 48 * This is the only exception to the requirement of the object lock 49 * being held. 50 */ 51 if (kref_read(&vma->vm->ref)) 52 assert_object_held_shared(vma->obj); 53 } 54 55 static struct kmem_cache *slab_vmas; 56 57 static struct i915_vma *i915_vma_alloc(void) 58 { 59 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); 60 } 61 62 static void i915_vma_free(struct i915_vma *vma) 63 { 64 return kmem_cache_free(slab_vmas, vma); 65 } 66 67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 68 69 #include <linux/stackdepot.h> 70 71 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 72 { 73 char buf[512]; 74 75 if (!vma->node.stack) { 76 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", 77 vma->node.start, vma->node.size, reason); 78 return; 79 } 80 81 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); 82 DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", 83 vma->node.start, vma->node.size, reason, buf); 84 } 85 86 #else 87 88 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 89 { 90 } 91 92 #endif 93 94 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 95 { 96 return container_of(ref, typeof(struct i915_vma), active); 97 } 98 99 static int __i915_vma_active(struct i915_active *ref) 100 { 101 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 102 } 103 104 static void __i915_vma_retire(struct i915_active *ref) 105 { 106 i915_vma_put(active_to_vma(ref)); 107 } 108 109 static struct i915_vma * 110 vma_create(struct drm_i915_gem_object *obj, 111 struct i915_address_space *vm, 112 const struct i915_ggtt_view *view) 113 { 114 struct i915_vma *pos = ERR_PTR(-E2BIG); 115 struct i915_vma *vma; 116 struct rb_node *rb, **p; 117 int err; 118 119 /* The aliasing_ppgtt should never be used directly! */ 120 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 121 122 vma = i915_vma_alloc(); 123 if (vma == NULL) 124 return ERR_PTR(-ENOMEM); 125 126 vma->ops = &vm->vma_ops; 127 vma->obj = obj; 128 vma->size = obj->base.size; 129 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 130 131 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); 132 133 /* Declare ourselves safe for use inside shrinkers */ 134 if (IS_ENABLED(CONFIG_LOCKDEP)) { 135 fs_reclaim_acquire(GFP_KERNEL); 136 might_lock(&vma->active.mutex); 137 fs_reclaim_release(GFP_KERNEL); 138 } 139 140 INIT_LIST_HEAD(&vma->closed_link); 141 INIT_LIST_HEAD(&vma->obj_link); 142 RB_CLEAR_NODE(&vma->obj_node); 143 144 if (view && view->type != I915_GGTT_VIEW_NORMAL) { 145 vma->ggtt_view = *view; 146 if (view->type == I915_GGTT_VIEW_PARTIAL) { 147 GEM_BUG_ON(range_overflows_t(u64, 148 view->partial.offset, 149 view->partial.size, 150 obj->base.size >> PAGE_SHIFT)); 151 vma->size = view->partial.size; 152 vma->size <<= PAGE_SHIFT; 153 GEM_BUG_ON(vma->size > obj->base.size); 154 } else if (view->type == I915_GGTT_VIEW_ROTATED) { 155 vma->size = intel_rotation_info_size(&view->rotated); 156 vma->size <<= PAGE_SHIFT; 157 } else if (view->type == I915_GGTT_VIEW_REMAPPED) { 158 vma->size = intel_remapped_info_size(&view->remapped); 159 vma->size <<= PAGE_SHIFT; 160 } 161 } 162 163 if (unlikely(vma->size > vm->total)) 164 goto err_vma; 165 166 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 167 168 err = mutex_lock_interruptible(&vm->mutex); 169 if (err) { 170 pos = ERR_PTR(err); 171 goto err_vma; 172 } 173 174 vma->vm = vm; 175 list_add_tail(&vma->vm_link, &vm->unbound_list); 176 177 spin_lock(&obj->vma.lock); 178 if (i915_is_ggtt(vm)) { 179 if (unlikely(overflows_type(vma->size, u32))) 180 goto err_unlock; 181 182 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 183 i915_gem_object_get_tiling(obj), 184 i915_gem_object_get_stride(obj)); 185 if (unlikely(vma->fence_size < vma->size || /* overflow */ 186 vma->fence_size > vm->total)) 187 goto err_unlock; 188 189 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 190 191 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 192 i915_gem_object_get_tiling(obj), 193 i915_gem_object_get_stride(obj)); 194 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 195 196 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 197 } 198 199 rb = NULL; 200 p = &obj->vma.tree.rb_node; 201 while (*p) { 202 long cmp; 203 204 rb = *p; 205 pos = rb_entry(rb, struct i915_vma, obj_node); 206 207 /* 208 * If the view already exists in the tree, another thread 209 * already created a matching vma, so return the older instance 210 * and dispose of ours. 211 */ 212 cmp = i915_vma_compare(pos, vm, view); 213 if (cmp < 0) 214 p = &rb->rb_right; 215 else if (cmp > 0) 216 p = &rb->rb_left; 217 else 218 goto err_unlock; 219 } 220 rb_link_node(&vma->obj_node, rb, p); 221 rb_insert_color(&vma->obj_node, &obj->vma.tree); 222 223 if (i915_vma_is_ggtt(vma)) 224 /* 225 * We put the GGTT vma at the start of the vma-list, followed 226 * by the ppGGTT vma. This allows us to break early when 227 * iterating over only the GGTT vma for an object, see 228 * for_each_ggtt_vma() 229 */ 230 list_add(&vma->obj_link, &obj->vma.list); 231 else 232 list_add_tail(&vma->obj_link, &obj->vma.list); 233 234 spin_unlock(&obj->vma.lock); 235 mutex_unlock(&vm->mutex); 236 237 return vma; 238 239 err_unlock: 240 spin_unlock(&obj->vma.lock); 241 list_del_init(&vma->vm_link); 242 mutex_unlock(&vm->mutex); 243 err_vma: 244 i915_vma_free(vma); 245 return pos; 246 } 247 248 static struct i915_vma * 249 i915_vma_lookup(struct drm_i915_gem_object *obj, 250 struct i915_address_space *vm, 251 const struct i915_ggtt_view *view) 252 { 253 struct rb_node *rb; 254 255 rb = obj->vma.tree.rb_node; 256 while (rb) { 257 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 258 long cmp; 259 260 cmp = i915_vma_compare(vma, vm, view); 261 if (cmp == 0) 262 return vma; 263 264 if (cmp < 0) 265 rb = rb->rb_right; 266 else 267 rb = rb->rb_left; 268 } 269 270 return NULL; 271 } 272 273 /** 274 * i915_vma_instance - return the singleton instance of the VMA 275 * @obj: parent &struct drm_i915_gem_object to be mapped 276 * @vm: address space in which the mapping is located 277 * @view: additional mapping requirements 278 * 279 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 280 * the same @view characteristics. If a match is not found, one is created. 281 * Once created, the VMA is kept until either the object is freed, or the 282 * address space is closed. 283 * 284 * Returns the vma, or an error pointer. 285 */ 286 struct i915_vma * 287 i915_vma_instance(struct drm_i915_gem_object *obj, 288 struct i915_address_space *vm, 289 const struct i915_ggtt_view *view) 290 { 291 struct i915_vma *vma; 292 293 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); 294 GEM_BUG_ON(!kref_read(&vm->ref)); 295 296 spin_lock(&obj->vma.lock); 297 vma = i915_vma_lookup(obj, vm, view); 298 spin_unlock(&obj->vma.lock); 299 300 /* vma_create() will resolve the race if another creates the vma */ 301 if (unlikely(!vma)) 302 vma = vma_create(obj, vm, view); 303 304 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 305 return vma; 306 } 307 308 struct i915_vma_work { 309 struct dma_fence_work base; 310 struct i915_address_space *vm; 311 struct i915_vm_pt_stash stash; 312 struct i915_vma_resource *vma_res; 313 struct drm_i915_gem_object *pinned; 314 struct i915_sw_dma_fence_cb cb; 315 enum i915_cache_level cache_level; 316 unsigned int flags; 317 }; 318 319 static void __vma_bind(struct dma_fence_work *work) 320 { 321 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 322 struct i915_vma_resource *vma_res = vw->vma_res; 323 324 vma_res->ops->bind_vma(vma_res->vm, &vw->stash, 325 vma_res, vw->cache_level, vw->flags); 326 327 } 328 329 static void __vma_release(struct dma_fence_work *work) 330 { 331 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 332 333 if (vw->pinned) 334 i915_gem_object_put(vw->pinned); 335 336 i915_vm_free_pt_stash(vw->vm, &vw->stash); 337 if (vw->vma_res) 338 i915_vma_resource_put(vw->vma_res); 339 } 340 341 static const struct dma_fence_work_ops bind_ops = { 342 .name = "bind", 343 .work = __vma_bind, 344 .release = __vma_release, 345 }; 346 347 struct i915_vma_work *i915_vma_work(void) 348 { 349 struct i915_vma_work *vw; 350 351 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 352 if (!vw) 353 return NULL; 354 355 dma_fence_work_init(&vw->base, &bind_ops); 356 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 357 358 return vw; 359 } 360 361 int i915_vma_wait_for_bind(struct i915_vma *vma) 362 { 363 int err = 0; 364 365 if (rcu_access_pointer(vma->active.excl.fence)) { 366 struct dma_fence *fence; 367 368 rcu_read_lock(); 369 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 370 rcu_read_unlock(); 371 if (fence) { 372 err = dma_fence_wait(fence, true); 373 dma_fence_put(fence); 374 } 375 } 376 377 return err; 378 } 379 380 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 381 static int i915_vma_verify_bind_complete(struct i915_vma *vma) 382 { 383 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); 384 int err; 385 386 if (!fence) 387 return 0; 388 389 if (dma_fence_is_signaled(fence)) 390 err = fence->error; 391 else 392 err = -EBUSY; 393 394 dma_fence_put(fence); 395 396 return err; 397 } 398 #else 399 #define i915_vma_verify_bind_complete(_vma) 0 400 #endif 401 402 I915_SELFTEST_EXPORT void 403 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, 404 struct i915_vma *vma) 405 { 406 struct drm_i915_gem_object *obj = vma->obj; 407 408 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, 409 obj->mm.rsgt, i915_gem_object_is_readonly(obj), 410 i915_gem_object_is_lmem(obj), obj->mm.region, 411 vma->ops, vma->private, vma->node.start, 412 vma->node.size, vma->size); 413 } 414 415 /** 416 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 417 * @vma: VMA to map 418 * @cache_level: mapping cache level 419 * @flags: flags like global or local mapping 420 * @work: preallocated worker for allocating and binding the PTE 421 * @vma_res: pointer to a preallocated vma resource. The resource is either 422 * consumed or freed. 423 * 424 * DMA addresses are taken from the scatter-gather table of this object (or of 425 * this VMA in case of non-default GGTT views) and PTE entries set up. 426 * Note that DMA addresses are also the only part of the SG table we care about. 427 */ 428 int i915_vma_bind(struct i915_vma *vma, 429 enum i915_cache_level cache_level, 430 u32 flags, 431 struct i915_vma_work *work, 432 struct i915_vma_resource *vma_res) 433 { 434 u32 bind_flags; 435 u32 vma_flags; 436 int ret; 437 438 lockdep_assert_held(&vma->vm->mutex); 439 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 440 GEM_BUG_ON(vma->size > vma->node.size); 441 442 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 443 vma->node.size, 444 vma->vm->total))) { 445 i915_vma_resource_free(vma_res); 446 return -ENODEV; 447 } 448 449 if (GEM_DEBUG_WARN_ON(!flags)) { 450 i915_vma_resource_free(vma_res); 451 return -EINVAL; 452 } 453 454 bind_flags = flags; 455 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 456 457 vma_flags = atomic_read(&vma->flags); 458 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 459 460 bind_flags &= ~vma_flags; 461 if (bind_flags == 0) { 462 i915_vma_resource_free(vma_res); 463 return 0; 464 } 465 466 GEM_BUG_ON(!atomic_read(&vma->pages_count)); 467 468 /* Wait for or await async unbinds touching our range */ 469 if (work && bind_flags & vma->vm->bind_async_flags) 470 ret = i915_vma_resource_bind_dep_await(vma->vm, 471 &work->base.chain, 472 vma->node.start, 473 vma->node.size, 474 true, 475 GFP_NOWAIT | 476 __GFP_RETRY_MAYFAIL | 477 __GFP_NOWARN); 478 else 479 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, 480 vma->node.size, true); 481 if (ret) { 482 i915_vma_resource_free(vma_res); 483 return ret; 484 } 485 486 if (vma->resource || !vma_res) { 487 /* Rebinding with an additional I915_VMA_*_BIND */ 488 GEM_WARN_ON(!vma_flags); 489 i915_vma_resource_free(vma_res); 490 } else { 491 i915_vma_resource_init_from_vma(vma_res, vma); 492 vma->resource = vma_res; 493 } 494 trace_i915_vma_bind(vma, bind_flags); 495 if (work && bind_flags & vma->vm->bind_async_flags) { 496 struct dma_fence *prev; 497 498 work->vma_res = i915_vma_resource_get(vma->resource); 499 work->cache_level = cache_level; 500 work->flags = bind_flags; 501 502 /* 503 * Note we only want to chain up to the migration fence on 504 * the pages (not the object itself). As we don't track that, 505 * yet, we have to use the exclusive fence instead. 506 * 507 * Also note that we do not want to track the async vma as 508 * part of the obj->resv->excl_fence as it only affects 509 * execution and not content or object's backing store lifetime. 510 */ 511 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 512 if (prev) { 513 __i915_sw_fence_await_dma_fence(&work->base.chain, 514 prev, 515 &work->cb); 516 dma_fence_put(prev); 517 } 518 519 work->base.dma.error = 0; /* enable the queue_work() */ 520 521 /* 522 * If we don't have the refcounted pages list, keep a reference 523 * on the object to avoid waiting for the async bind to 524 * complete in the object destruction path. 525 */ 526 if (!work->vma_res->bi.pages_rsgt) 527 work->pinned = i915_gem_object_get(vma->obj); 528 } else { 529 ret = i915_gem_object_wait_moving_fence(vma->obj, true); 530 if (ret) { 531 i915_vma_resource_free(vma->resource); 532 vma->resource = NULL; 533 534 return ret; 535 } 536 vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level, 537 bind_flags); 538 } 539 540 set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags); 541 542 atomic_or(bind_flags, &vma->flags); 543 return 0; 544 } 545 546 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 547 { 548 void __iomem *ptr; 549 int err; 550 551 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) 552 return IOMEM_ERR_PTR(-EINVAL); 553 554 if (!i915_gem_object_is_lmem(vma->obj)) { 555 if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { 556 err = -ENODEV; 557 goto err; 558 } 559 } 560 561 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 562 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 563 GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); 564 565 ptr = READ_ONCE(vma->iomap); 566 if (ptr == NULL) { 567 /* 568 * TODO: consider just using i915_gem_object_pin_map() for lmem 569 * instead, which already supports mapping non-contiguous chunks 570 * of pages, that way we can also drop the 571 * I915_BO_ALLOC_CONTIGUOUS when allocating the object. 572 */ 573 if (i915_gem_object_is_lmem(vma->obj)) 574 ptr = i915_gem_object_lmem_io_map(vma->obj, 0, 575 vma->obj->base.size); 576 else 577 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 578 vma->node.start, 579 vma->node.size); 580 if (ptr == NULL) { 581 err = -ENOMEM; 582 goto err; 583 } 584 585 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 586 io_mapping_unmap(ptr); 587 ptr = vma->iomap; 588 } 589 } 590 591 __i915_vma_pin(vma); 592 593 err = i915_vma_pin_fence(vma); 594 if (err) 595 goto err_unpin; 596 597 i915_vma_set_ggtt_write(vma); 598 599 /* NB Access through the GTT requires the device to be awake. */ 600 return ptr; 601 602 err_unpin: 603 __i915_vma_unpin(vma); 604 err: 605 return IOMEM_ERR_PTR(err); 606 } 607 608 void i915_vma_flush_writes(struct i915_vma *vma) 609 { 610 if (i915_vma_unset_ggtt_write(vma)) 611 intel_gt_flush_ggtt_writes(vma->vm->gt); 612 } 613 614 void i915_vma_unpin_iomap(struct i915_vma *vma) 615 { 616 GEM_BUG_ON(vma->iomap == NULL); 617 618 i915_vma_flush_writes(vma); 619 620 i915_vma_unpin_fence(vma); 621 i915_vma_unpin(vma); 622 } 623 624 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 625 { 626 struct i915_vma *vma; 627 struct drm_i915_gem_object *obj; 628 629 vma = fetch_and_zero(p_vma); 630 if (!vma) 631 return; 632 633 obj = vma->obj; 634 GEM_BUG_ON(!obj); 635 636 i915_vma_unpin(vma); 637 638 if (flags & I915_VMA_RELEASE_MAP) 639 i915_gem_object_unpin_map(obj); 640 641 i915_gem_object_put(obj); 642 } 643 644 bool i915_vma_misplaced(const struct i915_vma *vma, 645 u64 size, u64 alignment, u64 flags) 646 { 647 if (!drm_mm_node_allocated(&vma->node)) 648 return false; 649 650 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 651 return true; 652 653 if (vma->node.size < size) 654 return true; 655 656 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 657 if (alignment && !IS_ALIGNED(vma->node.start, alignment)) 658 return true; 659 660 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 661 return true; 662 663 if (flags & PIN_OFFSET_BIAS && 664 vma->node.start < (flags & PIN_OFFSET_MASK)) 665 return true; 666 667 if (flags & PIN_OFFSET_FIXED && 668 vma->node.start != (flags & PIN_OFFSET_MASK)) 669 return true; 670 671 return false; 672 } 673 674 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 675 { 676 bool mappable, fenceable; 677 678 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 679 GEM_BUG_ON(!vma->fence_size); 680 681 fenceable = (vma->node.size >= vma->fence_size && 682 IS_ALIGNED(vma->node.start, vma->fence_alignment)); 683 684 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; 685 686 if (mappable && fenceable) 687 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 688 else 689 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 690 } 691 692 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 693 { 694 struct drm_mm_node *node = &vma->node; 695 struct drm_mm_node *other; 696 697 /* 698 * On some machines we have to be careful when putting differing types 699 * of snoopable memory together to avoid the prefetcher crossing memory 700 * domains and dying. During vm initialisation, we decide whether or not 701 * these constraints apply and set the drm_mm.color_adjust 702 * appropriately. 703 */ 704 if (!i915_vm_has_cache_coloring(vma->vm)) 705 return true; 706 707 /* Only valid to be called on an already inserted vma */ 708 GEM_BUG_ON(!drm_mm_node_allocated(node)); 709 GEM_BUG_ON(list_empty(&node->node_list)); 710 711 other = list_prev_entry(node, node_list); 712 if (i915_node_color_differs(other, color) && 713 !drm_mm_hole_follows(other)) 714 return false; 715 716 other = list_next_entry(node, node_list); 717 if (i915_node_color_differs(other, color) && 718 !drm_mm_hole_follows(node)) 719 return false; 720 721 return true; 722 } 723 724 /** 725 * i915_vma_insert - finds a slot for the vma in its address space 726 * @vma: the vma 727 * @size: requested size in bytes (can be larger than the VMA) 728 * @alignment: required alignment 729 * @flags: mask of PIN_* flags to use 730 * 731 * First we try to allocate some free space that meets the requirements for 732 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 733 * preferrably the oldest idle entry to make room for the new VMA. 734 * 735 * Returns: 736 * 0 on success, negative error code otherwise. 737 */ 738 static int 739 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 740 u64 size, u64 alignment, u64 flags) 741 { 742 unsigned long color; 743 u64 start, end; 744 int ret; 745 746 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 747 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 748 749 size = max(size, vma->size); 750 alignment = max(alignment, vma->display_alignment); 751 if (flags & PIN_MAPPABLE) { 752 size = max_t(typeof(size), size, vma->fence_size); 753 alignment = max_t(typeof(alignment), 754 alignment, vma->fence_alignment); 755 } 756 757 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 758 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 759 GEM_BUG_ON(!is_power_of_2(alignment)); 760 761 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 762 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 763 764 end = vma->vm->total; 765 if (flags & PIN_MAPPABLE) 766 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 767 if (flags & PIN_ZONE_4G) 768 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 769 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 770 771 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); 772 /* 773 * for compact-pt we round up the reservation to prevent 774 * any smaller pages being used within the same PDE 775 */ 776 if (NEEDS_COMPACT_PT(vma->vm->i915)) 777 size = round_up(size, alignment); 778 779 /* If binding the object/GGTT view requires more space than the entire 780 * aperture has, reject it early before evicting everything in a vain 781 * attempt to find space. 782 */ 783 if (size > end) { 784 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 785 size, flags & PIN_MAPPABLE ? "mappable" : "total", 786 end); 787 return -ENOSPC; 788 } 789 790 color = 0; 791 792 if (i915_vm_has_cache_coloring(vma->vm)) 793 color = vma->obj->cache_level; 794 795 if (flags & PIN_OFFSET_FIXED) { 796 u64 offset = flags & PIN_OFFSET_MASK; 797 if (!IS_ALIGNED(offset, alignment) || 798 range_overflows(offset, size, end)) 799 return -EINVAL; 800 801 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, 802 size, offset, color, 803 flags); 804 if (ret) 805 return ret; 806 } else { 807 /* 808 * We only support huge gtt pages through the 48b PPGTT, 809 * however we also don't want to force any alignment for 810 * objects which need to be tightly packed into the low 32bits. 811 * 812 * Note that we assume that GGTT are limited to 4GiB for the 813 * forseeable future. See also i915_ggtt_offset(). 814 */ 815 if (upper_32_bits(end - 1) && 816 vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { 817 /* 818 * We can't mix 64K and 4K PTEs in the same page-table 819 * (2M block), and so to avoid the ugliness and 820 * complexity of coloring we opt for just aligning 64K 821 * objects to 2M. 822 */ 823 u64 page_alignment = 824 rounddown_pow_of_two(vma->page_sizes.sg | 825 I915_GTT_PAGE_SIZE_2M); 826 827 /* 828 * Check we don't expand for the limited Global GTT 829 * (mappable aperture is even more precious!). This 830 * also checks that we exclude the aliasing-ppgtt. 831 */ 832 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 833 834 alignment = max(alignment, page_alignment); 835 836 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 837 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 838 } 839 840 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, 841 size, alignment, color, 842 start, end, flags); 843 if (ret) 844 return ret; 845 846 GEM_BUG_ON(vma->node.start < start); 847 GEM_BUG_ON(vma->node.start + vma->node.size > end); 848 } 849 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 850 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 851 852 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 853 854 return 0; 855 } 856 857 static void 858 i915_vma_detach(struct i915_vma *vma) 859 { 860 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 861 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 862 863 /* 864 * And finally now the object is completely decoupled from this 865 * vma, we can drop its hold on the backing storage and allow 866 * it to be reaped by the shrinker. 867 */ 868 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 869 } 870 871 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 872 { 873 unsigned int bound; 874 875 bound = atomic_read(&vma->flags); 876 877 if (flags & PIN_VALIDATE) { 878 flags &= I915_VMA_BIND_MASK; 879 880 return (flags & bound) == flags; 881 } 882 883 /* with the lock mandatory for unbind, we don't race here */ 884 flags &= I915_VMA_BIND_MASK; 885 do { 886 if (unlikely(flags & ~bound)) 887 return false; 888 889 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 890 return false; 891 892 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 893 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 894 895 return true; 896 } 897 898 static struct scatterlist * 899 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 900 unsigned int width, unsigned int height, 901 unsigned int src_stride, unsigned int dst_stride, 902 struct sg_table *st, struct scatterlist *sg) 903 { 904 unsigned int column, row; 905 unsigned int src_idx; 906 907 for (column = 0; column < width; column++) { 908 unsigned int left; 909 910 src_idx = src_stride * (height - 1) + column + offset; 911 for (row = 0; row < height; row++) { 912 st->nents++; 913 /* 914 * We don't need the pages, but need to initialize 915 * the entries so the sg list can be happily traversed. 916 * The only thing we need are DMA addresses. 917 */ 918 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 919 sg_dma_address(sg) = 920 i915_gem_object_get_dma_address(obj, src_idx); 921 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 922 sg = sg_next(sg); 923 src_idx -= src_stride; 924 } 925 926 left = (dst_stride - height) * I915_GTT_PAGE_SIZE; 927 928 if (!left) 929 continue; 930 931 st->nents++; 932 933 /* 934 * The DE ignores the PTEs for the padding tiles, the sg entry 935 * here is just a conenience to indicate how many padding PTEs 936 * to insert at this spot. 937 */ 938 sg_set_page(sg, NULL, left, 0); 939 sg_dma_address(sg) = 0; 940 sg_dma_len(sg) = left; 941 sg = sg_next(sg); 942 } 943 944 return sg; 945 } 946 947 static noinline struct sg_table * 948 intel_rotate_pages(struct intel_rotation_info *rot_info, 949 struct drm_i915_gem_object *obj) 950 { 951 unsigned int size = intel_rotation_info_size(rot_info); 952 struct drm_i915_private *i915 = to_i915(obj->base.dev); 953 struct sg_table *st; 954 struct scatterlist *sg; 955 int ret = -ENOMEM; 956 int i; 957 958 /* Allocate target SG list. */ 959 st = kmalloc(sizeof(*st), GFP_KERNEL); 960 if (!st) 961 goto err_st_alloc; 962 963 ret = sg_alloc_table(st, size, GFP_KERNEL); 964 if (ret) 965 goto err_sg_alloc; 966 967 st->nents = 0; 968 sg = st->sgl; 969 970 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 971 sg = rotate_pages(obj, rot_info->plane[i].offset, 972 rot_info->plane[i].width, rot_info->plane[i].height, 973 rot_info->plane[i].src_stride, 974 rot_info->plane[i].dst_stride, 975 st, sg); 976 977 return st; 978 979 err_sg_alloc: 980 kfree(st); 981 err_st_alloc: 982 983 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 984 obj->base.size, rot_info->plane[0].width, 985 rot_info->plane[0].height, size); 986 987 return ERR_PTR(ret); 988 } 989 990 static struct scatterlist * 991 add_padding_pages(unsigned int count, 992 struct sg_table *st, struct scatterlist *sg) 993 { 994 st->nents++; 995 996 /* 997 * The DE ignores the PTEs for the padding tiles, the sg entry 998 * here is just a convenience to indicate how many padding PTEs 999 * to insert at this spot. 1000 */ 1001 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); 1002 sg_dma_address(sg) = 0; 1003 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; 1004 sg = sg_next(sg); 1005 1006 return sg; 1007 } 1008 1009 static struct scatterlist * 1010 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, 1011 unsigned int offset, unsigned int alignment_pad, 1012 unsigned int width, unsigned int height, 1013 unsigned int src_stride, unsigned int dst_stride, 1014 struct sg_table *st, struct scatterlist *sg, 1015 unsigned int *gtt_offset) 1016 { 1017 unsigned int row; 1018 1019 if (!width || !height) 1020 return sg; 1021 1022 if (alignment_pad) 1023 sg = add_padding_pages(alignment_pad, st, sg); 1024 1025 for (row = 0; row < height; row++) { 1026 unsigned int left = width * I915_GTT_PAGE_SIZE; 1027 1028 while (left) { 1029 dma_addr_t addr; 1030 unsigned int length; 1031 1032 /* 1033 * We don't need the pages, but need to initialize 1034 * the entries so the sg list can be happily traversed. 1035 * The only thing we need are DMA addresses. 1036 */ 1037 1038 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1039 1040 length = min(left, length); 1041 1042 st->nents++; 1043 1044 sg_set_page(sg, NULL, length, 0); 1045 sg_dma_address(sg) = addr; 1046 sg_dma_len(sg) = length; 1047 sg = sg_next(sg); 1048 1049 offset += length / I915_GTT_PAGE_SIZE; 1050 left -= length; 1051 } 1052 1053 offset += src_stride - width; 1054 1055 left = (dst_stride - width) * I915_GTT_PAGE_SIZE; 1056 1057 if (!left) 1058 continue; 1059 1060 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); 1061 } 1062 1063 *gtt_offset += alignment_pad + dst_stride * height; 1064 1065 return sg; 1066 } 1067 1068 static struct scatterlist * 1069 remap_contiguous_pages(struct drm_i915_gem_object *obj, 1070 unsigned int obj_offset, 1071 unsigned int count, 1072 struct sg_table *st, struct scatterlist *sg) 1073 { 1074 struct scatterlist *iter; 1075 unsigned int offset; 1076 1077 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); 1078 GEM_BUG_ON(!iter); 1079 1080 do { 1081 unsigned int len; 1082 1083 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), 1084 count << PAGE_SHIFT); 1085 sg_set_page(sg, NULL, len, 0); 1086 sg_dma_address(sg) = 1087 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1088 sg_dma_len(sg) = len; 1089 1090 st->nents++; 1091 count -= len >> PAGE_SHIFT; 1092 if (count == 0) 1093 return sg; 1094 1095 sg = __sg_next(sg); 1096 iter = __sg_next(iter); 1097 offset = 0; 1098 } while (1); 1099 } 1100 1101 static struct scatterlist * 1102 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, 1103 unsigned int obj_offset, unsigned int alignment_pad, 1104 unsigned int size, 1105 struct sg_table *st, struct scatterlist *sg, 1106 unsigned int *gtt_offset) 1107 { 1108 if (!size) 1109 return sg; 1110 1111 if (alignment_pad) 1112 sg = add_padding_pages(alignment_pad, st, sg); 1113 1114 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); 1115 sg = sg_next(sg); 1116 1117 *gtt_offset += alignment_pad + size; 1118 1119 return sg; 1120 } 1121 1122 static struct scatterlist * 1123 remap_color_plane_pages(const struct intel_remapped_info *rem_info, 1124 struct drm_i915_gem_object *obj, 1125 int color_plane, 1126 struct sg_table *st, struct scatterlist *sg, 1127 unsigned int *gtt_offset) 1128 { 1129 unsigned int alignment_pad = 0; 1130 1131 if (rem_info->plane_alignment) 1132 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; 1133 1134 if (rem_info->plane[color_plane].linear) 1135 sg = remap_linear_color_plane_pages(obj, 1136 rem_info->plane[color_plane].offset, 1137 alignment_pad, 1138 rem_info->plane[color_plane].size, 1139 st, sg, 1140 gtt_offset); 1141 1142 else 1143 sg = remap_tiled_color_plane_pages(obj, 1144 rem_info->plane[color_plane].offset, 1145 alignment_pad, 1146 rem_info->plane[color_plane].width, 1147 rem_info->plane[color_plane].height, 1148 rem_info->plane[color_plane].src_stride, 1149 rem_info->plane[color_plane].dst_stride, 1150 st, sg, 1151 gtt_offset); 1152 1153 return sg; 1154 } 1155 1156 static noinline struct sg_table * 1157 intel_remap_pages(struct intel_remapped_info *rem_info, 1158 struct drm_i915_gem_object *obj) 1159 { 1160 unsigned int size = intel_remapped_info_size(rem_info); 1161 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1162 struct sg_table *st; 1163 struct scatterlist *sg; 1164 unsigned int gtt_offset = 0; 1165 int ret = -ENOMEM; 1166 int i; 1167 1168 /* Allocate target SG list. */ 1169 st = kmalloc(sizeof(*st), GFP_KERNEL); 1170 if (!st) 1171 goto err_st_alloc; 1172 1173 ret = sg_alloc_table(st, size, GFP_KERNEL); 1174 if (ret) 1175 goto err_sg_alloc; 1176 1177 st->nents = 0; 1178 sg = st->sgl; 1179 1180 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1181 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); 1182 1183 i915_sg_trim(st); 1184 1185 return st; 1186 1187 err_sg_alloc: 1188 kfree(st); 1189 err_st_alloc: 1190 1191 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1192 obj->base.size, rem_info->plane[0].width, 1193 rem_info->plane[0].height, size); 1194 1195 return ERR_PTR(ret); 1196 } 1197 1198 static noinline struct sg_table * 1199 intel_partial_pages(const struct i915_ggtt_view *view, 1200 struct drm_i915_gem_object *obj) 1201 { 1202 struct sg_table *st; 1203 struct scatterlist *sg; 1204 unsigned int count = view->partial.size; 1205 int ret = -ENOMEM; 1206 1207 st = kmalloc(sizeof(*st), GFP_KERNEL); 1208 if (!st) 1209 goto err_st_alloc; 1210 1211 ret = sg_alloc_table(st, count, GFP_KERNEL); 1212 if (ret) 1213 goto err_sg_alloc; 1214 1215 st->nents = 0; 1216 1217 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); 1218 1219 sg_mark_end(sg); 1220 i915_sg_trim(st); /* Drop any unused tail entries. */ 1221 1222 return st; 1223 1224 err_sg_alloc: 1225 kfree(st); 1226 err_st_alloc: 1227 return ERR_PTR(ret); 1228 } 1229 1230 static int 1231 __i915_vma_get_pages(struct i915_vma *vma) 1232 { 1233 struct sg_table *pages; 1234 1235 /* 1236 * The vma->pages are only valid within the lifespan of the borrowed 1237 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1238 * must be the vma->pages. A simple rule is that vma->pages must only 1239 * be accessed when the obj->mm.pages are pinned. 1240 */ 1241 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1242 1243 switch (vma->ggtt_view.type) { 1244 default: 1245 GEM_BUG_ON(vma->ggtt_view.type); 1246 fallthrough; 1247 case I915_GGTT_VIEW_NORMAL: 1248 pages = vma->obj->mm.pages; 1249 break; 1250 1251 case I915_GGTT_VIEW_ROTATED: 1252 pages = 1253 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 1254 break; 1255 1256 case I915_GGTT_VIEW_REMAPPED: 1257 pages = 1258 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj); 1259 break; 1260 1261 case I915_GGTT_VIEW_PARTIAL: 1262 pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 1263 break; 1264 } 1265 1266 if (IS_ERR(pages)) { 1267 drm_err(&vma->vm->i915->drm, 1268 "Failed to get pages for VMA view type %u (%ld)!\n", 1269 vma->ggtt_view.type, PTR_ERR(pages)); 1270 return PTR_ERR(pages); 1271 } 1272 1273 vma->pages = pages; 1274 1275 return 0; 1276 } 1277 1278 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) 1279 { 1280 int err; 1281 1282 if (atomic_add_unless(&vma->pages_count, 1, 0)) 1283 return 0; 1284 1285 err = i915_gem_object_pin_pages(vma->obj); 1286 if (err) 1287 return err; 1288 1289 err = __i915_vma_get_pages(vma); 1290 if (err) 1291 goto err_unpin; 1292 1293 vma->page_sizes = vma->obj->mm.page_sizes; 1294 atomic_inc(&vma->pages_count); 1295 1296 return 0; 1297 1298 err_unpin: 1299 __i915_gem_object_unpin_pages(vma->obj); 1300 1301 return err; 1302 } 1303 1304 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 1305 { 1306 /* We allocate under vma_get_pages, so beware the shrinker */ 1307 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 1308 1309 if (atomic_sub_return(count, &vma->pages_count) == 0) { 1310 if (vma->pages != vma->obj->mm.pages) { 1311 sg_free_table(vma->pages); 1312 kfree(vma->pages); 1313 } 1314 vma->pages = NULL; 1315 1316 i915_gem_object_unpin_pages(vma->obj); 1317 } 1318 } 1319 1320 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) 1321 { 1322 if (atomic_add_unless(&vma->pages_count, -1, 1)) 1323 return; 1324 1325 __vma_put_pages(vma, 1); 1326 } 1327 1328 static void vma_unbind_pages(struct i915_vma *vma) 1329 { 1330 unsigned int count; 1331 1332 lockdep_assert_held(&vma->vm->mutex); 1333 1334 /* The upper portion of pages_count is the number of bindings */ 1335 count = atomic_read(&vma->pages_count); 1336 count >>= I915_VMA_PAGES_BIAS; 1337 GEM_BUG_ON(!count); 1338 1339 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 1340 } 1341 1342 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1343 u64 size, u64 alignment, u64 flags) 1344 { 1345 struct i915_vma_work *work = NULL; 1346 struct dma_fence *moving = NULL; 1347 struct i915_vma_resource *vma_res = NULL; 1348 intel_wakeref_t wakeref = 0; 1349 unsigned int bound; 1350 int err; 1351 1352 assert_vma_held(vma); 1353 GEM_BUG_ON(!ww); 1354 1355 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 1356 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 1357 1358 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 1359 1360 /* First try and grab the pin without rebinding the vma */ 1361 if (try_qad_pin(vma, flags)) 1362 return 0; 1363 1364 err = i915_vma_get_pages(vma); 1365 if (err) 1366 return err; 1367 1368 if (flags & PIN_GLOBAL) 1369 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 1370 1371 if (flags & vma->vm->bind_async_flags) { 1372 /* lock VM */ 1373 err = i915_vm_lock_objects(vma->vm, ww); 1374 if (err) 1375 goto err_rpm; 1376 1377 work = i915_vma_work(); 1378 if (!work) { 1379 err = -ENOMEM; 1380 goto err_rpm; 1381 } 1382 1383 work->vm = vma->vm; 1384 1385 err = i915_gem_object_get_moving_fence(vma->obj, &moving); 1386 if (err) 1387 goto err_rpm; 1388 1389 dma_fence_work_chain(&work->base, moving); 1390 1391 /* Allocate enough page directories to used PTE */ 1392 if (vma->vm->allocate_va_range) { 1393 err = i915_vm_alloc_pt_stash(vma->vm, 1394 &work->stash, 1395 vma->size); 1396 if (err) 1397 goto err_fence; 1398 1399 err = i915_vm_map_pt_stash(vma->vm, &work->stash); 1400 if (err) 1401 goto err_fence; 1402 } 1403 } 1404 1405 vma_res = i915_vma_resource_alloc(); 1406 if (IS_ERR(vma_res)) { 1407 err = PTR_ERR(vma_res); 1408 goto err_fence; 1409 } 1410 1411 /* 1412 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 1413 * 1414 * We conflate the Global GTT with the user's vma when using the 1415 * aliasing-ppgtt, but it is still vitally important to try and 1416 * keep the use cases distinct. For example, userptr objects are 1417 * not allowed inside the Global GTT as that will cause lock 1418 * inversions when we have to evict them the mmu_notifier callbacks - 1419 * but they are allowed to be part of the user ppGTT which can never 1420 * be mapped. As such we try to give the distinct users of the same 1421 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 1422 * and i915_ppgtt separate]. 1423 * 1424 * NB this may cause us to mask real lock inversions -- while the 1425 * code is safe today, lockdep may not be able to spot future 1426 * transgressions. 1427 */ 1428 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 1429 !(flags & PIN_GLOBAL)); 1430 if (err) 1431 goto err_vma_res; 1432 1433 /* No more allocations allowed now we hold vm->mutex */ 1434 1435 if (unlikely(i915_vma_is_closed(vma))) { 1436 err = -ENOENT; 1437 goto err_unlock; 1438 } 1439 1440 bound = atomic_read(&vma->flags); 1441 if (unlikely(bound & I915_VMA_ERROR)) { 1442 err = -ENOMEM; 1443 goto err_unlock; 1444 } 1445 1446 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 1447 err = -EAGAIN; /* pins are meant to be fairly temporary */ 1448 goto err_unlock; 1449 } 1450 1451 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 1452 if (!(flags & PIN_VALIDATE)) 1453 __i915_vma_pin(vma); 1454 goto err_unlock; 1455 } 1456 1457 err = i915_active_acquire(&vma->active); 1458 if (err) 1459 goto err_unlock; 1460 1461 if (!(bound & I915_VMA_BIND_MASK)) { 1462 err = i915_vma_insert(vma, ww, size, alignment, flags); 1463 if (err) 1464 goto err_active; 1465 1466 if (i915_is_ggtt(vma->vm)) 1467 __i915_vma_set_map_and_fenceable(vma); 1468 } 1469 1470 GEM_BUG_ON(!vma->pages); 1471 err = i915_vma_bind(vma, 1472 vma->obj->cache_level, 1473 flags, work, vma_res); 1474 vma_res = NULL; 1475 if (err) 1476 goto err_remove; 1477 1478 /* There should only be at most 2 active bindings (user, global) */ 1479 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 1480 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 1481 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 1482 1483 if (!(flags & PIN_VALIDATE)) { 1484 __i915_vma_pin(vma); 1485 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1486 } 1487 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 1488 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 1489 1490 err_remove: 1491 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 1492 i915_vma_detach(vma); 1493 drm_mm_remove_node(&vma->node); 1494 } 1495 err_active: 1496 i915_active_release(&vma->active); 1497 err_unlock: 1498 mutex_unlock(&vma->vm->mutex); 1499 err_vma_res: 1500 i915_vma_resource_free(vma_res); 1501 err_fence: 1502 if (work) 1503 dma_fence_work_commit_imm(&work->base); 1504 err_rpm: 1505 if (wakeref) 1506 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 1507 1508 if (moving) 1509 dma_fence_put(moving); 1510 1511 i915_vma_put_pages(vma); 1512 return err; 1513 } 1514 1515 static void flush_idle_contexts(struct intel_gt *gt) 1516 { 1517 struct intel_engine_cs *engine; 1518 enum intel_engine_id id; 1519 1520 for_each_engine(engine, gt, id) 1521 intel_engine_flush_barriers(engine); 1522 1523 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1524 } 1525 1526 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1527 u32 align, unsigned int flags) 1528 { 1529 struct i915_address_space *vm = vma->vm; 1530 int err; 1531 1532 do { 1533 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1534 1535 if (err != -ENOSPC) { 1536 if (!err) { 1537 err = i915_vma_wait_for_bind(vma); 1538 if (err) 1539 i915_vma_unpin(vma); 1540 } 1541 return err; 1542 } 1543 1544 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1545 flush_idle_contexts(vm->gt); 1546 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1547 /* 1548 * We pass NULL ww here, as we don't want to unbind 1549 * locked objects when called from execbuf when pinning 1550 * is removed. This would probably regress badly. 1551 */ 1552 i915_gem_evict_vm(vm, NULL); 1553 mutex_unlock(&vm->mutex); 1554 } 1555 } while (1); 1556 } 1557 1558 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1559 u32 align, unsigned int flags) 1560 { 1561 struct i915_gem_ww_ctx _ww; 1562 int err; 1563 1564 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1565 1566 if (ww) 1567 return __i915_ggtt_pin(vma, ww, align, flags); 1568 1569 lockdep_assert_not_held(&vma->obj->base.resv->lock.base); 1570 1571 for_i915_gem_ww(&_ww, err, true) { 1572 err = i915_gem_object_lock(vma->obj, &_ww); 1573 if (!err) 1574 err = __i915_ggtt_pin(vma, &_ww, align, flags); 1575 } 1576 1577 return err; 1578 } 1579 1580 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1581 { 1582 /* 1583 * We defer actually closing, unbinding and destroying the VMA until 1584 * the next idle point, or if the object is freed in the meantime. By 1585 * postponing the unbind, we allow for it to be resurrected by the 1586 * client, avoiding the work required to rebind the VMA. This is 1587 * advantageous for DRI, where the client/server pass objects 1588 * between themselves, temporarily opening a local VMA to the 1589 * object, and then closing it again. The same object is then reused 1590 * on the next frame (or two, depending on the depth of the swap queue) 1591 * causing us to rebind the VMA once more. This ends up being a lot 1592 * of wasted work for the steady state. 1593 */ 1594 GEM_BUG_ON(i915_vma_is_closed(vma)); 1595 list_add(&vma->closed_link, >->closed_vma); 1596 } 1597 1598 void i915_vma_close(struct i915_vma *vma) 1599 { 1600 struct intel_gt *gt = vma->vm->gt; 1601 unsigned long flags; 1602 1603 if (i915_vma_is_ggtt(vma)) 1604 return; 1605 1606 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1607 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1608 >->closed_lock, 1609 flags)) { 1610 __vma_close(vma, gt); 1611 spin_unlock_irqrestore(>->closed_lock, flags); 1612 } 1613 } 1614 1615 static void __i915_vma_remove_closed(struct i915_vma *vma) 1616 { 1617 list_del_init(&vma->closed_link); 1618 } 1619 1620 void i915_vma_reopen(struct i915_vma *vma) 1621 { 1622 struct intel_gt *gt = vma->vm->gt; 1623 1624 spin_lock_irq(>->closed_lock); 1625 if (i915_vma_is_closed(vma)) 1626 __i915_vma_remove_closed(vma); 1627 spin_unlock_irq(>->closed_lock); 1628 } 1629 1630 static void force_unbind(struct i915_vma *vma) 1631 { 1632 if (!drm_mm_node_allocated(&vma->node)) 1633 return; 1634 1635 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1636 WARN_ON(__i915_vma_unbind(vma)); 1637 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1638 } 1639 1640 static void release_references(struct i915_vma *vma, struct intel_gt *gt, 1641 bool vm_ddestroy) 1642 { 1643 struct drm_i915_gem_object *obj = vma->obj; 1644 1645 GEM_BUG_ON(i915_vma_is_active(vma)); 1646 1647 spin_lock(&obj->vma.lock); 1648 list_del(&vma->obj_link); 1649 if (!RB_EMPTY_NODE(&vma->obj_node)) 1650 rb_erase(&vma->obj_node, &obj->vma.tree); 1651 1652 spin_unlock(&obj->vma.lock); 1653 1654 spin_lock_irq(>->closed_lock); 1655 __i915_vma_remove_closed(vma); 1656 spin_unlock_irq(>->closed_lock); 1657 1658 if (vm_ddestroy) 1659 i915_vm_resv_put(vma->vm); 1660 1661 i915_active_fini(&vma->active); 1662 GEM_WARN_ON(vma->resource); 1663 i915_vma_free(vma); 1664 } 1665 1666 /** 1667 * i915_vma_destroy_locked - Remove all weak reference to the vma and put 1668 * the initial reference. 1669 * 1670 * This function should be called when it's decided the vma isn't needed 1671 * anymore. The caller must assure that it doesn't race with another lookup 1672 * plus destroy, typically by taking an appropriate reference. 1673 * 1674 * Current callsites are 1675 * - __i915_gem_object_pages_fini() 1676 * - __i915_vm_close() - Blocks the above function by taking a reference on 1677 * the object. 1678 * - __i915_vma_parked() - Blocks the above functions by taking a reference 1679 * on the vm and a reference on the object. Also takes the object lock so 1680 * destruction from __i915_vma_parked() can be blocked by holding the 1681 * object lock. Since the object lock is only allowed from within i915 with 1682 * an object refcount, holding the object lock also implicitly blocks the 1683 * vma freeing from __i915_gem_object_pages_fini(). 1684 * 1685 * Because of locks taken during destruction, a vma is also guaranteed to 1686 * stay alive while the following locks are held if it was looked up while 1687 * holding one of the locks: 1688 * - vm->mutex 1689 * - obj->vma.lock 1690 * - gt->closed_lock 1691 */ 1692 void i915_vma_destroy_locked(struct i915_vma *vma) 1693 { 1694 lockdep_assert_held(&vma->vm->mutex); 1695 1696 force_unbind(vma); 1697 list_del_init(&vma->vm_link); 1698 release_references(vma, vma->vm->gt, false); 1699 } 1700 1701 void i915_vma_destroy(struct i915_vma *vma) 1702 { 1703 struct intel_gt *gt; 1704 bool vm_ddestroy; 1705 1706 mutex_lock(&vma->vm->mutex); 1707 force_unbind(vma); 1708 list_del_init(&vma->vm_link); 1709 vm_ddestroy = vma->vm_ddestroy; 1710 vma->vm_ddestroy = false; 1711 1712 /* vma->vm may be freed when releasing vma->vm->mutex. */ 1713 gt = vma->vm->gt; 1714 mutex_unlock(&vma->vm->mutex); 1715 release_references(vma, gt, vm_ddestroy); 1716 } 1717 1718 void i915_vma_parked(struct intel_gt *gt) 1719 { 1720 struct i915_vma *vma, *next; 1721 LIST_HEAD(closed); 1722 1723 spin_lock_irq(>->closed_lock); 1724 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1725 struct drm_i915_gem_object *obj = vma->obj; 1726 struct i915_address_space *vm = vma->vm; 1727 1728 /* XXX All to avoid keeping a reference on i915_vma itself */ 1729 1730 if (!kref_get_unless_zero(&obj->base.refcount)) 1731 continue; 1732 1733 if (!i915_vm_tryget(vm)) { 1734 i915_gem_object_put(obj); 1735 continue; 1736 } 1737 1738 list_move(&vma->closed_link, &closed); 1739 } 1740 spin_unlock_irq(>->closed_lock); 1741 1742 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1743 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1744 struct drm_i915_gem_object *obj = vma->obj; 1745 struct i915_address_space *vm = vma->vm; 1746 1747 if (i915_gem_object_trylock(obj, NULL)) { 1748 INIT_LIST_HEAD(&vma->closed_link); 1749 i915_vma_destroy(vma); 1750 i915_gem_object_unlock(obj); 1751 } else { 1752 /* back you go.. */ 1753 spin_lock_irq(>->closed_lock); 1754 list_add(&vma->closed_link, >->closed_vma); 1755 spin_unlock_irq(>->closed_lock); 1756 } 1757 1758 i915_gem_object_put(obj); 1759 i915_vm_put(vm); 1760 } 1761 } 1762 1763 static void __i915_vma_iounmap(struct i915_vma *vma) 1764 { 1765 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1766 1767 if (vma->iomap == NULL) 1768 return; 1769 1770 io_mapping_unmap(vma->iomap); 1771 vma->iomap = NULL; 1772 } 1773 1774 void i915_vma_revoke_mmap(struct i915_vma *vma) 1775 { 1776 struct drm_vma_offset_node *node; 1777 u64 vma_offset; 1778 1779 if (!i915_vma_has_userfault(vma)) 1780 return; 1781 1782 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1783 GEM_BUG_ON(!vma->obj->userfault_count); 1784 1785 node = &vma->mmo->vma_node; 1786 vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; 1787 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1788 drm_vma_node_offset_addr(node) + vma_offset, 1789 vma->size, 1790 1); 1791 1792 i915_vma_unset_userfault(vma); 1793 if (!--vma->obj->userfault_count) 1794 list_del(&vma->obj->userfault_link); 1795 } 1796 1797 static int 1798 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1799 { 1800 return __i915_request_await_exclusive(rq, &vma->active); 1801 } 1802 1803 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1804 { 1805 int err; 1806 1807 /* Wait for the vma to be bound before we start! */ 1808 err = __i915_request_await_bind(rq, vma); 1809 if (err) 1810 return err; 1811 1812 return i915_active_add_request(&vma->active, rq); 1813 } 1814 1815 int _i915_vma_move_to_active(struct i915_vma *vma, 1816 struct i915_request *rq, 1817 struct dma_fence *fence, 1818 unsigned int flags) 1819 { 1820 struct drm_i915_gem_object *obj = vma->obj; 1821 int err; 1822 1823 assert_object_held(obj); 1824 1825 GEM_BUG_ON(!vma->pages); 1826 1827 err = __i915_vma_move_to_active(vma, rq); 1828 if (unlikely(err)) 1829 return err; 1830 1831 /* 1832 * Reserve fences slot early to prevent an allocation after preparing 1833 * the workload and associating fences with dma_resv. 1834 */ 1835 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) { 1836 struct dma_fence *curr; 1837 int idx; 1838 1839 dma_fence_array_for_each(curr, idx, fence) 1840 ; 1841 err = dma_resv_reserve_fences(vma->obj->base.resv, idx); 1842 if (unlikely(err)) 1843 return err; 1844 } 1845 1846 if (flags & EXEC_OBJECT_WRITE) { 1847 struct intel_frontbuffer *front; 1848 1849 front = __intel_frontbuffer_get(obj); 1850 if (unlikely(front)) { 1851 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1852 i915_active_add_request(&front->write, rq); 1853 intel_frontbuffer_put(front); 1854 } 1855 } 1856 1857 if (fence) { 1858 struct dma_fence *curr; 1859 enum dma_resv_usage usage; 1860 int idx; 1861 1862 obj->read_domains = 0; 1863 if (flags & EXEC_OBJECT_WRITE) { 1864 usage = DMA_RESV_USAGE_WRITE; 1865 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1866 } else { 1867 usage = DMA_RESV_USAGE_READ; 1868 } 1869 1870 dma_fence_array_for_each(curr, idx, fence) 1871 dma_resv_add_fence(vma->obj->base.resv, curr, usage); 1872 } 1873 1874 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 1875 i915_active_add_request(&vma->fence->active, rq); 1876 1877 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1878 obj->mm.dirty = true; 1879 1880 GEM_BUG_ON(!i915_vma_is_active(vma)); 1881 return 0; 1882 } 1883 1884 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) 1885 { 1886 struct i915_vma_resource *vma_res = vma->resource; 1887 struct dma_fence *unbind_fence; 1888 1889 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1890 assert_vma_held_evict(vma); 1891 1892 if (i915_vma_is_map_and_fenceable(vma)) { 1893 /* Force a pagefault for domain tracking on next user access */ 1894 i915_vma_revoke_mmap(vma); 1895 1896 /* 1897 * Check that we have flushed all writes through the GGTT 1898 * before the unbind, other due to non-strict nature of those 1899 * indirect writes they may end up referencing the GGTT PTE 1900 * after the unbind. 1901 * 1902 * Note that we may be concurrently poking at the GGTT_WRITE 1903 * bit from set-domain, as we mark all GGTT vma associated 1904 * with an object. We know this is for another vma, as we 1905 * are currently unbinding this one -- so if this vma will be 1906 * reused, it will be refaulted and have its dirty bit set 1907 * before the next write. 1908 */ 1909 i915_vma_flush_writes(vma); 1910 1911 /* release the fence reg _after_ flushing */ 1912 i915_vma_revoke_fence(vma); 1913 1914 __i915_vma_iounmap(vma); 1915 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 1916 } 1917 GEM_BUG_ON(vma->fence); 1918 GEM_BUG_ON(i915_vma_has_userfault(vma)); 1919 1920 /* Object backend must be async capable. */ 1921 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); 1922 1923 /* If vm is not open, unbind is a nop. */ 1924 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && 1925 kref_read(&vma->vm->ref); 1926 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || 1927 vma->vm->skip_pte_rewrite; 1928 trace_i915_vma_unbind(vma); 1929 1930 unbind_fence = i915_vma_resource_unbind(vma_res); 1931 vma->resource = NULL; 1932 1933 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 1934 &vma->flags); 1935 1936 i915_vma_detach(vma); 1937 1938 if (!async && unbind_fence) { 1939 dma_fence_wait(unbind_fence, false); 1940 dma_fence_put(unbind_fence); 1941 unbind_fence = NULL; 1942 } 1943 1944 /* 1945 * Binding itself may not have completed until the unbind fence signals, 1946 * so don't drop the pages until that happens, unless the resource is 1947 * async_capable. 1948 */ 1949 1950 vma_unbind_pages(vma); 1951 return unbind_fence; 1952 } 1953 1954 int __i915_vma_unbind(struct i915_vma *vma) 1955 { 1956 int ret; 1957 1958 lockdep_assert_held(&vma->vm->mutex); 1959 assert_vma_held_evict(vma); 1960 1961 if (!drm_mm_node_allocated(&vma->node)) 1962 return 0; 1963 1964 if (i915_vma_is_pinned(vma)) { 1965 vma_print_allocator(vma, "is pinned"); 1966 return -EAGAIN; 1967 } 1968 1969 /* 1970 * After confirming that no one else is pinning this vma, wait for 1971 * any laggards who may have crept in during the wait (through 1972 * a residual pin skipping the vm->mutex) to complete. 1973 */ 1974 ret = i915_vma_sync(vma); 1975 if (ret) 1976 return ret; 1977 1978 GEM_BUG_ON(i915_vma_is_active(vma)); 1979 __i915_vma_evict(vma, false); 1980 1981 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 1982 return 0; 1983 } 1984 1985 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) 1986 { 1987 struct dma_fence *fence; 1988 1989 lockdep_assert_held(&vma->vm->mutex); 1990 1991 if (!drm_mm_node_allocated(&vma->node)) 1992 return NULL; 1993 1994 if (i915_vma_is_pinned(vma) || 1995 &vma->obj->mm.rsgt->table != vma->resource->bi.pages) 1996 return ERR_PTR(-EAGAIN); 1997 1998 /* 1999 * We probably need to replace this with awaiting the fences of the 2000 * object's dma_resv when the vma active goes away. When doing that 2001 * we need to be careful to not add the vma_resource unbind fence 2002 * immediately to the object's dma_resv, because then unbinding 2003 * the next vma from the object, in case there are many, will 2004 * actually await the unbinding of the previous vmas, which is 2005 * undesirable. 2006 */ 2007 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, 2008 I915_ACTIVE_AWAIT_EXCL | 2009 I915_ACTIVE_AWAIT_ACTIVE) < 0) { 2010 return ERR_PTR(-EBUSY); 2011 } 2012 2013 fence = __i915_vma_evict(vma, true); 2014 2015 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2016 2017 return fence; 2018 } 2019 2020 int i915_vma_unbind(struct i915_vma *vma) 2021 { 2022 struct i915_address_space *vm = vma->vm; 2023 intel_wakeref_t wakeref = 0; 2024 int err; 2025 2026 assert_object_held_shared(vma->obj); 2027 2028 /* Optimistic wait before taking the mutex */ 2029 err = i915_vma_sync(vma); 2030 if (err) 2031 return err; 2032 2033 if (!drm_mm_node_allocated(&vma->node)) 2034 return 0; 2035 2036 if (i915_vma_is_pinned(vma)) { 2037 vma_print_allocator(vma, "is pinned"); 2038 return -EAGAIN; 2039 } 2040 2041 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2042 /* XXX not always required: nop_clear_range */ 2043 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2044 2045 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 2046 if (err) 2047 goto out_rpm; 2048 2049 err = __i915_vma_unbind(vma); 2050 mutex_unlock(&vm->mutex); 2051 2052 out_rpm: 2053 if (wakeref) 2054 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2055 return err; 2056 } 2057 2058 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) 2059 { 2060 struct drm_i915_gem_object *obj = vma->obj; 2061 struct i915_address_space *vm = vma->vm; 2062 intel_wakeref_t wakeref = 0; 2063 struct dma_fence *fence; 2064 int err; 2065 2066 /* 2067 * We need the dma-resv lock since we add the 2068 * unbind fence to the dma-resv object. 2069 */ 2070 assert_object_held(obj); 2071 2072 if (!drm_mm_node_allocated(&vma->node)) 2073 return 0; 2074 2075 if (i915_vma_is_pinned(vma)) { 2076 vma_print_allocator(vma, "is pinned"); 2077 return -EAGAIN; 2078 } 2079 2080 if (!obj->mm.rsgt) 2081 return -EBUSY; 2082 2083 err = dma_resv_reserve_fences(obj->base.resv, 1); 2084 if (err) 2085 return -EBUSY; 2086 2087 /* 2088 * It would be great if we could grab this wakeref from the 2089 * async unbind work if needed, but we can't because it uses 2090 * kmalloc and it's in the dma-fence signalling critical path. 2091 */ 2092 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2093 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2094 2095 if (trylock_vm && !mutex_trylock(&vm->mutex)) { 2096 err = -EBUSY; 2097 goto out_rpm; 2098 } else if (!trylock_vm) { 2099 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); 2100 if (err) 2101 goto out_rpm; 2102 } 2103 2104 fence = __i915_vma_unbind_async(vma); 2105 mutex_unlock(&vm->mutex); 2106 if (IS_ERR_OR_NULL(fence)) { 2107 err = PTR_ERR_OR_ZERO(fence); 2108 goto out_rpm; 2109 } 2110 2111 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); 2112 dma_fence_put(fence); 2113 2114 out_rpm: 2115 if (wakeref) 2116 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2117 return err; 2118 } 2119 2120 int i915_vma_unbind_unlocked(struct i915_vma *vma) 2121 { 2122 int err; 2123 2124 i915_gem_object_lock(vma->obj, NULL); 2125 err = i915_vma_unbind(vma); 2126 i915_gem_object_unlock(vma->obj); 2127 2128 return err; 2129 } 2130 2131 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 2132 { 2133 i915_gem_object_make_unshrinkable(vma->obj); 2134 return vma; 2135 } 2136 2137 void i915_vma_make_shrinkable(struct i915_vma *vma) 2138 { 2139 i915_gem_object_make_shrinkable(vma->obj); 2140 } 2141 2142 void i915_vma_make_purgeable(struct i915_vma *vma) 2143 { 2144 i915_gem_object_make_purgeable(vma->obj); 2145 } 2146 2147 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2148 #include "selftests/i915_vma.c" 2149 #endif 2150 2151 void i915_vma_module_exit(void) 2152 { 2153 kmem_cache_destroy(slab_vmas); 2154 } 2155 2156 int __init i915_vma_module_init(void) 2157 { 2158 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 2159 if (!slab_vmas) 2160 return -ENOMEM; 2161 2162 return 0; 2163 } 2164