xref: /linux/drivers/gpu/drm/i915/i915_vma.c (revision 8f5b5f78113e881cb8570c961b0dc42b218a1b9e)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_display.h"
30 #include "display/intel_frontbuffer.h"
31 #include "gem/i915_gem_lmem.h"
32 #include "gem/i915_gem_object_frontbuffer.h"
33 #include "gem/i915_gem_tiling.h"
34 #include "gt/intel_engine.h"
35 #include "gt/intel_engine_heartbeat.h"
36 #include "gt/intel_gt.h"
37 #include "gt/intel_gt_pm.h"
38 #include "gt/intel_gt_requests.h"
39 #include "gt/intel_tlb.h"
40 
41 #include "i915_drv.h"
42 #include "i915_gem_evict.h"
43 #include "i915_sw_fence_work.h"
44 #include "i915_trace.h"
45 #include "i915_vma.h"
46 #include "i915_vma_resource.h"
47 
48 static inline void assert_vma_held_evict(const struct i915_vma *vma)
49 {
50 	/*
51 	 * We may be forced to unbind when the vm is dead, to clean it up.
52 	 * This is the only exception to the requirement of the object lock
53 	 * being held.
54 	 */
55 	if (kref_read(&vma->vm->ref))
56 		assert_object_held_shared(vma->obj);
57 }
58 
59 static struct kmem_cache *slab_vmas;
60 
61 static struct i915_vma *i915_vma_alloc(void)
62 {
63 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
64 }
65 
66 static void i915_vma_free(struct i915_vma *vma)
67 {
68 	return kmem_cache_free(slab_vmas, vma);
69 }
70 
71 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
72 
73 #include <linux/stackdepot.h>
74 
75 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
76 {
77 	char buf[512];
78 
79 	if (!vma->node.stack) {
80 		drm_dbg(vma->obj->base.dev,
81 			"vma.node [%08llx + %08llx] %s: unknown owner\n",
82 			vma->node.start, vma->node.size, reason);
83 		return;
84 	}
85 
86 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
87 	drm_dbg(vma->obj->base.dev,
88 		"vma.node [%08llx + %08llx] %s: inserted at %s\n",
89 		vma->node.start, vma->node.size, reason, buf);
90 }
91 
92 #else
93 
94 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
95 {
96 }
97 
98 #endif
99 
100 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
101 {
102 	return container_of(ref, typeof(struct i915_vma), active);
103 }
104 
105 static int __i915_vma_active(struct i915_active *ref)
106 {
107 	struct i915_vma *vma = active_to_vma(ref);
108 
109 	if (!i915_vma_tryget(vma))
110 		return -ENOENT;
111 
112 	/*
113 	 * Exclude global GTT VMA from holding a GT wakeref
114 	 * while active, otherwise GPU never goes idle.
115 	 */
116 	if (!i915_vma_is_ggtt(vma)) {
117 		/*
118 		 * Since we and our _retire() counterpart can be
119 		 * called asynchronously, storing a wakeref tracking
120 		 * handle inside struct i915_vma is not safe, and
121 		 * there is no other good place for that.  Hence,
122 		 * use untracked variants of intel_gt_pm_get/put().
123 		 */
124 		intel_gt_pm_get_untracked(vma->vm->gt);
125 	}
126 
127 	return 0;
128 }
129 
130 static void __i915_vma_retire(struct i915_active *ref)
131 {
132 	struct i915_vma *vma = active_to_vma(ref);
133 
134 	if (!i915_vma_is_ggtt(vma)) {
135 		/*
136 		 * Since we can be called from atomic contexts,
137 		 * use an async variant of intel_gt_pm_put().
138 		 */
139 		intel_gt_pm_put_async_untracked(vma->vm->gt);
140 	}
141 
142 	i915_vma_put(vma);
143 }
144 
145 static struct i915_vma *
146 vma_create(struct drm_i915_gem_object *obj,
147 	   struct i915_address_space *vm,
148 	   const struct i915_gtt_view *view)
149 {
150 	struct i915_vma *pos = ERR_PTR(-E2BIG);
151 	struct i915_vma *vma;
152 	struct rb_node *rb, **p;
153 	int err;
154 
155 	/* The aliasing_ppgtt should never be used directly! */
156 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
157 
158 	vma = i915_vma_alloc();
159 	if (vma == NULL)
160 		return ERR_PTR(-ENOMEM);
161 
162 	vma->ops = &vm->vma_ops;
163 	vma->obj = obj;
164 	vma->size = obj->base.size;
165 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
166 
167 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
168 
169 	/* Declare ourselves safe for use inside shrinkers */
170 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
171 		fs_reclaim_acquire(GFP_KERNEL);
172 		might_lock(&vma->active.mutex);
173 		fs_reclaim_release(GFP_KERNEL);
174 	}
175 
176 	INIT_LIST_HEAD(&vma->closed_link);
177 	INIT_LIST_HEAD(&vma->obj_link);
178 	RB_CLEAR_NODE(&vma->obj_node);
179 
180 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
181 		vma->gtt_view = *view;
182 		if (view->type == I915_GTT_VIEW_PARTIAL) {
183 			GEM_BUG_ON(range_overflows_t(u64,
184 						     view->partial.offset,
185 						     view->partial.size,
186 						     obj->base.size >> PAGE_SHIFT));
187 			vma->size = view->partial.size;
188 			vma->size <<= PAGE_SHIFT;
189 			GEM_BUG_ON(vma->size > obj->base.size);
190 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
191 			vma->size = intel_rotation_info_size(&view->rotated);
192 			vma->size <<= PAGE_SHIFT;
193 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
194 			vma->size = intel_remapped_info_size(&view->remapped);
195 			vma->size <<= PAGE_SHIFT;
196 		}
197 	}
198 
199 	if (unlikely(vma->size > vm->total))
200 		goto err_vma;
201 
202 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
203 
204 	err = mutex_lock_interruptible(&vm->mutex);
205 	if (err) {
206 		pos = ERR_PTR(err);
207 		goto err_vma;
208 	}
209 
210 	vma->vm = vm;
211 	list_add_tail(&vma->vm_link, &vm->unbound_list);
212 
213 	spin_lock(&obj->vma.lock);
214 	if (i915_is_ggtt(vm)) {
215 		if (unlikely(overflows_type(vma->size, u32)))
216 			goto err_unlock;
217 
218 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
219 						      i915_gem_object_get_tiling(obj),
220 						      i915_gem_object_get_stride(obj));
221 		if (unlikely(vma->fence_size < vma->size || /* overflow */
222 			     vma->fence_size > vm->total))
223 			goto err_unlock;
224 
225 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
226 
227 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
228 								i915_gem_object_get_tiling(obj),
229 								i915_gem_object_get_stride(obj));
230 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
231 
232 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
233 	}
234 
235 	rb = NULL;
236 	p = &obj->vma.tree.rb_node;
237 	while (*p) {
238 		long cmp;
239 
240 		rb = *p;
241 		pos = rb_entry(rb, struct i915_vma, obj_node);
242 
243 		/*
244 		 * If the view already exists in the tree, another thread
245 		 * already created a matching vma, so return the older instance
246 		 * and dispose of ours.
247 		 */
248 		cmp = i915_vma_compare(pos, vm, view);
249 		if (cmp < 0)
250 			p = &rb->rb_right;
251 		else if (cmp > 0)
252 			p = &rb->rb_left;
253 		else
254 			goto err_unlock;
255 	}
256 	rb_link_node(&vma->obj_node, rb, p);
257 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
258 
259 	if (i915_vma_is_ggtt(vma))
260 		/*
261 		 * We put the GGTT vma at the start of the vma-list, followed
262 		 * by the ppGGTT vma. This allows us to break early when
263 		 * iterating over only the GGTT vma for an object, see
264 		 * for_each_ggtt_vma()
265 		 */
266 		list_add(&vma->obj_link, &obj->vma.list);
267 	else
268 		list_add_tail(&vma->obj_link, &obj->vma.list);
269 
270 	spin_unlock(&obj->vma.lock);
271 	mutex_unlock(&vm->mutex);
272 
273 	return vma;
274 
275 err_unlock:
276 	spin_unlock(&obj->vma.lock);
277 	list_del_init(&vma->vm_link);
278 	mutex_unlock(&vm->mutex);
279 err_vma:
280 	i915_vma_free(vma);
281 	return pos;
282 }
283 
284 static struct i915_vma *
285 i915_vma_lookup(struct drm_i915_gem_object *obj,
286 	   struct i915_address_space *vm,
287 	   const struct i915_gtt_view *view)
288 {
289 	struct rb_node *rb;
290 
291 	rb = obj->vma.tree.rb_node;
292 	while (rb) {
293 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
294 		long cmp;
295 
296 		cmp = i915_vma_compare(vma, vm, view);
297 		if (cmp == 0)
298 			return vma;
299 
300 		if (cmp < 0)
301 			rb = rb->rb_right;
302 		else
303 			rb = rb->rb_left;
304 	}
305 
306 	return NULL;
307 }
308 
309 /**
310  * i915_vma_instance - return the singleton instance of the VMA
311  * @obj: parent &struct drm_i915_gem_object to be mapped
312  * @vm: address space in which the mapping is located
313  * @view: additional mapping requirements
314  *
315  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
316  * the same @view characteristics. If a match is not found, one is created.
317  * Once created, the VMA is kept until either the object is freed, or the
318  * address space is closed.
319  *
320  * Returns the vma, or an error pointer.
321  */
322 struct i915_vma *
323 i915_vma_instance(struct drm_i915_gem_object *obj,
324 		  struct i915_address_space *vm,
325 		  const struct i915_gtt_view *view)
326 {
327 	struct i915_vma *vma;
328 
329 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
330 	GEM_BUG_ON(!kref_read(&vm->ref));
331 
332 	spin_lock(&obj->vma.lock);
333 	vma = i915_vma_lookup(obj, vm, view);
334 	spin_unlock(&obj->vma.lock);
335 
336 	/* vma_create() will resolve the race if another creates the vma */
337 	if (unlikely(!vma))
338 		vma = vma_create(obj, vm, view);
339 
340 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
341 	return vma;
342 }
343 
344 struct i915_vma_work {
345 	struct dma_fence_work base;
346 	struct i915_address_space *vm;
347 	struct i915_vm_pt_stash stash;
348 	struct i915_vma_resource *vma_res;
349 	struct drm_i915_gem_object *obj;
350 	struct i915_sw_dma_fence_cb cb;
351 	unsigned int pat_index;
352 	unsigned int flags;
353 };
354 
355 static void __vma_bind(struct dma_fence_work *work)
356 {
357 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
358 	struct i915_vma_resource *vma_res = vw->vma_res;
359 
360 	/*
361 	 * We are about the bind the object, which must mean we have already
362 	 * signaled the work to potentially clear/move the pages underneath. If
363 	 * something went wrong at that stage then the object should have
364 	 * unknown_state set, in which case we need to skip the bind.
365 	 */
366 	if (i915_gem_object_has_unknown_state(vw->obj))
367 		return;
368 
369 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
370 			       vma_res, vw->pat_index, vw->flags);
371 }
372 
373 static void __vma_release(struct dma_fence_work *work)
374 {
375 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
376 
377 	if (vw->obj)
378 		i915_gem_object_put(vw->obj);
379 
380 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
381 	if (vw->vma_res)
382 		i915_vma_resource_put(vw->vma_res);
383 }
384 
385 static const struct dma_fence_work_ops bind_ops = {
386 	.name = "bind",
387 	.work = __vma_bind,
388 	.release = __vma_release,
389 };
390 
391 struct i915_vma_work *i915_vma_work(void)
392 {
393 	struct i915_vma_work *vw;
394 
395 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
396 	if (!vw)
397 		return NULL;
398 
399 	dma_fence_work_init(&vw->base, &bind_ops);
400 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
401 
402 	return vw;
403 }
404 
405 int i915_vma_wait_for_bind(struct i915_vma *vma)
406 {
407 	int err = 0;
408 
409 	if (rcu_access_pointer(vma->active.excl.fence)) {
410 		struct dma_fence *fence;
411 
412 		rcu_read_lock();
413 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
414 		rcu_read_unlock();
415 		if (fence) {
416 			err = dma_fence_wait(fence, true);
417 			dma_fence_put(fence);
418 		}
419 	}
420 
421 	return err;
422 }
423 
424 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
425 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
426 {
427 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
428 	int err;
429 
430 	if (!fence)
431 		return 0;
432 
433 	if (dma_fence_is_signaled(fence))
434 		err = fence->error;
435 	else
436 		err = -EBUSY;
437 
438 	dma_fence_put(fence);
439 
440 	return err;
441 }
442 #else
443 #define i915_vma_verify_bind_complete(_vma) 0
444 #endif
445 
446 I915_SELFTEST_EXPORT void
447 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
448 				struct i915_vma *vma)
449 {
450 	struct drm_i915_gem_object *obj = vma->obj;
451 
452 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
453 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
454 			       i915_gem_object_is_lmem(obj), obj->mm.region,
455 			       vma->ops, vma->private, __i915_vma_offset(vma),
456 			       __i915_vma_size(vma), vma->size, vma->guard);
457 }
458 
459 /**
460  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
461  * @vma: VMA to map
462  * @pat_index: PAT index to set in PTE
463  * @flags: flags like global or local mapping
464  * @work: preallocated worker for allocating and binding the PTE
465  * @vma_res: pointer to a preallocated vma resource. The resource is either
466  * consumed or freed.
467  *
468  * DMA addresses are taken from the scatter-gather table of this object (or of
469  * this VMA in case of non-default GGTT views) and PTE entries set up.
470  * Note that DMA addresses are also the only part of the SG table we care about.
471  */
472 int i915_vma_bind(struct i915_vma *vma,
473 		  unsigned int pat_index,
474 		  u32 flags,
475 		  struct i915_vma_work *work,
476 		  struct i915_vma_resource *vma_res)
477 {
478 	u32 bind_flags;
479 	u32 vma_flags;
480 	int ret;
481 
482 	lockdep_assert_held(&vma->vm->mutex);
483 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
484 	GEM_BUG_ON(vma->size > i915_vma_size(vma));
485 
486 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
487 					      vma->node.size,
488 					      vma->vm->total))) {
489 		i915_vma_resource_free(vma_res);
490 		return -ENODEV;
491 	}
492 
493 	if (GEM_DEBUG_WARN_ON(!flags)) {
494 		i915_vma_resource_free(vma_res);
495 		return -EINVAL;
496 	}
497 
498 	bind_flags = flags;
499 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
500 
501 	vma_flags = atomic_read(&vma->flags);
502 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
503 
504 	bind_flags &= ~vma_flags;
505 	if (bind_flags == 0) {
506 		i915_vma_resource_free(vma_res);
507 		return 0;
508 	}
509 
510 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
511 
512 	/* Wait for or await async unbinds touching our range */
513 	if (work && bind_flags & vma->vm->bind_async_flags)
514 		ret = i915_vma_resource_bind_dep_await(vma->vm,
515 						       &work->base.chain,
516 						       vma->node.start,
517 						       vma->node.size,
518 						       true,
519 						       GFP_NOWAIT |
520 						       __GFP_RETRY_MAYFAIL |
521 						       __GFP_NOWARN);
522 	else
523 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
524 						      vma->node.size, true);
525 	if (ret) {
526 		i915_vma_resource_free(vma_res);
527 		return ret;
528 	}
529 
530 	if (vma->resource || !vma_res) {
531 		/* Rebinding with an additional I915_VMA_*_BIND */
532 		GEM_WARN_ON(!vma_flags);
533 		i915_vma_resource_free(vma_res);
534 	} else {
535 		i915_vma_resource_init_from_vma(vma_res, vma);
536 		vma->resource = vma_res;
537 	}
538 	trace_i915_vma_bind(vma, bind_flags);
539 	if (work && bind_flags & vma->vm->bind_async_flags) {
540 		struct dma_fence *prev;
541 
542 		work->vma_res = i915_vma_resource_get(vma->resource);
543 		work->pat_index = pat_index;
544 		work->flags = bind_flags;
545 
546 		/*
547 		 * Note we only want to chain up to the migration fence on
548 		 * the pages (not the object itself). As we don't track that,
549 		 * yet, we have to use the exclusive fence instead.
550 		 *
551 		 * Also note that we do not want to track the async vma as
552 		 * part of the obj->resv->excl_fence as it only affects
553 		 * execution and not content or object's backing store lifetime.
554 		 */
555 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
556 		if (prev) {
557 			__i915_sw_fence_await_dma_fence(&work->base.chain,
558 							prev,
559 							&work->cb);
560 			dma_fence_put(prev);
561 		}
562 
563 		work->base.dma.error = 0; /* enable the queue_work() */
564 		work->obj = i915_gem_object_get(vma->obj);
565 	} else {
566 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
567 		if (ret) {
568 			i915_vma_resource_free(vma->resource);
569 			vma->resource = NULL;
570 
571 			return ret;
572 		}
573 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
574 				   bind_flags);
575 	}
576 
577 	atomic_or(bind_flags, &vma->flags);
578 	return 0;
579 }
580 
581 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
582 {
583 	void __iomem *ptr;
584 	int err;
585 
586 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
587 		return IOMEM_ERR_PTR(-EINVAL);
588 
589 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
590 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
591 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
592 
593 	ptr = READ_ONCE(vma->iomap);
594 	if (ptr == NULL) {
595 		/*
596 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
597 		 * instead, which already supports mapping non-contiguous chunks
598 		 * of pages, that way we can also drop the
599 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
600 		 */
601 		if (i915_gem_object_is_lmem(vma->obj)) {
602 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
603 							  vma->obj->base.size);
604 		} else if (i915_vma_is_map_and_fenceable(vma)) {
605 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
606 						i915_vma_offset(vma),
607 						i915_vma_size(vma));
608 		} else {
609 			ptr = (void __iomem *)
610 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
611 			if (IS_ERR(ptr)) {
612 				err = PTR_ERR(ptr);
613 				goto err;
614 			}
615 			ptr = page_pack_bits(ptr, 1);
616 		}
617 
618 		if (ptr == NULL) {
619 			err = -ENOMEM;
620 			goto err;
621 		}
622 
623 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
624 			if (page_unmask_bits(ptr))
625 				__i915_gem_object_release_map(vma->obj);
626 			else
627 				io_mapping_unmap(ptr);
628 			ptr = vma->iomap;
629 		}
630 	}
631 
632 	__i915_vma_pin(vma);
633 
634 	err = i915_vma_pin_fence(vma);
635 	if (err)
636 		goto err_unpin;
637 
638 	i915_vma_set_ggtt_write(vma);
639 
640 	/* NB Access through the GTT requires the device to be awake. */
641 	return page_mask_bits(ptr);
642 
643 err_unpin:
644 	__i915_vma_unpin(vma);
645 err:
646 	return IOMEM_ERR_PTR(err);
647 }
648 
649 void i915_vma_flush_writes(struct i915_vma *vma)
650 {
651 	if (i915_vma_unset_ggtt_write(vma))
652 		intel_gt_flush_ggtt_writes(vma->vm->gt);
653 }
654 
655 void i915_vma_unpin_iomap(struct i915_vma *vma)
656 {
657 	GEM_BUG_ON(vma->iomap == NULL);
658 
659 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
660 
661 	i915_vma_flush_writes(vma);
662 
663 	i915_vma_unpin_fence(vma);
664 	i915_vma_unpin(vma);
665 }
666 
667 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
668 {
669 	struct i915_vma *vma;
670 	struct drm_i915_gem_object *obj;
671 
672 	vma = fetch_and_zero(p_vma);
673 	if (!vma)
674 		return;
675 
676 	obj = vma->obj;
677 	GEM_BUG_ON(!obj);
678 
679 	i915_vma_unpin(vma);
680 
681 	if (flags & I915_VMA_RELEASE_MAP)
682 		i915_gem_object_unpin_map(obj);
683 
684 	i915_gem_object_put(obj);
685 }
686 
687 bool i915_vma_misplaced(const struct i915_vma *vma,
688 			u64 size, u64 alignment, u64 flags)
689 {
690 	if (!drm_mm_node_allocated(&vma->node))
691 		return false;
692 
693 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
694 		return true;
695 
696 	if (i915_vma_size(vma) < size)
697 		return true;
698 
699 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
700 	if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
701 		return true;
702 
703 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
704 		return true;
705 
706 	if (flags & PIN_OFFSET_BIAS &&
707 	    i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
708 		return true;
709 
710 	if (flags & PIN_OFFSET_FIXED &&
711 	    i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
712 		return true;
713 
714 	if (flags & PIN_OFFSET_GUARD &&
715 	    vma->guard < (flags & PIN_OFFSET_MASK))
716 		return true;
717 
718 	return false;
719 }
720 
721 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
722 {
723 	bool mappable, fenceable;
724 
725 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
726 	GEM_BUG_ON(!vma->fence_size);
727 
728 	fenceable = (i915_vma_size(vma) >= vma->fence_size &&
729 		     IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
730 
731 	mappable = i915_ggtt_offset(vma) + vma->fence_size <=
732 		   i915_vm_to_ggtt(vma->vm)->mappable_end;
733 
734 	if (mappable && fenceable)
735 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
736 	else
737 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
738 }
739 
740 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
741 {
742 	struct drm_mm_node *node = &vma->node;
743 	struct drm_mm_node *other;
744 
745 	/*
746 	 * On some machines we have to be careful when putting differing types
747 	 * of snoopable memory together to avoid the prefetcher crossing memory
748 	 * domains and dying. During vm initialisation, we decide whether or not
749 	 * these constraints apply and set the drm_mm.color_adjust
750 	 * appropriately.
751 	 */
752 	if (!i915_vm_has_cache_coloring(vma->vm))
753 		return true;
754 
755 	/* Only valid to be called on an already inserted vma */
756 	GEM_BUG_ON(!drm_mm_node_allocated(node));
757 	GEM_BUG_ON(list_empty(&node->node_list));
758 
759 	other = list_prev_entry(node, node_list);
760 	if (i915_node_color_differs(other, color) &&
761 	    !drm_mm_hole_follows(other))
762 		return false;
763 
764 	other = list_next_entry(node, node_list);
765 	if (i915_node_color_differs(other, color) &&
766 	    !drm_mm_hole_follows(node))
767 		return false;
768 
769 	return true;
770 }
771 
772 /**
773  * i915_vma_insert - finds a slot for the vma in its address space
774  * @vma: the vma
775  * @ww: An optional struct i915_gem_ww_ctx
776  * @size: requested size in bytes (can be larger than the VMA)
777  * @alignment: required alignment
778  * @flags: mask of PIN_* flags to use
779  *
780  * First we try to allocate some free space that meets the requirements for
781  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
782  * preferrably the oldest idle entry to make room for the new VMA.
783  *
784  * Returns:
785  * 0 on success, negative error code otherwise.
786  */
787 static int
788 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
789 		u64 size, u64 alignment, u64 flags)
790 {
791 	unsigned long color, guard;
792 	u64 start, end;
793 	int ret;
794 
795 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
796 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
797 	GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
798 
799 	size = max(size, vma->size);
800 	alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
801 	if (flags & PIN_MAPPABLE) {
802 		size = max_t(typeof(size), size, vma->fence_size);
803 		alignment = max_t(typeof(alignment),
804 				  alignment, vma->fence_alignment);
805 	}
806 
807 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
808 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
809 	GEM_BUG_ON(!is_power_of_2(alignment));
810 
811 	guard = vma->guard; /* retain guard across rebinds */
812 	if (flags & PIN_OFFSET_GUARD) {
813 		GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
814 		guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
815 	}
816 	/*
817 	 * As we align the node upon insertion, but the hardware gets
818 	 * node.start + guard, the easiest way to make that work is
819 	 * to make the guard a multiple of the alignment size.
820 	 */
821 	guard = ALIGN(guard, alignment);
822 
823 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
824 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
825 
826 	end = vma->vm->total;
827 	if (flags & PIN_MAPPABLE)
828 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
829 	if (flags & PIN_ZONE_4G)
830 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
831 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
832 
833 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
834 
835 	/*
836 	 * If binding the object/GGTT view requires more space than the entire
837 	 * aperture has, reject it early before evicting everything in a vain
838 	 * attempt to find space.
839 	 */
840 	if (size > end - 2 * guard) {
841 		drm_dbg(vma->obj->base.dev,
842 			"Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
843 			size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
844 		return -ENOSPC;
845 	}
846 
847 	color = 0;
848 
849 	if (i915_vm_has_cache_coloring(vma->vm))
850 		color = vma->obj->pat_index;
851 
852 	if (flags & PIN_OFFSET_FIXED) {
853 		u64 offset = flags & PIN_OFFSET_MASK;
854 		if (!IS_ALIGNED(offset, alignment) ||
855 		    range_overflows(offset, size, end))
856 			return -EINVAL;
857 		/*
858 		 * The caller knows not of the guard added by others and
859 		 * requests for the offset of the start of its buffer
860 		 * to be fixed, which may not be the same as the position
861 		 * of the vma->node due to the guard pages.
862 		 */
863 		if (offset < guard || offset + size > end - guard)
864 			return -ENOSPC;
865 
866 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
867 					   size + 2 * guard,
868 					   offset - guard,
869 					   color, flags);
870 		if (ret)
871 			return ret;
872 	} else {
873 		size += 2 * guard;
874 		/*
875 		 * We only support huge gtt pages through the 48b PPGTT,
876 		 * however we also don't want to force any alignment for
877 		 * objects which need to be tightly packed into the low 32bits.
878 		 *
879 		 * Note that we assume that GGTT are limited to 4GiB for the
880 		 * forseeable future. See also i915_ggtt_offset().
881 		 */
882 		if (upper_32_bits(end - 1) &&
883 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
884 		    !HAS_64K_PAGES(vma->vm->i915)) {
885 			/*
886 			 * We can't mix 64K and 4K PTEs in the same page-table
887 			 * (2M block), and so to avoid the ugliness and
888 			 * complexity of coloring we opt for just aligning 64K
889 			 * objects to 2M.
890 			 */
891 			u64 page_alignment =
892 				rounddown_pow_of_two(vma->page_sizes.sg |
893 						     I915_GTT_PAGE_SIZE_2M);
894 
895 			/*
896 			 * Check we don't expand for the limited Global GTT
897 			 * (mappable aperture is even more precious!). This
898 			 * also checks that we exclude the aliasing-ppgtt.
899 			 */
900 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
901 
902 			alignment = max(alignment, page_alignment);
903 
904 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
905 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
906 		}
907 
908 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
909 					  size, alignment, color,
910 					  start, end, flags);
911 		if (ret)
912 			return ret;
913 
914 		GEM_BUG_ON(vma->node.start < start);
915 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
916 	}
917 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
918 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
919 
920 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
921 	vma->guard = guard;
922 
923 	return 0;
924 }
925 
926 static void
927 i915_vma_detach(struct i915_vma *vma)
928 {
929 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
930 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
931 
932 	/*
933 	 * And finally now the object is completely decoupled from this
934 	 * vma, we can drop its hold on the backing storage and allow
935 	 * it to be reaped by the shrinker.
936 	 */
937 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
938 }
939 
940 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
941 {
942 	unsigned int bound;
943 
944 	bound = atomic_read(&vma->flags);
945 
946 	if (flags & PIN_VALIDATE) {
947 		flags &= I915_VMA_BIND_MASK;
948 
949 		return (flags & bound) == flags;
950 	}
951 
952 	/* with the lock mandatory for unbind, we don't race here */
953 	flags &= I915_VMA_BIND_MASK;
954 	do {
955 		if (unlikely(flags & ~bound))
956 			return false;
957 
958 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
959 			return false;
960 
961 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
962 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
963 
964 	return true;
965 }
966 
967 static struct scatterlist *
968 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
969 	     unsigned int width, unsigned int height,
970 	     unsigned int src_stride, unsigned int dst_stride,
971 	     struct sg_table *st, struct scatterlist *sg)
972 {
973 	unsigned int column, row;
974 	pgoff_t src_idx;
975 
976 	for (column = 0; column < width; column++) {
977 		unsigned int left;
978 
979 		src_idx = src_stride * (height - 1) + column + offset;
980 		for (row = 0; row < height; row++) {
981 			st->nents++;
982 			/*
983 			 * We don't need the pages, but need to initialize
984 			 * the entries so the sg list can be happily traversed.
985 			 * The only thing we need are DMA addresses.
986 			 */
987 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
988 			sg_dma_address(sg) =
989 				i915_gem_object_get_dma_address(obj, src_idx);
990 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
991 			sg = sg_next(sg);
992 			src_idx -= src_stride;
993 		}
994 
995 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
996 
997 		if (!left)
998 			continue;
999 
1000 		st->nents++;
1001 
1002 		/*
1003 		 * The DE ignores the PTEs for the padding tiles, the sg entry
1004 		 * here is just a conenience to indicate how many padding PTEs
1005 		 * to insert at this spot.
1006 		 */
1007 		sg_set_page(sg, NULL, left, 0);
1008 		sg_dma_address(sg) = 0;
1009 		sg_dma_len(sg) = left;
1010 		sg = sg_next(sg);
1011 	}
1012 
1013 	return sg;
1014 }
1015 
1016 static noinline struct sg_table *
1017 intel_rotate_pages(struct intel_rotation_info *rot_info,
1018 		   struct drm_i915_gem_object *obj)
1019 {
1020 	unsigned int size = intel_rotation_info_size(rot_info);
1021 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1022 	struct sg_table *st;
1023 	struct scatterlist *sg;
1024 	int ret = -ENOMEM;
1025 	int i;
1026 
1027 	/* Allocate target SG list. */
1028 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1029 	if (!st)
1030 		goto err_st_alloc;
1031 
1032 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1033 	if (ret)
1034 		goto err_sg_alloc;
1035 
1036 	st->nents = 0;
1037 	sg = st->sgl;
1038 
1039 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1040 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1041 				  rot_info->plane[i].width, rot_info->plane[i].height,
1042 				  rot_info->plane[i].src_stride,
1043 				  rot_info->plane[i].dst_stride,
1044 				  st, sg);
1045 
1046 	return st;
1047 
1048 err_sg_alloc:
1049 	kfree(st);
1050 err_st_alloc:
1051 
1052 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1053 		obj->base.size, rot_info->plane[0].width,
1054 		rot_info->plane[0].height, size);
1055 
1056 	return ERR_PTR(ret);
1057 }
1058 
1059 static struct scatterlist *
1060 add_padding_pages(unsigned int count,
1061 		  struct sg_table *st, struct scatterlist *sg)
1062 {
1063 	st->nents++;
1064 
1065 	/*
1066 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1067 	 * here is just a convenience to indicate how many padding PTEs
1068 	 * to insert at this spot.
1069 	 */
1070 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1071 	sg_dma_address(sg) = 0;
1072 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1073 	sg = sg_next(sg);
1074 
1075 	return sg;
1076 }
1077 
1078 static struct scatterlist *
1079 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1080 			      unsigned long offset, unsigned int alignment_pad,
1081 			      unsigned int width, unsigned int height,
1082 			      unsigned int src_stride, unsigned int dst_stride,
1083 			      struct sg_table *st, struct scatterlist *sg,
1084 			      unsigned int *gtt_offset)
1085 {
1086 	unsigned int row;
1087 
1088 	if (!width || !height)
1089 		return sg;
1090 
1091 	if (alignment_pad)
1092 		sg = add_padding_pages(alignment_pad, st, sg);
1093 
1094 	for (row = 0; row < height; row++) {
1095 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1096 
1097 		while (left) {
1098 			dma_addr_t addr;
1099 			unsigned int length;
1100 
1101 			/*
1102 			 * We don't need the pages, but need to initialize
1103 			 * the entries so the sg list can be happily traversed.
1104 			 * The only thing we need are DMA addresses.
1105 			 */
1106 
1107 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1108 
1109 			length = min(left, length);
1110 
1111 			st->nents++;
1112 
1113 			sg_set_page(sg, NULL, length, 0);
1114 			sg_dma_address(sg) = addr;
1115 			sg_dma_len(sg) = length;
1116 			sg = sg_next(sg);
1117 
1118 			offset += length / I915_GTT_PAGE_SIZE;
1119 			left -= length;
1120 		}
1121 
1122 		offset += src_stride - width;
1123 
1124 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1125 
1126 		if (!left)
1127 			continue;
1128 
1129 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1130 	}
1131 
1132 	*gtt_offset += alignment_pad + dst_stride * height;
1133 
1134 	return sg;
1135 }
1136 
1137 static struct scatterlist *
1138 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1139 		       pgoff_t obj_offset,
1140 		       unsigned int count,
1141 		       struct sg_table *st, struct scatterlist *sg)
1142 {
1143 	struct scatterlist *iter;
1144 	unsigned int offset;
1145 
1146 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1147 	GEM_BUG_ON(!iter);
1148 
1149 	do {
1150 		unsigned int len;
1151 
1152 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1153 			  count << PAGE_SHIFT);
1154 		sg_set_page(sg, NULL, len, 0);
1155 		sg_dma_address(sg) =
1156 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1157 		sg_dma_len(sg) = len;
1158 
1159 		st->nents++;
1160 		count -= len >> PAGE_SHIFT;
1161 		if (count == 0)
1162 			return sg;
1163 
1164 		sg = __sg_next(sg);
1165 		iter = __sg_next(iter);
1166 		offset = 0;
1167 	} while (1);
1168 }
1169 
1170 static struct scatterlist *
1171 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1172 			       pgoff_t obj_offset, unsigned int alignment_pad,
1173 			       unsigned int size,
1174 			       struct sg_table *st, struct scatterlist *sg,
1175 			       unsigned int *gtt_offset)
1176 {
1177 	if (!size)
1178 		return sg;
1179 
1180 	if (alignment_pad)
1181 		sg = add_padding_pages(alignment_pad, st, sg);
1182 
1183 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1184 	sg = sg_next(sg);
1185 
1186 	*gtt_offset += alignment_pad + size;
1187 
1188 	return sg;
1189 }
1190 
1191 static struct scatterlist *
1192 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1193 			struct drm_i915_gem_object *obj,
1194 			int color_plane,
1195 			struct sg_table *st, struct scatterlist *sg,
1196 			unsigned int *gtt_offset)
1197 {
1198 	unsigned int alignment_pad = 0;
1199 
1200 	if (rem_info->plane_alignment)
1201 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1202 
1203 	if (rem_info->plane[color_plane].linear)
1204 		sg = remap_linear_color_plane_pages(obj,
1205 						    rem_info->plane[color_plane].offset,
1206 						    alignment_pad,
1207 						    rem_info->plane[color_plane].size,
1208 						    st, sg,
1209 						    gtt_offset);
1210 
1211 	else
1212 		sg = remap_tiled_color_plane_pages(obj,
1213 						   rem_info->plane[color_plane].offset,
1214 						   alignment_pad,
1215 						   rem_info->plane[color_plane].width,
1216 						   rem_info->plane[color_plane].height,
1217 						   rem_info->plane[color_plane].src_stride,
1218 						   rem_info->plane[color_plane].dst_stride,
1219 						   st, sg,
1220 						   gtt_offset);
1221 
1222 	return sg;
1223 }
1224 
1225 static noinline struct sg_table *
1226 intel_remap_pages(struct intel_remapped_info *rem_info,
1227 		  struct drm_i915_gem_object *obj)
1228 {
1229 	unsigned int size = intel_remapped_info_size(rem_info);
1230 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1231 	struct sg_table *st;
1232 	struct scatterlist *sg;
1233 	unsigned int gtt_offset = 0;
1234 	int ret = -ENOMEM;
1235 	int i;
1236 
1237 	/* Allocate target SG list. */
1238 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1239 	if (!st)
1240 		goto err_st_alloc;
1241 
1242 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1243 	if (ret)
1244 		goto err_sg_alloc;
1245 
1246 	st->nents = 0;
1247 	sg = st->sgl;
1248 
1249 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1250 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1251 
1252 	i915_sg_trim(st);
1253 
1254 	return st;
1255 
1256 err_sg_alloc:
1257 	kfree(st);
1258 err_st_alloc:
1259 
1260 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1261 		obj->base.size, rem_info->plane[0].width,
1262 		rem_info->plane[0].height, size);
1263 
1264 	return ERR_PTR(ret);
1265 }
1266 
1267 static noinline struct sg_table *
1268 intel_partial_pages(const struct i915_gtt_view *view,
1269 		    struct drm_i915_gem_object *obj)
1270 {
1271 	struct sg_table *st;
1272 	struct scatterlist *sg;
1273 	unsigned int count = view->partial.size;
1274 	int ret = -ENOMEM;
1275 
1276 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1277 	if (!st)
1278 		goto err_st_alloc;
1279 
1280 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1281 	if (ret)
1282 		goto err_sg_alloc;
1283 
1284 	st->nents = 0;
1285 
1286 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1287 
1288 	sg_mark_end(sg);
1289 	i915_sg_trim(st); /* Drop any unused tail entries. */
1290 
1291 	return st;
1292 
1293 err_sg_alloc:
1294 	kfree(st);
1295 err_st_alloc:
1296 	return ERR_PTR(ret);
1297 }
1298 
1299 static int
1300 __i915_vma_get_pages(struct i915_vma *vma)
1301 {
1302 	struct sg_table *pages;
1303 
1304 	/*
1305 	 * The vma->pages are only valid within the lifespan of the borrowed
1306 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1307 	 * must be the vma->pages. A simple rule is that vma->pages must only
1308 	 * be accessed when the obj->mm.pages are pinned.
1309 	 */
1310 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1311 
1312 	switch (vma->gtt_view.type) {
1313 	default:
1314 		GEM_BUG_ON(vma->gtt_view.type);
1315 		fallthrough;
1316 	case I915_GTT_VIEW_NORMAL:
1317 		pages = vma->obj->mm.pages;
1318 		break;
1319 
1320 	case I915_GTT_VIEW_ROTATED:
1321 		pages =
1322 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1323 		break;
1324 
1325 	case I915_GTT_VIEW_REMAPPED:
1326 		pages =
1327 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1328 		break;
1329 
1330 	case I915_GTT_VIEW_PARTIAL:
1331 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1332 		break;
1333 	}
1334 
1335 	if (IS_ERR(pages)) {
1336 		drm_err(&vma->vm->i915->drm,
1337 			"Failed to get pages for VMA view type %u (%ld)!\n",
1338 			vma->gtt_view.type, PTR_ERR(pages));
1339 		return PTR_ERR(pages);
1340 	}
1341 
1342 	vma->pages = pages;
1343 
1344 	return 0;
1345 }
1346 
1347 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1348 {
1349 	int err;
1350 
1351 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1352 		return 0;
1353 
1354 	err = i915_gem_object_pin_pages(vma->obj);
1355 	if (err)
1356 		return err;
1357 
1358 	err = __i915_vma_get_pages(vma);
1359 	if (err)
1360 		goto err_unpin;
1361 
1362 	vma->page_sizes = vma->obj->mm.page_sizes;
1363 	atomic_inc(&vma->pages_count);
1364 
1365 	return 0;
1366 
1367 err_unpin:
1368 	__i915_gem_object_unpin_pages(vma->obj);
1369 
1370 	return err;
1371 }
1372 
1373 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1374 {
1375 	struct intel_gt *gt;
1376 	int id;
1377 
1378 	if (!tlb)
1379 		return;
1380 
1381 	/*
1382 	 * Before we release the pages that were bound by this vma, we
1383 	 * must invalidate all the TLBs that may still have a reference
1384 	 * back to our physical address. It only needs to be done once,
1385 	 * so after updating the PTE to point away from the pages, record
1386 	 * the most recent TLB invalidation seqno, and if we have not yet
1387 	 * flushed the TLBs upon release, perform a full invalidation.
1388 	 */
1389 	for_each_gt(gt, vm->i915, id)
1390 		WRITE_ONCE(tlb[id],
1391 			   intel_gt_next_invalidate_tlb_full(gt));
1392 }
1393 
1394 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1395 {
1396 	/* We allocate under vma_get_pages, so beware the shrinker */
1397 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1398 
1399 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1400 		if (vma->pages != vma->obj->mm.pages) {
1401 			sg_free_table(vma->pages);
1402 			kfree(vma->pages);
1403 		}
1404 		vma->pages = NULL;
1405 
1406 		i915_gem_object_unpin_pages(vma->obj);
1407 	}
1408 }
1409 
1410 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1411 {
1412 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1413 		return;
1414 
1415 	__vma_put_pages(vma, 1);
1416 }
1417 
1418 static void vma_unbind_pages(struct i915_vma *vma)
1419 {
1420 	unsigned int count;
1421 
1422 	lockdep_assert_held(&vma->vm->mutex);
1423 
1424 	/* The upper portion of pages_count is the number of bindings */
1425 	count = atomic_read(&vma->pages_count);
1426 	count >>= I915_VMA_PAGES_BIAS;
1427 	GEM_BUG_ON(!count);
1428 
1429 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1430 }
1431 
1432 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1433 		    u64 size, u64 alignment, u64 flags)
1434 {
1435 	struct i915_vma_work *work = NULL;
1436 	struct dma_fence *moving = NULL;
1437 	struct i915_vma_resource *vma_res = NULL;
1438 	intel_wakeref_t wakeref;
1439 	unsigned int bound;
1440 	int err;
1441 
1442 	assert_vma_held(vma);
1443 	GEM_BUG_ON(!ww);
1444 
1445 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1446 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1447 
1448 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1449 
1450 	/* First try and grab the pin without rebinding the vma */
1451 	if (try_qad_pin(vma, flags))
1452 		return 0;
1453 
1454 	err = i915_vma_get_pages(vma);
1455 	if (err)
1456 		return err;
1457 
1458 	/*
1459 	 * In case of a global GTT, we must hold a runtime-pm wakeref
1460 	 * while global PTEs are updated.  In other cases, we hold
1461 	 * the rpm reference while the VMA is active.  Since runtime
1462 	 * resume may require allocations, which are forbidden inside
1463 	 * vm->mutex, get the first rpm wakeref outside of the mutex.
1464 	 */
1465 	wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1466 
1467 	if (flags & vma->vm->bind_async_flags) {
1468 		/* lock VM */
1469 		err = i915_vm_lock_objects(vma->vm, ww);
1470 		if (err)
1471 			goto err_rpm;
1472 
1473 		work = i915_vma_work();
1474 		if (!work) {
1475 			err = -ENOMEM;
1476 			goto err_rpm;
1477 		}
1478 
1479 		work->vm = vma->vm;
1480 
1481 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1482 		if (err)
1483 			goto err_rpm;
1484 
1485 		dma_fence_work_chain(&work->base, moving);
1486 
1487 		/* Allocate enough page directories to used PTE */
1488 		if (vma->vm->allocate_va_range) {
1489 			err = i915_vm_alloc_pt_stash(vma->vm,
1490 						     &work->stash,
1491 						     vma->size);
1492 			if (err)
1493 				goto err_fence;
1494 
1495 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1496 			if (err)
1497 				goto err_fence;
1498 		}
1499 	}
1500 
1501 	vma_res = i915_vma_resource_alloc();
1502 	if (IS_ERR(vma_res)) {
1503 		err = PTR_ERR(vma_res);
1504 		goto err_fence;
1505 	}
1506 
1507 	/*
1508 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1509 	 *
1510 	 * We conflate the Global GTT with the user's vma when using the
1511 	 * aliasing-ppgtt, but it is still vitally important to try and
1512 	 * keep the use cases distinct. For example, userptr objects are
1513 	 * not allowed inside the Global GTT as that will cause lock
1514 	 * inversions when we have to evict them the mmu_notifier callbacks -
1515 	 * but they are allowed to be part of the user ppGTT which can never
1516 	 * be mapped. As such we try to give the distinct users of the same
1517 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1518 	 * and i915_ppgtt separate].
1519 	 *
1520 	 * NB this may cause us to mask real lock inversions -- while the
1521 	 * code is safe today, lockdep may not be able to spot future
1522 	 * transgressions.
1523 	 */
1524 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1525 					      !(flags & PIN_GLOBAL));
1526 	if (err)
1527 		goto err_vma_res;
1528 
1529 	/* No more allocations allowed now we hold vm->mutex */
1530 
1531 	if (unlikely(i915_vma_is_closed(vma))) {
1532 		err = -ENOENT;
1533 		goto err_unlock;
1534 	}
1535 
1536 	bound = atomic_read(&vma->flags);
1537 	if (unlikely(bound & I915_VMA_ERROR)) {
1538 		err = -ENOMEM;
1539 		goto err_unlock;
1540 	}
1541 
1542 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1543 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1544 		goto err_unlock;
1545 	}
1546 
1547 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1548 		if (!(flags & PIN_VALIDATE))
1549 			__i915_vma_pin(vma);
1550 		goto err_unlock;
1551 	}
1552 
1553 	err = i915_active_acquire(&vma->active);
1554 	if (err)
1555 		goto err_unlock;
1556 
1557 	if (!(bound & I915_VMA_BIND_MASK)) {
1558 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1559 		if (err)
1560 			goto err_active;
1561 
1562 		if (i915_is_ggtt(vma->vm))
1563 			__i915_vma_set_map_and_fenceable(vma);
1564 	}
1565 
1566 	GEM_BUG_ON(!vma->pages);
1567 	err = i915_vma_bind(vma,
1568 			    vma->obj->pat_index,
1569 			    flags, work, vma_res);
1570 	vma_res = NULL;
1571 	if (err)
1572 		goto err_remove;
1573 
1574 	/* There should only be at most 2 active bindings (user, global) */
1575 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1576 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1577 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1578 
1579 	if (!(flags & PIN_VALIDATE)) {
1580 		__i915_vma_pin(vma);
1581 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1582 	}
1583 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1584 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1585 
1586 err_remove:
1587 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1588 		i915_vma_detach(vma);
1589 		drm_mm_remove_node(&vma->node);
1590 	}
1591 err_active:
1592 	i915_active_release(&vma->active);
1593 err_unlock:
1594 	mutex_unlock(&vma->vm->mutex);
1595 err_vma_res:
1596 	i915_vma_resource_free(vma_res);
1597 err_fence:
1598 	if (work)
1599 		dma_fence_work_commit_imm(&work->base);
1600 err_rpm:
1601 	intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1602 
1603 	if (moving)
1604 		dma_fence_put(moving);
1605 
1606 	i915_vma_put_pages(vma);
1607 	return err;
1608 }
1609 
1610 static void flush_idle_contexts(struct intel_gt *gt)
1611 {
1612 	struct intel_engine_cs *engine;
1613 	enum intel_engine_id id;
1614 
1615 	for_each_engine(engine, gt, id)
1616 		intel_engine_flush_barriers(engine);
1617 
1618 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1619 }
1620 
1621 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1622 			   u32 align, unsigned int flags)
1623 {
1624 	struct i915_address_space *vm = vma->vm;
1625 	struct intel_gt *gt;
1626 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1627 	int err;
1628 
1629 	do {
1630 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1631 
1632 		if (err != -ENOSPC) {
1633 			if (!err) {
1634 				err = i915_vma_wait_for_bind(vma);
1635 				if (err)
1636 					i915_vma_unpin(vma);
1637 			}
1638 			return err;
1639 		}
1640 
1641 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1642 		list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1643 			flush_idle_contexts(gt);
1644 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1645 			/*
1646 			 * We pass NULL ww here, as we don't want to unbind
1647 			 * locked objects when called from execbuf when pinning
1648 			 * is removed. This would probably regress badly.
1649 			 */
1650 			i915_gem_evict_vm(vm, NULL, NULL);
1651 			mutex_unlock(&vm->mutex);
1652 		}
1653 	} while (1);
1654 }
1655 
1656 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1657 		  u32 align, unsigned int flags)
1658 {
1659 	struct i915_gem_ww_ctx _ww;
1660 	int err;
1661 
1662 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1663 
1664 	if (ww)
1665 		return __i915_ggtt_pin(vma, ww, align, flags);
1666 
1667 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1668 
1669 	for_i915_gem_ww(&_ww, err, true) {
1670 		err = i915_gem_object_lock(vma->obj, &_ww);
1671 		if (!err)
1672 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1673 	}
1674 
1675 	return err;
1676 }
1677 
1678 /**
1679  * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1680  * @obj: i915 GEM object
1681  * This function clears scanout flags for objects ggtt vmas. These flags are set
1682  * when object is pinned for display use and this function to clear them all is
1683  * targeted to be called by frontbuffer tracking code when the frontbuffer is
1684  * about to be released.
1685  */
1686 void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1687 {
1688 	struct i915_vma *vma;
1689 
1690 	spin_lock(&obj->vma.lock);
1691 	for_each_ggtt_vma(vma, obj) {
1692 		i915_vma_clear_scanout(vma);
1693 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1694 	}
1695 	spin_unlock(&obj->vma.lock);
1696 }
1697 
1698 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1699 {
1700 	/*
1701 	 * We defer actually closing, unbinding and destroying the VMA until
1702 	 * the next idle point, or if the object is freed in the meantime. By
1703 	 * postponing the unbind, we allow for it to be resurrected by the
1704 	 * client, avoiding the work required to rebind the VMA. This is
1705 	 * advantageous for DRI, where the client/server pass objects
1706 	 * between themselves, temporarily opening a local VMA to the
1707 	 * object, and then closing it again. The same object is then reused
1708 	 * on the next frame (or two, depending on the depth of the swap queue)
1709 	 * causing us to rebind the VMA once more. This ends up being a lot
1710 	 * of wasted work for the steady state.
1711 	 */
1712 	GEM_BUG_ON(i915_vma_is_closed(vma));
1713 	list_add(&vma->closed_link, &gt->closed_vma);
1714 }
1715 
1716 void i915_vma_close(struct i915_vma *vma)
1717 {
1718 	struct intel_gt *gt = vma->vm->gt;
1719 	unsigned long flags;
1720 
1721 	if (i915_vma_is_ggtt(vma))
1722 		return;
1723 
1724 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1725 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1726 					&gt->closed_lock,
1727 					flags)) {
1728 		__vma_close(vma, gt);
1729 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1730 	}
1731 }
1732 
1733 static void __i915_vma_remove_closed(struct i915_vma *vma)
1734 {
1735 	list_del_init(&vma->closed_link);
1736 }
1737 
1738 void i915_vma_reopen(struct i915_vma *vma)
1739 {
1740 	struct intel_gt *gt = vma->vm->gt;
1741 
1742 	spin_lock_irq(&gt->closed_lock);
1743 	if (i915_vma_is_closed(vma))
1744 		__i915_vma_remove_closed(vma);
1745 	spin_unlock_irq(&gt->closed_lock);
1746 }
1747 
1748 static void force_unbind(struct i915_vma *vma)
1749 {
1750 	if (!drm_mm_node_allocated(&vma->node))
1751 		return;
1752 
1753 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1754 	WARN_ON(__i915_vma_unbind(vma));
1755 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1756 }
1757 
1758 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1759 			       bool vm_ddestroy)
1760 {
1761 	struct drm_i915_gem_object *obj = vma->obj;
1762 
1763 	GEM_BUG_ON(i915_vma_is_active(vma));
1764 
1765 	spin_lock(&obj->vma.lock);
1766 	list_del(&vma->obj_link);
1767 	if (!RB_EMPTY_NODE(&vma->obj_node))
1768 		rb_erase(&vma->obj_node, &obj->vma.tree);
1769 
1770 	spin_unlock(&obj->vma.lock);
1771 
1772 	spin_lock_irq(&gt->closed_lock);
1773 	__i915_vma_remove_closed(vma);
1774 	spin_unlock_irq(&gt->closed_lock);
1775 
1776 	if (vm_ddestroy)
1777 		i915_vm_resv_put(vma->vm);
1778 
1779 	/* Wait for async active retire */
1780 	i915_active_wait(&vma->active);
1781 	i915_active_fini(&vma->active);
1782 	GEM_WARN_ON(vma->resource);
1783 	i915_vma_free(vma);
1784 }
1785 
1786 /*
1787  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1788  * the initial reference.
1789  *
1790  * This function should be called when it's decided the vma isn't needed
1791  * anymore. The caller must assure that it doesn't race with another lookup
1792  * plus destroy, typically by taking an appropriate reference.
1793  *
1794  * Current callsites are
1795  * - __i915_gem_object_pages_fini()
1796  * - __i915_vm_close() - Blocks the above function by taking a reference on
1797  * the object.
1798  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1799  * on the vm and a reference on the object. Also takes the object lock so
1800  * destruction from __i915_vma_parked() can be blocked by holding the
1801  * object lock. Since the object lock is only allowed from within i915 with
1802  * an object refcount, holding the object lock also implicitly blocks the
1803  * vma freeing from __i915_gem_object_pages_fini().
1804  *
1805  * Because of locks taken during destruction, a vma is also guaranteed to
1806  * stay alive while the following locks are held if it was looked up while
1807  * holding one of the locks:
1808  * - vm->mutex
1809  * - obj->vma.lock
1810  * - gt->closed_lock
1811  */
1812 void i915_vma_destroy_locked(struct i915_vma *vma)
1813 {
1814 	lockdep_assert_held(&vma->vm->mutex);
1815 
1816 	force_unbind(vma);
1817 	list_del_init(&vma->vm_link);
1818 	release_references(vma, vma->vm->gt, false);
1819 }
1820 
1821 void i915_vma_destroy(struct i915_vma *vma)
1822 {
1823 	struct intel_gt *gt;
1824 	bool vm_ddestroy;
1825 
1826 	mutex_lock(&vma->vm->mutex);
1827 	force_unbind(vma);
1828 	list_del_init(&vma->vm_link);
1829 	vm_ddestroy = vma->vm_ddestroy;
1830 	vma->vm_ddestroy = false;
1831 
1832 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1833 	gt = vma->vm->gt;
1834 	mutex_unlock(&vma->vm->mutex);
1835 	release_references(vma, gt, vm_ddestroy);
1836 }
1837 
1838 void i915_vma_parked(struct intel_gt *gt)
1839 {
1840 	struct i915_vma *vma, *next;
1841 	LIST_HEAD(closed);
1842 
1843 	spin_lock_irq(&gt->closed_lock);
1844 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1845 		struct drm_i915_gem_object *obj = vma->obj;
1846 		struct i915_address_space *vm = vma->vm;
1847 
1848 		/* XXX All to avoid keeping a reference on i915_vma itself */
1849 
1850 		if (!kref_get_unless_zero(&obj->base.refcount))
1851 			continue;
1852 
1853 		if (!i915_vm_tryget(vm)) {
1854 			i915_gem_object_put(obj);
1855 			continue;
1856 		}
1857 
1858 		list_move(&vma->closed_link, &closed);
1859 	}
1860 	spin_unlock_irq(&gt->closed_lock);
1861 
1862 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1863 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1864 		struct drm_i915_gem_object *obj = vma->obj;
1865 		struct i915_address_space *vm = vma->vm;
1866 
1867 		if (i915_gem_object_trylock(obj, NULL)) {
1868 			INIT_LIST_HEAD(&vma->closed_link);
1869 			i915_vma_destroy(vma);
1870 			i915_gem_object_unlock(obj);
1871 		} else {
1872 			/* back you go.. */
1873 			spin_lock_irq(&gt->closed_lock);
1874 			list_add(&vma->closed_link, &gt->closed_vma);
1875 			spin_unlock_irq(&gt->closed_lock);
1876 		}
1877 
1878 		i915_gem_object_put(obj);
1879 		i915_vm_put(vm);
1880 	}
1881 }
1882 
1883 static void __i915_vma_iounmap(struct i915_vma *vma)
1884 {
1885 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1886 
1887 	if (vma->iomap == NULL)
1888 		return;
1889 
1890 	if (page_unmask_bits(vma->iomap))
1891 		__i915_gem_object_release_map(vma->obj);
1892 	else
1893 		io_mapping_unmap(vma->iomap);
1894 	vma->iomap = NULL;
1895 }
1896 
1897 void i915_vma_revoke_mmap(struct i915_vma *vma)
1898 {
1899 	struct drm_vma_offset_node *node;
1900 	u64 vma_offset;
1901 
1902 	if (!i915_vma_has_userfault(vma))
1903 		return;
1904 
1905 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1906 	GEM_BUG_ON(!vma->obj->userfault_count);
1907 
1908 	node = &vma->mmo->vma_node;
1909 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1910 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1911 			    drm_vma_node_offset_addr(node) + vma_offset,
1912 			    vma->size,
1913 			    1);
1914 
1915 	i915_vma_unset_userfault(vma);
1916 	if (!--vma->obj->userfault_count)
1917 		list_del(&vma->obj->userfault_link);
1918 }
1919 
1920 static int
1921 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1922 {
1923 	return __i915_request_await_exclusive(rq, &vma->active);
1924 }
1925 
1926 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1927 {
1928 	int err;
1929 
1930 	/* Wait for the vma to be bound before we start! */
1931 	err = __i915_request_await_bind(rq, vma);
1932 	if (err)
1933 		return err;
1934 
1935 	return i915_active_add_request(&vma->active, rq);
1936 }
1937 
1938 int _i915_vma_move_to_active(struct i915_vma *vma,
1939 			     struct i915_request *rq,
1940 			     struct dma_fence *fence,
1941 			     unsigned int flags)
1942 {
1943 	struct drm_i915_gem_object *obj = vma->obj;
1944 	int err;
1945 
1946 	assert_object_held(obj);
1947 
1948 	GEM_BUG_ON(!vma->pages);
1949 
1950 	if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1951 		err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE);
1952 		if (unlikely(err))
1953 			return err;
1954 	}
1955 	err = __i915_vma_move_to_active(vma, rq);
1956 	if (unlikely(err))
1957 		return err;
1958 
1959 	/*
1960 	 * Reserve fences slot early to prevent an allocation after preparing
1961 	 * the workload and associating fences with dma_resv.
1962 	 */
1963 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1964 		struct dma_fence *curr;
1965 		int idx;
1966 
1967 		dma_fence_array_for_each(curr, idx, fence)
1968 			;
1969 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1970 		if (unlikely(err))
1971 			return err;
1972 	}
1973 
1974 	if (flags & EXEC_OBJECT_WRITE) {
1975 		struct intel_frontbuffer *front;
1976 
1977 		front = i915_gem_object_get_frontbuffer(obj);
1978 		if (unlikely(front)) {
1979 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1980 				i915_active_add_request(&front->write, rq);
1981 			intel_frontbuffer_put(front);
1982 		}
1983 	}
1984 
1985 	if (fence) {
1986 		struct dma_fence *curr;
1987 		enum dma_resv_usage usage;
1988 		int idx;
1989 
1990 		if (flags & EXEC_OBJECT_WRITE) {
1991 			usage = DMA_RESV_USAGE_WRITE;
1992 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1993 			obj->read_domains = 0;
1994 		} else {
1995 			usage = DMA_RESV_USAGE_READ;
1996 			obj->write_domain = 0;
1997 		}
1998 
1999 		dma_fence_array_for_each(curr, idx, fence)
2000 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
2001 	}
2002 
2003 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
2004 		i915_active_add_request(&vma->fence->active, rq);
2005 
2006 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
2007 	obj->mm.dirty = true;
2008 
2009 	GEM_BUG_ON(!i915_vma_is_active(vma));
2010 	return 0;
2011 }
2012 
2013 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
2014 {
2015 	struct i915_vma_resource *vma_res = vma->resource;
2016 	struct dma_fence *unbind_fence;
2017 
2018 	GEM_BUG_ON(i915_vma_is_pinned(vma));
2019 	assert_vma_held_evict(vma);
2020 
2021 	if (i915_vma_is_map_and_fenceable(vma)) {
2022 		/* Force a pagefault for domain tracking on next user access */
2023 		i915_vma_revoke_mmap(vma);
2024 
2025 		/*
2026 		 * Check that we have flushed all writes through the GGTT
2027 		 * before the unbind, other due to non-strict nature of those
2028 		 * indirect writes they may end up referencing the GGTT PTE
2029 		 * after the unbind.
2030 		 *
2031 		 * Note that we may be concurrently poking at the GGTT_WRITE
2032 		 * bit from set-domain, as we mark all GGTT vma associated
2033 		 * with an object. We know this is for another vma, as we
2034 		 * are currently unbinding this one -- so if this vma will be
2035 		 * reused, it will be refaulted and have its dirty bit set
2036 		 * before the next write.
2037 		 */
2038 		i915_vma_flush_writes(vma);
2039 
2040 		/* release the fence reg _after_ flushing */
2041 		i915_vma_revoke_fence(vma);
2042 
2043 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2044 	}
2045 
2046 	__i915_vma_iounmap(vma);
2047 
2048 	GEM_BUG_ON(vma->fence);
2049 	GEM_BUG_ON(i915_vma_has_userfault(vma));
2050 
2051 	/* Object backend must be async capable. */
2052 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2053 
2054 	/* If vm is not open, unbind is a nop. */
2055 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2056 		kref_read(&vma->vm->ref);
2057 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
2058 		vma->vm->skip_pte_rewrite;
2059 	trace_i915_vma_unbind(vma);
2060 
2061 	if (async)
2062 		unbind_fence = i915_vma_resource_unbind(vma_res,
2063 							vma->obj->mm.tlb);
2064 	else
2065 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2066 
2067 	vma->resource = NULL;
2068 
2069 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2070 		   &vma->flags);
2071 
2072 	i915_vma_detach(vma);
2073 
2074 	if (!async) {
2075 		if (unbind_fence) {
2076 			dma_fence_wait(unbind_fence, false);
2077 			dma_fence_put(unbind_fence);
2078 			unbind_fence = NULL;
2079 		}
2080 		vma_invalidate_tlb(vma->vm, vma->obj->mm.tlb);
2081 	}
2082 
2083 	/*
2084 	 * Binding itself may not have completed until the unbind fence signals,
2085 	 * so don't drop the pages until that happens, unless the resource is
2086 	 * async_capable.
2087 	 */
2088 
2089 	vma_unbind_pages(vma);
2090 	return unbind_fence;
2091 }
2092 
2093 int __i915_vma_unbind(struct i915_vma *vma)
2094 {
2095 	int ret;
2096 
2097 	lockdep_assert_held(&vma->vm->mutex);
2098 	assert_vma_held_evict(vma);
2099 
2100 	if (!drm_mm_node_allocated(&vma->node))
2101 		return 0;
2102 
2103 	if (i915_vma_is_pinned(vma)) {
2104 		vma_print_allocator(vma, "is pinned");
2105 		return -EAGAIN;
2106 	}
2107 
2108 	/*
2109 	 * After confirming that no one else is pinning this vma, wait for
2110 	 * any laggards who may have crept in during the wait (through
2111 	 * a residual pin skipping the vm->mutex) to complete.
2112 	 */
2113 	ret = i915_vma_sync(vma);
2114 	if (ret)
2115 		return ret;
2116 
2117 	GEM_BUG_ON(i915_vma_is_active(vma));
2118 	__i915_vma_evict(vma, false);
2119 
2120 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2121 	return 0;
2122 }
2123 
2124 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2125 {
2126 	struct dma_fence *fence;
2127 
2128 	lockdep_assert_held(&vma->vm->mutex);
2129 
2130 	if (!drm_mm_node_allocated(&vma->node))
2131 		return NULL;
2132 
2133 	if (i915_vma_is_pinned(vma) ||
2134 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2135 		return ERR_PTR(-EAGAIN);
2136 
2137 	/*
2138 	 * We probably need to replace this with awaiting the fences of the
2139 	 * object's dma_resv when the vma active goes away. When doing that
2140 	 * we need to be careful to not add the vma_resource unbind fence
2141 	 * immediately to the object's dma_resv, because then unbinding
2142 	 * the next vma from the object, in case there are many, will
2143 	 * actually await the unbinding of the previous vmas, which is
2144 	 * undesirable.
2145 	 */
2146 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2147 				       I915_ACTIVE_AWAIT_EXCL |
2148 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2149 		return ERR_PTR(-EBUSY);
2150 	}
2151 
2152 	fence = __i915_vma_evict(vma, true);
2153 
2154 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2155 
2156 	return fence;
2157 }
2158 
2159 int i915_vma_unbind(struct i915_vma *vma)
2160 {
2161 	struct i915_address_space *vm = vma->vm;
2162 	intel_wakeref_t wakeref = 0;
2163 	int err;
2164 
2165 	assert_object_held_shared(vma->obj);
2166 
2167 	/* Optimistic wait before taking the mutex */
2168 	err = i915_vma_sync(vma);
2169 	if (err)
2170 		return err;
2171 
2172 	if (!drm_mm_node_allocated(&vma->node))
2173 		return 0;
2174 
2175 	if (i915_vma_is_pinned(vma)) {
2176 		vma_print_allocator(vma, "is pinned");
2177 		return -EAGAIN;
2178 	}
2179 
2180 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2181 		/* XXX not always required: nop_clear_range */
2182 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2183 
2184 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2185 	if (err)
2186 		goto out_rpm;
2187 
2188 	err = __i915_vma_unbind(vma);
2189 	mutex_unlock(&vm->mutex);
2190 
2191 out_rpm:
2192 	if (wakeref)
2193 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2194 	return err;
2195 }
2196 
2197 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2198 {
2199 	struct drm_i915_gem_object *obj = vma->obj;
2200 	struct i915_address_space *vm = vma->vm;
2201 	intel_wakeref_t wakeref = 0;
2202 	struct dma_fence *fence;
2203 	int err;
2204 
2205 	/*
2206 	 * We need the dma-resv lock since we add the
2207 	 * unbind fence to the dma-resv object.
2208 	 */
2209 	assert_object_held(obj);
2210 
2211 	if (!drm_mm_node_allocated(&vma->node))
2212 		return 0;
2213 
2214 	if (i915_vma_is_pinned(vma)) {
2215 		vma_print_allocator(vma, "is pinned");
2216 		return -EAGAIN;
2217 	}
2218 
2219 	if (!obj->mm.rsgt)
2220 		return -EBUSY;
2221 
2222 	err = dma_resv_reserve_fences(obj->base.resv, 2);
2223 	if (err)
2224 		return -EBUSY;
2225 
2226 	/*
2227 	 * It would be great if we could grab this wakeref from the
2228 	 * async unbind work if needed, but we can't because it uses
2229 	 * kmalloc and it's in the dma-fence signalling critical path.
2230 	 */
2231 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2232 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2233 
2234 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2235 		err = -EBUSY;
2236 		goto out_rpm;
2237 	} else if (!trylock_vm) {
2238 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2239 		if (err)
2240 			goto out_rpm;
2241 	}
2242 
2243 	fence = __i915_vma_unbind_async(vma);
2244 	mutex_unlock(&vm->mutex);
2245 	if (IS_ERR_OR_NULL(fence)) {
2246 		err = PTR_ERR_OR_ZERO(fence);
2247 		goto out_rpm;
2248 	}
2249 
2250 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2251 	dma_fence_put(fence);
2252 
2253 out_rpm:
2254 	if (wakeref)
2255 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2256 	return err;
2257 }
2258 
2259 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2260 {
2261 	int err;
2262 
2263 	i915_gem_object_lock(vma->obj, NULL);
2264 	err = i915_vma_unbind(vma);
2265 	i915_gem_object_unlock(vma->obj);
2266 
2267 	return err;
2268 }
2269 
2270 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2271 {
2272 	i915_gem_object_make_unshrinkable(vma->obj);
2273 	return vma;
2274 }
2275 
2276 void i915_vma_make_shrinkable(struct i915_vma *vma)
2277 {
2278 	i915_gem_object_make_shrinkable(vma->obj);
2279 }
2280 
2281 void i915_vma_make_purgeable(struct i915_vma *vma)
2282 {
2283 	i915_gem_object_make_purgeable(vma->obj);
2284 }
2285 
2286 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2287 #include "selftests/i915_vma.c"
2288 #endif
2289 
2290 void i915_vma_module_exit(void)
2291 {
2292 	kmem_cache_destroy(slab_vmas);
2293 }
2294 
2295 int __init i915_vma_module_init(void)
2296 {
2297 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2298 	if (!slab_vmas)
2299 		return -ENOMEM;
2300 
2301 	return 0;
2302 }
2303