xref: /linux/drivers/gpu/drm/i915/i915_vma.c (revision 3a38ef2b3cb6b63c105247b5ea4a9cf600e673f0)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
36 
37 #include "i915_drv.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
41 #include "i915_vma.h"
42 #include "i915_vma_resource.h"
43 
44 static inline void assert_vma_held_evict(const struct i915_vma *vma)
45 {
46 	/*
47 	 * We may be forced to unbind when the vm is dead, to clean it up.
48 	 * This is the only exception to the requirement of the object lock
49 	 * being held.
50 	 */
51 	if (kref_read(&vma->vm->ref))
52 		assert_object_held_shared(vma->obj);
53 }
54 
55 static struct kmem_cache *slab_vmas;
56 
57 static struct i915_vma *i915_vma_alloc(void)
58 {
59 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
60 }
61 
62 static void i915_vma_free(struct i915_vma *vma)
63 {
64 	return kmem_cache_free(slab_vmas, vma);
65 }
66 
67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
68 
69 #include <linux/stackdepot.h>
70 
71 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
72 {
73 	char buf[512];
74 
75 	if (!vma->node.stack) {
76 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
77 				 vma->node.start, vma->node.size, reason);
78 		return;
79 	}
80 
81 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
82 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
83 			 vma->node.start, vma->node.size, reason, buf);
84 }
85 
86 #else
87 
88 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
89 {
90 }
91 
92 #endif
93 
94 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
95 {
96 	return container_of(ref, typeof(struct i915_vma), active);
97 }
98 
99 static int __i915_vma_active(struct i915_active *ref)
100 {
101 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
102 }
103 
104 static void __i915_vma_retire(struct i915_active *ref)
105 {
106 	i915_vma_put(active_to_vma(ref));
107 }
108 
109 static struct i915_vma *
110 vma_create(struct drm_i915_gem_object *obj,
111 	   struct i915_address_space *vm,
112 	   const struct i915_gtt_view *view)
113 {
114 	struct i915_vma *pos = ERR_PTR(-E2BIG);
115 	struct i915_vma *vma;
116 	struct rb_node *rb, **p;
117 	int err;
118 
119 	/* The aliasing_ppgtt should never be used directly! */
120 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
121 
122 	vma = i915_vma_alloc();
123 	if (vma == NULL)
124 		return ERR_PTR(-ENOMEM);
125 
126 	vma->ops = &vm->vma_ops;
127 	vma->obj = obj;
128 	vma->size = obj->base.size;
129 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
130 
131 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
132 
133 	/* Declare ourselves safe for use inside shrinkers */
134 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 		fs_reclaim_acquire(GFP_KERNEL);
136 		might_lock(&vma->active.mutex);
137 		fs_reclaim_release(GFP_KERNEL);
138 	}
139 
140 	INIT_LIST_HEAD(&vma->closed_link);
141 	INIT_LIST_HEAD(&vma->obj_link);
142 	RB_CLEAR_NODE(&vma->obj_node);
143 
144 	if (view && view->type != I915_GTT_VIEW_NORMAL) {
145 		vma->gtt_view = *view;
146 		if (view->type == I915_GTT_VIEW_PARTIAL) {
147 			GEM_BUG_ON(range_overflows_t(u64,
148 						     view->partial.offset,
149 						     view->partial.size,
150 						     obj->base.size >> PAGE_SHIFT));
151 			vma->size = view->partial.size;
152 			vma->size <<= PAGE_SHIFT;
153 			GEM_BUG_ON(vma->size > obj->base.size);
154 		} else if (view->type == I915_GTT_VIEW_ROTATED) {
155 			vma->size = intel_rotation_info_size(&view->rotated);
156 			vma->size <<= PAGE_SHIFT;
157 		} else if (view->type == I915_GTT_VIEW_REMAPPED) {
158 			vma->size = intel_remapped_info_size(&view->remapped);
159 			vma->size <<= PAGE_SHIFT;
160 		}
161 	}
162 
163 	if (unlikely(vma->size > vm->total))
164 		goto err_vma;
165 
166 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
167 
168 	err = mutex_lock_interruptible(&vm->mutex);
169 	if (err) {
170 		pos = ERR_PTR(err);
171 		goto err_vma;
172 	}
173 
174 	vma->vm = vm;
175 	list_add_tail(&vma->vm_link, &vm->unbound_list);
176 
177 	spin_lock(&obj->vma.lock);
178 	if (i915_is_ggtt(vm)) {
179 		if (unlikely(overflows_type(vma->size, u32)))
180 			goto err_unlock;
181 
182 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
183 						      i915_gem_object_get_tiling(obj),
184 						      i915_gem_object_get_stride(obj));
185 		if (unlikely(vma->fence_size < vma->size || /* overflow */
186 			     vma->fence_size > vm->total))
187 			goto err_unlock;
188 
189 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
190 
191 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
192 								i915_gem_object_get_tiling(obj),
193 								i915_gem_object_get_stride(obj));
194 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
195 
196 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
197 	}
198 
199 	rb = NULL;
200 	p = &obj->vma.tree.rb_node;
201 	while (*p) {
202 		long cmp;
203 
204 		rb = *p;
205 		pos = rb_entry(rb, struct i915_vma, obj_node);
206 
207 		/*
208 		 * If the view already exists in the tree, another thread
209 		 * already created a matching vma, so return the older instance
210 		 * and dispose of ours.
211 		 */
212 		cmp = i915_vma_compare(pos, vm, view);
213 		if (cmp < 0)
214 			p = &rb->rb_right;
215 		else if (cmp > 0)
216 			p = &rb->rb_left;
217 		else
218 			goto err_unlock;
219 	}
220 	rb_link_node(&vma->obj_node, rb, p);
221 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
222 
223 	if (i915_vma_is_ggtt(vma))
224 		/*
225 		 * We put the GGTT vma at the start of the vma-list, followed
226 		 * by the ppGGTT vma. This allows us to break early when
227 		 * iterating over only the GGTT vma for an object, see
228 		 * for_each_ggtt_vma()
229 		 */
230 		list_add(&vma->obj_link, &obj->vma.list);
231 	else
232 		list_add_tail(&vma->obj_link, &obj->vma.list);
233 
234 	spin_unlock(&obj->vma.lock);
235 	mutex_unlock(&vm->mutex);
236 
237 	return vma;
238 
239 err_unlock:
240 	spin_unlock(&obj->vma.lock);
241 	list_del_init(&vma->vm_link);
242 	mutex_unlock(&vm->mutex);
243 err_vma:
244 	i915_vma_free(vma);
245 	return pos;
246 }
247 
248 static struct i915_vma *
249 i915_vma_lookup(struct drm_i915_gem_object *obj,
250 	   struct i915_address_space *vm,
251 	   const struct i915_gtt_view *view)
252 {
253 	struct rb_node *rb;
254 
255 	rb = obj->vma.tree.rb_node;
256 	while (rb) {
257 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
258 		long cmp;
259 
260 		cmp = i915_vma_compare(vma, vm, view);
261 		if (cmp == 0)
262 			return vma;
263 
264 		if (cmp < 0)
265 			rb = rb->rb_right;
266 		else
267 			rb = rb->rb_left;
268 	}
269 
270 	return NULL;
271 }
272 
273 /**
274  * i915_vma_instance - return the singleton instance of the VMA
275  * @obj: parent &struct drm_i915_gem_object to be mapped
276  * @vm: address space in which the mapping is located
277  * @view: additional mapping requirements
278  *
279  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
280  * the same @view characteristics. If a match is not found, one is created.
281  * Once created, the VMA is kept until either the object is freed, or the
282  * address space is closed.
283  *
284  * Returns the vma, or an error pointer.
285  */
286 struct i915_vma *
287 i915_vma_instance(struct drm_i915_gem_object *obj,
288 		  struct i915_address_space *vm,
289 		  const struct i915_gtt_view *view)
290 {
291 	struct i915_vma *vma;
292 
293 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
294 	GEM_BUG_ON(!kref_read(&vm->ref));
295 
296 	spin_lock(&obj->vma.lock);
297 	vma = i915_vma_lookup(obj, vm, view);
298 	spin_unlock(&obj->vma.lock);
299 
300 	/* vma_create() will resolve the race if another creates the vma */
301 	if (unlikely(!vma))
302 		vma = vma_create(obj, vm, view);
303 
304 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
305 	return vma;
306 }
307 
308 struct i915_vma_work {
309 	struct dma_fence_work base;
310 	struct i915_address_space *vm;
311 	struct i915_vm_pt_stash stash;
312 	struct i915_vma_resource *vma_res;
313 	struct drm_i915_gem_object *obj;
314 	struct i915_sw_dma_fence_cb cb;
315 	enum i915_cache_level cache_level;
316 	unsigned int flags;
317 };
318 
319 static void __vma_bind(struct dma_fence_work *work)
320 {
321 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
322 	struct i915_vma_resource *vma_res = vw->vma_res;
323 
324 	/*
325 	 * We are about the bind the object, which must mean we have already
326 	 * signaled the work to potentially clear/move the pages underneath. If
327 	 * something went wrong at that stage then the object should have
328 	 * unknown_state set, in which case we need to skip the bind.
329 	 */
330 	if (i915_gem_object_has_unknown_state(vw->obj))
331 		return;
332 
333 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
334 			       vma_res, vw->cache_level, vw->flags);
335 }
336 
337 static void __vma_release(struct dma_fence_work *work)
338 {
339 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
340 
341 	if (vw->obj)
342 		i915_gem_object_put(vw->obj);
343 
344 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
345 	if (vw->vma_res)
346 		i915_vma_resource_put(vw->vma_res);
347 }
348 
349 static const struct dma_fence_work_ops bind_ops = {
350 	.name = "bind",
351 	.work = __vma_bind,
352 	.release = __vma_release,
353 };
354 
355 struct i915_vma_work *i915_vma_work(void)
356 {
357 	struct i915_vma_work *vw;
358 
359 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
360 	if (!vw)
361 		return NULL;
362 
363 	dma_fence_work_init(&vw->base, &bind_ops);
364 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
365 
366 	return vw;
367 }
368 
369 int i915_vma_wait_for_bind(struct i915_vma *vma)
370 {
371 	int err = 0;
372 
373 	if (rcu_access_pointer(vma->active.excl.fence)) {
374 		struct dma_fence *fence;
375 
376 		rcu_read_lock();
377 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
378 		rcu_read_unlock();
379 		if (fence) {
380 			err = dma_fence_wait(fence, true);
381 			dma_fence_put(fence);
382 		}
383 	}
384 
385 	return err;
386 }
387 
388 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
389 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
390 {
391 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
392 	int err;
393 
394 	if (!fence)
395 		return 0;
396 
397 	if (dma_fence_is_signaled(fence))
398 		err = fence->error;
399 	else
400 		err = -EBUSY;
401 
402 	dma_fence_put(fence);
403 
404 	return err;
405 }
406 #else
407 #define i915_vma_verify_bind_complete(_vma) 0
408 #endif
409 
410 I915_SELFTEST_EXPORT void
411 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
412 				struct i915_vma *vma)
413 {
414 	struct drm_i915_gem_object *obj = vma->obj;
415 
416 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
417 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
418 			       i915_gem_object_is_lmem(obj), obj->mm.region,
419 			       vma->ops, vma->private, vma->node.start,
420 			       vma->node.size, vma->size);
421 }
422 
423 /**
424  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
425  * @vma: VMA to map
426  * @cache_level: mapping cache level
427  * @flags: flags like global or local mapping
428  * @work: preallocated worker for allocating and binding the PTE
429  * @vma_res: pointer to a preallocated vma resource. The resource is either
430  * consumed or freed.
431  *
432  * DMA addresses are taken from the scatter-gather table of this object (or of
433  * this VMA in case of non-default GGTT views) and PTE entries set up.
434  * Note that DMA addresses are also the only part of the SG table we care about.
435  */
436 int i915_vma_bind(struct i915_vma *vma,
437 		  enum i915_cache_level cache_level,
438 		  u32 flags,
439 		  struct i915_vma_work *work,
440 		  struct i915_vma_resource *vma_res)
441 {
442 	u32 bind_flags;
443 	u32 vma_flags;
444 	int ret;
445 
446 	lockdep_assert_held(&vma->vm->mutex);
447 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
448 	GEM_BUG_ON(vma->size > vma->node.size);
449 
450 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
451 					      vma->node.size,
452 					      vma->vm->total))) {
453 		i915_vma_resource_free(vma_res);
454 		return -ENODEV;
455 	}
456 
457 	if (GEM_DEBUG_WARN_ON(!flags)) {
458 		i915_vma_resource_free(vma_res);
459 		return -EINVAL;
460 	}
461 
462 	bind_flags = flags;
463 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
464 
465 	vma_flags = atomic_read(&vma->flags);
466 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
467 
468 	bind_flags &= ~vma_flags;
469 	if (bind_flags == 0) {
470 		i915_vma_resource_free(vma_res);
471 		return 0;
472 	}
473 
474 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
475 
476 	/* Wait for or await async unbinds touching our range */
477 	if (work && bind_flags & vma->vm->bind_async_flags)
478 		ret = i915_vma_resource_bind_dep_await(vma->vm,
479 						       &work->base.chain,
480 						       vma->node.start,
481 						       vma->node.size,
482 						       true,
483 						       GFP_NOWAIT |
484 						       __GFP_RETRY_MAYFAIL |
485 						       __GFP_NOWARN);
486 	else
487 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
488 						      vma->node.size, true);
489 	if (ret) {
490 		i915_vma_resource_free(vma_res);
491 		return ret;
492 	}
493 
494 	if (vma->resource || !vma_res) {
495 		/* Rebinding with an additional I915_VMA_*_BIND */
496 		GEM_WARN_ON(!vma_flags);
497 		i915_vma_resource_free(vma_res);
498 	} else {
499 		i915_vma_resource_init_from_vma(vma_res, vma);
500 		vma->resource = vma_res;
501 	}
502 	trace_i915_vma_bind(vma, bind_flags);
503 	if (work && bind_flags & vma->vm->bind_async_flags) {
504 		struct dma_fence *prev;
505 
506 		work->vma_res = i915_vma_resource_get(vma->resource);
507 		work->cache_level = cache_level;
508 		work->flags = bind_flags;
509 
510 		/*
511 		 * Note we only want to chain up to the migration fence on
512 		 * the pages (not the object itself). As we don't track that,
513 		 * yet, we have to use the exclusive fence instead.
514 		 *
515 		 * Also note that we do not want to track the async vma as
516 		 * part of the obj->resv->excl_fence as it only affects
517 		 * execution and not content or object's backing store lifetime.
518 		 */
519 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
520 		if (prev) {
521 			__i915_sw_fence_await_dma_fence(&work->base.chain,
522 							prev,
523 							&work->cb);
524 			dma_fence_put(prev);
525 		}
526 
527 		work->base.dma.error = 0; /* enable the queue_work() */
528 		work->obj = i915_gem_object_get(vma->obj);
529 	} else {
530 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
531 		if (ret) {
532 			i915_vma_resource_free(vma->resource);
533 			vma->resource = NULL;
534 
535 			return ret;
536 		}
537 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
538 				   bind_flags);
539 	}
540 
541 	atomic_or(bind_flags, &vma->flags);
542 	return 0;
543 }
544 
545 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
546 {
547 	void __iomem *ptr;
548 	int err;
549 
550 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
551 		return IOMEM_ERR_PTR(-EINVAL);
552 
553 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
554 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
555 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
556 
557 	ptr = READ_ONCE(vma->iomap);
558 	if (ptr == NULL) {
559 		/*
560 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
561 		 * instead, which already supports mapping non-contiguous chunks
562 		 * of pages, that way we can also drop the
563 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
564 		 */
565 		if (i915_gem_object_is_lmem(vma->obj)) {
566 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
567 							  vma->obj->base.size);
568 		} else if (i915_vma_is_map_and_fenceable(vma)) {
569 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
570 						vma->node.start,
571 						vma->node.size);
572 		} else {
573 			ptr = (void __iomem *)
574 				i915_gem_object_pin_map(vma->obj, I915_MAP_WC);
575 			if (IS_ERR(ptr)) {
576 				err = PTR_ERR(ptr);
577 				goto err;
578 			}
579 			ptr = page_pack_bits(ptr, 1);
580 		}
581 
582 		if (ptr == NULL) {
583 			err = -ENOMEM;
584 			goto err;
585 		}
586 
587 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
588 			if (page_unmask_bits(ptr))
589 				__i915_gem_object_release_map(vma->obj);
590 			else
591 				io_mapping_unmap(ptr);
592 			ptr = vma->iomap;
593 		}
594 	}
595 
596 	__i915_vma_pin(vma);
597 
598 	err = i915_vma_pin_fence(vma);
599 	if (err)
600 		goto err_unpin;
601 
602 	i915_vma_set_ggtt_write(vma);
603 
604 	/* NB Access through the GTT requires the device to be awake. */
605 	return page_mask_bits(ptr);
606 
607 err_unpin:
608 	__i915_vma_unpin(vma);
609 err:
610 	return IOMEM_ERR_PTR(err);
611 }
612 
613 void i915_vma_flush_writes(struct i915_vma *vma)
614 {
615 	if (i915_vma_unset_ggtt_write(vma))
616 		intel_gt_flush_ggtt_writes(vma->vm->gt);
617 }
618 
619 void i915_vma_unpin_iomap(struct i915_vma *vma)
620 {
621 	GEM_BUG_ON(vma->iomap == NULL);
622 
623 	/* XXX We keep the mapping until __i915_vma_unbind()/evict() */
624 
625 	i915_vma_flush_writes(vma);
626 
627 	i915_vma_unpin_fence(vma);
628 	i915_vma_unpin(vma);
629 }
630 
631 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
632 {
633 	struct i915_vma *vma;
634 	struct drm_i915_gem_object *obj;
635 
636 	vma = fetch_and_zero(p_vma);
637 	if (!vma)
638 		return;
639 
640 	obj = vma->obj;
641 	GEM_BUG_ON(!obj);
642 
643 	i915_vma_unpin(vma);
644 
645 	if (flags & I915_VMA_RELEASE_MAP)
646 		i915_gem_object_unpin_map(obj);
647 
648 	i915_gem_object_put(obj);
649 }
650 
651 bool i915_vma_misplaced(const struct i915_vma *vma,
652 			u64 size, u64 alignment, u64 flags)
653 {
654 	if (!drm_mm_node_allocated(&vma->node))
655 		return false;
656 
657 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
658 		return true;
659 
660 	if (vma->node.size < size)
661 		return true;
662 
663 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
664 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
665 		return true;
666 
667 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
668 		return true;
669 
670 	if (flags & PIN_OFFSET_BIAS &&
671 	    vma->node.start < (flags & PIN_OFFSET_MASK))
672 		return true;
673 
674 	if (flags & PIN_OFFSET_FIXED &&
675 	    vma->node.start != (flags & PIN_OFFSET_MASK))
676 		return true;
677 
678 	return false;
679 }
680 
681 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
682 {
683 	bool mappable, fenceable;
684 
685 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
686 	GEM_BUG_ON(!vma->fence_size);
687 
688 	fenceable = (vma->node.size >= vma->fence_size &&
689 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
690 
691 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
692 
693 	if (mappable && fenceable)
694 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
695 	else
696 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
697 }
698 
699 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
700 {
701 	struct drm_mm_node *node = &vma->node;
702 	struct drm_mm_node *other;
703 
704 	/*
705 	 * On some machines we have to be careful when putting differing types
706 	 * of snoopable memory together to avoid the prefetcher crossing memory
707 	 * domains and dying. During vm initialisation, we decide whether or not
708 	 * these constraints apply and set the drm_mm.color_adjust
709 	 * appropriately.
710 	 */
711 	if (!i915_vm_has_cache_coloring(vma->vm))
712 		return true;
713 
714 	/* Only valid to be called on an already inserted vma */
715 	GEM_BUG_ON(!drm_mm_node_allocated(node));
716 	GEM_BUG_ON(list_empty(&node->node_list));
717 
718 	other = list_prev_entry(node, node_list);
719 	if (i915_node_color_differs(other, color) &&
720 	    !drm_mm_hole_follows(other))
721 		return false;
722 
723 	other = list_next_entry(node, node_list);
724 	if (i915_node_color_differs(other, color) &&
725 	    !drm_mm_hole_follows(node))
726 		return false;
727 
728 	return true;
729 }
730 
731 /**
732  * i915_vma_insert - finds a slot for the vma in its address space
733  * @vma: the vma
734  * @size: requested size in bytes (can be larger than the VMA)
735  * @alignment: required alignment
736  * @flags: mask of PIN_* flags to use
737  *
738  * First we try to allocate some free space that meets the requirements for
739  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
740  * preferrably the oldest idle entry to make room for the new VMA.
741  *
742  * Returns:
743  * 0 on success, negative error code otherwise.
744  */
745 static int
746 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
747 		u64 size, u64 alignment, u64 flags)
748 {
749 	unsigned long color;
750 	u64 start, end;
751 	int ret;
752 
753 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
754 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
755 
756 	size = max(size, vma->size);
757 	alignment = max(alignment, vma->display_alignment);
758 	if (flags & PIN_MAPPABLE) {
759 		size = max_t(typeof(size), size, vma->fence_size);
760 		alignment = max_t(typeof(alignment),
761 				  alignment, vma->fence_alignment);
762 	}
763 
764 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
765 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
766 	GEM_BUG_ON(!is_power_of_2(alignment));
767 
768 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
769 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
770 
771 	end = vma->vm->total;
772 	if (flags & PIN_MAPPABLE)
773 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
774 	if (flags & PIN_ZONE_4G)
775 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
776 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
777 
778 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
779 	/*
780 	 * for compact-pt we round up the reservation to prevent
781 	 * any smaller pages being used within the same PDE
782 	 */
783 	if (NEEDS_COMPACT_PT(vma->vm->i915))
784 		size = round_up(size, alignment);
785 
786 	/* If binding the object/GGTT view requires more space than the entire
787 	 * aperture has, reject it early before evicting everything in a vain
788 	 * attempt to find space.
789 	 */
790 	if (size > end) {
791 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
792 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
793 			  end);
794 		return -ENOSPC;
795 	}
796 
797 	color = 0;
798 
799 	if (i915_vm_has_cache_coloring(vma->vm))
800 		color = vma->obj->cache_level;
801 
802 	if (flags & PIN_OFFSET_FIXED) {
803 		u64 offset = flags & PIN_OFFSET_MASK;
804 		if (!IS_ALIGNED(offset, alignment) ||
805 		    range_overflows(offset, size, end))
806 			return -EINVAL;
807 
808 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
809 					   size, offset, color,
810 					   flags);
811 		if (ret)
812 			return ret;
813 	} else {
814 		/*
815 		 * We only support huge gtt pages through the 48b PPGTT,
816 		 * however we also don't want to force any alignment for
817 		 * objects which need to be tightly packed into the low 32bits.
818 		 *
819 		 * Note that we assume that GGTT are limited to 4GiB for the
820 		 * forseeable future. See also i915_ggtt_offset().
821 		 */
822 		if (upper_32_bits(end - 1) &&
823 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
824 			/*
825 			 * We can't mix 64K and 4K PTEs in the same page-table
826 			 * (2M block), and so to avoid the ugliness and
827 			 * complexity of coloring we opt for just aligning 64K
828 			 * objects to 2M.
829 			 */
830 			u64 page_alignment =
831 				rounddown_pow_of_two(vma->page_sizes.sg |
832 						     I915_GTT_PAGE_SIZE_2M);
833 
834 			/*
835 			 * Check we don't expand for the limited Global GTT
836 			 * (mappable aperture is even more precious!). This
837 			 * also checks that we exclude the aliasing-ppgtt.
838 			 */
839 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
840 
841 			alignment = max(alignment, page_alignment);
842 
843 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
844 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
845 		}
846 
847 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
848 					  size, alignment, color,
849 					  start, end, flags);
850 		if (ret)
851 			return ret;
852 
853 		GEM_BUG_ON(vma->node.start < start);
854 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
855 	}
856 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
857 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
858 
859 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
860 
861 	return 0;
862 }
863 
864 static void
865 i915_vma_detach(struct i915_vma *vma)
866 {
867 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
868 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
869 
870 	/*
871 	 * And finally now the object is completely decoupled from this
872 	 * vma, we can drop its hold on the backing storage and allow
873 	 * it to be reaped by the shrinker.
874 	 */
875 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
876 }
877 
878 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
879 {
880 	unsigned int bound;
881 
882 	bound = atomic_read(&vma->flags);
883 
884 	if (flags & PIN_VALIDATE) {
885 		flags &= I915_VMA_BIND_MASK;
886 
887 		return (flags & bound) == flags;
888 	}
889 
890 	/* with the lock mandatory for unbind, we don't race here */
891 	flags &= I915_VMA_BIND_MASK;
892 	do {
893 		if (unlikely(flags & ~bound))
894 			return false;
895 
896 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
897 			return false;
898 
899 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
900 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
901 
902 	return true;
903 }
904 
905 static struct scatterlist *
906 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
907 	     unsigned int width, unsigned int height,
908 	     unsigned int src_stride, unsigned int dst_stride,
909 	     struct sg_table *st, struct scatterlist *sg)
910 {
911 	unsigned int column, row;
912 	unsigned int src_idx;
913 
914 	for (column = 0; column < width; column++) {
915 		unsigned int left;
916 
917 		src_idx = src_stride * (height - 1) + column + offset;
918 		for (row = 0; row < height; row++) {
919 			st->nents++;
920 			/*
921 			 * We don't need the pages, but need to initialize
922 			 * the entries so the sg list can be happily traversed.
923 			 * The only thing we need are DMA addresses.
924 			 */
925 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
926 			sg_dma_address(sg) =
927 				i915_gem_object_get_dma_address(obj, src_idx);
928 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
929 			sg = sg_next(sg);
930 			src_idx -= src_stride;
931 		}
932 
933 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
934 
935 		if (!left)
936 			continue;
937 
938 		st->nents++;
939 
940 		/*
941 		 * The DE ignores the PTEs for the padding tiles, the sg entry
942 		 * here is just a conenience to indicate how many padding PTEs
943 		 * to insert at this spot.
944 		 */
945 		sg_set_page(sg, NULL, left, 0);
946 		sg_dma_address(sg) = 0;
947 		sg_dma_len(sg) = left;
948 		sg = sg_next(sg);
949 	}
950 
951 	return sg;
952 }
953 
954 static noinline struct sg_table *
955 intel_rotate_pages(struct intel_rotation_info *rot_info,
956 		   struct drm_i915_gem_object *obj)
957 {
958 	unsigned int size = intel_rotation_info_size(rot_info);
959 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
960 	struct sg_table *st;
961 	struct scatterlist *sg;
962 	int ret = -ENOMEM;
963 	int i;
964 
965 	/* Allocate target SG list. */
966 	st = kmalloc(sizeof(*st), GFP_KERNEL);
967 	if (!st)
968 		goto err_st_alloc;
969 
970 	ret = sg_alloc_table(st, size, GFP_KERNEL);
971 	if (ret)
972 		goto err_sg_alloc;
973 
974 	st->nents = 0;
975 	sg = st->sgl;
976 
977 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
978 		sg = rotate_pages(obj, rot_info->plane[i].offset,
979 				  rot_info->plane[i].width, rot_info->plane[i].height,
980 				  rot_info->plane[i].src_stride,
981 				  rot_info->plane[i].dst_stride,
982 				  st, sg);
983 
984 	return st;
985 
986 err_sg_alloc:
987 	kfree(st);
988 err_st_alloc:
989 
990 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
991 		obj->base.size, rot_info->plane[0].width,
992 		rot_info->plane[0].height, size);
993 
994 	return ERR_PTR(ret);
995 }
996 
997 static struct scatterlist *
998 add_padding_pages(unsigned int count,
999 		  struct sg_table *st, struct scatterlist *sg)
1000 {
1001 	st->nents++;
1002 
1003 	/*
1004 	 * The DE ignores the PTEs for the padding tiles, the sg entry
1005 	 * here is just a convenience to indicate how many padding PTEs
1006 	 * to insert at this spot.
1007 	 */
1008 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1009 	sg_dma_address(sg) = 0;
1010 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1011 	sg = sg_next(sg);
1012 
1013 	return sg;
1014 }
1015 
1016 static struct scatterlist *
1017 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1018 			      unsigned int offset, unsigned int alignment_pad,
1019 			      unsigned int width, unsigned int height,
1020 			      unsigned int src_stride, unsigned int dst_stride,
1021 			      struct sg_table *st, struct scatterlist *sg,
1022 			      unsigned int *gtt_offset)
1023 {
1024 	unsigned int row;
1025 
1026 	if (!width || !height)
1027 		return sg;
1028 
1029 	if (alignment_pad)
1030 		sg = add_padding_pages(alignment_pad, st, sg);
1031 
1032 	for (row = 0; row < height; row++) {
1033 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1034 
1035 		while (left) {
1036 			dma_addr_t addr;
1037 			unsigned int length;
1038 
1039 			/*
1040 			 * We don't need the pages, but need to initialize
1041 			 * the entries so the sg list can be happily traversed.
1042 			 * The only thing we need are DMA addresses.
1043 			 */
1044 
1045 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1046 
1047 			length = min(left, length);
1048 
1049 			st->nents++;
1050 
1051 			sg_set_page(sg, NULL, length, 0);
1052 			sg_dma_address(sg) = addr;
1053 			sg_dma_len(sg) = length;
1054 			sg = sg_next(sg);
1055 
1056 			offset += length / I915_GTT_PAGE_SIZE;
1057 			left -= length;
1058 		}
1059 
1060 		offset += src_stride - width;
1061 
1062 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1063 
1064 		if (!left)
1065 			continue;
1066 
1067 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1068 	}
1069 
1070 	*gtt_offset += alignment_pad + dst_stride * height;
1071 
1072 	return sg;
1073 }
1074 
1075 static struct scatterlist *
1076 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1077 		       unsigned int obj_offset,
1078 		       unsigned int count,
1079 		       struct sg_table *st, struct scatterlist *sg)
1080 {
1081 	struct scatterlist *iter;
1082 	unsigned int offset;
1083 
1084 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1085 	GEM_BUG_ON(!iter);
1086 
1087 	do {
1088 		unsigned int len;
1089 
1090 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1091 			  count << PAGE_SHIFT);
1092 		sg_set_page(sg, NULL, len, 0);
1093 		sg_dma_address(sg) =
1094 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1095 		sg_dma_len(sg) = len;
1096 
1097 		st->nents++;
1098 		count -= len >> PAGE_SHIFT;
1099 		if (count == 0)
1100 			return sg;
1101 
1102 		sg = __sg_next(sg);
1103 		iter = __sg_next(iter);
1104 		offset = 0;
1105 	} while (1);
1106 }
1107 
1108 static struct scatterlist *
1109 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1110 			       unsigned int obj_offset, unsigned int alignment_pad,
1111 			       unsigned int size,
1112 			       struct sg_table *st, struct scatterlist *sg,
1113 			       unsigned int *gtt_offset)
1114 {
1115 	if (!size)
1116 		return sg;
1117 
1118 	if (alignment_pad)
1119 		sg = add_padding_pages(alignment_pad, st, sg);
1120 
1121 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1122 	sg = sg_next(sg);
1123 
1124 	*gtt_offset += alignment_pad + size;
1125 
1126 	return sg;
1127 }
1128 
1129 static struct scatterlist *
1130 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1131 			struct drm_i915_gem_object *obj,
1132 			int color_plane,
1133 			struct sg_table *st, struct scatterlist *sg,
1134 			unsigned int *gtt_offset)
1135 {
1136 	unsigned int alignment_pad = 0;
1137 
1138 	if (rem_info->plane_alignment)
1139 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1140 
1141 	if (rem_info->plane[color_plane].linear)
1142 		sg = remap_linear_color_plane_pages(obj,
1143 						    rem_info->plane[color_plane].offset,
1144 						    alignment_pad,
1145 						    rem_info->plane[color_plane].size,
1146 						    st, sg,
1147 						    gtt_offset);
1148 
1149 	else
1150 		sg = remap_tiled_color_plane_pages(obj,
1151 						   rem_info->plane[color_plane].offset,
1152 						   alignment_pad,
1153 						   rem_info->plane[color_plane].width,
1154 						   rem_info->plane[color_plane].height,
1155 						   rem_info->plane[color_plane].src_stride,
1156 						   rem_info->plane[color_plane].dst_stride,
1157 						   st, sg,
1158 						   gtt_offset);
1159 
1160 	return sg;
1161 }
1162 
1163 static noinline struct sg_table *
1164 intel_remap_pages(struct intel_remapped_info *rem_info,
1165 		  struct drm_i915_gem_object *obj)
1166 {
1167 	unsigned int size = intel_remapped_info_size(rem_info);
1168 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1169 	struct sg_table *st;
1170 	struct scatterlist *sg;
1171 	unsigned int gtt_offset = 0;
1172 	int ret = -ENOMEM;
1173 	int i;
1174 
1175 	/* Allocate target SG list. */
1176 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1177 	if (!st)
1178 		goto err_st_alloc;
1179 
1180 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1181 	if (ret)
1182 		goto err_sg_alloc;
1183 
1184 	st->nents = 0;
1185 	sg = st->sgl;
1186 
1187 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1188 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1189 
1190 	i915_sg_trim(st);
1191 
1192 	return st;
1193 
1194 err_sg_alloc:
1195 	kfree(st);
1196 err_st_alloc:
1197 
1198 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1199 		obj->base.size, rem_info->plane[0].width,
1200 		rem_info->plane[0].height, size);
1201 
1202 	return ERR_PTR(ret);
1203 }
1204 
1205 static noinline struct sg_table *
1206 intel_partial_pages(const struct i915_gtt_view *view,
1207 		    struct drm_i915_gem_object *obj)
1208 {
1209 	struct sg_table *st;
1210 	struct scatterlist *sg;
1211 	unsigned int count = view->partial.size;
1212 	int ret = -ENOMEM;
1213 
1214 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1215 	if (!st)
1216 		goto err_st_alloc;
1217 
1218 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1219 	if (ret)
1220 		goto err_sg_alloc;
1221 
1222 	st->nents = 0;
1223 
1224 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1225 
1226 	sg_mark_end(sg);
1227 	i915_sg_trim(st); /* Drop any unused tail entries. */
1228 
1229 	return st;
1230 
1231 err_sg_alloc:
1232 	kfree(st);
1233 err_st_alloc:
1234 	return ERR_PTR(ret);
1235 }
1236 
1237 static int
1238 __i915_vma_get_pages(struct i915_vma *vma)
1239 {
1240 	struct sg_table *pages;
1241 
1242 	/*
1243 	 * The vma->pages are only valid within the lifespan of the borrowed
1244 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1245 	 * must be the vma->pages. A simple rule is that vma->pages must only
1246 	 * be accessed when the obj->mm.pages are pinned.
1247 	 */
1248 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1249 
1250 	switch (vma->gtt_view.type) {
1251 	default:
1252 		GEM_BUG_ON(vma->gtt_view.type);
1253 		fallthrough;
1254 	case I915_GTT_VIEW_NORMAL:
1255 		pages = vma->obj->mm.pages;
1256 		break;
1257 
1258 	case I915_GTT_VIEW_ROTATED:
1259 		pages =
1260 			intel_rotate_pages(&vma->gtt_view.rotated, vma->obj);
1261 		break;
1262 
1263 	case I915_GTT_VIEW_REMAPPED:
1264 		pages =
1265 			intel_remap_pages(&vma->gtt_view.remapped, vma->obj);
1266 		break;
1267 
1268 	case I915_GTT_VIEW_PARTIAL:
1269 		pages = intel_partial_pages(&vma->gtt_view, vma->obj);
1270 		break;
1271 	}
1272 
1273 	if (IS_ERR(pages)) {
1274 		drm_err(&vma->vm->i915->drm,
1275 			"Failed to get pages for VMA view type %u (%ld)!\n",
1276 			vma->gtt_view.type, PTR_ERR(pages));
1277 		return PTR_ERR(pages);
1278 	}
1279 
1280 	vma->pages = pages;
1281 
1282 	return 0;
1283 }
1284 
1285 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1286 {
1287 	int err;
1288 
1289 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1290 		return 0;
1291 
1292 	err = i915_gem_object_pin_pages(vma->obj);
1293 	if (err)
1294 		return err;
1295 
1296 	err = __i915_vma_get_pages(vma);
1297 	if (err)
1298 		goto err_unpin;
1299 
1300 	vma->page_sizes = vma->obj->mm.page_sizes;
1301 	atomic_inc(&vma->pages_count);
1302 
1303 	return 0;
1304 
1305 err_unpin:
1306 	__i915_gem_object_unpin_pages(vma->obj);
1307 
1308 	return err;
1309 }
1310 
1311 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1312 {
1313 	/*
1314 	 * Before we release the pages that were bound by this vma, we
1315 	 * must invalidate all the TLBs that may still have a reference
1316 	 * back to our physical address. It only needs to be done once,
1317 	 * so after updating the PTE to point away from the pages, record
1318 	 * the most recent TLB invalidation seqno, and if we have not yet
1319 	 * flushed the TLBs upon release, perform a full invalidation.
1320 	 */
1321 	WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt));
1322 }
1323 
1324 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1325 {
1326 	/* We allocate under vma_get_pages, so beware the shrinker */
1327 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1328 
1329 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1330 		if (vma->pages != vma->obj->mm.pages) {
1331 			sg_free_table(vma->pages);
1332 			kfree(vma->pages);
1333 		}
1334 		vma->pages = NULL;
1335 
1336 		i915_gem_object_unpin_pages(vma->obj);
1337 	}
1338 }
1339 
1340 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1341 {
1342 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1343 		return;
1344 
1345 	__vma_put_pages(vma, 1);
1346 }
1347 
1348 static void vma_unbind_pages(struct i915_vma *vma)
1349 {
1350 	unsigned int count;
1351 
1352 	lockdep_assert_held(&vma->vm->mutex);
1353 
1354 	/* The upper portion of pages_count is the number of bindings */
1355 	count = atomic_read(&vma->pages_count);
1356 	count >>= I915_VMA_PAGES_BIAS;
1357 	GEM_BUG_ON(!count);
1358 
1359 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1360 }
1361 
1362 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1363 		    u64 size, u64 alignment, u64 flags)
1364 {
1365 	struct i915_vma_work *work = NULL;
1366 	struct dma_fence *moving = NULL;
1367 	struct i915_vma_resource *vma_res = NULL;
1368 	intel_wakeref_t wakeref = 0;
1369 	unsigned int bound;
1370 	int err;
1371 
1372 	assert_vma_held(vma);
1373 	GEM_BUG_ON(!ww);
1374 
1375 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1376 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1377 
1378 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1379 
1380 	/* First try and grab the pin without rebinding the vma */
1381 	if (try_qad_pin(vma, flags))
1382 		return 0;
1383 
1384 	err = i915_vma_get_pages(vma);
1385 	if (err)
1386 		return err;
1387 
1388 	if (flags & PIN_GLOBAL)
1389 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1390 
1391 	if (flags & vma->vm->bind_async_flags) {
1392 		/* lock VM */
1393 		err = i915_vm_lock_objects(vma->vm, ww);
1394 		if (err)
1395 			goto err_rpm;
1396 
1397 		work = i915_vma_work();
1398 		if (!work) {
1399 			err = -ENOMEM;
1400 			goto err_rpm;
1401 		}
1402 
1403 		work->vm = vma->vm;
1404 
1405 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1406 		if (err)
1407 			goto err_rpm;
1408 
1409 		dma_fence_work_chain(&work->base, moving);
1410 
1411 		/* Allocate enough page directories to used PTE */
1412 		if (vma->vm->allocate_va_range) {
1413 			err = i915_vm_alloc_pt_stash(vma->vm,
1414 						     &work->stash,
1415 						     vma->size);
1416 			if (err)
1417 				goto err_fence;
1418 
1419 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1420 			if (err)
1421 				goto err_fence;
1422 		}
1423 	}
1424 
1425 	vma_res = i915_vma_resource_alloc();
1426 	if (IS_ERR(vma_res)) {
1427 		err = PTR_ERR(vma_res);
1428 		goto err_fence;
1429 	}
1430 
1431 	/*
1432 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1433 	 *
1434 	 * We conflate the Global GTT with the user's vma when using the
1435 	 * aliasing-ppgtt, but it is still vitally important to try and
1436 	 * keep the use cases distinct. For example, userptr objects are
1437 	 * not allowed inside the Global GTT as that will cause lock
1438 	 * inversions when we have to evict them the mmu_notifier callbacks -
1439 	 * but they are allowed to be part of the user ppGTT which can never
1440 	 * be mapped. As such we try to give the distinct users of the same
1441 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1442 	 * and i915_ppgtt separate].
1443 	 *
1444 	 * NB this may cause us to mask real lock inversions -- while the
1445 	 * code is safe today, lockdep may not be able to spot future
1446 	 * transgressions.
1447 	 */
1448 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1449 					      !(flags & PIN_GLOBAL));
1450 	if (err)
1451 		goto err_vma_res;
1452 
1453 	/* No more allocations allowed now we hold vm->mutex */
1454 
1455 	if (unlikely(i915_vma_is_closed(vma))) {
1456 		err = -ENOENT;
1457 		goto err_unlock;
1458 	}
1459 
1460 	bound = atomic_read(&vma->flags);
1461 	if (unlikely(bound & I915_VMA_ERROR)) {
1462 		err = -ENOMEM;
1463 		goto err_unlock;
1464 	}
1465 
1466 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1467 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1468 		goto err_unlock;
1469 	}
1470 
1471 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1472 		if (!(flags & PIN_VALIDATE))
1473 			__i915_vma_pin(vma);
1474 		goto err_unlock;
1475 	}
1476 
1477 	err = i915_active_acquire(&vma->active);
1478 	if (err)
1479 		goto err_unlock;
1480 
1481 	if (!(bound & I915_VMA_BIND_MASK)) {
1482 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1483 		if (err)
1484 			goto err_active;
1485 
1486 		if (i915_is_ggtt(vma->vm))
1487 			__i915_vma_set_map_and_fenceable(vma);
1488 	}
1489 
1490 	GEM_BUG_ON(!vma->pages);
1491 	err = i915_vma_bind(vma,
1492 			    vma->obj->cache_level,
1493 			    flags, work, vma_res);
1494 	vma_res = NULL;
1495 	if (err)
1496 		goto err_remove;
1497 
1498 	/* There should only be at most 2 active bindings (user, global) */
1499 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1500 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1501 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1502 
1503 	if (!(flags & PIN_VALIDATE)) {
1504 		__i915_vma_pin(vma);
1505 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1506 	}
1507 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1508 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1509 
1510 err_remove:
1511 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1512 		i915_vma_detach(vma);
1513 		drm_mm_remove_node(&vma->node);
1514 	}
1515 err_active:
1516 	i915_active_release(&vma->active);
1517 err_unlock:
1518 	mutex_unlock(&vma->vm->mutex);
1519 err_vma_res:
1520 	i915_vma_resource_free(vma_res);
1521 err_fence:
1522 	if (work)
1523 		dma_fence_work_commit_imm(&work->base);
1524 err_rpm:
1525 	if (wakeref)
1526 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1527 
1528 	if (moving)
1529 		dma_fence_put(moving);
1530 
1531 	i915_vma_put_pages(vma);
1532 	return err;
1533 }
1534 
1535 static void flush_idle_contexts(struct intel_gt *gt)
1536 {
1537 	struct intel_engine_cs *engine;
1538 	enum intel_engine_id id;
1539 
1540 	for_each_engine(engine, gt, id)
1541 		intel_engine_flush_barriers(engine);
1542 
1543 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1544 }
1545 
1546 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1547 			   u32 align, unsigned int flags)
1548 {
1549 	struct i915_address_space *vm = vma->vm;
1550 	int err;
1551 
1552 	do {
1553 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1554 
1555 		if (err != -ENOSPC) {
1556 			if (!err) {
1557 				err = i915_vma_wait_for_bind(vma);
1558 				if (err)
1559 					i915_vma_unpin(vma);
1560 			}
1561 			return err;
1562 		}
1563 
1564 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1565 		flush_idle_contexts(vm->gt);
1566 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1567 			/*
1568 			 * We pass NULL ww here, as we don't want to unbind
1569 			 * locked objects when called from execbuf when pinning
1570 			 * is removed. This would probably regress badly.
1571 			 */
1572 			i915_gem_evict_vm(vm, NULL);
1573 			mutex_unlock(&vm->mutex);
1574 		}
1575 	} while (1);
1576 }
1577 
1578 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1579 		  u32 align, unsigned int flags)
1580 {
1581 	struct i915_gem_ww_ctx _ww;
1582 	int err;
1583 
1584 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1585 
1586 	if (ww)
1587 		return __i915_ggtt_pin(vma, ww, align, flags);
1588 
1589 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1590 
1591 	for_i915_gem_ww(&_ww, err, true) {
1592 		err = i915_gem_object_lock(vma->obj, &_ww);
1593 		if (!err)
1594 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1595 	}
1596 
1597 	return err;
1598 }
1599 
1600 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1601 {
1602 	/*
1603 	 * We defer actually closing, unbinding and destroying the VMA until
1604 	 * the next idle point, or if the object is freed in the meantime. By
1605 	 * postponing the unbind, we allow for it to be resurrected by the
1606 	 * client, avoiding the work required to rebind the VMA. This is
1607 	 * advantageous for DRI, where the client/server pass objects
1608 	 * between themselves, temporarily opening a local VMA to the
1609 	 * object, and then closing it again. The same object is then reused
1610 	 * on the next frame (or two, depending on the depth of the swap queue)
1611 	 * causing us to rebind the VMA once more. This ends up being a lot
1612 	 * of wasted work for the steady state.
1613 	 */
1614 	GEM_BUG_ON(i915_vma_is_closed(vma));
1615 	list_add(&vma->closed_link, &gt->closed_vma);
1616 }
1617 
1618 void i915_vma_close(struct i915_vma *vma)
1619 {
1620 	struct intel_gt *gt = vma->vm->gt;
1621 	unsigned long flags;
1622 
1623 	if (i915_vma_is_ggtt(vma))
1624 		return;
1625 
1626 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1627 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1628 					&gt->closed_lock,
1629 					flags)) {
1630 		__vma_close(vma, gt);
1631 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1632 	}
1633 }
1634 
1635 static void __i915_vma_remove_closed(struct i915_vma *vma)
1636 {
1637 	list_del_init(&vma->closed_link);
1638 }
1639 
1640 void i915_vma_reopen(struct i915_vma *vma)
1641 {
1642 	struct intel_gt *gt = vma->vm->gt;
1643 
1644 	spin_lock_irq(&gt->closed_lock);
1645 	if (i915_vma_is_closed(vma))
1646 		__i915_vma_remove_closed(vma);
1647 	spin_unlock_irq(&gt->closed_lock);
1648 }
1649 
1650 static void force_unbind(struct i915_vma *vma)
1651 {
1652 	if (!drm_mm_node_allocated(&vma->node))
1653 		return;
1654 
1655 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1656 	WARN_ON(__i915_vma_unbind(vma));
1657 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1658 }
1659 
1660 static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1661 			       bool vm_ddestroy)
1662 {
1663 	struct drm_i915_gem_object *obj = vma->obj;
1664 
1665 	GEM_BUG_ON(i915_vma_is_active(vma));
1666 
1667 	spin_lock(&obj->vma.lock);
1668 	list_del(&vma->obj_link);
1669 	if (!RB_EMPTY_NODE(&vma->obj_node))
1670 		rb_erase(&vma->obj_node, &obj->vma.tree);
1671 
1672 	spin_unlock(&obj->vma.lock);
1673 
1674 	spin_lock_irq(&gt->closed_lock);
1675 	__i915_vma_remove_closed(vma);
1676 	spin_unlock_irq(&gt->closed_lock);
1677 
1678 	if (vm_ddestroy)
1679 		i915_vm_resv_put(vma->vm);
1680 
1681 	i915_active_fini(&vma->active);
1682 	GEM_WARN_ON(vma->resource);
1683 	i915_vma_free(vma);
1684 }
1685 
1686 /**
1687  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1688  * the initial reference.
1689  *
1690  * This function should be called when it's decided the vma isn't needed
1691  * anymore. The caller must assure that it doesn't race with another lookup
1692  * plus destroy, typically by taking an appropriate reference.
1693  *
1694  * Current callsites are
1695  * - __i915_gem_object_pages_fini()
1696  * - __i915_vm_close() - Blocks the above function by taking a reference on
1697  * the object.
1698  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1699  * on the vm and a reference on the object. Also takes the object lock so
1700  * destruction from __i915_vma_parked() can be blocked by holding the
1701  * object lock. Since the object lock is only allowed from within i915 with
1702  * an object refcount, holding the object lock also implicitly blocks the
1703  * vma freeing from __i915_gem_object_pages_fini().
1704  *
1705  * Because of locks taken during destruction, a vma is also guaranteed to
1706  * stay alive while the following locks are held if it was looked up while
1707  * holding one of the locks:
1708  * - vm->mutex
1709  * - obj->vma.lock
1710  * - gt->closed_lock
1711  */
1712 void i915_vma_destroy_locked(struct i915_vma *vma)
1713 {
1714 	lockdep_assert_held(&vma->vm->mutex);
1715 
1716 	force_unbind(vma);
1717 	list_del_init(&vma->vm_link);
1718 	release_references(vma, vma->vm->gt, false);
1719 }
1720 
1721 void i915_vma_destroy(struct i915_vma *vma)
1722 {
1723 	struct intel_gt *gt;
1724 	bool vm_ddestroy;
1725 
1726 	mutex_lock(&vma->vm->mutex);
1727 	force_unbind(vma);
1728 	list_del_init(&vma->vm_link);
1729 	vm_ddestroy = vma->vm_ddestroy;
1730 	vma->vm_ddestroy = false;
1731 
1732 	/* vma->vm may be freed when releasing vma->vm->mutex. */
1733 	gt = vma->vm->gt;
1734 	mutex_unlock(&vma->vm->mutex);
1735 	release_references(vma, gt, vm_ddestroy);
1736 }
1737 
1738 void i915_vma_parked(struct intel_gt *gt)
1739 {
1740 	struct i915_vma *vma, *next;
1741 	LIST_HEAD(closed);
1742 
1743 	spin_lock_irq(&gt->closed_lock);
1744 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1745 		struct drm_i915_gem_object *obj = vma->obj;
1746 		struct i915_address_space *vm = vma->vm;
1747 
1748 		/* XXX All to avoid keeping a reference on i915_vma itself */
1749 
1750 		if (!kref_get_unless_zero(&obj->base.refcount))
1751 			continue;
1752 
1753 		if (!i915_vm_tryget(vm)) {
1754 			i915_gem_object_put(obj);
1755 			continue;
1756 		}
1757 
1758 		list_move(&vma->closed_link, &closed);
1759 	}
1760 	spin_unlock_irq(&gt->closed_lock);
1761 
1762 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1763 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1764 		struct drm_i915_gem_object *obj = vma->obj;
1765 		struct i915_address_space *vm = vma->vm;
1766 
1767 		if (i915_gem_object_trylock(obj, NULL)) {
1768 			INIT_LIST_HEAD(&vma->closed_link);
1769 			i915_vma_destroy(vma);
1770 			i915_gem_object_unlock(obj);
1771 		} else {
1772 			/* back you go.. */
1773 			spin_lock_irq(&gt->closed_lock);
1774 			list_add(&vma->closed_link, &gt->closed_vma);
1775 			spin_unlock_irq(&gt->closed_lock);
1776 		}
1777 
1778 		i915_gem_object_put(obj);
1779 		i915_vm_put(vm);
1780 	}
1781 }
1782 
1783 static void __i915_vma_iounmap(struct i915_vma *vma)
1784 {
1785 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1786 
1787 	if (vma->iomap == NULL)
1788 		return;
1789 
1790 	if (page_unmask_bits(vma->iomap))
1791 		__i915_gem_object_release_map(vma->obj);
1792 	else
1793 		io_mapping_unmap(vma->iomap);
1794 	vma->iomap = NULL;
1795 }
1796 
1797 void i915_vma_revoke_mmap(struct i915_vma *vma)
1798 {
1799 	struct drm_vma_offset_node *node;
1800 	u64 vma_offset;
1801 
1802 	if (!i915_vma_has_userfault(vma))
1803 		return;
1804 
1805 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1806 	GEM_BUG_ON(!vma->obj->userfault_count);
1807 
1808 	node = &vma->mmo->vma_node;
1809 	vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1810 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1811 			    drm_vma_node_offset_addr(node) + vma_offset,
1812 			    vma->size,
1813 			    1);
1814 
1815 	i915_vma_unset_userfault(vma);
1816 	if (!--vma->obj->userfault_count)
1817 		list_del(&vma->obj->userfault_link);
1818 }
1819 
1820 static int
1821 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1822 {
1823 	return __i915_request_await_exclusive(rq, &vma->active);
1824 }
1825 
1826 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1827 {
1828 	int err;
1829 
1830 	/* Wait for the vma to be bound before we start! */
1831 	err = __i915_request_await_bind(rq, vma);
1832 	if (err)
1833 		return err;
1834 
1835 	return i915_active_add_request(&vma->active, rq);
1836 }
1837 
1838 int _i915_vma_move_to_active(struct i915_vma *vma,
1839 			     struct i915_request *rq,
1840 			     struct dma_fence *fence,
1841 			     unsigned int flags)
1842 {
1843 	struct drm_i915_gem_object *obj = vma->obj;
1844 	int err;
1845 
1846 	assert_object_held(obj);
1847 
1848 	GEM_BUG_ON(!vma->pages);
1849 
1850 	err = __i915_vma_move_to_active(vma, rq);
1851 	if (unlikely(err))
1852 		return err;
1853 
1854 	/*
1855 	 * Reserve fences slot early to prevent an allocation after preparing
1856 	 * the workload and associating fences with dma_resv.
1857 	 */
1858 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1859 		struct dma_fence *curr;
1860 		int idx;
1861 
1862 		dma_fence_array_for_each(curr, idx, fence)
1863 			;
1864 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1865 		if (unlikely(err))
1866 			return err;
1867 	}
1868 
1869 	if (flags & EXEC_OBJECT_WRITE) {
1870 		struct intel_frontbuffer *front;
1871 
1872 		front = __intel_frontbuffer_get(obj);
1873 		if (unlikely(front)) {
1874 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1875 				i915_active_add_request(&front->write, rq);
1876 			intel_frontbuffer_put(front);
1877 		}
1878 	}
1879 
1880 	if (fence) {
1881 		struct dma_fence *curr;
1882 		enum dma_resv_usage usage;
1883 		int idx;
1884 
1885 		if (flags & EXEC_OBJECT_WRITE) {
1886 			usage = DMA_RESV_USAGE_WRITE;
1887 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1888 			obj->read_domains = 0;
1889 		} else {
1890 			usage = DMA_RESV_USAGE_READ;
1891 			obj->write_domain = 0;
1892 		}
1893 
1894 		dma_fence_array_for_each(curr, idx, fence)
1895 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1896 	}
1897 
1898 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1899 		i915_active_add_request(&vma->fence->active, rq);
1900 
1901 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1902 	obj->mm.dirty = true;
1903 
1904 	GEM_BUG_ON(!i915_vma_is_active(vma));
1905 	return 0;
1906 }
1907 
1908 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1909 {
1910 	struct i915_vma_resource *vma_res = vma->resource;
1911 	struct dma_fence *unbind_fence;
1912 
1913 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1914 	assert_vma_held_evict(vma);
1915 
1916 	if (i915_vma_is_map_and_fenceable(vma)) {
1917 		/* Force a pagefault for domain tracking on next user access */
1918 		i915_vma_revoke_mmap(vma);
1919 
1920 		/*
1921 		 * Check that we have flushed all writes through the GGTT
1922 		 * before the unbind, other due to non-strict nature of those
1923 		 * indirect writes they may end up referencing the GGTT PTE
1924 		 * after the unbind.
1925 		 *
1926 		 * Note that we may be concurrently poking at the GGTT_WRITE
1927 		 * bit from set-domain, as we mark all GGTT vma associated
1928 		 * with an object. We know this is for another vma, as we
1929 		 * are currently unbinding this one -- so if this vma will be
1930 		 * reused, it will be refaulted and have its dirty bit set
1931 		 * before the next write.
1932 		 */
1933 		i915_vma_flush_writes(vma);
1934 
1935 		/* release the fence reg _after_ flushing */
1936 		i915_vma_revoke_fence(vma);
1937 
1938 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1939 	}
1940 
1941 	__i915_vma_iounmap(vma);
1942 
1943 	GEM_BUG_ON(vma->fence);
1944 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1945 
1946 	/* Object backend must be async capable. */
1947 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1948 
1949 	/* If vm is not open, unbind is a nop. */
1950 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1951 		kref_read(&vma->vm->ref);
1952 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1953 		vma->vm->skip_pte_rewrite;
1954 	trace_i915_vma_unbind(vma);
1955 
1956 	if (async)
1957 		unbind_fence = i915_vma_resource_unbind(vma_res,
1958 							&vma->obj->mm.tlb);
1959 	else
1960 		unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
1961 
1962 	vma->resource = NULL;
1963 
1964 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1965 		   &vma->flags);
1966 
1967 	i915_vma_detach(vma);
1968 
1969 	if (!async) {
1970 		if (unbind_fence) {
1971 			dma_fence_wait(unbind_fence, false);
1972 			dma_fence_put(unbind_fence);
1973 			unbind_fence = NULL;
1974 		}
1975 		vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb);
1976 	}
1977 
1978 	/*
1979 	 * Binding itself may not have completed until the unbind fence signals,
1980 	 * so don't drop the pages until that happens, unless the resource is
1981 	 * async_capable.
1982 	 */
1983 
1984 	vma_unbind_pages(vma);
1985 	return unbind_fence;
1986 }
1987 
1988 int __i915_vma_unbind(struct i915_vma *vma)
1989 {
1990 	int ret;
1991 
1992 	lockdep_assert_held(&vma->vm->mutex);
1993 	assert_vma_held_evict(vma);
1994 
1995 	if (!drm_mm_node_allocated(&vma->node))
1996 		return 0;
1997 
1998 	if (i915_vma_is_pinned(vma)) {
1999 		vma_print_allocator(vma, "is pinned");
2000 		return -EAGAIN;
2001 	}
2002 
2003 	/*
2004 	 * After confirming that no one else is pinning this vma, wait for
2005 	 * any laggards who may have crept in during the wait (through
2006 	 * a residual pin skipping the vm->mutex) to complete.
2007 	 */
2008 	ret = i915_vma_sync(vma);
2009 	if (ret)
2010 		return ret;
2011 
2012 	GEM_BUG_ON(i915_vma_is_active(vma));
2013 	__i915_vma_evict(vma, false);
2014 
2015 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2016 	return 0;
2017 }
2018 
2019 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2020 {
2021 	struct dma_fence *fence;
2022 
2023 	lockdep_assert_held(&vma->vm->mutex);
2024 
2025 	if (!drm_mm_node_allocated(&vma->node))
2026 		return NULL;
2027 
2028 	if (i915_vma_is_pinned(vma) ||
2029 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2030 		return ERR_PTR(-EAGAIN);
2031 
2032 	/*
2033 	 * We probably need to replace this with awaiting the fences of the
2034 	 * object's dma_resv when the vma active goes away. When doing that
2035 	 * we need to be careful to not add the vma_resource unbind fence
2036 	 * immediately to the object's dma_resv, because then unbinding
2037 	 * the next vma from the object, in case there are many, will
2038 	 * actually await the unbinding of the previous vmas, which is
2039 	 * undesirable.
2040 	 */
2041 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2042 				       I915_ACTIVE_AWAIT_EXCL |
2043 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2044 		return ERR_PTR(-EBUSY);
2045 	}
2046 
2047 	fence = __i915_vma_evict(vma, true);
2048 
2049 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2050 
2051 	return fence;
2052 }
2053 
2054 int i915_vma_unbind(struct i915_vma *vma)
2055 {
2056 	struct i915_address_space *vm = vma->vm;
2057 	intel_wakeref_t wakeref = 0;
2058 	int err;
2059 
2060 	assert_object_held_shared(vma->obj);
2061 
2062 	/* Optimistic wait before taking the mutex */
2063 	err = i915_vma_sync(vma);
2064 	if (err)
2065 		return err;
2066 
2067 	if (!drm_mm_node_allocated(&vma->node))
2068 		return 0;
2069 
2070 	if (i915_vma_is_pinned(vma)) {
2071 		vma_print_allocator(vma, "is pinned");
2072 		return -EAGAIN;
2073 	}
2074 
2075 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2076 		/* XXX not always required: nop_clear_range */
2077 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2078 
2079 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2080 	if (err)
2081 		goto out_rpm;
2082 
2083 	err = __i915_vma_unbind(vma);
2084 	mutex_unlock(&vm->mutex);
2085 
2086 out_rpm:
2087 	if (wakeref)
2088 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2089 	return err;
2090 }
2091 
2092 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2093 {
2094 	struct drm_i915_gem_object *obj = vma->obj;
2095 	struct i915_address_space *vm = vma->vm;
2096 	intel_wakeref_t wakeref = 0;
2097 	struct dma_fence *fence;
2098 	int err;
2099 
2100 	/*
2101 	 * We need the dma-resv lock since we add the
2102 	 * unbind fence to the dma-resv object.
2103 	 */
2104 	assert_object_held(obj);
2105 
2106 	if (!drm_mm_node_allocated(&vma->node))
2107 		return 0;
2108 
2109 	if (i915_vma_is_pinned(vma)) {
2110 		vma_print_allocator(vma, "is pinned");
2111 		return -EAGAIN;
2112 	}
2113 
2114 	if (!obj->mm.rsgt)
2115 		return -EBUSY;
2116 
2117 	err = dma_resv_reserve_fences(obj->base.resv, 1);
2118 	if (err)
2119 		return -EBUSY;
2120 
2121 	/*
2122 	 * It would be great if we could grab this wakeref from the
2123 	 * async unbind work if needed, but we can't because it uses
2124 	 * kmalloc and it's in the dma-fence signalling critical path.
2125 	 */
2126 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2127 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2128 
2129 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2130 		err = -EBUSY;
2131 		goto out_rpm;
2132 	} else if (!trylock_vm) {
2133 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2134 		if (err)
2135 			goto out_rpm;
2136 	}
2137 
2138 	fence = __i915_vma_unbind_async(vma);
2139 	mutex_unlock(&vm->mutex);
2140 	if (IS_ERR_OR_NULL(fence)) {
2141 		err = PTR_ERR_OR_ZERO(fence);
2142 		goto out_rpm;
2143 	}
2144 
2145 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2146 	dma_fence_put(fence);
2147 
2148 out_rpm:
2149 	if (wakeref)
2150 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2151 	return err;
2152 }
2153 
2154 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2155 {
2156 	int err;
2157 
2158 	i915_gem_object_lock(vma->obj, NULL);
2159 	err = i915_vma_unbind(vma);
2160 	i915_gem_object_unlock(vma->obj);
2161 
2162 	return err;
2163 }
2164 
2165 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2166 {
2167 	i915_gem_object_make_unshrinkable(vma->obj);
2168 	return vma;
2169 }
2170 
2171 void i915_vma_make_shrinkable(struct i915_vma *vma)
2172 {
2173 	i915_gem_object_make_shrinkable(vma->obj);
2174 }
2175 
2176 void i915_vma_make_purgeable(struct i915_vma *vma)
2177 {
2178 	i915_gem_object_make_purgeable(vma->obj);
2179 }
2180 
2181 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2182 #include "selftests/i915_vma.c"
2183 #endif
2184 
2185 void i915_vma_module_exit(void)
2186 {
2187 	kmem_cache_destroy(slab_vmas);
2188 }
2189 
2190 int __init i915_vma_module_init(void)
2191 {
2192 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2193 	if (!slab_vmas)
2194 		return -ENOMEM;
2195 
2196 	return 0;
2197 }
2198