xref: /linux/drivers/gpu/drm/i915/i915_vma.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/sched/mm.h>
26 #include <linux/dma-fence-array.h>
27 #include <drm/drm_gem.h>
28 
29 #include "display/intel_frontbuffer.h"
30 #include "gem/i915_gem_lmem.h"
31 #include "gem/i915_gem_tiling.h"
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_heartbeat.h"
34 #include "gt/intel_gt.h"
35 #include "gt/intel_gt_requests.h"
36 
37 #include "i915_drv.h"
38 #include "i915_gem_evict.h"
39 #include "i915_sw_fence_work.h"
40 #include "i915_trace.h"
41 #include "i915_vma.h"
42 #include "i915_vma_resource.h"
43 
44 static inline void assert_vma_held_evict(const struct i915_vma *vma)
45 {
46 	/*
47 	 * We may be forced to unbind when the vm is dead, to clean it up.
48 	 * This is the only exception to the requirement of the object lock
49 	 * being held.
50 	 */
51 	if (kref_read(&vma->vm->ref))
52 		assert_object_held_shared(vma->obj);
53 }
54 
55 static struct kmem_cache *slab_vmas;
56 
57 static struct i915_vma *i915_vma_alloc(void)
58 {
59 	return kmem_cache_zalloc(slab_vmas, GFP_KERNEL);
60 }
61 
62 static void i915_vma_free(struct i915_vma *vma)
63 {
64 	return kmem_cache_free(slab_vmas, vma);
65 }
66 
67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
68 
69 #include <linux/stackdepot.h>
70 
71 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
72 {
73 	char buf[512];
74 
75 	if (!vma->node.stack) {
76 		DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n",
77 				 vma->node.start, vma->node.size, reason);
78 		return;
79 	}
80 
81 	stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
82 	DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n",
83 			 vma->node.start, vma->node.size, reason, buf);
84 }
85 
86 #else
87 
88 static void vma_print_allocator(struct i915_vma *vma, const char *reason)
89 {
90 }
91 
92 #endif
93 
94 static inline struct i915_vma *active_to_vma(struct i915_active *ref)
95 {
96 	return container_of(ref, typeof(struct i915_vma), active);
97 }
98 
99 static int __i915_vma_active(struct i915_active *ref)
100 {
101 	return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT;
102 }
103 
104 static void __i915_vma_retire(struct i915_active *ref)
105 {
106 	i915_vma_put(active_to_vma(ref));
107 }
108 
109 static struct i915_vma *
110 vma_create(struct drm_i915_gem_object *obj,
111 	   struct i915_address_space *vm,
112 	   const struct i915_ggtt_view *view)
113 {
114 	struct i915_vma *pos = ERR_PTR(-E2BIG);
115 	struct i915_vma *vma;
116 	struct rb_node *rb, **p;
117 	int err;
118 
119 	/* The aliasing_ppgtt should never be used directly! */
120 	GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
121 
122 	vma = i915_vma_alloc();
123 	if (vma == NULL)
124 		return ERR_PTR(-ENOMEM);
125 
126 	vma->ops = &vm->vma_ops;
127 	vma->obj = obj;
128 	vma->size = obj->base.size;
129 	vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
130 
131 	i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
132 
133 	/* Declare ourselves safe for use inside shrinkers */
134 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
135 		fs_reclaim_acquire(GFP_KERNEL);
136 		might_lock(&vma->active.mutex);
137 		fs_reclaim_release(GFP_KERNEL);
138 	}
139 
140 	INIT_LIST_HEAD(&vma->closed_link);
141 	INIT_LIST_HEAD(&vma->obj_link);
142 	RB_CLEAR_NODE(&vma->obj_node);
143 
144 	if (view && view->type != I915_GGTT_VIEW_NORMAL) {
145 		vma->ggtt_view = *view;
146 		if (view->type == I915_GGTT_VIEW_PARTIAL) {
147 			GEM_BUG_ON(range_overflows_t(u64,
148 						     view->partial.offset,
149 						     view->partial.size,
150 						     obj->base.size >> PAGE_SHIFT));
151 			vma->size = view->partial.size;
152 			vma->size <<= PAGE_SHIFT;
153 			GEM_BUG_ON(vma->size > obj->base.size);
154 		} else if (view->type == I915_GGTT_VIEW_ROTATED) {
155 			vma->size = intel_rotation_info_size(&view->rotated);
156 			vma->size <<= PAGE_SHIFT;
157 		} else if (view->type == I915_GGTT_VIEW_REMAPPED) {
158 			vma->size = intel_remapped_info_size(&view->remapped);
159 			vma->size <<= PAGE_SHIFT;
160 		}
161 	}
162 
163 	if (unlikely(vma->size > vm->total))
164 		goto err_vma;
165 
166 	GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
167 
168 	err = mutex_lock_interruptible(&vm->mutex);
169 	if (err) {
170 		pos = ERR_PTR(err);
171 		goto err_vma;
172 	}
173 
174 	vma->vm = vm;
175 	list_add_tail(&vma->vm_link, &vm->unbound_list);
176 
177 	spin_lock(&obj->vma.lock);
178 	if (i915_is_ggtt(vm)) {
179 		if (unlikely(overflows_type(vma->size, u32)))
180 			goto err_unlock;
181 
182 		vma->fence_size = i915_gem_fence_size(vm->i915, vma->size,
183 						      i915_gem_object_get_tiling(obj),
184 						      i915_gem_object_get_stride(obj));
185 		if (unlikely(vma->fence_size < vma->size || /* overflow */
186 			     vma->fence_size > vm->total))
187 			goto err_unlock;
188 
189 		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
190 
191 		vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size,
192 								i915_gem_object_get_tiling(obj),
193 								i915_gem_object_get_stride(obj));
194 		GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
195 
196 		__set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
197 	}
198 
199 	rb = NULL;
200 	p = &obj->vma.tree.rb_node;
201 	while (*p) {
202 		long cmp;
203 
204 		rb = *p;
205 		pos = rb_entry(rb, struct i915_vma, obj_node);
206 
207 		/*
208 		 * If the view already exists in the tree, another thread
209 		 * already created a matching vma, so return the older instance
210 		 * and dispose of ours.
211 		 */
212 		cmp = i915_vma_compare(pos, vm, view);
213 		if (cmp < 0)
214 			p = &rb->rb_right;
215 		else if (cmp > 0)
216 			p = &rb->rb_left;
217 		else
218 			goto err_unlock;
219 	}
220 	rb_link_node(&vma->obj_node, rb, p);
221 	rb_insert_color(&vma->obj_node, &obj->vma.tree);
222 
223 	if (i915_vma_is_ggtt(vma))
224 		/*
225 		 * We put the GGTT vma at the start of the vma-list, followed
226 		 * by the ppGGTT vma. This allows us to break early when
227 		 * iterating over only the GGTT vma for an object, see
228 		 * for_each_ggtt_vma()
229 		 */
230 		list_add(&vma->obj_link, &obj->vma.list);
231 	else
232 		list_add_tail(&vma->obj_link, &obj->vma.list);
233 
234 	spin_unlock(&obj->vma.lock);
235 	mutex_unlock(&vm->mutex);
236 
237 	return vma;
238 
239 err_unlock:
240 	spin_unlock(&obj->vma.lock);
241 	list_del_init(&vma->vm_link);
242 	mutex_unlock(&vm->mutex);
243 err_vma:
244 	i915_vma_free(vma);
245 	return pos;
246 }
247 
248 static struct i915_vma *
249 i915_vma_lookup(struct drm_i915_gem_object *obj,
250 	   struct i915_address_space *vm,
251 	   const struct i915_ggtt_view *view)
252 {
253 	struct rb_node *rb;
254 
255 	rb = obj->vma.tree.rb_node;
256 	while (rb) {
257 		struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
258 		long cmp;
259 
260 		cmp = i915_vma_compare(vma, vm, view);
261 		if (cmp == 0)
262 			return vma;
263 
264 		if (cmp < 0)
265 			rb = rb->rb_right;
266 		else
267 			rb = rb->rb_left;
268 	}
269 
270 	return NULL;
271 }
272 
273 /**
274  * i915_vma_instance - return the singleton instance of the VMA
275  * @obj: parent &struct drm_i915_gem_object to be mapped
276  * @vm: address space in which the mapping is located
277  * @view: additional mapping requirements
278  *
279  * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
280  * the same @view characteristics. If a match is not found, one is created.
281  * Once created, the VMA is kept until either the object is freed, or the
282  * address space is closed.
283  *
284  * Returns the vma, or an error pointer.
285  */
286 struct i915_vma *
287 i915_vma_instance(struct drm_i915_gem_object *obj,
288 		  struct i915_address_space *vm,
289 		  const struct i915_ggtt_view *view)
290 {
291 	struct i915_vma *vma;
292 
293 	GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
294 	GEM_BUG_ON(!kref_read(&vm->ref));
295 
296 	spin_lock(&obj->vma.lock);
297 	vma = i915_vma_lookup(obj, vm, view);
298 	spin_unlock(&obj->vma.lock);
299 
300 	/* vma_create() will resolve the race if another creates the vma */
301 	if (unlikely(!vma))
302 		vma = vma_create(obj, vm, view);
303 
304 	GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
305 	return vma;
306 }
307 
308 struct i915_vma_work {
309 	struct dma_fence_work base;
310 	struct i915_address_space *vm;
311 	struct i915_vm_pt_stash stash;
312 	struct i915_vma_resource *vma_res;
313 	struct drm_i915_gem_object *pinned;
314 	struct i915_sw_dma_fence_cb cb;
315 	enum i915_cache_level cache_level;
316 	unsigned int flags;
317 };
318 
319 static void __vma_bind(struct dma_fence_work *work)
320 {
321 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
322 	struct i915_vma_resource *vma_res = vw->vma_res;
323 
324 	vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
325 			       vma_res, vw->cache_level, vw->flags);
326 
327 }
328 
329 static void __vma_release(struct dma_fence_work *work)
330 {
331 	struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
332 
333 	if (vw->pinned)
334 		i915_gem_object_put(vw->pinned);
335 
336 	i915_vm_free_pt_stash(vw->vm, &vw->stash);
337 	if (vw->vma_res)
338 		i915_vma_resource_put(vw->vma_res);
339 }
340 
341 static const struct dma_fence_work_ops bind_ops = {
342 	.name = "bind",
343 	.work = __vma_bind,
344 	.release = __vma_release,
345 };
346 
347 struct i915_vma_work *i915_vma_work(void)
348 {
349 	struct i915_vma_work *vw;
350 
351 	vw = kzalloc(sizeof(*vw), GFP_KERNEL);
352 	if (!vw)
353 		return NULL;
354 
355 	dma_fence_work_init(&vw->base, &bind_ops);
356 	vw->base.dma.error = -EAGAIN; /* disable the worker by default */
357 
358 	return vw;
359 }
360 
361 int i915_vma_wait_for_bind(struct i915_vma *vma)
362 {
363 	int err = 0;
364 
365 	if (rcu_access_pointer(vma->active.excl.fence)) {
366 		struct dma_fence *fence;
367 
368 		rcu_read_lock();
369 		fence = dma_fence_get_rcu_safe(&vma->active.excl.fence);
370 		rcu_read_unlock();
371 		if (fence) {
372 			err = dma_fence_wait(fence, true);
373 			dma_fence_put(fence);
374 		}
375 	}
376 
377 	return err;
378 }
379 
380 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
381 static int i915_vma_verify_bind_complete(struct i915_vma *vma)
382 {
383 	struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
384 	int err;
385 
386 	if (!fence)
387 		return 0;
388 
389 	if (dma_fence_is_signaled(fence))
390 		err = fence->error;
391 	else
392 		err = -EBUSY;
393 
394 	dma_fence_put(fence);
395 
396 	return err;
397 }
398 #else
399 #define i915_vma_verify_bind_complete(_vma) 0
400 #endif
401 
402 I915_SELFTEST_EXPORT void
403 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
404 				struct i915_vma *vma)
405 {
406 	struct drm_i915_gem_object *obj = vma->obj;
407 
408 	i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes,
409 			       obj->mm.rsgt, i915_gem_object_is_readonly(obj),
410 			       i915_gem_object_is_lmem(obj), obj->mm.region,
411 			       vma->ops, vma->private, vma->node.start,
412 			       vma->node.size, vma->size);
413 }
414 
415 /**
416  * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
417  * @vma: VMA to map
418  * @cache_level: mapping cache level
419  * @flags: flags like global or local mapping
420  * @work: preallocated worker for allocating and binding the PTE
421  * @vma_res: pointer to a preallocated vma resource. The resource is either
422  * consumed or freed.
423  *
424  * DMA addresses are taken from the scatter-gather table of this object (or of
425  * this VMA in case of non-default GGTT views) and PTE entries set up.
426  * Note that DMA addresses are also the only part of the SG table we care about.
427  */
428 int i915_vma_bind(struct i915_vma *vma,
429 		  enum i915_cache_level cache_level,
430 		  u32 flags,
431 		  struct i915_vma_work *work,
432 		  struct i915_vma_resource *vma_res)
433 {
434 	u32 bind_flags;
435 	u32 vma_flags;
436 	int ret;
437 
438 	lockdep_assert_held(&vma->vm->mutex);
439 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
440 	GEM_BUG_ON(vma->size > vma->node.size);
441 
442 	if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
443 					      vma->node.size,
444 					      vma->vm->total))) {
445 		i915_vma_resource_free(vma_res);
446 		return -ENODEV;
447 	}
448 
449 	if (GEM_DEBUG_WARN_ON(!flags)) {
450 		i915_vma_resource_free(vma_res);
451 		return -EINVAL;
452 	}
453 
454 	bind_flags = flags;
455 	bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
456 
457 	vma_flags = atomic_read(&vma->flags);
458 	vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
459 
460 	bind_flags &= ~vma_flags;
461 	if (bind_flags == 0) {
462 		i915_vma_resource_free(vma_res);
463 		return 0;
464 	}
465 
466 	GEM_BUG_ON(!atomic_read(&vma->pages_count));
467 
468 	/* Wait for or await async unbinds touching our range */
469 	if (work && bind_flags & vma->vm->bind_async_flags)
470 		ret = i915_vma_resource_bind_dep_await(vma->vm,
471 						       &work->base.chain,
472 						       vma->node.start,
473 						       vma->node.size,
474 						       true,
475 						       GFP_NOWAIT |
476 						       __GFP_RETRY_MAYFAIL |
477 						       __GFP_NOWARN);
478 	else
479 		ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start,
480 						      vma->node.size, true);
481 	if (ret) {
482 		i915_vma_resource_free(vma_res);
483 		return ret;
484 	}
485 
486 	if (vma->resource || !vma_res) {
487 		/* Rebinding with an additional I915_VMA_*_BIND */
488 		GEM_WARN_ON(!vma_flags);
489 		i915_vma_resource_free(vma_res);
490 	} else {
491 		i915_vma_resource_init_from_vma(vma_res, vma);
492 		vma->resource = vma_res;
493 	}
494 	trace_i915_vma_bind(vma, bind_flags);
495 	if (work && bind_flags & vma->vm->bind_async_flags) {
496 		struct dma_fence *prev;
497 
498 		work->vma_res = i915_vma_resource_get(vma->resource);
499 		work->cache_level = cache_level;
500 		work->flags = bind_flags;
501 
502 		/*
503 		 * Note we only want to chain up to the migration fence on
504 		 * the pages (not the object itself). As we don't track that,
505 		 * yet, we have to use the exclusive fence instead.
506 		 *
507 		 * Also note that we do not want to track the async vma as
508 		 * part of the obj->resv->excl_fence as it only affects
509 		 * execution and not content or object's backing store lifetime.
510 		 */
511 		prev = i915_active_set_exclusive(&vma->active, &work->base.dma);
512 		if (prev) {
513 			__i915_sw_fence_await_dma_fence(&work->base.chain,
514 							prev,
515 							&work->cb);
516 			dma_fence_put(prev);
517 		}
518 
519 		work->base.dma.error = 0; /* enable the queue_work() */
520 
521 		/*
522 		 * If we don't have the refcounted pages list, keep a reference
523 		 * on the object to avoid waiting for the async bind to
524 		 * complete in the object destruction path.
525 		 */
526 		if (!work->vma_res->bi.pages_rsgt)
527 			work->pinned = i915_gem_object_get(vma->obj);
528 	} else {
529 		ret = i915_gem_object_wait_moving_fence(vma->obj, true);
530 		if (ret) {
531 			i915_vma_resource_free(vma->resource);
532 			vma->resource = NULL;
533 
534 			return ret;
535 		}
536 		vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level,
537 				   bind_flags);
538 	}
539 
540 	set_bit(I915_BO_WAS_BOUND_BIT, &vma->obj->flags);
541 
542 	atomic_or(bind_flags, &vma->flags);
543 	return 0;
544 }
545 
546 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
547 {
548 	void __iomem *ptr;
549 	int err;
550 
551 	if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
552 		return IOMEM_ERR_PTR(-EINVAL);
553 
554 	if (!i915_gem_object_is_lmem(vma->obj)) {
555 		if (GEM_WARN_ON(!i915_vma_is_map_and_fenceable(vma))) {
556 			err = -ENODEV;
557 			goto err;
558 		}
559 	}
560 
561 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
562 	GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
563 	GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
564 
565 	ptr = READ_ONCE(vma->iomap);
566 	if (ptr == NULL) {
567 		/*
568 		 * TODO: consider just using i915_gem_object_pin_map() for lmem
569 		 * instead, which already supports mapping non-contiguous chunks
570 		 * of pages, that way we can also drop the
571 		 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
572 		 */
573 		if (i915_gem_object_is_lmem(vma->obj))
574 			ptr = i915_gem_object_lmem_io_map(vma->obj, 0,
575 							  vma->obj->base.size);
576 		else
577 			ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap,
578 						vma->node.start,
579 						vma->node.size);
580 		if (ptr == NULL) {
581 			err = -ENOMEM;
582 			goto err;
583 		}
584 
585 		if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
586 			io_mapping_unmap(ptr);
587 			ptr = vma->iomap;
588 		}
589 	}
590 
591 	__i915_vma_pin(vma);
592 
593 	err = i915_vma_pin_fence(vma);
594 	if (err)
595 		goto err_unpin;
596 
597 	i915_vma_set_ggtt_write(vma);
598 
599 	/* NB Access through the GTT requires the device to be awake. */
600 	return ptr;
601 
602 err_unpin:
603 	__i915_vma_unpin(vma);
604 err:
605 	return IOMEM_ERR_PTR(err);
606 }
607 
608 void i915_vma_flush_writes(struct i915_vma *vma)
609 {
610 	if (i915_vma_unset_ggtt_write(vma))
611 		intel_gt_flush_ggtt_writes(vma->vm->gt);
612 }
613 
614 void i915_vma_unpin_iomap(struct i915_vma *vma)
615 {
616 	GEM_BUG_ON(vma->iomap == NULL);
617 
618 	i915_vma_flush_writes(vma);
619 
620 	i915_vma_unpin_fence(vma);
621 	i915_vma_unpin(vma);
622 }
623 
624 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
625 {
626 	struct i915_vma *vma;
627 	struct drm_i915_gem_object *obj;
628 
629 	vma = fetch_and_zero(p_vma);
630 	if (!vma)
631 		return;
632 
633 	obj = vma->obj;
634 	GEM_BUG_ON(!obj);
635 
636 	i915_vma_unpin(vma);
637 
638 	if (flags & I915_VMA_RELEASE_MAP)
639 		i915_gem_object_unpin_map(obj);
640 
641 	i915_gem_object_put(obj);
642 }
643 
644 bool i915_vma_misplaced(const struct i915_vma *vma,
645 			u64 size, u64 alignment, u64 flags)
646 {
647 	if (!drm_mm_node_allocated(&vma->node))
648 		return false;
649 
650 	if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
651 		return true;
652 
653 	if (vma->node.size < size)
654 		return true;
655 
656 	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
657 	if (alignment && !IS_ALIGNED(vma->node.start, alignment))
658 		return true;
659 
660 	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
661 		return true;
662 
663 	if (flags & PIN_OFFSET_BIAS &&
664 	    vma->node.start < (flags & PIN_OFFSET_MASK))
665 		return true;
666 
667 	if (flags & PIN_OFFSET_FIXED &&
668 	    vma->node.start != (flags & PIN_OFFSET_MASK))
669 		return true;
670 
671 	return false;
672 }
673 
674 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
675 {
676 	bool mappable, fenceable;
677 
678 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
679 	GEM_BUG_ON(!vma->fence_size);
680 
681 	fenceable = (vma->node.size >= vma->fence_size &&
682 		     IS_ALIGNED(vma->node.start, vma->fence_alignment));
683 
684 	mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end;
685 
686 	if (mappable && fenceable)
687 		set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
688 	else
689 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
690 }
691 
692 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
693 {
694 	struct drm_mm_node *node = &vma->node;
695 	struct drm_mm_node *other;
696 
697 	/*
698 	 * On some machines we have to be careful when putting differing types
699 	 * of snoopable memory together to avoid the prefetcher crossing memory
700 	 * domains and dying. During vm initialisation, we decide whether or not
701 	 * these constraints apply and set the drm_mm.color_adjust
702 	 * appropriately.
703 	 */
704 	if (!i915_vm_has_cache_coloring(vma->vm))
705 		return true;
706 
707 	/* Only valid to be called on an already inserted vma */
708 	GEM_BUG_ON(!drm_mm_node_allocated(node));
709 	GEM_BUG_ON(list_empty(&node->node_list));
710 
711 	other = list_prev_entry(node, node_list);
712 	if (i915_node_color_differs(other, color) &&
713 	    !drm_mm_hole_follows(other))
714 		return false;
715 
716 	other = list_next_entry(node, node_list);
717 	if (i915_node_color_differs(other, color) &&
718 	    !drm_mm_hole_follows(node))
719 		return false;
720 
721 	return true;
722 }
723 
724 /**
725  * i915_vma_insert - finds a slot for the vma in its address space
726  * @vma: the vma
727  * @size: requested size in bytes (can be larger than the VMA)
728  * @alignment: required alignment
729  * @flags: mask of PIN_* flags to use
730  *
731  * First we try to allocate some free space that meets the requirements for
732  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
733  * preferrably the oldest idle entry to make room for the new VMA.
734  *
735  * Returns:
736  * 0 on success, negative error code otherwise.
737  */
738 static int
739 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
740 		u64 size, u64 alignment, u64 flags)
741 {
742 	unsigned long color;
743 	u64 start, end;
744 	int ret;
745 
746 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
747 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
748 
749 	size = max(size, vma->size);
750 	alignment = max(alignment, vma->display_alignment);
751 	if (flags & PIN_MAPPABLE) {
752 		size = max_t(typeof(size), size, vma->fence_size);
753 		alignment = max_t(typeof(alignment),
754 				  alignment, vma->fence_alignment);
755 	}
756 
757 	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
758 	GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
759 	GEM_BUG_ON(!is_power_of_2(alignment));
760 
761 	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
762 	GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
763 
764 	end = vma->vm->total;
765 	if (flags & PIN_MAPPABLE)
766 		end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
767 	if (flags & PIN_ZONE_4G)
768 		end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
769 	GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
770 
771 	alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
772 	/*
773 	 * for compact-pt we round up the reservation to prevent
774 	 * any smaller pages being used within the same PDE
775 	 */
776 	if (NEEDS_COMPACT_PT(vma->vm->i915))
777 		size = round_up(size, alignment);
778 
779 	/* If binding the object/GGTT view requires more space than the entire
780 	 * aperture has, reject it early before evicting everything in a vain
781 	 * attempt to find space.
782 	 */
783 	if (size > end) {
784 		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
785 			  size, flags & PIN_MAPPABLE ? "mappable" : "total",
786 			  end);
787 		return -ENOSPC;
788 	}
789 
790 	color = 0;
791 
792 	if (i915_vm_has_cache_coloring(vma->vm))
793 		color = vma->obj->cache_level;
794 
795 	if (flags & PIN_OFFSET_FIXED) {
796 		u64 offset = flags & PIN_OFFSET_MASK;
797 		if (!IS_ALIGNED(offset, alignment) ||
798 		    range_overflows(offset, size, end))
799 			return -EINVAL;
800 
801 		ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node,
802 					   size, offset, color,
803 					   flags);
804 		if (ret)
805 			return ret;
806 	} else {
807 		/*
808 		 * We only support huge gtt pages through the 48b PPGTT,
809 		 * however we also don't want to force any alignment for
810 		 * objects which need to be tightly packed into the low 32bits.
811 		 *
812 		 * Note that we assume that GGTT are limited to 4GiB for the
813 		 * forseeable future. See also i915_ggtt_offset().
814 		 */
815 		if (upper_32_bits(end - 1) &&
816 		    vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
817 			/*
818 			 * We can't mix 64K and 4K PTEs in the same page-table
819 			 * (2M block), and so to avoid the ugliness and
820 			 * complexity of coloring we opt for just aligning 64K
821 			 * objects to 2M.
822 			 */
823 			u64 page_alignment =
824 				rounddown_pow_of_two(vma->page_sizes.sg |
825 						     I915_GTT_PAGE_SIZE_2M);
826 
827 			/*
828 			 * Check we don't expand for the limited Global GTT
829 			 * (mappable aperture is even more precious!). This
830 			 * also checks that we exclude the aliasing-ppgtt.
831 			 */
832 			GEM_BUG_ON(i915_vma_is_ggtt(vma));
833 
834 			alignment = max(alignment, page_alignment);
835 
836 			if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
837 				size = round_up(size, I915_GTT_PAGE_SIZE_2M);
838 		}
839 
840 		ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node,
841 					  size, alignment, color,
842 					  start, end, flags);
843 		if (ret)
844 			return ret;
845 
846 		GEM_BUG_ON(vma->node.start < start);
847 		GEM_BUG_ON(vma->node.start + vma->node.size > end);
848 	}
849 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
850 	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
851 
852 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
853 
854 	return 0;
855 }
856 
857 static void
858 i915_vma_detach(struct i915_vma *vma)
859 {
860 	GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
861 	GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
862 
863 	/*
864 	 * And finally now the object is completely decoupled from this
865 	 * vma, we can drop its hold on the backing storage and allow
866 	 * it to be reaped by the shrinker.
867 	 */
868 	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
869 }
870 
871 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
872 {
873 	unsigned int bound;
874 
875 	bound = atomic_read(&vma->flags);
876 
877 	if (flags & PIN_VALIDATE) {
878 		flags &= I915_VMA_BIND_MASK;
879 
880 		return (flags & bound) == flags;
881 	}
882 
883 	/* with the lock mandatory for unbind, we don't race here */
884 	flags &= I915_VMA_BIND_MASK;
885 	do {
886 		if (unlikely(flags & ~bound))
887 			return false;
888 
889 		if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
890 			return false;
891 
892 		GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
893 	} while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1));
894 
895 	return true;
896 }
897 
898 static struct scatterlist *
899 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
900 	     unsigned int width, unsigned int height,
901 	     unsigned int src_stride, unsigned int dst_stride,
902 	     struct sg_table *st, struct scatterlist *sg)
903 {
904 	unsigned int column, row;
905 	unsigned int src_idx;
906 
907 	for (column = 0; column < width; column++) {
908 		unsigned int left;
909 
910 		src_idx = src_stride * (height - 1) + column + offset;
911 		for (row = 0; row < height; row++) {
912 			st->nents++;
913 			/*
914 			 * We don't need the pages, but need to initialize
915 			 * the entries so the sg list can be happily traversed.
916 			 * The only thing we need are DMA addresses.
917 			 */
918 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
919 			sg_dma_address(sg) =
920 				i915_gem_object_get_dma_address(obj, src_idx);
921 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
922 			sg = sg_next(sg);
923 			src_idx -= src_stride;
924 		}
925 
926 		left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
927 
928 		if (!left)
929 			continue;
930 
931 		st->nents++;
932 
933 		/*
934 		 * The DE ignores the PTEs for the padding tiles, the sg entry
935 		 * here is just a conenience to indicate how many padding PTEs
936 		 * to insert at this spot.
937 		 */
938 		sg_set_page(sg, NULL, left, 0);
939 		sg_dma_address(sg) = 0;
940 		sg_dma_len(sg) = left;
941 		sg = sg_next(sg);
942 	}
943 
944 	return sg;
945 }
946 
947 static noinline struct sg_table *
948 intel_rotate_pages(struct intel_rotation_info *rot_info,
949 		   struct drm_i915_gem_object *obj)
950 {
951 	unsigned int size = intel_rotation_info_size(rot_info);
952 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
953 	struct sg_table *st;
954 	struct scatterlist *sg;
955 	int ret = -ENOMEM;
956 	int i;
957 
958 	/* Allocate target SG list. */
959 	st = kmalloc(sizeof(*st), GFP_KERNEL);
960 	if (!st)
961 		goto err_st_alloc;
962 
963 	ret = sg_alloc_table(st, size, GFP_KERNEL);
964 	if (ret)
965 		goto err_sg_alloc;
966 
967 	st->nents = 0;
968 	sg = st->sgl;
969 
970 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
971 		sg = rotate_pages(obj, rot_info->plane[i].offset,
972 				  rot_info->plane[i].width, rot_info->plane[i].height,
973 				  rot_info->plane[i].src_stride,
974 				  rot_info->plane[i].dst_stride,
975 				  st, sg);
976 
977 	return st;
978 
979 err_sg_alloc:
980 	kfree(st);
981 err_st_alloc:
982 
983 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
984 		obj->base.size, rot_info->plane[0].width,
985 		rot_info->plane[0].height, size);
986 
987 	return ERR_PTR(ret);
988 }
989 
990 static struct scatterlist *
991 add_padding_pages(unsigned int count,
992 		  struct sg_table *st, struct scatterlist *sg)
993 {
994 	st->nents++;
995 
996 	/*
997 	 * The DE ignores the PTEs for the padding tiles, the sg entry
998 	 * here is just a convenience to indicate how many padding PTEs
999 	 * to insert at this spot.
1000 	 */
1001 	sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0);
1002 	sg_dma_address(sg) = 0;
1003 	sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1004 	sg = sg_next(sg);
1005 
1006 	return sg;
1007 }
1008 
1009 static struct scatterlist *
1010 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1011 			      unsigned int offset, unsigned int alignment_pad,
1012 			      unsigned int width, unsigned int height,
1013 			      unsigned int src_stride, unsigned int dst_stride,
1014 			      struct sg_table *st, struct scatterlist *sg,
1015 			      unsigned int *gtt_offset)
1016 {
1017 	unsigned int row;
1018 
1019 	if (!width || !height)
1020 		return sg;
1021 
1022 	if (alignment_pad)
1023 		sg = add_padding_pages(alignment_pad, st, sg);
1024 
1025 	for (row = 0; row < height; row++) {
1026 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1027 
1028 		while (left) {
1029 			dma_addr_t addr;
1030 			unsigned int length;
1031 
1032 			/*
1033 			 * We don't need the pages, but need to initialize
1034 			 * the entries so the sg list can be happily traversed.
1035 			 * The only thing we need are DMA addresses.
1036 			 */
1037 
1038 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1039 
1040 			length = min(left, length);
1041 
1042 			st->nents++;
1043 
1044 			sg_set_page(sg, NULL, length, 0);
1045 			sg_dma_address(sg) = addr;
1046 			sg_dma_len(sg) = length;
1047 			sg = sg_next(sg);
1048 
1049 			offset += length / I915_GTT_PAGE_SIZE;
1050 			left -= length;
1051 		}
1052 
1053 		offset += src_stride - width;
1054 
1055 		left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1056 
1057 		if (!left)
1058 			continue;
1059 
1060 		sg = add_padding_pages(left >> PAGE_SHIFT, st, sg);
1061 	}
1062 
1063 	*gtt_offset += alignment_pad + dst_stride * height;
1064 
1065 	return sg;
1066 }
1067 
1068 static struct scatterlist *
1069 remap_contiguous_pages(struct drm_i915_gem_object *obj,
1070 		       unsigned int obj_offset,
1071 		       unsigned int count,
1072 		       struct sg_table *st, struct scatterlist *sg)
1073 {
1074 	struct scatterlist *iter;
1075 	unsigned int offset;
1076 
1077 	iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1078 	GEM_BUG_ON(!iter);
1079 
1080 	do {
1081 		unsigned int len;
1082 
1083 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1084 			  count << PAGE_SHIFT);
1085 		sg_set_page(sg, NULL, len, 0);
1086 		sg_dma_address(sg) =
1087 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1088 		sg_dma_len(sg) = len;
1089 
1090 		st->nents++;
1091 		count -= len >> PAGE_SHIFT;
1092 		if (count == 0)
1093 			return sg;
1094 
1095 		sg = __sg_next(sg);
1096 		iter = __sg_next(iter);
1097 		offset = 0;
1098 	} while (1);
1099 }
1100 
1101 static struct scatterlist *
1102 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1103 			       unsigned int obj_offset, unsigned int alignment_pad,
1104 			       unsigned int size,
1105 			       struct sg_table *st, struct scatterlist *sg,
1106 			       unsigned int *gtt_offset)
1107 {
1108 	if (!size)
1109 		return sg;
1110 
1111 	if (alignment_pad)
1112 		sg = add_padding_pages(alignment_pad, st, sg);
1113 
1114 	sg = remap_contiguous_pages(obj, obj_offset, size, st, sg);
1115 	sg = sg_next(sg);
1116 
1117 	*gtt_offset += alignment_pad + size;
1118 
1119 	return sg;
1120 }
1121 
1122 static struct scatterlist *
1123 remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1124 			struct drm_i915_gem_object *obj,
1125 			int color_plane,
1126 			struct sg_table *st, struct scatterlist *sg,
1127 			unsigned int *gtt_offset)
1128 {
1129 	unsigned int alignment_pad = 0;
1130 
1131 	if (rem_info->plane_alignment)
1132 		alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1133 
1134 	if (rem_info->plane[color_plane].linear)
1135 		sg = remap_linear_color_plane_pages(obj,
1136 						    rem_info->plane[color_plane].offset,
1137 						    alignment_pad,
1138 						    rem_info->plane[color_plane].size,
1139 						    st, sg,
1140 						    gtt_offset);
1141 
1142 	else
1143 		sg = remap_tiled_color_plane_pages(obj,
1144 						   rem_info->plane[color_plane].offset,
1145 						   alignment_pad,
1146 						   rem_info->plane[color_plane].width,
1147 						   rem_info->plane[color_plane].height,
1148 						   rem_info->plane[color_plane].src_stride,
1149 						   rem_info->plane[color_plane].dst_stride,
1150 						   st, sg,
1151 						   gtt_offset);
1152 
1153 	return sg;
1154 }
1155 
1156 static noinline struct sg_table *
1157 intel_remap_pages(struct intel_remapped_info *rem_info,
1158 		  struct drm_i915_gem_object *obj)
1159 {
1160 	unsigned int size = intel_remapped_info_size(rem_info);
1161 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1162 	struct sg_table *st;
1163 	struct scatterlist *sg;
1164 	unsigned int gtt_offset = 0;
1165 	int ret = -ENOMEM;
1166 	int i;
1167 
1168 	/* Allocate target SG list. */
1169 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1170 	if (!st)
1171 		goto err_st_alloc;
1172 
1173 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1174 	if (ret)
1175 		goto err_sg_alloc;
1176 
1177 	st->nents = 0;
1178 	sg = st->sgl;
1179 
1180 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1181 		sg = remap_color_plane_pages(rem_info, obj, i, st, sg, &gtt_offset);
1182 
1183 	i915_sg_trim(st);
1184 
1185 	return st;
1186 
1187 err_sg_alloc:
1188 	kfree(st);
1189 err_st_alloc:
1190 
1191 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1192 		obj->base.size, rem_info->plane[0].width,
1193 		rem_info->plane[0].height, size);
1194 
1195 	return ERR_PTR(ret);
1196 }
1197 
1198 static noinline struct sg_table *
1199 intel_partial_pages(const struct i915_ggtt_view *view,
1200 		    struct drm_i915_gem_object *obj)
1201 {
1202 	struct sg_table *st;
1203 	struct scatterlist *sg;
1204 	unsigned int count = view->partial.size;
1205 	int ret = -ENOMEM;
1206 
1207 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1208 	if (!st)
1209 		goto err_st_alloc;
1210 
1211 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1212 	if (ret)
1213 		goto err_sg_alloc;
1214 
1215 	st->nents = 0;
1216 
1217 	sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl);
1218 
1219 	sg_mark_end(sg);
1220 	i915_sg_trim(st); /* Drop any unused tail entries. */
1221 
1222 	return st;
1223 
1224 err_sg_alloc:
1225 	kfree(st);
1226 err_st_alloc:
1227 	return ERR_PTR(ret);
1228 }
1229 
1230 static int
1231 __i915_vma_get_pages(struct i915_vma *vma)
1232 {
1233 	struct sg_table *pages;
1234 
1235 	/*
1236 	 * The vma->pages are only valid within the lifespan of the borrowed
1237 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1238 	 * must be the vma->pages. A simple rule is that vma->pages must only
1239 	 * be accessed when the obj->mm.pages are pinned.
1240 	 */
1241 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1242 
1243 	switch (vma->ggtt_view.type) {
1244 	default:
1245 		GEM_BUG_ON(vma->ggtt_view.type);
1246 		fallthrough;
1247 	case I915_GGTT_VIEW_NORMAL:
1248 		pages = vma->obj->mm.pages;
1249 		break;
1250 
1251 	case I915_GGTT_VIEW_ROTATED:
1252 		pages =
1253 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1254 		break;
1255 
1256 	case I915_GGTT_VIEW_REMAPPED:
1257 		pages =
1258 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1259 		break;
1260 
1261 	case I915_GGTT_VIEW_PARTIAL:
1262 		pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1263 		break;
1264 	}
1265 
1266 	if (IS_ERR(pages)) {
1267 		drm_err(&vma->vm->i915->drm,
1268 			"Failed to get pages for VMA view type %u (%ld)!\n",
1269 			vma->ggtt_view.type, PTR_ERR(pages));
1270 		return PTR_ERR(pages);
1271 	}
1272 
1273 	vma->pages = pages;
1274 
1275 	return 0;
1276 }
1277 
1278 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1279 {
1280 	int err;
1281 
1282 	if (atomic_add_unless(&vma->pages_count, 1, 0))
1283 		return 0;
1284 
1285 	err = i915_gem_object_pin_pages(vma->obj);
1286 	if (err)
1287 		return err;
1288 
1289 	err = __i915_vma_get_pages(vma);
1290 	if (err)
1291 		goto err_unpin;
1292 
1293 	vma->page_sizes = vma->obj->mm.page_sizes;
1294 	atomic_inc(&vma->pages_count);
1295 
1296 	return 0;
1297 
1298 err_unpin:
1299 	__i915_gem_object_unpin_pages(vma->obj);
1300 
1301 	return err;
1302 }
1303 
1304 static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1305 {
1306 	/* We allocate under vma_get_pages, so beware the shrinker */
1307 	GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1308 
1309 	if (atomic_sub_return(count, &vma->pages_count) == 0) {
1310 		if (vma->pages != vma->obj->mm.pages) {
1311 			sg_free_table(vma->pages);
1312 			kfree(vma->pages);
1313 		}
1314 		vma->pages = NULL;
1315 
1316 		i915_gem_object_unpin_pages(vma->obj);
1317 	}
1318 }
1319 
1320 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1321 {
1322 	if (atomic_add_unless(&vma->pages_count, -1, 1))
1323 		return;
1324 
1325 	__vma_put_pages(vma, 1);
1326 }
1327 
1328 static void vma_unbind_pages(struct i915_vma *vma)
1329 {
1330 	unsigned int count;
1331 
1332 	lockdep_assert_held(&vma->vm->mutex);
1333 
1334 	/* The upper portion of pages_count is the number of bindings */
1335 	count = atomic_read(&vma->pages_count);
1336 	count >>= I915_VMA_PAGES_BIAS;
1337 	GEM_BUG_ON(!count);
1338 
1339 	__vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS);
1340 }
1341 
1342 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1343 		    u64 size, u64 alignment, u64 flags)
1344 {
1345 	struct i915_vma_work *work = NULL;
1346 	struct dma_fence *moving = NULL;
1347 	struct i915_vma_resource *vma_res = NULL;
1348 	intel_wakeref_t wakeref = 0;
1349 	unsigned int bound;
1350 	int err;
1351 
1352 	assert_vma_held(vma);
1353 	GEM_BUG_ON(!ww);
1354 
1355 	BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1356 	BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1357 
1358 	GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1359 
1360 	/* First try and grab the pin without rebinding the vma */
1361 	if (try_qad_pin(vma, flags))
1362 		return 0;
1363 
1364 	err = i915_vma_get_pages(vma);
1365 	if (err)
1366 		return err;
1367 
1368 	if (flags & PIN_GLOBAL)
1369 		wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm);
1370 
1371 	if (flags & vma->vm->bind_async_flags) {
1372 		/* lock VM */
1373 		err = i915_vm_lock_objects(vma->vm, ww);
1374 		if (err)
1375 			goto err_rpm;
1376 
1377 		work = i915_vma_work();
1378 		if (!work) {
1379 			err = -ENOMEM;
1380 			goto err_rpm;
1381 		}
1382 
1383 		work->vm = vma->vm;
1384 
1385 		err = i915_gem_object_get_moving_fence(vma->obj, &moving);
1386 		if (err)
1387 			goto err_rpm;
1388 
1389 		dma_fence_work_chain(&work->base, moving);
1390 
1391 		/* Allocate enough page directories to used PTE */
1392 		if (vma->vm->allocate_va_range) {
1393 			err = i915_vm_alloc_pt_stash(vma->vm,
1394 						     &work->stash,
1395 						     vma->size);
1396 			if (err)
1397 				goto err_fence;
1398 
1399 			err = i915_vm_map_pt_stash(vma->vm, &work->stash);
1400 			if (err)
1401 				goto err_fence;
1402 		}
1403 	}
1404 
1405 	vma_res = i915_vma_resource_alloc();
1406 	if (IS_ERR(vma_res)) {
1407 		err = PTR_ERR(vma_res);
1408 		goto err_fence;
1409 	}
1410 
1411 	/*
1412 	 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1413 	 *
1414 	 * We conflate the Global GTT with the user's vma when using the
1415 	 * aliasing-ppgtt, but it is still vitally important to try and
1416 	 * keep the use cases distinct. For example, userptr objects are
1417 	 * not allowed inside the Global GTT as that will cause lock
1418 	 * inversions when we have to evict them the mmu_notifier callbacks -
1419 	 * but they are allowed to be part of the user ppGTT which can never
1420 	 * be mapped. As such we try to give the distinct users of the same
1421 	 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1422 	 * and i915_ppgtt separate].
1423 	 *
1424 	 * NB this may cause us to mask real lock inversions -- while the
1425 	 * code is safe today, lockdep may not be able to spot future
1426 	 * transgressions.
1427 	 */
1428 	err = mutex_lock_interruptible_nested(&vma->vm->mutex,
1429 					      !(flags & PIN_GLOBAL));
1430 	if (err)
1431 		goto err_vma_res;
1432 
1433 	/* No more allocations allowed now we hold vm->mutex */
1434 
1435 	if (unlikely(i915_vma_is_closed(vma))) {
1436 		err = -ENOENT;
1437 		goto err_unlock;
1438 	}
1439 
1440 	bound = atomic_read(&vma->flags);
1441 	if (unlikely(bound & I915_VMA_ERROR)) {
1442 		err = -ENOMEM;
1443 		goto err_unlock;
1444 	}
1445 
1446 	if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1447 		err = -EAGAIN; /* pins are meant to be fairly temporary */
1448 		goto err_unlock;
1449 	}
1450 
1451 	if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1452 		if (!(flags & PIN_VALIDATE))
1453 			__i915_vma_pin(vma);
1454 		goto err_unlock;
1455 	}
1456 
1457 	err = i915_active_acquire(&vma->active);
1458 	if (err)
1459 		goto err_unlock;
1460 
1461 	if (!(bound & I915_VMA_BIND_MASK)) {
1462 		err = i915_vma_insert(vma, ww, size, alignment, flags);
1463 		if (err)
1464 			goto err_active;
1465 
1466 		if (i915_is_ggtt(vma->vm))
1467 			__i915_vma_set_map_and_fenceable(vma);
1468 	}
1469 
1470 	GEM_BUG_ON(!vma->pages);
1471 	err = i915_vma_bind(vma,
1472 			    vma->obj->cache_level,
1473 			    flags, work, vma_res);
1474 	vma_res = NULL;
1475 	if (err)
1476 		goto err_remove;
1477 
1478 	/* There should only be at most 2 active bindings (user, global) */
1479 	GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1480 	atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count);
1481 	list_move_tail(&vma->vm_link, &vma->vm->bound_list);
1482 
1483 	if (!(flags & PIN_VALIDATE)) {
1484 		__i915_vma_pin(vma);
1485 		GEM_BUG_ON(!i915_vma_is_pinned(vma));
1486 	}
1487 	GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1488 	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1489 
1490 err_remove:
1491 	if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1492 		i915_vma_detach(vma);
1493 		drm_mm_remove_node(&vma->node);
1494 	}
1495 err_active:
1496 	i915_active_release(&vma->active);
1497 err_unlock:
1498 	mutex_unlock(&vma->vm->mutex);
1499 err_vma_res:
1500 	i915_vma_resource_free(vma_res);
1501 err_fence:
1502 	if (work)
1503 		dma_fence_work_commit_imm(&work->base);
1504 err_rpm:
1505 	if (wakeref)
1506 		intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref);
1507 
1508 	if (moving)
1509 		dma_fence_put(moving);
1510 
1511 	i915_vma_put_pages(vma);
1512 	return err;
1513 }
1514 
1515 static void flush_idle_contexts(struct intel_gt *gt)
1516 {
1517 	struct intel_engine_cs *engine;
1518 	enum intel_engine_id id;
1519 
1520 	for_each_engine(engine, gt, id)
1521 		intel_engine_flush_barriers(engine);
1522 
1523 	intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1524 }
1525 
1526 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1527 			   u32 align, unsigned int flags)
1528 {
1529 	struct i915_address_space *vm = vma->vm;
1530 	int err;
1531 
1532 	do {
1533 		err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL);
1534 
1535 		if (err != -ENOSPC) {
1536 			if (!err) {
1537 				err = i915_vma_wait_for_bind(vma);
1538 				if (err)
1539 					i915_vma_unpin(vma);
1540 			}
1541 			return err;
1542 		}
1543 
1544 		/* Unlike i915_vma_pin, we don't take no for an answer! */
1545 		flush_idle_contexts(vm->gt);
1546 		if (mutex_lock_interruptible(&vm->mutex) == 0) {
1547 			/*
1548 			 * We pass NULL ww here, as we don't want to unbind
1549 			 * locked objects when called from execbuf when pinning
1550 			 * is removed. This would probably regress badly.
1551 			 */
1552 			i915_gem_evict_vm(vm, NULL);
1553 			mutex_unlock(&vm->mutex);
1554 		}
1555 	} while (1);
1556 }
1557 
1558 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1559 		  u32 align, unsigned int flags)
1560 {
1561 	struct i915_gem_ww_ctx _ww;
1562 	int err;
1563 
1564 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1565 
1566 	if (ww)
1567 		return __i915_ggtt_pin(vma, ww, align, flags);
1568 
1569 	lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1570 
1571 	for_i915_gem_ww(&_ww, err, true) {
1572 		err = i915_gem_object_lock(vma->obj, &_ww);
1573 		if (!err)
1574 			err = __i915_ggtt_pin(vma, &_ww, align, flags);
1575 	}
1576 
1577 	return err;
1578 }
1579 
1580 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1581 {
1582 	/*
1583 	 * We defer actually closing, unbinding and destroying the VMA until
1584 	 * the next idle point, or if the object is freed in the meantime. By
1585 	 * postponing the unbind, we allow for it to be resurrected by the
1586 	 * client, avoiding the work required to rebind the VMA. This is
1587 	 * advantageous for DRI, where the client/server pass objects
1588 	 * between themselves, temporarily opening a local VMA to the
1589 	 * object, and then closing it again. The same object is then reused
1590 	 * on the next frame (or two, depending on the depth of the swap queue)
1591 	 * causing us to rebind the VMA once more. This ends up being a lot
1592 	 * of wasted work for the steady state.
1593 	 */
1594 	GEM_BUG_ON(i915_vma_is_closed(vma));
1595 	list_add(&vma->closed_link, &gt->closed_vma);
1596 }
1597 
1598 void i915_vma_close(struct i915_vma *vma)
1599 {
1600 	struct intel_gt *gt = vma->vm->gt;
1601 	unsigned long flags;
1602 
1603 	if (i915_vma_is_ggtt(vma))
1604 		return;
1605 
1606 	GEM_BUG_ON(!atomic_read(&vma->open_count));
1607 	if (atomic_dec_and_lock_irqsave(&vma->open_count,
1608 					&gt->closed_lock,
1609 					flags)) {
1610 		__vma_close(vma, gt);
1611 		spin_unlock_irqrestore(&gt->closed_lock, flags);
1612 	}
1613 }
1614 
1615 static void __i915_vma_remove_closed(struct i915_vma *vma)
1616 {
1617 	list_del_init(&vma->closed_link);
1618 }
1619 
1620 void i915_vma_reopen(struct i915_vma *vma)
1621 {
1622 	struct intel_gt *gt = vma->vm->gt;
1623 
1624 	spin_lock_irq(&gt->closed_lock);
1625 	if (i915_vma_is_closed(vma))
1626 		__i915_vma_remove_closed(vma);
1627 	spin_unlock_irq(&gt->closed_lock);
1628 }
1629 
1630 static void force_unbind(struct i915_vma *vma)
1631 {
1632 	if (!drm_mm_node_allocated(&vma->node))
1633 		return;
1634 
1635 	atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
1636 	WARN_ON(__i915_vma_unbind(vma));
1637 	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1638 }
1639 
1640 static void release_references(struct i915_vma *vma, bool vm_ddestroy)
1641 {
1642 	struct drm_i915_gem_object *obj = vma->obj;
1643 	struct intel_gt *gt = vma->vm->gt;
1644 
1645 	GEM_BUG_ON(i915_vma_is_active(vma));
1646 
1647 	spin_lock(&obj->vma.lock);
1648 	list_del(&vma->obj_link);
1649 	if (!RB_EMPTY_NODE(&vma->obj_node))
1650 		rb_erase(&vma->obj_node, &obj->vma.tree);
1651 
1652 	spin_unlock(&obj->vma.lock);
1653 
1654 	spin_lock_irq(&gt->closed_lock);
1655 	__i915_vma_remove_closed(vma);
1656 	spin_unlock_irq(&gt->closed_lock);
1657 
1658 	if (vm_ddestroy)
1659 		i915_vm_resv_put(vma->vm);
1660 
1661 	i915_active_fini(&vma->active);
1662 	GEM_WARN_ON(vma->resource);
1663 	i915_vma_free(vma);
1664 }
1665 
1666 /**
1667  * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1668  * the initial reference.
1669  *
1670  * This function should be called when it's decided the vma isn't needed
1671  * anymore. The caller must assure that it doesn't race with another lookup
1672  * plus destroy, typically by taking an appropriate reference.
1673  *
1674  * Current callsites are
1675  * - __i915_gem_object_pages_fini()
1676  * - __i915_vm_close() - Blocks the above function by taking a reference on
1677  * the object.
1678  * - __i915_vma_parked() - Blocks the above functions by taking a reference
1679  * on the vm and a reference on the object. Also takes the object lock so
1680  * destruction from __i915_vma_parked() can be blocked by holding the
1681  * object lock. Since the object lock is only allowed from within i915 with
1682  * an object refcount, holding the object lock also implicitly blocks the
1683  * vma freeing from __i915_gem_object_pages_fini().
1684  *
1685  * Because of locks taken during destruction, a vma is also guaranteed to
1686  * stay alive while the following locks are held if it was looked up while
1687  * holding one of the locks:
1688  * - vm->mutex
1689  * - obj->vma.lock
1690  * - gt->closed_lock
1691  */
1692 void i915_vma_destroy_locked(struct i915_vma *vma)
1693 {
1694 	lockdep_assert_held(&vma->vm->mutex);
1695 
1696 	force_unbind(vma);
1697 	list_del_init(&vma->vm_link);
1698 	release_references(vma, false);
1699 }
1700 
1701 void i915_vma_destroy(struct i915_vma *vma)
1702 {
1703 	bool vm_ddestroy;
1704 
1705 	mutex_lock(&vma->vm->mutex);
1706 	force_unbind(vma);
1707 	list_del_init(&vma->vm_link);
1708 	vm_ddestroy = vma->vm_ddestroy;
1709 	vma->vm_ddestroy = false;
1710 	mutex_unlock(&vma->vm->mutex);
1711 	release_references(vma, vm_ddestroy);
1712 }
1713 
1714 void i915_vma_parked(struct intel_gt *gt)
1715 {
1716 	struct i915_vma *vma, *next;
1717 	LIST_HEAD(closed);
1718 
1719 	spin_lock_irq(&gt->closed_lock);
1720 	list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1721 		struct drm_i915_gem_object *obj = vma->obj;
1722 		struct i915_address_space *vm = vma->vm;
1723 
1724 		/* XXX All to avoid keeping a reference on i915_vma itself */
1725 
1726 		if (!kref_get_unless_zero(&obj->base.refcount))
1727 			continue;
1728 
1729 		if (!i915_vm_tryget(vm)) {
1730 			i915_gem_object_put(obj);
1731 			continue;
1732 		}
1733 
1734 		list_move(&vma->closed_link, &closed);
1735 	}
1736 	spin_unlock_irq(&gt->closed_lock);
1737 
1738 	/* As the GT is held idle, no vma can be reopened as we destroy them */
1739 	list_for_each_entry_safe(vma, next, &closed, closed_link) {
1740 		struct drm_i915_gem_object *obj = vma->obj;
1741 		struct i915_address_space *vm = vma->vm;
1742 
1743 		if (i915_gem_object_trylock(obj, NULL)) {
1744 			INIT_LIST_HEAD(&vma->closed_link);
1745 			i915_vma_destroy(vma);
1746 			i915_gem_object_unlock(obj);
1747 		} else {
1748 			/* back you go.. */
1749 			spin_lock_irq(&gt->closed_lock);
1750 			list_add(&vma->closed_link, &gt->closed_vma);
1751 			spin_unlock_irq(&gt->closed_lock);
1752 		}
1753 
1754 		i915_gem_object_put(obj);
1755 		i915_vm_put(vm);
1756 	}
1757 }
1758 
1759 static void __i915_vma_iounmap(struct i915_vma *vma)
1760 {
1761 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1762 
1763 	if (vma->iomap == NULL)
1764 		return;
1765 
1766 	io_mapping_unmap(vma->iomap);
1767 	vma->iomap = NULL;
1768 }
1769 
1770 void i915_vma_revoke_mmap(struct i915_vma *vma)
1771 {
1772 	struct drm_vma_offset_node *node;
1773 	u64 vma_offset;
1774 
1775 	if (!i915_vma_has_userfault(vma))
1776 		return;
1777 
1778 	GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1779 	GEM_BUG_ON(!vma->obj->userfault_count);
1780 
1781 	node = &vma->mmo->vma_node;
1782 	vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT;
1783 	unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping,
1784 			    drm_vma_node_offset_addr(node) + vma_offset,
1785 			    vma->size,
1786 			    1);
1787 
1788 	i915_vma_unset_userfault(vma);
1789 	if (!--vma->obj->userfault_count)
1790 		list_del(&vma->obj->userfault_link);
1791 }
1792 
1793 static int
1794 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1795 {
1796 	return __i915_request_await_exclusive(rq, &vma->active);
1797 }
1798 
1799 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1800 {
1801 	int err;
1802 
1803 	/* Wait for the vma to be bound before we start! */
1804 	err = __i915_request_await_bind(rq, vma);
1805 	if (err)
1806 		return err;
1807 
1808 	return i915_active_add_request(&vma->active, rq);
1809 }
1810 
1811 int _i915_vma_move_to_active(struct i915_vma *vma,
1812 			     struct i915_request *rq,
1813 			     struct dma_fence *fence,
1814 			     unsigned int flags)
1815 {
1816 	struct drm_i915_gem_object *obj = vma->obj;
1817 	int err;
1818 
1819 	assert_object_held(obj);
1820 
1821 	GEM_BUG_ON(!vma->pages);
1822 
1823 	err = __i915_vma_move_to_active(vma, rq);
1824 	if (unlikely(err))
1825 		return err;
1826 
1827 	/*
1828 	 * Reserve fences slot early to prevent an allocation after preparing
1829 	 * the workload and associating fences with dma_resv.
1830 	 */
1831 	if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1832 		struct dma_fence *curr;
1833 		int idx;
1834 
1835 		dma_fence_array_for_each(curr, idx, fence)
1836 			;
1837 		err = dma_resv_reserve_fences(vma->obj->base.resv, idx);
1838 		if (unlikely(err))
1839 			return err;
1840 	}
1841 
1842 	if (flags & EXEC_OBJECT_WRITE) {
1843 		struct intel_frontbuffer *front;
1844 
1845 		front = __intel_frontbuffer_get(obj);
1846 		if (unlikely(front)) {
1847 			if (intel_frontbuffer_invalidate(front, ORIGIN_CS))
1848 				i915_active_add_request(&front->write, rq);
1849 			intel_frontbuffer_put(front);
1850 		}
1851 	}
1852 
1853 	if (fence) {
1854 		struct dma_fence *curr;
1855 		enum dma_resv_usage usage;
1856 		int idx;
1857 
1858 		obj->read_domains = 0;
1859 		if (flags & EXEC_OBJECT_WRITE) {
1860 			usage = DMA_RESV_USAGE_WRITE;
1861 			obj->write_domain = I915_GEM_DOMAIN_RENDER;
1862 		} else {
1863 			usage = DMA_RESV_USAGE_READ;
1864 		}
1865 
1866 		dma_fence_array_for_each(curr, idx, fence)
1867 			dma_resv_add_fence(vma->obj->base.resv, curr, usage);
1868 	}
1869 
1870 	if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1871 		i915_active_add_request(&vma->fence->active, rq);
1872 
1873 	obj->read_domains |= I915_GEM_GPU_DOMAINS;
1874 	obj->mm.dirty = true;
1875 
1876 	GEM_BUG_ON(!i915_vma_is_active(vma));
1877 	return 0;
1878 }
1879 
1880 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1881 {
1882 	struct i915_vma_resource *vma_res = vma->resource;
1883 	struct dma_fence *unbind_fence;
1884 
1885 	GEM_BUG_ON(i915_vma_is_pinned(vma));
1886 	assert_vma_held_evict(vma);
1887 
1888 	if (i915_vma_is_map_and_fenceable(vma)) {
1889 		/* Force a pagefault for domain tracking on next user access */
1890 		i915_vma_revoke_mmap(vma);
1891 
1892 		/*
1893 		 * Check that we have flushed all writes through the GGTT
1894 		 * before the unbind, other due to non-strict nature of those
1895 		 * indirect writes they may end up referencing the GGTT PTE
1896 		 * after the unbind.
1897 		 *
1898 		 * Note that we may be concurrently poking at the GGTT_WRITE
1899 		 * bit from set-domain, as we mark all GGTT vma associated
1900 		 * with an object. We know this is for another vma, as we
1901 		 * are currently unbinding this one -- so if this vma will be
1902 		 * reused, it will be refaulted and have its dirty bit set
1903 		 * before the next write.
1904 		 */
1905 		i915_vma_flush_writes(vma);
1906 
1907 		/* release the fence reg _after_ flushing */
1908 		i915_vma_revoke_fence(vma);
1909 
1910 		__i915_vma_iounmap(vma);
1911 		clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
1912 	}
1913 	GEM_BUG_ON(vma->fence);
1914 	GEM_BUG_ON(i915_vma_has_userfault(vma));
1915 
1916 	/* Object backend must be async capable. */
1917 	GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
1918 
1919 	/* If vm is not open, unbind is a nop. */
1920 	vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
1921 		kref_read(&vma->vm->ref);
1922 	vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) ||
1923 		vma->vm->skip_pte_rewrite;
1924 	trace_i915_vma_unbind(vma);
1925 
1926 	unbind_fence = i915_vma_resource_unbind(vma_res);
1927 	vma->resource = NULL;
1928 
1929 	atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
1930 		   &vma->flags);
1931 
1932 	i915_vma_detach(vma);
1933 
1934 	if (!async && unbind_fence) {
1935 		dma_fence_wait(unbind_fence, false);
1936 		dma_fence_put(unbind_fence);
1937 		unbind_fence = NULL;
1938 	}
1939 
1940 	/*
1941 	 * Binding itself may not have completed until the unbind fence signals,
1942 	 * so don't drop the pages until that happens, unless the resource is
1943 	 * async_capable.
1944 	 */
1945 
1946 	vma_unbind_pages(vma);
1947 	return unbind_fence;
1948 }
1949 
1950 int __i915_vma_unbind(struct i915_vma *vma)
1951 {
1952 	int ret;
1953 
1954 	lockdep_assert_held(&vma->vm->mutex);
1955 	assert_vma_held_evict(vma);
1956 
1957 	if (!drm_mm_node_allocated(&vma->node))
1958 		return 0;
1959 
1960 	if (i915_vma_is_pinned(vma)) {
1961 		vma_print_allocator(vma, "is pinned");
1962 		return -EAGAIN;
1963 	}
1964 
1965 	/*
1966 	 * After confirming that no one else is pinning this vma, wait for
1967 	 * any laggards who may have crept in during the wait (through
1968 	 * a residual pin skipping the vm->mutex) to complete.
1969 	 */
1970 	ret = i915_vma_sync(vma);
1971 	if (ret)
1972 		return ret;
1973 
1974 	GEM_BUG_ON(i915_vma_is_active(vma));
1975 	__i915_vma_evict(vma, false);
1976 
1977 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
1978 	return 0;
1979 }
1980 
1981 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
1982 {
1983 	struct dma_fence *fence;
1984 
1985 	lockdep_assert_held(&vma->vm->mutex);
1986 
1987 	if (!drm_mm_node_allocated(&vma->node))
1988 		return NULL;
1989 
1990 	if (i915_vma_is_pinned(vma) ||
1991 	    &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
1992 		return ERR_PTR(-EAGAIN);
1993 
1994 	/*
1995 	 * We probably need to replace this with awaiting the fences of the
1996 	 * object's dma_resv when the vma active goes away. When doing that
1997 	 * we need to be careful to not add the vma_resource unbind fence
1998 	 * immediately to the object's dma_resv, because then unbinding
1999 	 * the next vma from the object, in case there are many, will
2000 	 * actually await the unbinding of the previous vmas, which is
2001 	 * undesirable.
2002 	 */
2003 	if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active,
2004 				       I915_ACTIVE_AWAIT_EXCL |
2005 				       I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2006 		return ERR_PTR(-EBUSY);
2007 	}
2008 
2009 	fence = __i915_vma_evict(vma, true);
2010 
2011 	drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */
2012 
2013 	return fence;
2014 }
2015 
2016 int i915_vma_unbind(struct i915_vma *vma)
2017 {
2018 	struct i915_address_space *vm = vma->vm;
2019 	intel_wakeref_t wakeref = 0;
2020 	int err;
2021 
2022 	assert_object_held_shared(vma->obj);
2023 
2024 	/* Optimistic wait before taking the mutex */
2025 	err = i915_vma_sync(vma);
2026 	if (err)
2027 		return err;
2028 
2029 	if (!drm_mm_node_allocated(&vma->node))
2030 		return 0;
2031 
2032 	if (i915_vma_is_pinned(vma)) {
2033 		vma_print_allocator(vma, "is pinned");
2034 		return -EAGAIN;
2035 	}
2036 
2037 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2038 		/* XXX not always required: nop_clear_range */
2039 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2040 
2041 	err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref);
2042 	if (err)
2043 		goto out_rpm;
2044 
2045 	err = __i915_vma_unbind(vma);
2046 	mutex_unlock(&vm->mutex);
2047 
2048 out_rpm:
2049 	if (wakeref)
2050 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2051 	return err;
2052 }
2053 
2054 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2055 {
2056 	struct drm_i915_gem_object *obj = vma->obj;
2057 	struct i915_address_space *vm = vma->vm;
2058 	intel_wakeref_t wakeref = 0;
2059 	struct dma_fence *fence;
2060 	int err;
2061 
2062 	/*
2063 	 * We need the dma-resv lock since we add the
2064 	 * unbind fence to the dma-resv object.
2065 	 */
2066 	assert_object_held(obj);
2067 
2068 	if (!drm_mm_node_allocated(&vma->node))
2069 		return 0;
2070 
2071 	if (i915_vma_is_pinned(vma)) {
2072 		vma_print_allocator(vma, "is pinned");
2073 		return -EAGAIN;
2074 	}
2075 
2076 	if (!obj->mm.rsgt)
2077 		return -EBUSY;
2078 
2079 	err = dma_resv_reserve_fences(obj->base.resv, 1);
2080 	if (err)
2081 		return -EBUSY;
2082 
2083 	/*
2084 	 * It would be great if we could grab this wakeref from the
2085 	 * async unbind work if needed, but we can't because it uses
2086 	 * kmalloc and it's in the dma-fence signalling critical path.
2087 	 */
2088 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2089 		wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
2090 
2091 	if (trylock_vm && !mutex_trylock(&vm->mutex)) {
2092 		err = -EBUSY;
2093 		goto out_rpm;
2094 	} else if (!trylock_vm) {
2095 		err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref);
2096 		if (err)
2097 			goto out_rpm;
2098 	}
2099 
2100 	fence = __i915_vma_unbind_async(vma);
2101 	mutex_unlock(&vm->mutex);
2102 	if (IS_ERR_OR_NULL(fence)) {
2103 		err = PTR_ERR_OR_ZERO(fence);
2104 		goto out_rpm;
2105 	}
2106 
2107 	dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ);
2108 	dma_fence_put(fence);
2109 
2110 out_rpm:
2111 	if (wakeref)
2112 		intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
2113 	return err;
2114 }
2115 
2116 int i915_vma_unbind_unlocked(struct i915_vma *vma)
2117 {
2118 	int err;
2119 
2120 	i915_gem_object_lock(vma->obj, NULL);
2121 	err = i915_vma_unbind(vma);
2122 	i915_gem_object_unlock(vma->obj);
2123 
2124 	return err;
2125 }
2126 
2127 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2128 {
2129 	i915_gem_object_make_unshrinkable(vma->obj);
2130 	return vma;
2131 }
2132 
2133 void i915_vma_make_shrinkable(struct i915_vma *vma)
2134 {
2135 	i915_gem_object_make_shrinkable(vma->obj);
2136 }
2137 
2138 void i915_vma_make_purgeable(struct i915_vma *vma)
2139 {
2140 	i915_gem_object_make_purgeable(vma->obj);
2141 }
2142 
2143 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2144 #include "selftests/i915_vma.c"
2145 #endif
2146 
2147 void i915_vma_module_exit(void)
2148 {
2149 	kmem_cache_destroy(slab_vmas);
2150 }
2151 
2152 int __init i915_vma_module_init(void)
2153 {
2154 	slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2155 	if (!slab_vmas)
2156 		return -ENOMEM;
2157 
2158 	return 0;
2159 }
2160