1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/sched/mm.h> 26 #include <linux/dma-fence-array.h> 27 #include <drm/drm_gem.h> 28 29 #include "display/intel_frontbuffer.h" 30 #include "gem/i915_gem_lmem.h" 31 #include "gem/i915_gem_tiling.h" 32 #include "gt/intel_engine.h" 33 #include "gt/intel_engine_heartbeat.h" 34 #include "gt/intel_gt.h" 35 #include "gt/intel_gt_requests.h" 36 37 #include "i915_drv.h" 38 #include "i915_gem_evict.h" 39 #include "i915_sw_fence_work.h" 40 #include "i915_trace.h" 41 #include "i915_vma.h" 42 #include "i915_vma_resource.h" 43 44 static inline void assert_vma_held_evict(const struct i915_vma *vma) 45 { 46 /* 47 * We may be forced to unbind when the vm is dead, to clean it up. 48 * This is the only exception to the requirement of the object lock 49 * being held. 50 */ 51 if (kref_read(&vma->vm->ref)) 52 assert_object_held_shared(vma->obj); 53 } 54 55 static struct kmem_cache *slab_vmas; 56 57 static struct i915_vma *i915_vma_alloc(void) 58 { 59 return kmem_cache_zalloc(slab_vmas, GFP_KERNEL); 60 } 61 62 static void i915_vma_free(struct i915_vma *vma) 63 { 64 return kmem_cache_free(slab_vmas, vma); 65 } 66 67 #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) 68 69 #include <linux/stackdepot.h> 70 71 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 72 { 73 char buf[512]; 74 75 if (!vma->node.stack) { 76 drm_dbg(&to_i915(vma->obj->base.dev)->drm, 77 "vma.node [%08llx + %08llx] %s: unknown owner\n", 78 vma->node.start, vma->node.size, reason); 79 return; 80 } 81 82 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0); 83 drm_dbg(&to_i915(vma->obj->base.dev)->drm, 84 "vma.node [%08llx + %08llx] %s: inserted at %s\n", 85 vma->node.start, vma->node.size, reason, buf); 86 } 87 88 #else 89 90 static void vma_print_allocator(struct i915_vma *vma, const char *reason) 91 { 92 } 93 94 #endif 95 96 static inline struct i915_vma *active_to_vma(struct i915_active *ref) 97 { 98 return container_of(ref, typeof(struct i915_vma), active); 99 } 100 101 static int __i915_vma_active(struct i915_active *ref) 102 { 103 return i915_vma_tryget(active_to_vma(ref)) ? 0 : -ENOENT; 104 } 105 106 static void __i915_vma_retire(struct i915_active *ref) 107 { 108 i915_vma_put(active_to_vma(ref)); 109 } 110 111 static struct i915_vma * 112 vma_create(struct drm_i915_gem_object *obj, 113 struct i915_address_space *vm, 114 const struct i915_gtt_view *view) 115 { 116 struct i915_vma *pos = ERR_PTR(-E2BIG); 117 struct i915_vma *vma; 118 struct rb_node *rb, **p; 119 int err; 120 121 /* The aliasing_ppgtt should never be used directly! */ 122 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm); 123 124 vma = i915_vma_alloc(); 125 if (vma == NULL) 126 return ERR_PTR(-ENOMEM); 127 128 vma->ops = &vm->vma_ops; 129 vma->obj = obj; 130 vma->size = obj->base.size; 131 vma->display_alignment = I915_GTT_MIN_ALIGNMENT; 132 133 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0); 134 135 /* Declare ourselves safe for use inside shrinkers */ 136 if (IS_ENABLED(CONFIG_LOCKDEP)) { 137 fs_reclaim_acquire(GFP_KERNEL); 138 might_lock(&vma->active.mutex); 139 fs_reclaim_release(GFP_KERNEL); 140 } 141 142 INIT_LIST_HEAD(&vma->closed_link); 143 INIT_LIST_HEAD(&vma->obj_link); 144 RB_CLEAR_NODE(&vma->obj_node); 145 146 if (view && view->type != I915_GTT_VIEW_NORMAL) { 147 vma->gtt_view = *view; 148 if (view->type == I915_GTT_VIEW_PARTIAL) { 149 GEM_BUG_ON(range_overflows_t(u64, 150 view->partial.offset, 151 view->partial.size, 152 obj->base.size >> PAGE_SHIFT)); 153 vma->size = view->partial.size; 154 vma->size <<= PAGE_SHIFT; 155 GEM_BUG_ON(vma->size > obj->base.size); 156 } else if (view->type == I915_GTT_VIEW_ROTATED) { 157 vma->size = intel_rotation_info_size(&view->rotated); 158 vma->size <<= PAGE_SHIFT; 159 } else if (view->type == I915_GTT_VIEW_REMAPPED) { 160 vma->size = intel_remapped_info_size(&view->remapped); 161 vma->size <<= PAGE_SHIFT; 162 } 163 } 164 165 if (unlikely(vma->size > vm->total)) 166 goto err_vma; 167 168 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); 169 170 err = mutex_lock_interruptible(&vm->mutex); 171 if (err) { 172 pos = ERR_PTR(err); 173 goto err_vma; 174 } 175 176 vma->vm = vm; 177 list_add_tail(&vma->vm_link, &vm->unbound_list); 178 179 spin_lock(&obj->vma.lock); 180 if (i915_is_ggtt(vm)) { 181 if (unlikely(overflows_type(vma->size, u32))) 182 goto err_unlock; 183 184 vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, 185 i915_gem_object_get_tiling(obj), 186 i915_gem_object_get_stride(obj)); 187 if (unlikely(vma->fence_size < vma->size || /* overflow */ 188 vma->fence_size > vm->total)) 189 goto err_unlock; 190 191 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); 192 193 vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, 194 i915_gem_object_get_tiling(obj), 195 i915_gem_object_get_stride(obj)); 196 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); 197 198 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma)); 199 } 200 201 rb = NULL; 202 p = &obj->vma.tree.rb_node; 203 while (*p) { 204 long cmp; 205 206 rb = *p; 207 pos = rb_entry(rb, struct i915_vma, obj_node); 208 209 /* 210 * If the view already exists in the tree, another thread 211 * already created a matching vma, so return the older instance 212 * and dispose of ours. 213 */ 214 cmp = i915_vma_compare(pos, vm, view); 215 if (cmp < 0) 216 p = &rb->rb_right; 217 else if (cmp > 0) 218 p = &rb->rb_left; 219 else 220 goto err_unlock; 221 } 222 rb_link_node(&vma->obj_node, rb, p); 223 rb_insert_color(&vma->obj_node, &obj->vma.tree); 224 225 if (i915_vma_is_ggtt(vma)) 226 /* 227 * We put the GGTT vma at the start of the vma-list, followed 228 * by the ppGGTT vma. This allows us to break early when 229 * iterating over only the GGTT vma for an object, see 230 * for_each_ggtt_vma() 231 */ 232 list_add(&vma->obj_link, &obj->vma.list); 233 else 234 list_add_tail(&vma->obj_link, &obj->vma.list); 235 236 spin_unlock(&obj->vma.lock); 237 mutex_unlock(&vm->mutex); 238 239 return vma; 240 241 err_unlock: 242 spin_unlock(&obj->vma.lock); 243 list_del_init(&vma->vm_link); 244 mutex_unlock(&vm->mutex); 245 err_vma: 246 i915_vma_free(vma); 247 return pos; 248 } 249 250 static struct i915_vma * 251 i915_vma_lookup(struct drm_i915_gem_object *obj, 252 struct i915_address_space *vm, 253 const struct i915_gtt_view *view) 254 { 255 struct rb_node *rb; 256 257 rb = obj->vma.tree.rb_node; 258 while (rb) { 259 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); 260 long cmp; 261 262 cmp = i915_vma_compare(vma, vm, view); 263 if (cmp == 0) 264 return vma; 265 266 if (cmp < 0) 267 rb = rb->rb_right; 268 else 269 rb = rb->rb_left; 270 } 271 272 return NULL; 273 } 274 275 /** 276 * i915_vma_instance - return the singleton instance of the VMA 277 * @obj: parent &struct drm_i915_gem_object to be mapped 278 * @vm: address space in which the mapping is located 279 * @view: additional mapping requirements 280 * 281 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with 282 * the same @view characteristics. If a match is not found, one is created. 283 * Once created, the VMA is kept until either the object is freed, or the 284 * address space is closed. 285 * 286 * Returns the vma, or an error pointer. 287 */ 288 struct i915_vma * 289 i915_vma_instance(struct drm_i915_gem_object *obj, 290 struct i915_address_space *vm, 291 const struct i915_gtt_view *view) 292 { 293 struct i915_vma *vma; 294 295 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm)); 296 GEM_BUG_ON(!kref_read(&vm->ref)); 297 298 spin_lock(&obj->vma.lock); 299 vma = i915_vma_lookup(obj, vm, view); 300 spin_unlock(&obj->vma.lock); 301 302 /* vma_create() will resolve the race if another creates the vma */ 303 if (unlikely(!vma)) 304 vma = vma_create(obj, vm, view); 305 306 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); 307 return vma; 308 } 309 310 struct i915_vma_work { 311 struct dma_fence_work base; 312 struct i915_address_space *vm; 313 struct i915_vm_pt_stash stash; 314 struct i915_vma_resource *vma_res; 315 struct drm_i915_gem_object *obj; 316 struct i915_sw_dma_fence_cb cb; 317 enum i915_cache_level cache_level; 318 unsigned int flags; 319 }; 320 321 static void __vma_bind(struct dma_fence_work *work) 322 { 323 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 324 struct i915_vma_resource *vma_res = vw->vma_res; 325 326 /* 327 * We are about the bind the object, which must mean we have already 328 * signaled the work to potentially clear/move the pages underneath. If 329 * something went wrong at that stage then the object should have 330 * unknown_state set, in which case we need to skip the bind. 331 */ 332 if (i915_gem_object_has_unknown_state(vw->obj)) 333 return; 334 335 vma_res->ops->bind_vma(vma_res->vm, &vw->stash, 336 vma_res, vw->cache_level, vw->flags); 337 } 338 339 static void __vma_release(struct dma_fence_work *work) 340 { 341 struct i915_vma_work *vw = container_of(work, typeof(*vw), base); 342 343 if (vw->obj) 344 i915_gem_object_put(vw->obj); 345 346 i915_vm_free_pt_stash(vw->vm, &vw->stash); 347 if (vw->vma_res) 348 i915_vma_resource_put(vw->vma_res); 349 } 350 351 static const struct dma_fence_work_ops bind_ops = { 352 .name = "bind", 353 .work = __vma_bind, 354 .release = __vma_release, 355 }; 356 357 struct i915_vma_work *i915_vma_work(void) 358 { 359 struct i915_vma_work *vw; 360 361 vw = kzalloc(sizeof(*vw), GFP_KERNEL); 362 if (!vw) 363 return NULL; 364 365 dma_fence_work_init(&vw->base, &bind_ops); 366 vw->base.dma.error = -EAGAIN; /* disable the worker by default */ 367 368 return vw; 369 } 370 371 int i915_vma_wait_for_bind(struct i915_vma *vma) 372 { 373 int err = 0; 374 375 if (rcu_access_pointer(vma->active.excl.fence)) { 376 struct dma_fence *fence; 377 378 rcu_read_lock(); 379 fence = dma_fence_get_rcu_safe(&vma->active.excl.fence); 380 rcu_read_unlock(); 381 if (fence) { 382 err = dma_fence_wait(fence, true); 383 dma_fence_put(fence); 384 } 385 } 386 387 return err; 388 } 389 390 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 391 static int i915_vma_verify_bind_complete(struct i915_vma *vma) 392 { 393 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl); 394 int err; 395 396 if (!fence) 397 return 0; 398 399 if (dma_fence_is_signaled(fence)) 400 err = fence->error; 401 else 402 err = -EBUSY; 403 404 dma_fence_put(fence); 405 406 return err; 407 } 408 #else 409 #define i915_vma_verify_bind_complete(_vma) 0 410 #endif 411 412 I915_SELFTEST_EXPORT void 413 i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res, 414 struct i915_vma *vma) 415 { 416 struct drm_i915_gem_object *obj = vma->obj; 417 418 i915_vma_resource_init(vma_res, vma->vm, vma->pages, &vma->page_sizes, 419 obj->mm.rsgt, i915_gem_object_is_readonly(obj), 420 i915_gem_object_is_lmem(obj), obj->mm.region, 421 vma->ops, vma->private, vma->node.start, 422 vma->node.size, vma->size); 423 } 424 425 /** 426 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. 427 * @vma: VMA to map 428 * @cache_level: mapping cache level 429 * @flags: flags like global or local mapping 430 * @work: preallocated worker for allocating and binding the PTE 431 * @vma_res: pointer to a preallocated vma resource. The resource is either 432 * consumed or freed. 433 * 434 * DMA addresses are taken from the scatter-gather table of this object (or of 435 * this VMA in case of non-default GGTT views) and PTE entries set up. 436 * Note that DMA addresses are also the only part of the SG table we care about. 437 */ 438 int i915_vma_bind(struct i915_vma *vma, 439 enum i915_cache_level cache_level, 440 u32 flags, 441 struct i915_vma_work *work, 442 struct i915_vma_resource *vma_res) 443 { 444 u32 bind_flags; 445 u32 vma_flags; 446 int ret; 447 448 lockdep_assert_held(&vma->vm->mutex); 449 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 450 GEM_BUG_ON(vma->size > vma->node.size); 451 452 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start, 453 vma->node.size, 454 vma->vm->total))) { 455 i915_vma_resource_free(vma_res); 456 return -ENODEV; 457 } 458 459 if (GEM_DEBUG_WARN_ON(!flags)) { 460 i915_vma_resource_free(vma_res); 461 return -EINVAL; 462 } 463 464 bind_flags = flags; 465 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 466 467 vma_flags = atomic_read(&vma->flags); 468 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 469 470 bind_flags &= ~vma_flags; 471 if (bind_flags == 0) { 472 i915_vma_resource_free(vma_res); 473 return 0; 474 } 475 476 GEM_BUG_ON(!atomic_read(&vma->pages_count)); 477 478 /* Wait for or await async unbinds touching our range */ 479 if (work && bind_flags & vma->vm->bind_async_flags) 480 ret = i915_vma_resource_bind_dep_await(vma->vm, 481 &work->base.chain, 482 vma->node.start, 483 vma->node.size, 484 true, 485 GFP_NOWAIT | 486 __GFP_RETRY_MAYFAIL | 487 __GFP_NOWARN); 488 else 489 ret = i915_vma_resource_bind_dep_sync(vma->vm, vma->node.start, 490 vma->node.size, true); 491 if (ret) { 492 i915_vma_resource_free(vma_res); 493 return ret; 494 } 495 496 if (vma->resource || !vma_res) { 497 /* Rebinding with an additional I915_VMA_*_BIND */ 498 GEM_WARN_ON(!vma_flags); 499 i915_vma_resource_free(vma_res); 500 } else { 501 i915_vma_resource_init_from_vma(vma_res, vma); 502 vma->resource = vma_res; 503 } 504 trace_i915_vma_bind(vma, bind_flags); 505 if (work && bind_flags & vma->vm->bind_async_flags) { 506 struct dma_fence *prev; 507 508 work->vma_res = i915_vma_resource_get(vma->resource); 509 work->cache_level = cache_level; 510 work->flags = bind_flags; 511 512 /* 513 * Note we only want to chain up to the migration fence on 514 * the pages (not the object itself). As we don't track that, 515 * yet, we have to use the exclusive fence instead. 516 * 517 * Also note that we do not want to track the async vma as 518 * part of the obj->resv->excl_fence as it only affects 519 * execution and not content or object's backing store lifetime. 520 */ 521 prev = i915_active_set_exclusive(&vma->active, &work->base.dma); 522 if (prev) { 523 __i915_sw_fence_await_dma_fence(&work->base.chain, 524 prev, 525 &work->cb); 526 dma_fence_put(prev); 527 } 528 529 work->base.dma.error = 0; /* enable the queue_work() */ 530 work->obj = i915_gem_object_get(vma->obj); 531 } else { 532 ret = i915_gem_object_wait_moving_fence(vma->obj, true); 533 if (ret) { 534 i915_vma_resource_free(vma->resource); 535 vma->resource = NULL; 536 537 return ret; 538 } 539 vma->ops->bind_vma(vma->vm, NULL, vma->resource, cache_level, 540 bind_flags); 541 } 542 543 atomic_or(bind_flags, &vma->flags); 544 return 0; 545 } 546 547 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) 548 { 549 void __iomem *ptr; 550 int err; 551 552 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY)) 553 return IOMEM_ERR_PTR(-EINVAL); 554 555 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 556 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)); 557 GEM_BUG_ON(i915_vma_verify_bind_complete(vma)); 558 559 ptr = READ_ONCE(vma->iomap); 560 if (ptr == NULL) { 561 /* 562 * TODO: consider just using i915_gem_object_pin_map() for lmem 563 * instead, which already supports mapping non-contiguous chunks 564 * of pages, that way we can also drop the 565 * I915_BO_ALLOC_CONTIGUOUS when allocating the object. 566 */ 567 if (i915_gem_object_is_lmem(vma->obj)) { 568 ptr = i915_gem_object_lmem_io_map(vma->obj, 0, 569 vma->obj->base.size); 570 } else if (i915_vma_is_map_and_fenceable(vma)) { 571 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, 572 vma->node.start, 573 vma->node.size); 574 } else { 575 ptr = (void __iomem *) 576 i915_gem_object_pin_map(vma->obj, I915_MAP_WC); 577 if (IS_ERR(ptr)) { 578 err = PTR_ERR(ptr); 579 goto err; 580 } 581 ptr = page_pack_bits(ptr, 1); 582 } 583 584 if (ptr == NULL) { 585 err = -ENOMEM; 586 goto err; 587 } 588 589 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) { 590 if (page_unmask_bits(ptr)) 591 __i915_gem_object_release_map(vma->obj); 592 else 593 io_mapping_unmap(ptr); 594 ptr = vma->iomap; 595 } 596 } 597 598 __i915_vma_pin(vma); 599 600 err = i915_vma_pin_fence(vma); 601 if (err) 602 goto err_unpin; 603 604 i915_vma_set_ggtt_write(vma); 605 606 /* NB Access through the GTT requires the device to be awake. */ 607 return page_mask_bits(ptr); 608 609 err_unpin: 610 __i915_vma_unpin(vma); 611 err: 612 return IOMEM_ERR_PTR(err); 613 } 614 615 void i915_vma_flush_writes(struct i915_vma *vma) 616 { 617 if (i915_vma_unset_ggtt_write(vma)) 618 intel_gt_flush_ggtt_writes(vma->vm->gt); 619 } 620 621 void i915_vma_unpin_iomap(struct i915_vma *vma) 622 { 623 GEM_BUG_ON(vma->iomap == NULL); 624 625 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */ 626 627 i915_vma_flush_writes(vma); 628 629 i915_vma_unpin_fence(vma); 630 i915_vma_unpin(vma); 631 } 632 633 void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags) 634 { 635 struct i915_vma *vma; 636 struct drm_i915_gem_object *obj; 637 638 vma = fetch_and_zero(p_vma); 639 if (!vma) 640 return; 641 642 obj = vma->obj; 643 GEM_BUG_ON(!obj); 644 645 i915_vma_unpin(vma); 646 647 if (flags & I915_VMA_RELEASE_MAP) 648 i915_gem_object_unpin_map(obj); 649 650 i915_gem_object_put(obj); 651 } 652 653 bool i915_vma_misplaced(const struct i915_vma *vma, 654 u64 size, u64 alignment, u64 flags) 655 { 656 if (!drm_mm_node_allocated(&vma->node)) 657 return false; 658 659 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma))) 660 return true; 661 662 if (vma->node.size < size) 663 return true; 664 665 GEM_BUG_ON(alignment && !is_power_of_2(alignment)); 666 if (alignment && !IS_ALIGNED(vma->node.start, alignment)) 667 return true; 668 669 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) 670 return true; 671 672 if (flags & PIN_OFFSET_BIAS && 673 vma->node.start < (flags & PIN_OFFSET_MASK)) 674 return true; 675 676 if (flags & PIN_OFFSET_FIXED && 677 vma->node.start != (flags & PIN_OFFSET_MASK)) 678 return true; 679 680 return false; 681 } 682 683 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) 684 { 685 bool mappable, fenceable; 686 687 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 688 GEM_BUG_ON(!vma->fence_size); 689 690 fenceable = (vma->node.size >= vma->fence_size && 691 IS_ALIGNED(vma->node.start, vma->fence_alignment)); 692 693 mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; 694 695 if (mappable && fenceable) 696 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 697 else 698 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 699 } 700 701 bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color) 702 { 703 struct drm_mm_node *node = &vma->node; 704 struct drm_mm_node *other; 705 706 /* 707 * On some machines we have to be careful when putting differing types 708 * of snoopable memory together to avoid the prefetcher crossing memory 709 * domains and dying. During vm initialisation, we decide whether or not 710 * these constraints apply and set the drm_mm.color_adjust 711 * appropriately. 712 */ 713 if (!i915_vm_has_cache_coloring(vma->vm)) 714 return true; 715 716 /* Only valid to be called on an already inserted vma */ 717 GEM_BUG_ON(!drm_mm_node_allocated(node)); 718 GEM_BUG_ON(list_empty(&node->node_list)); 719 720 other = list_prev_entry(node, node_list); 721 if (i915_node_color_differs(other, color) && 722 !drm_mm_hole_follows(other)) 723 return false; 724 725 other = list_next_entry(node, node_list); 726 if (i915_node_color_differs(other, color) && 727 !drm_mm_hole_follows(node)) 728 return false; 729 730 return true; 731 } 732 733 /** 734 * i915_vma_insert - finds a slot for the vma in its address space 735 * @vma: the vma 736 * @size: requested size in bytes (can be larger than the VMA) 737 * @alignment: required alignment 738 * @flags: mask of PIN_* flags to use 739 * 740 * First we try to allocate some free space that meets the requirements for 741 * the VMA. Failiing that, if the flags permit, it will evict an old VMA, 742 * preferrably the oldest idle entry to make room for the new VMA. 743 * 744 * Returns: 745 * 0 on success, negative error code otherwise. 746 */ 747 static int 748 i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 749 u64 size, u64 alignment, u64 flags) 750 { 751 unsigned long color; 752 u64 start, end; 753 int ret; 754 755 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 756 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 757 758 size = max(size, vma->size); 759 alignment = max(alignment, vma->display_alignment); 760 if (flags & PIN_MAPPABLE) { 761 size = max_t(typeof(size), size, vma->fence_size); 762 alignment = max_t(typeof(alignment), 763 alignment, vma->fence_alignment); 764 } 765 766 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); 767 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); 768 GEM_BUG_ON(!is_power_of_2(alignment)); 769 770 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; 771 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); 772 773 end = vma->vm->total; 774 if (flags & PIN_MAPPABLE) 775 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end); 776 if (flags & PIN_ZONE_4G) 777 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 778 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); 779 780 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj)); 781 782 /* If binding the object/GGTT view requires more space than the entire 783 * aperture has, reject it early before evicting everything in a vain 784 * attempt to find space. 785 */ 786 if (size > end) { 787 drm_dbg(&to_i915(vma->obj->base.dev)->drm, 788 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", 789 size, flags & PIN_MAPPABLE ? "mappable" : "total", end); 790 return -ENOSPC; 791 } 792 793 color = 0; 794 795 if (i915_vm_has_cache_coloring(vma->vm)) 796 color = vma->obj->cache_level; 797 798 if (flags & PIN_OFFSET_FIXED) { 799 u64 offset = flags & PIN_OFFSET_MASK; 800 if (!IS_ALIGNED(offset, alignment) || 801 range_overflows(offset, size, end)) 802 return -EINVAL; 803 804 ret = i915_gem_gtt_reserve(vma->vm, ww, &vma->node, 805 size, offset, color, 806 flags); 807 if (ret) 808 return ret; 809 } else { 810 /* 811 * We only support huge gtt pages through the 48b PPGTT, 812 * however we also don't want to force any alignment for 813 * objects which need to be tightly packed into the low 32bits. 814 * 815 * Note that we assume that GGTT are limited to 4GiB for the 816 * forseeable future. See also i915_ggtt_offset(). 817 */ 818 if (upper_32_bits(end - 1) && 819 vma->page_sizes.sg > I915_GTT_PAGE_SIZE && 820 !HAS_64K_PAGES(vma->vm->i915)) { 821 /* 822 * We can't mix 64K and 4K PTEs in the same page-table 823 * (2M block), and so to avoid the ugliness and 824 * complexity of coloring we opt for just aligning 64K 825 * objects to 2M. 826 */ 827 u64 page_alignment = 828 rounddown_pow_of_two(vma->page_sizes.sg | 829 I915_GTT_PAGE_SIZE_2M); 830 831 /* 832 * Check we don't expand for the limited Global GTT 833 * (mappable aperture is even more precious!). This 834 * also checks that we exclude the aliasing-ppgtt. 835 */ 836 GEM_BUG_ON(i915_vma_is_ggtt(vma)); 837 838 alignment = max(alignment, page_alignment); 839 840 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) 841 size = round_up(size, I915_GTT_PAGE_SIZE_2M); 842 } 843 844 ret = i915_gem_gtt_insert(vma->vm, ww, &vma->node, 845 size, alignment, color, 846 start, end, flags); 847 if (ret) 848 return ret; 849 850 GEM_BUG_ON(vma->node.start < start); 851 GEM_BUG_ON(vma->node.start + vma->node.size > end); 852 } 853 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 854 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color)); 855 856 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 857 858 return 0; 859 } 860 861 static void 862 i915_vma_detach(struct i915_vma *vma) 863 { 864 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 865 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); 866 867 /* 868 * And finally now the object is completely decoupled from this 869 * vma, we can drop its hold on the backing storage and allow 870 * it to be reaped by the shrinker. 871 */ 872 list_move_tail(&vma->vm_link, &vma->vm->unbound_list); 873 } 874 875 static bool try_qad_pin(struct i915_vma *vma, unsigned int flags) 876 { 877 unsigned int bound; 878 879 bound = atomic_read(&vma->flags); 880 881 if (flags & PIN_VALIDATE) { 882 flags &= I915_VMA_BIND_MASK; 883 884 return (flags & bound) == flags; 885 } 886 887 /* with the lock mandatory for unbind, we don't race here */ 888 flags &= I915_VMA_BIND_MASK; 889 do { 890 if (unlikely(flags & ~bound)) 891 return false; 892 893 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR))) 894 return false; 895 896 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0); 897 } while (!atomic_try_cmpxchg(&vma->flags, &bound, bound + 1)); 898 899 return true; 900 } 901 902 static struct scatterlist * 903 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 904 unsigned int width, unsigned int height, 905 unsigned int src_stride, unsigned int dst_stride, 906 struct sg_table *st, struct scatterlist *sg) 907 { 908 unsigned int column, row; 909 unsigned int src_idx; 910 911 for (column = 0; column < width; column++) { 912 unsigned int left; 913 914 src_idx = src_stride * (height - 1) + column + offset; 915 for (row = 0; row < height; row++) { 916 st->nents++; 917 /* 918 * We don't need the pages, but need to initialize 919 * the entries so the sg list can be happily traversed. 920 * The only thing we need are DMA addresses. 921 */ 922 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 923 sg_dma_address(sg) = 924 i915_gem_object_get_dma_address(obj, src_idx); 925 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 926 sg = sg_next(sg); 927 src_idx -= src_stride; 928 } 929 930 left = (dst_stride - height) * I915_GTT_PAGE_SIZE; 931 932 if (!left) 933 continue; 934 935 st->nents++; 936 937 /* 938 * The DE ignores the PTEs for the padding tiles, the sg entry 939 * here is just a conenience to indicate how many padding PTEs 940 * to insert at this spot. 941 */ 942 sg_set_page(sg, NULL, left, 0); 943 sg_dma_address(sg) = 0; 944 sg_dma_len(sg) = left; 945 sg = sg_next(sg); 946 } 947 948 return sg; 949 } 950 951 static noinline struct sg_table * 952 intel_rotate_pages(struct intel_rotation_info *rot_info, 953 struct drm_i915_gem_object *obj) 954 { 955 unsigned int size = intel_rotation_info_size(rot_info); 956 struct drm_i915_private *i915 = to_i915(obj->base.dev); 957 struct sg_table *st; 958 struct scatterlist *sg; 959 int ret = -ENOMEM; 960 int i; 961 962 /* Allocate target SG list. */ 963 st = kmalloc(sizeof(*st), GFP_KERNEL); 964 if (!st) 965 goto err_st_alloc; 966 967 ret = sg_alloc_table(st, size, GFP_KERNEL); 968 if (ret) 969 goto err_sg_alloc; 970 971 st->nents = 0; 972 sg = st->sgl; 973 974 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) 975 sg = rotate_pages(obj, rot_info->plane[i].offset, 976 rot_info->plane[i].width, rot_info->plane[i].height, 977 rot_info->plane[i].src_stride, 978 rot_info->plane[i].dst_stride, 979 st, sg); 980 981 return st; 982 983 err_sg_alloc: 984 kfree(st); 985 err_st_alloc: 986 987 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 988 obj->base.size, rot_info->plane[0].width, 989 rot_info->plane[0].height, size); 990 991 return ERR_PTR(ret); 992 } 993 994 static struct scatterlist * 995 add_padding_pages(unsigned int count, 996 struct sg_table *st, struct scatterlist *sg) 997 { 998 st->nents++; 999 1000 /* 1001 * The DE ignores the PTEs for the padding tiles, the sg entry 1002 * here is just a convenience to indicate how many padding PTEs 1003 * to insert at this spot. 1004 */ 1005 sg_set_page(sg, NULL, count * I915_GTT_PAGE_SIZE, 0); 1006 sg_dma_address(sg) = 0; 1007 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE; 1008 sg = sg_next(sg); 1009 1010 return sg; 1011 } 1012 1013 static struct scatterlist * 1014 remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj, 1015 unsigned int offset, unsigned int alignment_pad, 1016 unsigned int width, unsigned int height, 1017 unsigned int src_stride, unsigned int dst_stride, 1018 struct sg_table *st, struct scatterlist *sg, 1019 unsigned int *gtt_offset) 1020 { 1021 unsigned int row; 1022 1023 if (!width || !height) 1024 return sg; 1025 1026 if (alignment_pad) 1027 sg = add_padding_pages(alignment_pad, st, sg); 1028 1029 for (row = 0; row < height; row++) { 1030 unsigned int left = width * I915_GTT_PAGE_SIZE; 1031 1032 while (left) { 1033 dma_addr_t addr; 1034 unsigned int length; 1035 1036 /* 1037 * We don't need the pages, but need to initialize 1038 * the entries so the sg list can be happily traversed. 1039 * The only thing we need are DMA addresses. 1040 */ 1041 1042 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1043 1044 length = min(left, length); 1045 1046 st->nents++; 1047 1048 sg_set_page(sg, NULL, length, 0); 1049 sg_dma_address(sg) = addr; 1050 sg_dma_len(sg) = length; 1051 sg = sg_next(sg); 1052 1053 offset += length / I915_GTT_PAGE_SIZE; 1054 left -= length; 1055 } 1056 1057 offset += src_stride - width; 1058 1059 left = (dst_stride - width) * I915_GTT_PAGE_SIZE; 1060 1061 if (!left) 1062 continue; 1063 1064 sg = add_padding_pages(left >> PAGE_SHIFT, st, sg); 1065 } 1066 1067 *gtt_offset += alignment_pad + dst_stride * height; 1068 1069 return sg; 1070 } 1071 1072 static struct scatterlist * 1073 remap_contiguous_pages(struct drm_i915_gem_object *obj, 1074 unsigned int obj_offset, 1075 unsigned int count, 1076 struct sg_table *st, struct scatterlist *sg) 1077 { 1078 struct scatterlist *iter; 1079 unsigned int offset; 1080 1081 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset); 1082 GEM_BUG_ON(!iter); 1083 1084 do { 1085 unsigned int len; 1086 1087 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT), 1088 count << PAGE_SHIFT); 1089 sg_set_page(sg, NULL, len, 0); 1090 sg_dma_address(sg) = 1091 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1092 sg_dma_len(sg) = len; 1093 1094 st->nents++; 1095 count -= len >> PAGE_SHIFT; 1096 if (count == 0) 1097 return sg; 1098 1099 sg = __sg_next(sg); 1100 iter = __sg_next(iter); 1101 offset = 0; 1102 } while (1); 1103 } 1104 1105 static struct scatterlist * 1106 remap_linear_color_plane_pages(struct drm_i915_gem_object *obj, 1107 unsigned int obj_offset, unsigned int alignment_pad, 1108 unsigned int size, 1109 struct sg_table *st, struct scatterlist *sg, 1110 unsigned int *gtt_offset) 1111 { 1112 if (!size) 1113 return sg; 1114 1115 if (alignment_pad) 1116 sg = add_padding_pages(alignment_pad, st, sg); 1117 1118 sg = remap_contiguous_pages(obj, obj_offset, size, st, sg); 1119 sg = sg_next(sg); 1120 1121 *gtt_offset += alignment_pad + size; 1122 1123 return sg; 1124 } 1125 1126 static struct scatterlist * 1127 remap_color_plane_pages(const struct intel_remapped_info *rem_info, 1128 struct drm_i915_gem_object *obj, 1129 int color_plane, 1130 struct sg_table *st, struct scatterlist *sg, 1131 unsigned int *gtt_offset) 1132 { 1133 unsigned int alignment_pad = 0; 1134 1135 if (rem_info->plane_alignment) 1136 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset; 1137 1138 if (rem_info->plane[color_plane].linear) 1139 sg = remap_linear_color_plane_pages(obj, 1140 rem_info->plane[color_plane].offset, 1141 alignment_pad, 1142 rem_info->plane[color_plane].size, 1143 st, sg, 1144 gtt_offset); 1145 1146 else 1147 sg = remap_tiled_color_plane_pages(obj, 1148 rem_info->plane[color_plane].offset, 1149 alignment_pad, 1150 rem_info->plane[color_plane].width, 1151 rem_info->plane[color_plane].height, 1152 rem_info->plane[color_plane].src_stride, 1153 rem_info->plane[color_plane].dst_stride, 1154 st, sg, 1155 gtt_offset); 1156 1157 return sg; 1158 } 1159 1160 static noinline struct sg_table * 1161 intel_remap_pages(struct intel_remapped_info *rem_info, 1162 struct drm_i915_gem_object *obj) 1163 { 1164 unsigned int size = intel_remapped_info_size(rem_info); 1165 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1166 struct sg_table *st; 1167 struct scatterlist *sg; 1168 unsigned int gtt_offset = 0; 1169 int ret = -ENOMEM; 1170 int i; 1171 1172 /* Allocate target SG list. */ 1173 st = kmalloc(sizeof(*st), GFP_KERNEL); 1174 if (!st) 1175 goto err_st_alloc; 1176 1177 ret = sg_alloc_table(st, size, GFP_KERNEL); 1178 if (ret) 1179 goto err_sg_alloc; 1180 1181 st->nents = 0; 1182 sg = st->sgl; 1183 1184 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) 1185 sg = remap_color_plane_pages(rem_info, obj, i, st, sg, >t_offset); 1186 1187 i915_sg_trim(st); 1188 1189 return st; 1190 1191 err_sg_alloc: 1192 kfree(st); 1193 err_st_alloc: 1194 1195 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1196 obj->base.size, rem_info->plane[0].width, 1197 rem_info->plane[0].height, size); 1198 1199 return ERR_PTR(ret); 1200 } 1201 1202 static noinline struct sg_table * 1203 intel_partial_pages(const struct i915_gtt_view *view, 1204 struct drm_i915_gem_object *obj) 1205 { 1206 struct sg_table *st; 1207 struct scatterlist *sg; 1208 unsigned int count = view->partial.size; 1209 int ret = -ENOMEM; 1210 1211 st = kmalloc(sizeof(*st), GFP_KERNEL); 1212 if (!st) 1213 goto err_st_alloc; 1214 1215 ret = sg_alloc_table(st, count, GFP_KERNEL); 1216 if (ret) 1217 goto err_sg_alloc; 1218 1219 st->nents = 0; 1220 1221 sg = remap_contiguous_pages(obj, view->partial.offset, count, st, st->sgl); 1222 1223 sg_mark_end(sg); 1224 i915_sg_trim(st); /* Drop any unused tail entries. */ 1225 1226 return st; 1227 1228 err_sg_alloc: 1229 kfree(st); 1230 err_st_alloc: 1231 return ERR_PTR(ret); 1232 } 1233 1234 static int 1235 __i915_vma_get_pages(struct i915_vma *vma) 1236 { 1237 struct sg_table *pages; 1238 1239 /* 1240 * The vma->pages are only valid within the lifespan of the borrowed 1241 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1242 * must be the vma->pages. A simple rule is that vma->pages must only 1243 * be accessed when the obj->mm.pages are pinned. 1244 */ 1245 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1246 1247 switch (vma->gtt_view.type) { 1248 default: 1249 GEM_BUG_ON(vma->gtt_view.type); 1250 fallthrough; 1251 case I915_GTT_VIEW_NORMAL: 1252 pages = vma->obj->mm.pages; 1253 break; 1254 1255 case I915_GTT_VIEW_ROTATED: 1256 pages = 1257 intel_rotate_pages(&vma->gtt_view.rotated, vma->obj); 1258 break; 1259 1260 case I915_GTT_VIEW_REMAPPED: 1261 pages = 1262 intel_remap_pages(&vma->gtt_view.remapped, vma->obj); 1263 break; 1264 1265 case I915_GTT_VIEW_PARTIAL: 1266 pages = intel_partial_pages(&vma->gtt_view, vma->obj); 1267 break; 1268 } 1269 1270 if (IS_ERR(pages)) { 1271 drm_err(&vma->vm->i915->drm, 1272 "Failed to get pages for VMA view type %u (%ld)!\n", 1273 vma->gtt_view.type, PTR_ERR(pages)); 1274 return PTR_ERR(pages); 1275 } 1276 1277 vma->pages = pages; 1278 1279 return 0; 1280 } 1281 1282 I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma) 1283 { 1284 int err; 1285 1286 if (atomic_add_unless(&vma->pages_count, 1, 0)) 1287 return 0; 1288 1289 err = i915_gem_object_pin_pages(vma->obj); 1290 if (err) 1291 return err; 1292 1293 err = __i915_vma_get_pages(vma); 1294 if (err) 1295 goto err_unpin; 1296 1297 vma->page_sizes = vma->obj->mm.page_sizes; 1298 atomic_inc(&vma->pages_count); 1299 1300 return 0; 1301 1302 err_unpin: 1303 __i915_gem_object_unpin_pages(vma->obj); 1304 1305 return err; 1306 } 1307 1308 void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb) 1309 { 1310 /* 1311 * Before we release the pages that were bound by this vma, we 1312 * must invalidate all the TLBs that may still have a reference 1313 * back to our physical address. It only needs to be done once, 1314 * so after updating the PTE to point away from the pages, record 1315 * the most recent TLB invalidation seqno, and if we have not yet 1316 * flushed the TLBs upon release, perform a full invalidation. 1317 */ 1318 WRITE_ONCE(*tlb, intel_gt_next_invalidate_tlb_full(vm->gt)); 1319 } 1320 1321 static void __vma_put_pages(struct i915_vma *vma, unsigned int count) 1322 { 1323 /* We allocate under vma_get_pages, so beware the shrinker */ 1324 GEM_BUG_ON(atomic_read(&vma->pages_count) < count); 1325 1326 if (atomic_sub_return(count, &vma->pages_count) == 0) { 1327 if (vma->pages != vma->obj->mm.pages) { 1328 sg_free_table(vma->pages); 1329 kfree(vma->pages); 1330 } 1331 vma->pages = NULL; 1332 1333 i915_gem_object_unpin_pages(vma->obj); 1334 } 1335 } 1336 1337 I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma) 1338 { 1339 if (atomic_add_unless(&vma->pages_count, -1, 1)) 1340 return; 1341 1342 __vma_put_pages(vma, 1); 1343 } 1344 1345 static void vma_unbind_pages(struct i915_vma *vma) 1346 { 1347 unsigned int count; 1348 1349 lockdep_assert_held(&vma->vm->mutex); 1350 1351 /* The upper portion of pages_count is the number of bindings */ 1352 count = atomic_read(&vma->pages_count); 1353 count >>= I915_VMA_PAGES_BIAS; 1354 GEM_BUG_ON(!count); 1355 1356 __vma_put_pages(vma, count | count << I915_VMA_PAGES_BIAS); 1357 } 1358 1359 int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1360 u64 size, u64 alignment, u64 flags) 1361 { 1362 struct i915_vma_work *work = NULL; 1363 struct dma_fence *moving = NULL; 1364 struct i915_vma_resource *vma_res = NULL; 1365 intel_wakeref_t wakeref = 0; 1366 unsigned int bound; 1367 int err; 1368 1369 assert_vma_held(vma); 1370 GEM_BUG_ON(!ww); 1371 1372 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND); 1373 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND); 1374 1375 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL))); 1376 1377 /* First try and grab the pin without rebinding the vma */ 1378 if (try_qad_pin(vma, flags)) 1379 return 0; 1380 1381 err = i915_vma_get_pages(vma); 1382 if (err) 1383 return err; 1384 1385 if (flags & PIN_GLOBAL) 1386 wakeref = intel_runtime_pm_get(&vma->vm->i915->runtime_pm); 1387 1388 if (flags & vma->vm->bind_async_flags) { 1389 /* lock VM */ 1390 err = i915_vm_lock_objects(vma->vm, ww); 1391 if (err) 1392 goto err_rpm; 1393 1394 work = i915_vma_work(); 1395 if (!work) { 1396 err = -ENOMEM; 1397 goto err_rpm; 1398 } 1399 1400 work->vm = vma->vm; 1401 1402 err = i915_gem_object_get_moving_fence(vma->obj, &moving); 1403 if (err) 1404 goto err_rpm; 1405 1406 dma_fence_work_chain(&work->base, moving); 1407 1408 /* Allocate enough page directories to used PTE */ 1409 if (vma->vm->allocate_va_range) { 1410 err = i915_vm_alloc_pt_stash(vma->vm, 1411 &work->stash, 1412 vma->size); 1413 if (err) 1414 goto err_fence; 1415 1416 err = i915_vm_map_pt_stash(vma->vm, &work->stash); 1417 if (err) 1418 goto err_fence; 1419 } 1420 } 1421 1422 vma_res = i915_vma_resource_alloc(); 1423 if (IS_ERR(vma_res)) { 1424 err = PTR_ERR(vma_res); 1425 goto err_fence; 1426 } 1427 1428 /* 1429 * Differentiate between user/kernel vma inside the aliasing-ppgtt. 1430 * 1431 * We conflate the Global GTT with the user's vma when using the 1432 * aliasing-ppgtt, but it is still vitally important to try and 1433 * keep the use cases distinct. For example, userptr objects are 1434 * not allowed inside the Global GTT as that will cause lock 1435 * inversions when we have to evict them the mmu_notifier callbacks - 1436 * but they are allowed to be part of the user ppGTT which can never 1437 * be mapped. As such we try to give the distinct users of the same 1438 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt 1439 * and i915_ppgtt separate]. 1440 * 1441 * NB this may cause us to mask real lock inversions -- while the 1442 * code is safe today, lockdep may not be able to spot future 1443 * transgressions. 1444 */ 1445 err = mutex_lock_interruptible_nested(&vma->vm->mutex, 1446 !(flags & PIN_GLOBAL)); 1447 if (err) 1448 goto err_vma_res; 1449 1450 /* No more allocations allowed now we hold vm->mutex */ 1451 1452 if (unlikely(i915_vma_is_closed(vma))) { 1453 err = -ENOENT; 1454 goto err_unlock; 1455 } 1456 1457 bound = atomic_read(&vma->flags); 1458 if (unlikely(bound & I915_VMA_ERROR)) { 1459 err = -ENOMEM; 1460 goto err_unlock; 1461 } 1462 1463 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) { 1464 err = -EAGAIN; /* pins are meant to be fairly temporary */ 1465 goto err_unlock; 1466 } 1467 1468 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) { 1469 if (!(flags & PIN_VALIDATE)) 1470 __i915_vma_pin(vma); 1471 goto err_unlock; 1472 } 1473 1474 err = i915_active_acquire(&vma->active); 1475 if (err) 1476 goto err_unlock; 1477 1478 if (!(bound & I915_VMA_BIND_MASK)) { 1479 err = i915_vma_insert(vma, ww, size, alignment, flags); 1480 if (err) 1481 goto err_active; 1482 1483 if (i915_is_ggtt(vma->vm)) 1484 __i915_vma_set_map_and_fenceable(vma); 1485 } 1486 1487 GEM_BUG_ON(!vma->pages); 1488 err = i915_vma_bind(vma, 1489 vma->obj->cache_level, 1490 flags, work, vma_res); 1491 vma_res = NULL; 1492 if (err) 1493 goto err_remove; 1494 1495 /* There should only be at most 2 active bindings (user, global) */ 1496 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound); 1497 atomic_add(I915_VMA_PAGES_ACTIVE, &vma->pages_count); 1498 list_move_tail(&vma->vm_link, &vma->vm->bound_list); 1499 1500 if (!(flags & PIN_VALIDATE)) { 1501 __i915_vma_pin(vma); 1502 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 1503 } 1504 GEM_BUG_ON(!i915_vma_is_bound(vma, flags)); 1505 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); 1506 1507 err_remove: 1508 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) { 1509 i915_vma_detach(vma); 1510 drm_mm_remove_node(&vma->node); 1511 } 1512 err_active: 1513 i915_active_release(&vma->active); 1514 err_unlock: 1515 mutex_unlock(&vma->vm->mutex); 1516 err_vma_res: 1517 i915_vma_resource_free(vma_res); 1518 err_fence: 1519 if (work) 1520 dma_fence_work_commit_imm(&work->base); 1521 err_rpm: 1522 if (wakeref) 1523 intel_runtime_pm_put(&vma->vm->i915->runtime_pm, wakeref); 1524 1525 if (moving) 1526 dma_fence_put(moving); 1527 1528 i915_vma_put_pages(vma); 1529 return err; 1530 } 1531 1532 static void flush_idle_contexts(struct intel_gt *gt) 1533 { 1534 struct intel_engine_cs *engine; 1535 enum intel_engine_id id; 1536 1537 for_each_engine(engine, gt, id) 1538 intel_engine_flush_barriers(engine); 1539 1540 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT); 1541 } 1542 1543 static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1544 u32 align, unsigned int flags) 1545 { 1546 struct i915_address_space *vm = vma->vm; 1547 int err; 1548 1549 do { 1550 err = i915_vma_pin_ww(vma, ww, 0, align, flags | PIN_GLOBAL); 1551 1552 if (err != -ENOSPC) { 1553 if (!err) { 1554 err = i915_vma_wait_for_bind(vma); 1555 if (err) 1556 i915_vma_unpin(vma); 1557 } 1558 return err; 1559 } 1560 1561 /* Unlike i915_vma_pin, we don't take no for an answer! */ 1562 flush_idle_contexts(vm->gt); 1563 if (mutex_lock_interruptible(&vm->mutex) == 0) { 1564 /* 1565 * We pass NULL ww here, as we don't want to unbind 1566 * locked objects when called from execbuf when pinning 1567 * is removed. This would probably regress badly. 1568 */ 1569 i915_gem_evict_vm(vm, NULL); 1570 mutex_unlock(&vm->mutex); 1571 } 1572 } while (1); 1573 } 1574 1575 int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww, 1576 u32 align, unsigned int flags) 1577 { 1578 struct i915_gem_ww_ctx _ww; 1579 int err; 1580 1581 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 1582 1583 if (ww) 1584 return __i915_ggtt_pin(vma, ww, align, flags); 1585 1586 lockdep_assert_not_held(&vma->obj->base.resv->lock.base); 1587 1588 for_i915_gem_ww(&_ww, err, true) { 1589 err = i915_gem_object_lock(vma->obj, &_ww); 1590 if (!err) 1591 err = __i915_ggtt_pin(vma, &_ww, align, flags); 1592 } 1593 1594 return err; 1595 } 1596 1597 static void __vma_close(struct i915_vma *vma, struct intel_gt *gt) 1598 { 1599 /* 1600 * We defer actually closing, unbinding and destroying the VMA until 1601 * the next idle point, or if the object is freed in the meantime. By 1602 * postponing the unbind, we allow for it to be resurrected by the 1603 * client, avoiding the work required to rebind the VMA. This is 1604 * advantageous for DRI, where the client/server pass objects 1605 * between themselves, temporarily opening a local VMA to the 1606 * object, and then closing it again. The same object is then reused 1607 * on the next frame (or two, depending on the depth of the swap queue) 1608 * causing us to rebind the VMA once more. This ends up being a lot 1609 * of wasted work for the steady state. 1610 */ 1611 GEM_BUG_ON(i915_vma_is_closed(vma)); 1612 list_add(&vma->closed_link, >->closed_vma); 1613 } 1614 1615 void i915_vma_close(struct i915_vma *vma) 1616 { 1617 struct intel_gt *gt = vma->vm->gt; 1618 unsigned long flags; 1619 1620 if (i915_vma_is_ggtt(vma)) 1621 return; 1622 1623 GEM_BUG_ON(!atomic_read(&vma->open_count)); 1624 if (atomic_dec_and_lock_irqsave(&vma->open_count, 1625 >->closed_lock, 1626 flags)) { 1627 __vma_close(vma, gt); 1628 spin_unlock_irqrestore(>->closed_lock, flags); 1629 } 1630 } 1631 1632 static void __i915_vma_remove_closed(struct i915_vma *vma) 1633 { 1634 list_del_init(&vma->closed_link); 1635 } 1636 1637 void i915_vma_reopen(struct i915_vma *vma) 1638 { 1639 struct intel_gt *gt = vma->vm->gt; 1640 1641 spin_lock_irq(>->closed_lock); 1642 if (i915_vma_is_closed(vma)) 1643 __i915_vma_remove_closed(vma); 1644 spin_unlock_irq(>->closed_lock); 1645 } 1646 1647 static void force_unbind(struct i915_vma *vma) 1648 { 1649 if (!drm_mm_node_allocated(&vma->node)) 1650 return; 1651 1652 atomic_and(~I915_VMA_PIN_MASK, &vma->flags); 1653 WARN_ON(__i915_vma_unbind(vma)); 1654 GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); 1655 } 1656 1657 static void release_references(struct i915_vma *vma, struct intel_gt *gt, 1658 bool vm_ddestroy) 1659 { 1660 struct drm_i915_gem_object *obj = vma->obj; 1661 1662 GEM_BUG_ON(i915_vma_is_active(vma)); 1663 1664 spin_lock(&obj->vma.lock); 1665 list_del(&vma->obj_link); 1666 if (!RB_EMPTY_NODE(&vma->obj_node)) 1667 rb_erase(&vma->obj_node, &obj->vma.tree); 1668 1669 spin_unlock(&obj->vma.lock); 1670 1671 spin_lock_irq(>->closed_lock); 1672 __i915_vma_remove_closed(vma); 1673 spin_unlock_irq(>->closed_lock); 1674 1675 if (vm_ddestroy) 1676 i915_vm_resv_put(vma->vm); 1677 1678 i915_active_fini(&vma->active); 1679 GEM_WARN_ON(vma->resource); 1680 i915_vma_free(vma); 1681 } 1682 1683 /** 1684 * i915_vma_destroy_locked - Remove all weak reference to the vma and put 1685 * the initial reference. 1686 * 1687 * This function should be called when it's decided the vma isn't needed 1688 * anymore. The caller must assure that it doesn't race with another lookup 1689 * plus destroy, typically by taking an appropriate reference. 1690 * 1691 * Current callsites are 1692 * - __i915_gem_object_pages_fini() 1693 * - __i915_vm_close() - Blocks the above function by taking a reference on 1694 * the object. 1695 * - __i915_vma_parked() - Blocks the above functions by taking a reference 1696 * on the vm and a reference on the object. Also takes the object lock so 1697 * destruction from __i915_vma_parked() can be blocked by holding the 1698 * object lock. Since the object lock is only allowed from within i915 with 1699 * an object refcount, holding the object lock also implicitly blocks the 1700 * vma freeing from __i915_gem_object_pages_fini(). 1701 * 1702 * Because of locks taken during destruction, a vma is also guaranteed to 1703 * stay alive while the following locks are held if it was looked up while 1704 * holding one of the locks: 1705 * - vm->mutex 1706 * - obj->vma.lock 1707 * - gt->closed_lock 1708 */ 1709 void i915_vma_destroy_locked(struct i915_vma *vma) 1710 { 1711 lockdep_assert_held(&vma->vm->mutex); 1712 1713 force_unbind(vma); 1714 list_del_init(&vma->vm_link); 1715 release_references(vma, vma->vm->gt, false); 1716 } 1717 1718 void i915_vma_destroy(struct i915_vma *vma) 1719 { 1720 struct intel_gt *gt; 1721 bool vm_ddestroy; 1722 1723 mutex_lock(&vma->vm->mutex); 1724 force_unbind(vma); 1725 list_del_init(&vma->vm_link); 1726 vm_ddestroy = vma->vm_ddestroy; 1727 vma->vm_ddestroy = false; 1728 1729 /* vma->vm may be freed when releasing vma->vm->mutex. */ 1730 gt = vma->vm->gt; 1731 mutex_unlock(&vma->vm->mutex); 1732 release_references(vma, gt, vm_ddestroy); 1733 } 1734 1735 void i915_vma_parked(struct intel_gt *gt) 1736 { 1737 struct i915_vma *vma, *next; 1738 LIST_HEAD(closed); 1739 1740 spin_lock_irq(>->closed_lock); 1741 list_for_each_entry_safe(vma, next, >->closed_vma, closed_link) { 1742 struct drm_i915_gem_object *obj = vma->obj; 1743 struct i915_address_space *vm = vma->vm; 1744 1745 /* XXX All to avoid keeping a reference on i915_vma itself */ 1746 1747 if (!kref_get_unless_zero(&obj->base.refcount)) 1748 continue; 1749 1750 if (!i915_vm_tryget(vm)) { 1751 i915_gem_object_put(obj); 1752 continue; 1753 } 1754 1755 list_move(&vma->closed_link, &closed); 1756 } 1757 spin_unlock_irq(>->closed_lock); 1758 1759 /* As the GT is held idle, no vma can be reopened as we destroy them */ 1760 list_for_each_entry_safe(vma, next, &closed, closed_link) { 1761 struct drm_i915_gem_object *obj = vma->obj; 1762 struct i915_address_space *vm = vma->vm; 1763 1764 if (i915_gem_object_trylock(obj, NULL)) { 1765 INIT_LIST_HEAD(&vma->closed_link); 1766 i915_vma_destroy(vma); 1767 i915_gem_object_unlock(obj); 1768 } else { 1769 /* back you go.. */ 1770 spin_lock_irq(>->closed_lock); 1771 list_add(&vma->closed_link, >->closed_vma); 1772 spin_unlock_irq(>->closed_lock); 1773 } 1774 1775 i915_gem_object_put(obj); 1776 i915_vm_put(vm); 1777 } 1778 } 1779 1780 static void __i915_vma_iounmap(struct i915_vma *vma) 1781 { 1782 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1783 1784 if (vma->iomap == NULL) 1785 return; 1786 1787 if (page_unmask_bits(vma->iomap)) 1788 __i915_gem_object_release_map(vma->obj); 1789 else 1790 io_mapping_unmap(vma->iomap); 1791 vma->iomap = NULL; 1792 } 1793 1794 void i915_vma_revoke_mmap(struct i915_vma *vma) 1795 { 1796 struct drm_vma_offset_node *node; 1797 u64 vma_offset; 1798 1799 if (!i915_vma_has_userfault(vma)) 1800 return; 1801 1802 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); 1803 GEM_BUG_ON(!vma->obj->userfault_count); 1804 1805 node = &vma->mmo->vma_node; 1806 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT; 1807 unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, 1808 drm_vma_node_offset_addr(node) + vma_offset, 1809 vma->size, 1810 1); 1811 1812 i915_vma_unset_userfault(vma); 1813 if (!--vma->obj->userfault_count) 1814 list_del(&vma->obj->userfault_link); 1815 } 1816 1817 static int 1818 __i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma) 1819 { 1820 return __i915_request_await_exclusive(rq, &vma->active); 1821 } 1822 1823 static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq) 1824 { 1825 int err; 1826 1827 /* Wait for the vma to be bound before we start! */ 1828 err = __i915_request_await_bind(rq, vma); 1829 if (err) 1830 return err; 1831 1832 return i915_active_add_request(&vma->active, rq); 1833 } 1834 1835 int _i915_vma_move_to_active(struct i915_vma *vma, 1836 struct i915_request *rq, 1837 struct dma_fence *fence, 1838 unsigned int flags) 1839 { 1840 struct drm_i915_gem_object *obj = vma->obj; 1841 int err; 1842 1843 assert_object_held(obj); 1844 1845 GEM_BUG_ON(!vma->pages); 1846 1847 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) { 1848 err = i915_request_await_object(rq, vma->obj, flags & EXEC_OBJECT_WRITE); 1849 if (unlikely(err)) 1850 return err; 1851 } 1852 err = __i915_vma_move_to_active(vma, rq); 1853 if (unlikely(err)) 1854 return err; 1855 1856 /* 1857 * Reserve fences slot early to prevent an allocation after preparing 1858 * the workload and associating fences with dma_resv. 1859 */ 1860 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) { 1861 struct dma_fence *curr; 1862 int idx; 1863 1864 dma_fence_array_for_each(curr, idx, fence) 1865 ; 1866 err = dma_resv_reserve_fences(vma->obj->base.resv, idx); 1867 if (unlikely(err)) 1868 return err; 1869 } 1870 1871 if (flags & EXEC_OBJECT_WRITE) { 1872 struct intel_frontbuffer *front; 1873 1874 front = __intel_frontbuffer_get(obj); 1875 if (unlikely(front)) { 1876 if (intel_frontbuffer_invalidate(front, ORIGIN_CS)) 1877 i915_active_add_request(&front->write, rq); 1878 intel_frontbuffer_put(front); 1879 } 1880 } 1881 1882 if (fence) { 1883 struct dma_fence *curr; 1884 enum dma_resv_usage usage; 1885 int idx; 1886 1887 if (flags & EXEC_OBJECT_WRITE) { 1888 usage = DMA_RESV_USAGE_WRITE; 1889 obj->write_domain = I915_GEM_DOMAIN_RENDER; 1890 obj->read_domains = 0; 1891 } else { 1892 usage = DMA_RESV_USAGE_READ; 1893 obj->write_domain = 0; 1894 } 1895 1896 dma_fence_array_for_each(curr, idx, fence) 1897 dma_resv_add_fence(vma->obj->base.resv, curr, usage); 1898 } 1899 1900 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence) 1901 i915_active_add_request(&vma->fence->active, rq); 1902 1903 obj->read_domains |= I915_GEM_GPU_DOMAINS; 1904 obj->mm.dirty = true; 1905 1906 GEM_BUG_ON(!i915_vma_is_active(vma)); 1907 return 0; 1908 } 1909 1910 struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async) 1911 { 1912 struct i915_vma_resource *vma_res = vma->resource; 1913 struct dma_fence *unbind_fence; 1914 1915 GEM_BUG_ON(i915_vma_is_pinned(vma)); 1916 assert_vma_held_evict(vma); 1917 1918 if (i915_vma_is_map_and_fenceable(vma)) { 1919 /* Force a pagefault for domain tracking on next user access */ 1920 i915_vma_revoke_mmap(vma); 1921 1922 /* 1923 * Check that we have flushed all writes through the GGTT 1924 * before the unbind, other due to non-strict nature of those 1925 * indirect writes they may end up referencing the GGTT PTE 1926 * after the unbind. 1927 * 1928 * Note that we may be concurrently poking at the GGTT_WRITE 1929 * bit from set-domain, as we mark all GGTT vma associated 1930 * with an object. We know this is for another vma, as we 1931 * are currently unbinding this one -- so if this vma will be 1932 * reused, it will be refaulted and have its dirty bit set 1933 * before the next write. 1934 */ 1935 i915_vma_flush_writes(vma); 1936 1937 /* release the fence reg _after_ flushing */ 1938 i915_vma_revoke_fence(vma); 1939 1940 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma)); 1941 } 1942 1943 __i915_vma_iounmap(vma); 1944 1945 GEM_BUG_ON(vma->fence); 1946 GEM_BUG_ON(i915_vma_has_userfault(vma)); 1947 1948 /* Object backend must be async capable. */ 1949 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt); 1950 1951 /* If vm is not open, unbind is a nop. */ 1952 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) && 1953 kref_read(&vma->vm->ref); 1954 vma_res->skip_pte_rewrite = !kref_read(&vma->vm->ref) || 1955 vma->vm->skip_pte_rewrite; 1956 trace_i915_vma_unbind(vma); 1957 1958 if (async) 1959 unbind_fence = i915_vma_resource_unbind(vma_res, 1960 &vma->obj->mm.tlb); 1961 else 1962 unbind_fence = i915_vma_resource_unbind(vma_res, NULL); 1963 1964 vma->resource = NULL; 1965 1966 atomic_and(~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE), 1967 &vma->flags); 1968 1969 i915_vma_detach(vma); 1970 1971 if (!async) { 1972 if (unbind_fence) { 1973 dma_fence_wait(unbind_fence, false); 1974 dma_fence_put(unbind_fence); 1975 unbind_fence = NULL; 1976 } 1977 vma_invalidate_tlb(vma->vm, &vma->obj->mm.tlb); 1978 } 1979 1980 /* 1981 * Binding itself may not have completed until the unbind fence signals, 1982 * so don't drop the pages until that happens, unless the resource is 1983 * async_capable. 1984 */ 1985 1986 vma_unbind_pages(vma); 1987 return unbind_fence; 1988 } 1989 1990 int __i915_vma_unbind(struct i915_vma *vma) 1991 { 1992 int ret; 1993 1994 lockdep_assert_held(&vma->vm->mutex); 1995 assert_vma_held_evict(vma); 1996 1997 if (!drm_mm_node_allocated(&vma->node)) 1998 return 0; 1999 2000 if (i915_vma_is_pinned(vma)) { 2001 vma_print_allocator(vma, "is pinned"); 2002 return -EAGAIN; 2003 } 2004 2005 /* 2006 * After confirming that no one else is pinning this vma, wait for 2007 * any laggards who may have crept in during the wait (through 2008 * a residual pin skipping the vm->mutex) to complete. 2009 */ 2010 ret = i915_vma_sync(vma); 2011 if (ret) 2012 return ret; 2013 2014 GEM_BUG_ON(i915_vma_is_active(vma)); 2015 __i915_vma_evict(vma, false); 2016 2017 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2018 return 0; 2019 } 2020 2021 static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma) 2022 { 2023 struct dma_fence *fence; 2024 2025 lockdep_assert_held(&vma->vm->mutex); 2026 2027 if (!drm_mm_node_allocated(&vma->node)) 2028 return NULL; 2029 2030 if (i915_vma_is_pinned(vma) || 2031 &vma->obj->mm.rsgt->table != vma->resource->bi.pages) 2032 return ERR_PTR(-EAGAIN); 2033 2034 /* 2035 * We probably need to replace this with awaiting the fences of the 2036 * object's dma_resv when the vma active goes away. When doing that 2037 * we need to be careful to not add the vma_resource unbind fence 2038 * immediately to the object's dma_resv, because then unbinding 2039 * the next vma from the object, in case there are many, will 2040 * actually await the unbinding of the previous vmas, which is 2041 * undesirable. 2042 */ 2043 if (i915_sw_fence_await_active(&vma->resource->chain, &vma->active, 2044 I915_ACTIVE_AWAIT_EXCL | 2045 I915_ACTIVE_AWAIT_ACTIVE) < 0) { 2046 return ERR_PTR(-EBUSY); 2047 } 2048 2049 fence = __i915_vma_evict(vma, true); 2050 2051 drm_mm_remove_node(&vma->node); /* pairs with i915_vma_release() */ 2052 2053 return fence; 2054 } 2055 2056 int i915_vma_unbind(struct i915_vma *vma) 2057 { 2058 struct i915_address_space *vm = vma->vm; 2059 intel_wakeref_t wakeref = 0; 2060 int err; 2061 2062 assert_object_held_shared(vma->obj); 2063 2064 /* Optimistic wait before taking the mutex */ 2065 err = i915_vma_sync(vma); 2066 if (err) 2067 return err; 2068 2069 if (!drm_mm_node_allocated(&vma->node)) 2070 return 0; 2071 2072 if (i915_vma_is_pinned(vma)) { 2073 vma_print_allocator(vma, "is pinned"); 2074 return -EAGAIN; 2075 } 2076 2077 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2078 /* XXX not always required: nop_clear_range */ 2079 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2080 2081 err = mutex_lock_interruptible_nested(&vma->vm->mutex, !wakeref); 2082 if (err) 2083 goto out_rpm; 2084 2085 err = __i915_vma_unbind(vma); 2086 mutex_unlock(&vm->mutex); 2087 2088 out_rpm: 2089 if (wakeref) 2090 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2091 return err; 2092 } 2093 2094 int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm) 2095 { 2096 struct drm_i915_gem_object *obj = vma->obj; 2097 struct i915_address_space *vm = vma->vm; 2098 intel_wakeref_t wakeref = 0; 2099 struct dma_fence *fence; 2100 int err; 2101 2102 /* 2103 * We need the dma-resv lock since we add the 2104 * unbind fence to the dma-resv object. 2105 */ 2106 assert_object_held(obj); 2107 2108 if (!drm_mm_node_allocated(&vma->node)) 2109 return 0; 2110 2111 if (i915_vma_is_pinned(vma)) { 2112 vma_print_allocator(vma, "is pinned"); 2113 return -EAGAIN; 2114 } 2115 2116 if (!obj->mm.rsgt) 2117 return -EBUSY; 2118 2119 err = dma_resv_reserve_fences(obj->base.resv, 1); 2120 if (err) 2121 return -EBUSY; 2122 2123 /* 2124 * It would be great if we could grab this wakeref from the 2125 * async unbind work if needed, but we can't because it uses 2126 * kmalloc and it's in the dma-fence signalling critical path. 2127 */ 2128 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 2129 wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm); 2130 2131 if (trylock_vm && !mutex_trylock(&vm->mutex)) { 2132 err = -EBUSY; 2133 goto out_rpm; 2134 } else if (!trylock_vm) { 2135 err = mutex_lock_interruptible_nested(&vm->mutex, !wakeref); 2136 if (err) 2137 goto out_rpm; 2138 } 2139 2140 fence = __i915_vma_unbind_async(vma); 2141 mutex_unlock(&vm->mutex); 2142 if (IS_ERR_OR_NULL(fence)) { 2143 err = PTR_ERR_OR_ZERO(fence); 2144 goto out_rpm; 2145 } 2146 2147 dma_resv_add_fence(obj->base.resv, fence, DMA_RESV_USAGE_READ); 2148 dma_fence_put(fence); 2149 2150 out_rpm: 2151 if (wakeref) 2152 intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref); 2153 return err; 2154 } 2155 2156 int i915_vma_unbind_unlocked(struct i915_vma *vma) 2157 { 2158 int err; 2159 2160 i915_gem_object_lock(vma->obj, NULL); 2161 err = i915_vma_unbind(vma); 2162 i915_gem_object_unlock(vma->obj); 2163 2164 return err; 2165 } 2166 2167 struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma) 2168 { 2169 i915_gem_object_make_unshrinkable(vma->obj); 2170 return vma; 2171 } 2172 2173 void i915_vma_make_shrinkable(struct i915_vma *vma) 2174 { 2175 i915_gem_object_make_shrinkable(vma->obj); 2176 } 2177 2178 void i915_vma_make_purgeable(struct i915_vma *vma) 2179 { 2180 i915_gem_object_make_purgeable(vma->obj); 2181 } 2182 2183 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2184 #include "selftests/i915_vma.c" 2185 #endif 2186 2187 void i915_vma_module_exit(void) 2188 { 2189 kmem_cache_destroy(slab_vmas); 2190 } 2191 2192 int __init i915_vma_module_init(void) 2193 { 2194 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN); 2195 if (!slab_vmas) 2196 return -ENOMEM; 2197 2198 return 0; 2199 } 2200