xref: /linux/drivers/gpu/drm/i915/i915_syncmap.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 /*
2  * Copyright © 2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/slab.h>
26 
27 #include "i915_syncmap.h"
28 
29 #include "i915_gem.h" /* GEM_BUG_ON() */
30 #include "i915_selftest.h"
31 
32 #define SHIFT ilog2(KSYNCMAP)
33 #define MASK (KSYNCMAP - 1)
34 
35 /*
36  * struct i915_syncmap is a layer of a radixtree that maps a u64 fence
37  * context id to the last u32 fence seqno waited upon from that context.
38  * Unlike lib/radixtree it uses a parent pointer that allows traversal back to
39  * the root. This allows us to access the whole tree via a single pointer
40  * to the most recently used layer. We expect fence contexts to be dense
41  * and most reuse to be on the same i915_gem_context but on neighbouring
42  * engines (i.e. on adjacent contexts) and reuse the same leaf, a very
43  * effective lookup cache. If the new lookup is not on the same leaf, we
44  * expect it to be on the neighbouring branch.
45  *
46  * A leaf holds an array of u32 seqno, and has height 0. The bitmap field
47  * allows us to store whether a particular seqno is valid (i.e. allows us
48  * to distinguish unset from 0).
49  *
50  * A branch holds an array of layer pointers, and has height > 0, and always
51  * has at least 2 layers (either branches or leaves) below it.
52  *
53  * For example,
54  *	for x in
55  *	  0 1 2 0x10 0x11 0x200 0x201
56  *	  0x500000 0x500001 0x503000 0x503001
57  *	  0xE<<60:
58  *		i915_syncmap_set(&sync, x, lower_32_bits(x));
59  * will build a tree like:
60  *	0xXXXXXXXXXXXXXXXX
61  *	0-> 0x0000000000XXXXXX
62  *	|   0-> 0x0000000000000XXX
63  *	|   |   0-> 0x00000000000000XX
64  *	|   |   |   0-> 0x000000000000000X 0:0, 1:1, 2:2
65  *	|   |   |   1-> 0x000000000000001X 0:10, 1:11
66  *	|   |   2-> 0x000000000000020X 0:200, 1:201
67  *	|   5-> 0x000000000050XXXX
68  *	|       0-> 0x000000000050000X 0:500000, 1:500001
69  *	|       3-> 0x000000000050300X 0:503000, 1:503001
70  *	e-> 0xe00000000000000X e:e
71  */
72 
73 struct i915_syncmap {
74 	u64 prefix;
75 	unsigned int height;
76 	unsigned int bitmap;
77 	struct i915_syncmap *parent;
78 	/*
79 	 * Following this header is an array of either seqno or child pointers:
80 	 * union {
81 	 *	u32 seqno[KSYNCMAP];
82 	 *	struct i915_syncmap *child[KSYNCMAP];
83 	 * };
84 	 */
85 };
86 
87 /**
88  * i915_syncmap_init -- initialise the #i915_syncmap
89  * @root: pointer to the #i915_syncmap
90  */
91 void i915_syncmap_init(struct i915_syncmap **root)
92 {
93 	BUILD_BUG_ON_NOT_POWER_OF_2(KSYNCMAP);
94 	BUILD_BUG_ON_NOT_POWER_OF_2(SHIFT);
95 	BUILD_BUG_ON(KSYNCMAP > BITS_PER_TYPE((*root)->bitmap));
96 	*root = NULL;
97 }
98 
99 static inline u32 *__sync_seqno(struct i915_syncmap *p)
100 {
101 	GEM_BUG_ON(p->height);
102 	return (u32 *)(p + 1);
103 }
104 
105 static inline struct i915_syncmap **__sync_child(struct i915_syncmap *p)
106 {
107 	GEM_BUG_ON(!p->height);
108 	return (struct i915_syncmap **)(p + 1);
109 }
110 
111 static inline unsigned int
112 __sync_branch_idx(const struct i915_syncmap *p, u64 id)
113 {
114 	return (id >> p->height) & MASK;
115 }
116 
117 static inline unsigned int
118 __sync_leaf_idx(const struct i915_syncmap *p, u64 id)
119 {
120 	GEM_BUG_ON(p->height);
121 	return id & MASK;
122 }
123 
124 static inline u64 __sync_branch_prefix(const struct i915_syncmap *p, u64 id)
125 {
126 	return id >> p->height >> SHIFT;
127 }
128 
129 static inline u64 __sync_leaf_prefix(const struct i915_syncmap *p, u64 id)
130 {
131 	GEM_BUG_ON(p->height);
132 	return id >> SHIFT;
133 }
134 
135 static inline bool seqno_later(u32 a, u32 b)
136 {
137 	return (s32)(a - b) >= 0;
138 }
139 
140 /**
141  * i915_syncmap_is_later -- compare against the last know sync point
142  * @root: pointer to the #i915_syncmap
143  * @id: the context id (other timeline) we are synchronising to
144  * @seqno: the sequence number along the other timeline
145  *
146  * If we have already synchronised this @root timeline with another (@id) then
147  * we can omit any repeated or earlier synchronisation requests. If the two
148  * timelines are already coupled, we can also omit the dependency between the
149  * two as that is already known via the timeline.
150  *
151  * Returns true if the two timelines are already synchronised wrt to @seqno,
152  * false if not and the synchronisation must be emitted.
153  */
154 bool i915_syncmap_is_later(struct i915_syncmap **root, u64 id, u32 seqno)
155 {
156 	struct i915_syncmap *p;
157 	unsigned int idx;
158 
159 	p = *root;
160 	if (!p)
161 		return false;
162 
163 	if (likely(__sync_leaf_prefix(p, id) == p->prefix))
164 		goto found;
165 
166 	/* First climb the tree back to a parent branch */
167 	do {
168 		p = p->parent;
169 		if (!p)
170 			return false;
171 
172 		if (__sync_branch_prefix(p, id) == p->prefix)
173 			break;
174 	} while (1);
175 
176 	/* And then descend again until we find our leaf */
177 	do {
178 		if (!p->height)
179 			break;
180 
181 		p = __sync_child(p)[__sync_branch_idx(p, id)];
182 		if (!p)
183 			return false;
184 
185 		if (__sync_branch_prefix(p, id) != p->prefix)
186 			return false;
187 	} while (1);
188 
189 	*root = p;
190 found:
191 	idx = __sync_leaf_idx(p, id);
192 	if (!(p->bitmap & BIT(idx)))
193 		return false;
194 
195 	return seqno_later(__sync_seqno(p)[idx], seqno);
196 }
197 
198 static struct i915_syncmap *
199 __sync_alloc_leaf(struct i915_syncmap *parent, u64 id)
200 {
201 	struct i915_syncmap *p;
202 
203 	p = kmalloc(sizeof(*p) + KSYNCMAP * sizeof(u32), GFP_KERNEL);
204 	if (unlikely(!p))
205 		return NULL;
206 
207 	p->parent = parent;
208 	p->height = 0;
209 	p->bitmap = 0;
210 	p->prefix = __sync_leaf_prefix(p, id);
211 	return p;
212 }
213 
214 static inline void __sync_set_seqno(struct i915_syncmap *p, u64 id, u32 seqno)
215 {
216 	unsigned int idx = __sync_leaf_idx(p, id);
217 
218 	p->bitmap |= BIT(idx);
219 	__sync_seqno(p)[idx] = seqno;
220 }
221 
222 static inline void __sync_set_child(struct i915_syncmap *p,
223 				    unsigned int idx,
224 				    struct i915_syncmap *child)
225 {
226 	p->bitmap |= BIT(idx);
227 	__sync_child(p)[idx] = child;
228 }
229 
230 static noinline int __sync_set(struct i915_syncmap **root, u64 id, u32 seqno)
231 {
232 	struct i915_syncmap *p = *root;
233 	unsigned int idx;
234 
235 	if (!p) {
236 		p = __sync_alloc_leaf(NULL, id);
237 		if (unlikely(!p))
238 			return -ENOMEM;
239 
240 		goto found;
241 	}
242 
243 	/* Caller handled the likely cached case */
244 	GEM_BUG_ON(__sync_leaf_prefix(p, id) == p->prefix);
245 
246 	/* Climb back up the tree until we find a common prefix */
247 	do {
248 		if (!p->parent)
249 			break;
250 
251 		p = p->parent;
252 
253 		if (__sync_branch_prefix(p, id) == p->prefix)
254 			break;
255 	} while (1);
256 
257 	/*
258 	 * No shortcut, we have to descend the tree to find the right layer
259 	 * containing this fence.
260 	 *
261 	 * Each layer in the tree holds 16 (KSYNCMAP) pointers, either fences
262 	 * or lower layers. Leaf nodes (height = 0) contain the fences, all
263 	 * other nodes (height > 0) are internal layers that point to a lower
264 	 * node. Each internal layer has at least 2 descendents.
265 	 *
266 	 * Starting at the top, we check whether the current prefix matches. If
267 	 * it doesn't, we have gone past our target and need to insert a join
268 	 * into the tree, and a new leaf node for the target as a descendent
269 	 * of the join, as well as the original layer.
270 	 *
271 	 * The matching prefix means we are still following the right branch
272 	 * of the tree. If it has height 0, we have found our leaf and just
273 	 * need to replace the fence slot with ourselves. If the height is
274 	 * not zero, our slot contains the next layer in the tree (unless
275 	 * it is empty, in which case we can add ourselves as a new leaf).
276 	 * As descend the tree the prefix grows (and height decreases).
277 	 */
278 	do {
279 		struct i915_syncmap *next;
280 
281 		if (__sync_branch_prefix(p, id) != p->prefix) {
282 			unsigned int above;
283 
284 			/* Insert a join above the current layer */
285 			next = kzalloc(sizeof(*next) + KSYNCMAP * sizeof(next),
286 				       GFP_KERNEL);
287 			if (unlikely(!next))
288 				return -ENOMEM;
289 
290 			/* Compute the height at which these two diverge */
291 			above = fls64(__sync_branch_prefix(p, id) ^ p->prefix);
292 			above = round_up(above, SHIFT);
293 			next->height = above + p->height;
294 			next->prefix = __sync_branch_prefix(next, id);
295 
296 			/* Insert the join into the parent */
297 			if (p->parent) {
298 				idx = __sync_branch_idx(p->parent, id);
299 				__sync_child(p->parent)[idx] = next;
300 				GEM_BUG_ON(!(p->parent->bitmap & BIT(idx)));
301 			}
302 			next->parent = p->parent;
303 
304 			/* Compute the idx of the other branch, not our id! */
305 			idx = p->prefix >> (above - SHIFT) & MASK;
306 			__sync_set_child(next, idx, p);
307 			p->parent = next;
308 
309 			/* Ascend to the join */
310 			p = next;
311 		} else {
312 			if (!p->height)
313 				break;
314 		}
315 
316 		/* Descend into the next layer */
317 		GEM_BUG_ON(!p->height);
318 		idx = __sync_branch_idx(p, id);
319 		next = __sync_child(p)[idx];
320 		if (!next) {
321 			next = __sync_alloc_leaf(p, id);
322 			if (unlikely(!next))
323 				return -ENOMEM;
324 
325 			__sync_set_child(p, idx, next);
326 			p = next;
327 			break;
328 		}
329 
330 		p = next;
331 	} while (1);
332 
333 found:
334 	GEM_BUG_ON(p->prefix != __sync_leaf_prefix(p, id));
335 	__sync_set_seqno(p, id, seqno);
336 	*root = p;
337 	return 0;
338 }
339 
340 /**
341  * i915_syncmap_set -- mark the most recent syncpoint between contexts
342  * @root: pointer to the #i915_syncmap
343  * @id: the context id (other timeline) we have synchronised to
344  * @seqno: the sequence number along the other timeline
345  *
346  * When we synchronise this @root timeline with another (@id), we also know
347  * that we have synchronized with all previous seqno along that timeline. If
348  * we then have a request to synchronise with the same seqno or older, we can
349  * omit it, see i915_syncmap_is_later()
350  *
351  * Returns 0 on success, or a negative error code.
352  */
353 int i915_syncmap_set(struct i915_syncmap **root, u64 id, u32 seqno)
354 {
355 	struct i915_syncmap *p = *root;
356 
357 	/*
358 	 * We expect to be called in sequence following is_later(id), which
359 	 * should have preloaded the root for us.
360 	 */
361 	if (likely(p && __sync_leaf_prefix(p, id) == p->prefix)) {
362 		__sync_set_seqno(p, id, seqno);
363 		return 0;
364 	}
365 
366 	return __sync_set(root, id, seqno);
367 }
368 
369 static void __sync_free(struct i915_syncmap *p)
370 {
371 	if (p->height) {
372 		unsigned int i;
373 
374 		while ((i = ffs(p->bitmap))) {
375 			p->bitmap &= ~0u << i;
376 			__sync_free(__sync_child(p)[i - 1]);
377 		}
378 	}
379 
380 	kfree(p);
381 }
382 
383 /**
384  * i915_syncmap_free -- free all memory associated with the syncmap
385  * @root: pointer to the #i915_syncmap
386  *
387  * Either when the timeline is to be freed and we no longer need the sync
388  * point tracking, or when the fences are all known to be signaled and the
389  * sync point tracking is redundant, we can free the #i915_syncmap to recover
390  * its allocations.
391  *
392  * Will reinitialise the @root pointer so that the #i915_syncmap is ready for
393  * reuse.
394  */
395 void i915_syncmap_free(struct i915_syncmap **root)
396 {
397 	struct i915_syncmap *p;
398 
399 	p = *root;
400 	if (!p)
401 		return;
402 
403 	while (p->parent)
404 		p = p->parent;
405 
406 	__sync_free(p);
407 	*root = NULL;
408 }
409 
410 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
411 #include "selftests/i915_syncmap.c"
412 #endif
413