xref: /linux/drivers/gpu/drm/i915/i915_request.h (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /*
2  * Copyright © 2008-2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_REQUEST_H
26 #define I915_REQUEST_H
27 
28 #include <linux/dma-fence.h>
29 #include <linux/hrtimer.h>
30 #include <linux/irq_work.h>
31 #include <linux/llist.h>
32 #include <linux/lockdep.h>
33 
34 #include "gem/i915_gem_context_types.h"
35 #include "gt/intel_context_types.h"
36 #include "gt/intel_engine_types.h"
37 #include "gt/intel_timeline_types.h"
38 
39 #include "i915_gem.h"
40 #include "i915_scheduler.h"
41 #include "i915_selftest.h"
42 #include "i915_sw_fence.h"
43 #include "i915_vma_resource.h"
44 
45 #include <uapi/drm/i915_drm.h>
46 
47 struct drm_file;
48 struct drm_i915_gem_object;
49 struct drm_printer;
50 struct i915_deps;
51 struct i915_request;
52 
53 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
54 struct i915_capture_list {
55 	struct i915_vma_resource *vma_res;
56 	struct i915_capture_list *next;
57 };
58 
59 void i915_request_free_capture_list(struct i915_capture_list *capture);
60 #else
61 #define i915_request_free_capture_list(_a) do {} while (0)
62 #endif
63 
64 #define RQ_TRACE(rq, fmt, ...) do {					\
65 	const struct i915_request *rq__ = (rq);				\
66 	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
67 		     rq__->fence.context, rq__->fence.seqno,		\
68 		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
69 } while (0)
70 
71 enum {
72 	/*
73 	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
74 	 *
75 	 * Set by __i915_request_submit() on handing over to HW, and cleared
76 	 * by __i915_request_unsubmit() if we preempt this request.
77 	 *
78 	 * Finally cleared for consistency on retiring the request, when
79 	 * we know the HW is no longer running this request.
80 	 *
81 	 * See i915_request_is_active()
82 	 */
83 	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
84 
85 	/*
86 	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
87 	 *
88 	 * Using the scheduler, when a request is ready for execution it is put
89 	 * into the priority queue, and removed from that queue when transferred
90 	 * to the HW runlists. We want to track its membership within the
91 	 * priority queue so that we can easily check before rescheduling.
92 	 *
93 	 * See i915_request_in_priority_queue()
94 	 */
95 	I915_FENCE_FLAG_PQUEUE,
96 
97 	/*
98 	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
99 	 *
100 	 * This request has been suspended, pending an ongoing investigation.
101 	 */
102 	I915_FENCE_FLAG_HOLD,
103 
104 	/*
105 	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
106 	 * breadcrumb that marks the end of semaphore waits and start of the
107 	 * user payload.
108 	 */
109 	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
110 
111 	/*
112 	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
113 	 *
114 	 * Internal bookkeeping used by the breadcrumb code to track when
115 	 * a request is on the various signal_list.
116 	 */
117 	I915_FENCE_FLAG_SIGNAL,
118 
119 	/*
120 	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
121 	 *
122 	 * The execution of some requests should not be interrupted. This is
123 	 * a sensitive operation as it makes the request super important,
124 	 * blocking other higher priority work. Abuse of this flag will
125 	 * lead to quality of service issues.
126 	 */
127 	I915_FENCE_FLAG_NOPREEMPT,
128 
129 	/*
130 	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
131 	 *
132 	 * A high priority sentinel request may be submitted to clear the
133 	 * submission queue. As it will be the only request in-flight, upon
134 	 * execution all other active requests will have been preempted and
135 	 * unsubmitted. This preemptive pulse is used to re-evaluate the
136 	 * in-flight requests, particularly in cases where an active context
137 	 * is banned and those active requests need to be cancelled.
138 	 */
139 	I915_FENCE_FLAG_SENTINEL,
140 
141 	/*
142 	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
143 	 *
144 	 * Some requests are more important than others! In particular, a
145 	 * request that the user is waiting on is typically required for
146 	 * interactive latency, for which we want to minimise by upclocking
147 	 * the GPU. Here we track such boost requests on a per-request basis.
148 	 */
149 	I915_FENCE_FLAG_BOOST,
150 
151 	/*
152 	 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
153 	 * parent-child relationship (parallel submission, multi-lrc) should
154 	 * trigger a submission to the GuC rather than just moving the context
155 	 * tail.
156 	 */
157 	I915_FENCE_FLAG_SUBMIT_PARALLEL,
158 
159 	/*
160 	 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
161 	 * parent-child relationship (parallel submission, multi-lrc) that
162 	 * hit an error while generating requests in the execbuf IOCTL.
163 	 * Indicates this request should be skipped as another request in
164 	 * submission / relationship encoutered an error.
165 	 */
166 	I915_FENCE_FLAG_SKIP_PARALLEL,
167 
168 	/*
169 	 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
170 	 * fence (dma_fence_array) and i915 generated for parallel submission.
171 	 */
172 	I915_FENCE_FLAG_COMPOSITE,
173 };
174 
175 /*
176  * Request queue structure.
177  *
178  * The request queue allows us to note sequence numbers that have been emitted
179  * and may be associated with active buffers to be retired.
180  *
181  * By keeping this list, we can avoid having to do questionable sequence
182  * number comparisons on buffer last_read|write_seqno. It also allows an
183  * emission time to be associated with the request for tracking how far ahead
184  * of the GPU the submission is.
185  *
186  * When modifying this structure be very aware that we perform a lockless
187  * RCU lookup of it that may race against reallocation of the struct
188  * from the slab freelist. We intentionally do not zero the structure on
189  * allocation so that the lookup can use the dangling pointers (and is
190  * cogniscent that those pointers may be wrong). Instead, everything that
191  * needs to be initialised must be done so explicitly.
192  *
193  * The requests are reference counted.
194  */
195 struct i915_request {
196 	struct dma_fence fence;
197 	spinlock_t lock;
198 
199 	struct drm_i915_private *i915;
200 
201 	/*
202 	 * Context and ring buffer related to this request
203 	 * Contexts are refcounted, so when this request is associated with a
204 	 * context, we must increment the context's refcount, to guarantee that
205 	 * it persists while any request is linked to it. Requests themselves
206 	 * are also refcounted, so the request will only be freed when the last
207 	 * reference to it is dismissed, and the code in
208 	 * i915_request_free() will then decrement the refcount on the
209 	 * context.
210 	 */
211 	struct intel_engine_cs *engine;
212 	struct intel_context *context;
213 	struct intel_ring *ring;
214 	struct intel_timeline __rcu *timeline;
215 
216 	struct list_head signal_link;
217 	struct llist_node signal_node;
218 
219 	/*
220 	 * The rcu epoch of when this request was allocated. Used to judiciously
221 	 * apply backpressure on future allocations to ensure that under
222 	 * mempressure there is sufficient RCU ticks for us to reclaim our
223 	 * RCU protected slabs.
224 	 */
225 	unsigned long rcustate;
226 
227 	/*
228 	 * We pin the timeline->mutex while constructing the request to
229 	 * ensure that no caller accidentally drops it during construction.
230 	 * The timeline->mutex must be held to ensure that only this caller
231 	 * can use the ring and manipulate the associated timeline during
232 	 * construction.
233 	 */
234 	struct pin_cookie cookie;
235 
236 	/*
237 	 * Fences for the various phases in the request's lifetime.
238 	 *
239 	 * The submit fence is used to await upon all of the request's
240 	 * dependencies. When it is signaled, the request is ready to run.
241 	 * It is used by the driver to then queue the request for execution.
242 	 */
243 	struct i915_sw_fence submit;
244 	union {
245 		wait_queue_entry_t submitq;
246 		struct i915_sw_dma_fence_cb dmaq;
247 		struct i915_request_duration_cb {
248 			struct dma_fence_cb cb;
249 			ktime_t emitted;
250 		} duration;
251 	};
252 	struct llist_head execute_cb;
253 	struct i915_sw_fence semaphore;
254 	/*
255 	 * complete submit fence from an IRQ if needed for locking hierarchy
256 	 * reasons.
257 	 */
258 	struct irq_work submit_work;
259 
260 	/*
261 	 * A list of everyone we wait upon, and everyone who waits upon us.
262 	 * Even though we will not be submitted to the hardware before the
263 	 * submit fence is signaled (it waits for all external events as well
264 	 * as our own requests), the scheduler still needs to know the
265 	 * dependency tree for the lifetime of the request (from execbuf
266 	 * to retirement), i.e. bidirectional dependency information for the
267 	 * request not tied to individual fences.
268 	 */
269 	struct i915_sched_node sched;
270 	struct i915_dependency dep;
271 	intel_engine_mask_t execution_mask;
272 
273 	/*
274 	 * A convenience pointer to the current breadcrumb value stored in
275 	 * the HW status page (or our timeline's local equivalent). The full
276 	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
277 	 */
278 	const u32 *hwsp_seqno;
279 
280 	/* Position in the ring of the start of the request */
281 	u32 head;
282 
283 	/* Position in the ring of the start of the user packets */
284 	u32 infix;
285 
286 	/*
287 	 * Position in the ring of the start of the postfix.
288 	 * This is required to calculate the maximum available ring space
289 	 * without overwriting the postfix.
290 	 */
291 	u32 postfix;
292 
293 	/* Position in the ring of the end of the whole request */
294 	u32 tail;
295 
296 	/* Position in the ring of the end of any workarounds after the tail */
297 	u32 wa_tail;
298 
299 	/* Preallocate space in the ring for the emitting the request */
300 	u32 reserved_space;
301 
302 	/* Batch buffer pointer for selftest internal use. */
303 	I915_SELFTEST_DECLARE(struct i915_vma *batch);
304 
305 	struct i915_vma_resource *batch_res;
306 
307 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
308 	/*
309 	 * Additional buffers requested by userspace to be captured upon
310 	 * a GPU hang. The vma/obj on this list are protected by their
311 	 * active reference - all objects on this list must also be
312 	 * on the active_list (of their final request).
313 	 */
314 	struct i915_capture_list *capture_list;
315 #endif
316 
317 	/* Time at which this request was emitted, in jiffies. */
318 	unsigned long emitted_jiffies;
319 
320 	/* timeline->request entry for this request */
321 	struct list_head link;
322 
323 	/* Watchdog support fields. */
324 	struct i915_request_watchdog {
325 		struct llist_node link;
326 		struct hrtimer timer;
327 	} watchdog;
328 
329 	/*
330 	 * Requests may need to be stalled when using GuC submission waiting for
331 	 * certain GuC operations to complete. If that is the case, stalled
332 	 * requests are added to a per context list of stalled requests. The
333 	 * below list_head is the link in that list. Protected by
334 	 * ce->guc_state.lock.
335 	 */
336 	struct list_head guc_fence_link;
337 
338 	/*
339 	 * Priority level while the request is in flight. Differs
340 	 * from i915 scheduler priority. See comment above
341 	 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
342 	 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
343 	 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
344 	 * if the priority has not been initialized yet or if no more updates
345 	 * are possible because the request has completed.
346 	 */
347 #define	GUC_PRIO_INIT	0xff
348 #define	GUC_PRIO_FINI	0xfe
349 	u8 guc_prio;
350 
351 	/*
352 	 * wait queue entry used to wait on the HuC load to complete
353 	 */
354 	wait_queue_entry_t hucq;
355 
356 	I915_SELFTEST_DECLARE(struct {
357 		struct list_head link;
358 		unsigned long delay;
359 	} mock;)
360 };
361 
362 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
363 
364 extern const struct dma_fence_ops i915_fence_ops;
365 
366 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
367 {
368 	return fence->ops == &i915_fence_ops;
369 }
370 
371 struct kmem_cache *i915_request_slab_cache(void);
372 
373 struct i915_request * __must_check
374 __i915_request_create(struct intel_context *ce, gfp_t gfp);
375 struct i915_request * __must_check
376 i915_request_create(struct intel_context *ce);
377 
378 void __i915_request_skip(struct i915_request *rq);
379 bool i915_request_set_error_once(struct i915_request *rq, int error);
380 struct i915_request *i915_request_mark_eio(struct i915_request *rq);
381 
382 struct i915_request *__i915_request_commit(struct i915_request *request);
383 void __i915_request_queue(struct i915_request *rq,
384 			  const struct i915_sched_attr *attr);
385 void __i915_request_queue_bh(struct i915_request *rq);
386 
387 bool i915_request_retire(struct i915_request *rq);
388 void i915_request_retire_upto(struct i915_request *rq);
389 
390 static inline struct i915_request *
391 to_request(struct dma_fence *fence)
392 {
393 	/* We assume that NULL fence/request are interoperable */
394 	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
395 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
396 	return container_of(fence, struct i915_request, fence);
397 }
398 
399 static inline struct i915_request *
400 i915_request_get(struct i915_request *rq)
401 {
402 	return to_request(dma_fence_get(&rq->fence));
403 }
404 
405 static inline struct i915_request *
406 i915_request_get_rcu(struct i915_request *rq)
407 {
408 	return to_request(dma_fence_get_rcu(&rq->fence));
409 }
410 
411 static inline void
412 i915_request_put(struct i915_request *rq)
413 {
414 	dma_fence_put(&rq->fence);
415 }
416 
417 int i915_request_await_object(struct i915_request *to,
418 			      struct drm_i915_gem_object *obj,
419 			      bool write);
420 int i915_request_await_dma_fence(struct i915_request *rq,
421 				 struct dma_fence *fence);
422 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
423 int i915_request_await_execution(struct i915_request *rq,
424 				 struct dma_fence *fence);
425 
426 void i915_request_add(struct i915_request *rq);
427 
428 bool __i915_request_submit(struct i915_request *request);
429 void i915_request_submit(struct i915_request *request);
430 
431 void __i915_request_unsubmit(struct i915_request *request);
432 void i915_request_unsubmit(struct i915_request *request);
433 
434 void i915_request_cancel(struct i915_request *rq, int error);
435 
436 long i915_request_wait_timeout(struct i915_request *rq,
437 			       unsigned int flags,
438 			       long timeout)
439 	__attribute__((nonnull(1)));
440 
441 long i915_request_wait(struct i915_request *rq,
442 		       unsigned int flags,
443 		       long timeout)
444 	__attribute__((nonnull(1)));
445 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
446 #define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
447 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
448 
449 void i915_request_show(struct drm_printer *m,
450 		       const struct i915_request *rq,
451 		       const char *prefix,
452 		       int indent);
453 
454 static inline bool i915_request_signaled(const struct i915_request *rq)
455 {
456 	/* The request may live longer than its HWSP, so check flags first! */
457 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
458 }
459 
460 static inline bool i915_request_is_active(const struct i915_request *rq)
461 {
462 	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
463 }
464 
465 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
466 {
467 	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
468 }
469 
470 static inline bool
471 i915_request_has_initial_breadcrumb(const struct i915_request *rq)
472 {
473 	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
474 }
475 
476 /*
477  * Returns true if seq1 is later than seq2.
478  */
479 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
480 {
481 	return (s32)(seq1 - seq2) >= 0;
482 }
483 
484 static inline u32 __hwsp_seqno(const struct i915_request *rq)
485 {
486 	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
487 
488 	return READ_ONCE(*hwsp);
489 }
490 
491 /**
492  * hwsp_seqno - the current breadcrumb value in the HW status page
493  * @rq: the request, to chase the relevant HW status page
494  *
495  * The emphasis in naming here is that hwsp_seqno() is not a property of the
496  * request, but an indication of the current HW state (associated with this
497  * request). Its value will change as the GPU executes more requests.
498  *
499  * Returns the current breadcrumb value in the associated HW status page (or
500  * the local timeline's equivalent) for this request. The request itself
501  * has the associated breadcrumb value of rq->fence.seqno, when the HW
502  * status page has that breadcrumb or later, this request is complete.
503  */
504 static inline u32 hwsp_seqno(const struct i915_request *rq)
505 {
506 	u32 seqno;
507 
508 	rcu_read_lock(); /* the HWSP may be freed at runtime */
509 	seqno = __hwsp_seqno(rq);
510 	rcu_read_unlock();
511 
512 	return seqno;
513 }
514 
515 static inline bool __i915_request_has_started(const struct i915_request *rq)
516 {
517 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
518 }
519 
520 /**
521  * i915_request_started - check if the request has begun being executed
522  * @rq: the request
523  *
524  * If the timeline is not using initial breadcrumbs, a request is
525  * considered started if the previous request on its timeline (i.e.
526  * context) has been signaled.
527  *
528  * If the timeline is using semaphores, it will also be emitting an
529  * "initial breadcrumb" after the semaphores are complete and just before
530  * it began executing the user payload. A request can therefore be active
531  * on the HW and not yet started as it is still busywaiting on its
532  * dependencies (via HW semaphores).
533  *
534  * If the request has started, its dependencies will have been signaled
535  * (either by fences or by semaphores) and it will have begun processing
536  * the user payload.
537  *
538  * However, even if a request has started, it may have been preempted and
539  * so no longer active, or it may have already completed.
540  *
541  * See also i915_request_is_active().
542  *
543  * Returns true if the request has begun executing the user payload, or
544  * has completed:
545  */
546 static inline bool i915_request_started(const struct i915_request *rq)
547 {
548 	bool result;
549 
550 	if (i915_request_signaled(rq))
551 		return true;
552 
553 	result = true;
554 	rcu_read_lock(); /* the HWSP may be freed at runtime */
555 	if (likely(!i915_request_signaled(rq)))
556 		/* Remember: started but may have since been preempted! */
557 		result = __i915_request_has_started(rq);
558 	rcu_read_unlock();
559 
560 	return result;
561 }
562 
563 /**
564  * i915_request_is_running - check if the request may actually be executing
565  * @rq: the request
566  *
567  * Returns true if the request is currently submitted to hardware, has passed
568  * its start point (i.e. the context is setup and not busywaiting). Note that
569  * it may no longer be running by the time the function returns!
570  */
571 static inline bool i915_request_is_running(const struct i915_request *rq)
572 {
573 	bool result;
574 
575 	if (!i915_request_is_active(rq))
576 		return false;
577 
578 	rcu_read_lock();
579 	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
580 	rcu_read_unlock();
581 
582 	return result;
583 }
584 
585 /**
586  * i915_request_is_ready - check if the request is ready for execution
587  * @rq: the request
588  *
589  * Upon construction, the request is instructed to wait upon various
590  * signals before it is ready to be executed by the HW. That is, we do
591  * not want to start execution and read data before it is written. In practice,
592  * this is controlled with a mixture of interrupts and semaphores. Once
593  * the submit fence is completed, the backend scheduler will place the
594  * request into its queue and from there submit it for execution. So we
595  * can detect when a request is eligible for execution (and is under control
596  * of the scheduler) by querying where it is in any of the scheduler's lists.
597  *
598  * Returns true if the request is ready for execution (it may be inflight),
599  * false otherwise.
600  */
601 static inline bool i915_request_is_ready(const struct i915_request *rq)
602 {
603 	return !list_empty(&rq->sched.link);
604 }
605 
606 static inline bool __i915_request_is_complete(const struct i915_request *rq)
607 {
608 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
609 }
610 
611 static inline bool i915_request_completed(const struct i915_request *rq)
612 {
613 	bool result;
614 
615 	if (i915_request_signaled(rq))
616 		return true;
617 
618 	result = true;
619 	rcu_read_lock(); /* the HWSP may be freed at runtime */
620 	if (likely(!i915_request_signaled(rq)))
621 		result = __i915_request_is_complete(rq);
622 	rcu_read_unlock();
623 
624 	return result;
625 }
626 
627 static inline void i915_request_mark_complete(struct i915_request *rq)
628 {
629 	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
630 		   (u32 *)&rq->fence.seqno);
631 }
632 
633 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
634 {
635 	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
636 }
637 
638 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
639 {
640 	/* Preemption should only be disabled very rarely */
641 	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
642 }
643 
644 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
645 {
646 	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
647 }
648 
649 static inline bool i915_request_on_hold(const struct i915_request *rq)
650 {
651 	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
652 }
653 
654 static inline void i915_request_set_hold(struct i915_request *rq)
655 {
656 	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
657 }
658 
659 static inline void i915_request_clear_hold(struct i915_request *rq)
660 {
661 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
662 }
663 
664 static inline struct intel_timeline *
665 i915_request_timeline(const struct i915_request *rq)
666 {
667 	/* Valid only while the request is being constructed (or retired). */
668 	return rcu_dereference_protected(rq->timeline,
669 					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) ||
670 					 test_bit(CONTEXT_IS_PARKING, &rq->context->flags));
671 }
672 
673 static inline struct i915_gem_context *
674 i915_request_gem_context(const struct i915_request *rq)
675 {
676 	/* Valid only while the request is being constructed (or retired). */
677 	return rcu_dereference_protected(rq->context->gem_context, true);
678 }
679 
680 static inline struct intel_timeline *
681 i915_request_active_timeline(const struct i915_request *rq)
682 {
683 	/*
684 	 * When in use during submission, we are protected by a guarantee that
685 	 * the context/timeline is pinned and must remain pinned until after
686 	 * this submission.
687 	 */
688 	return rcu_dereference_protected(rq->timeline,
689 					 lockdep_is_held(&rq->engine->sched_engine->lock));
690 }
691 
692 static inline u32
693 i915_request_active_seqno(const struct i915_request *rq)
694 {
695 	u32 hwsp_phys_base =
696 		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
697 	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
698 
699 	/*
700 	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
701 	 * but instead use the fact that the relative for vaddr is the
702 	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
703 	 * and combine them with the relative offset in rq->hwsp_seqno.
704 	 *
705 	 * As rw->hwsp_seqno is rewritten when signaled, this only works
706 	 * when the request isn't signaled yet, but at that point you
707 	 * no longer need the offset.
708 	 */
709 
710 	return hwsp_phys_base + hwsp_relative_offset;
711 }
712 
713 bool
714 i915_request_active_engine(struct i915_request *rq,
715 			   struct intel_engine_cs **active);
716 
717 void i915_request_notify_execute_cb_imm(struct i915_request *rq);
718 
719 enum i915_request_state {
720 	I915_REQUEST_UNKNOWN = 0,
721 	I915_REQUEST_COMPLETE,
722 	I915_REQUEST_PENDING,
723 	I915_REQUEST_QUEUED,
724 	I915_REQUEST_ACTIVE,
725 };
726 
727 enum i915_request_state i915_test_request_state(struct i915_request *rq);
728 
729 void i915_request_module_exit(void);
730 int i915_request_module_init(void);
731 
732 #endif /* I915_REQUEST_H */
733