xref: /linux/drivers/gpu/drm/i915/i915_request.h (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 /*
2  * Copyright © 2008-2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #ifndef I915_REQUEST_H
26 #define I915_REQUEST_H
27 
28 #include <linux/dma-fence.h>
29 #include <linux/hrtimer.h>
30 #include <linux/irq_work.h>
31 #include <linux/llist.h>
32 #include <linux/lockdep.h>
33 
34 #include <uapi/drm/i915_drm.h>
35 
36 #include "gem/i915_gem_context_types.h"
37 #include "gt/intel_context_types.h"
38 #include "gt/intel_engine_types.h"
39 #include "gt/intel_timeline_types.h"
40 
41 #include "i915_gem.h"
42 #include "i915_ptr_util.h"
43 #include "i915_scheduler.h"
44 #include "i915_selftest.h"
45 #include "i915_sw_fence.h"
46 #include "i915_vma_resource.h"
47 
48 struct drm_file;
49 struct drm_i915_gem_object;
50 struct drm_printer;
51 struct i915_deps;
52 struct i915_request;
53 
54 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
55 struct i915_capture_list {
56 	struct i915_vma_resource *vma_res;
57 	struct i915_capture_list *next;
58 };
59 
60 void i915_request_free_capture_list(struct i915_capture_list *capture);
61 #else
62 #define i915_request_free_capture_list(_a) do {} while (0)
63 #endif
64 
65 #define RQ_TRACE(rq, fmt, ...) do {					\
66 	const struct i915_request *rq__ = (rq);				\
67 	ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt,	\
68 		     rq__->fence.context, rq__->fence.seqno,		\
69 		     hwsp_seqno(rq__), ##__VA_ARGS__);			\
70 } while (0)
71 
72 enum {
73 	/*
74 	 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW.
75 	 *
76 	 * Set by __i915_request_submit() on handing over to HW, and cleared
77 	 * by __i915_request_unsubmit() if we preempt this request.
78 	 *
79 	 * Finally cleared for consistency on retiring the request, when
80 	 * we know the HW is no longer running this request.
81 	 *
82 	 * See i915_request_is_active()
83 	 */
84 	I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS,
85 
86 	/*
87 	 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution
88 	 *
89 	 * Using the scheduler, when a request is ready for execution it is put
90 	 * into the priority queue, and removed from that queue when transferred
91 	 * to the HW runlists. We want to track its membership within the
92 	 * priority queue so that we can easily check before rescheduling.
93 	 *
94 	 * See i915_request_in_priority_queue()
95 	 */
96 	I915_FENCE_FLAG_PQUEUE,
97 
98 	/*
99 	 * I915_FENCE_FLAG_HOLD - this request is currently on hold
100 	 *
101 	 * This request has been suspended, pending an ongoing investigation.
102 	 */
103 	I915_FENCE_FLAG_HOLD,
104 
105 	/*
106 	 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial
107 	 * breadcrumb that marks the end of semaphore waits and start of the
108 	 * user payload.
109 	 */
110 	I915_FENCE_FLAG_INITIAL_BREADCRUMB,
111 
112 	/*
113 	 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list
114 	 *
115 	 * Internal bookkeeping used by the breadcrumb code to track when
116 	 * a request is on the various signal_list.
117 	 */
118 	I915_FENCE_FLAG_SIGNAL,
119 
120 	/*
121 	 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted
122 	 *
123 	 * The execution of some requests should not be interrupted. This is
124 	 * a sensitive operation as it makes the request super important,
125 	 * blocking other higher priority work. Abuse of this flag will
126 	 * lead to quality of service issues.
127 	 */
128 	I915_FENCE_FLAG_NOPREEMPT,
129 
130 	/*
131 	 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue
132 	 *
133 	 * A high priority sentinel request may be submitted to clear the
134 	 * submission queue. As it will be the only request in-flight, upon
135 	 * execution all other active requests will have been preempted and
136 	 * unsubmitted. This preemptive pulse is used to re-evaluate the
137 	 * in-flight requests, particularly in cases where an active context
138 	 * is banned and those active requests need to be cancelled.
139 	 */
140 	I915_FENCE_FLAG_SENTINEL,
141 
142 	/*
143 	 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request
144 	 *
145 	 * Some requests are more important than others! In particular, a
146 	 * request that the user is waiting on is typically required for
147 	 * interactive latency, for which we want to minimise by upclocking
148 	 * the GPU. Here we track such boost requests on a per-request basis.
149 	 */
150 	I915_FENCE_FLAG_BOOST,
151 
152 	/*
153 	 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a
154 	 * parent-child relationship (parallel submission, multi-lrc) should
155 	 * trigger a submission to the GuC rather than just moving the context
156 	 * tail.
157 	 */
158 	I915_FENCE_FLAG_SUBMIT_PARALLEL,
159 
160 	/*
161 	 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a
162 	 * parent-child relationship (parallel submission, multi-lrc) that
163 	 * hit an error while generating requests in the execbuf IOCTL.
164 	 * Indicates this request should be skipped as another request in
165 	 * submission / relationship encountered an error.
166 	 */
167 	I915_FENCE_FLAG_SKIP_PARALLEL,
168 
169 	/*
170 	 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite
171 	 * fence (dma_fence_array) and i915 generated for parallel submission.
172 	 */
173 	I915_FENCE_FLAG_COMPOSITE,
174 };
175 
176 /*
177  * Request queue structure.
178  *
179  * The request queue allows us to note sequence numbers that have been emitted
180  * and may be associated with active buffers to be retired.
181  *
182  * By keeping this list, we can avoid having to do questionable sequence
183  * number comparisons on buffer last_read|write_seqno. It also allows an
184  * emission time to be associated with the request for tracking how far ahead
185  * of the GPU the submission is.
186  *
187  * When modifying this structure be very aware that we perform a lockless
188  * RCU lookup of it that may race against reallocation of the struct
189  * from the slab freelist. We intentionally do not zero the structure on
190  * allocation so that the lookup can use the dangling pointers (and is
191  * cognisant that those pointers may be wrong). Instead, everything that
192  * needs to be initialised must be done so explicitly.
193  *
194  * The requests are reference counted.
195  */
196 struct i915_request {
197 	struct dma_fence fence;
198 	spinlock_t lock;
199 
200 	struct drm_i915_private *i915;
201 
202 	/*
203 	 * Context and ring buffer related to this request
204 	 * Contexts are refcounted, so when this request is associated with a
205 	 * context, we must increment the context's refcount, to guarantee that
206 	 * it persists while any request is linked to it. Requests themselves
207 	 * are also refcounted, so the request will only be freed when the last
208 	 * reference to it is dismissed, and the code in
209 	 * i915_request_free() will then decrement the refcount on the
210 	 * context.
211 	 */
212 	struct intel_engine_cs *engine;
213 	struct intel_context *context;
214 	struct intel_ring *ring;
215 	struct intel_timeline __rcu *timeline;
216 
217 	struct list_head signal_link;
218 	struct llist_node signal_node;
219 
220 	/*
221 	 * The rcu epoch of when this request was allocated. Used to judiciously
222 	 * apply backpressure on future allocations to ensure that under
223 	 * mempressure there is sufficient RCU ticks for us to reclaim our
224 	 * RCU protected slabs.
225 	 */
226 	unsigned long rcustate;
227 
228 	/*
229 	 * We pin the timeline->mutex while constructing the request to
230 	 * ensure that no caller accidentally drops it during construction.
231 	 * The timeline->mutex must be held to ensure that only this caller
232 	 * can use the ring and manipulate the associated timeline during
233 	 * construction.
234 	 */
235 	struct pin_cookie cookie;
236 
237 	/*
238 	 * Fences for the various phases in the request's lifetime.
239 	 *
240 	 * The submit fence is used to await upon all of the request's
241 	 * dependencies. When it is signaled, the request is ready to run.
242 	 * It is used by the driver to then queue the request for execution.
243 	 */
244 	struct i915_sw_fence submit;
245 	union {
246 		wait_queue_entry_t submitq;
247 		struct i915_sw_dma_fence_cb dmaq;
248 		struct i915_request_duration_cb {
249 			struct dma_fence_cb cb;
250 			ktime_t emitted;
251 		} duration;
252 	};
253 	struct llist_head execute_cb;
254 	struct i915_sw_fence semaphore;
255 	/*
256 	 * complete submit fence from an IRQ if needed for locking hierarchy
257 	 * reasons.
258 	 */
259 	struct irq_work submit_work;
260 
261 	/*
262 	 * A list of everyone we wait upon, and everyone who waits upon us.
263 	 * Even though we will not be submitted to the hardware before the
264 	 * submit fence is signaled (it waits for all external events as well
265 	 * as our own requests), the scheduler still needs to know the
266 	 * dependency tree for the lifetime of the request (from execbuf
267 	 * to retirement), i.e. bidirectional dependency information for the
268 	 * request not tied to individual fences.
269 	 */
270 	struct i915_sched_node sched;
271 	struct i915_dependency dep;
272 	intel_engine_mask_t execution_mask;
273 
274 	/*
275 	 * A convenience pointer to the current breadcrumb value stored in
276 	 * the HW status page (or our timeline's local equivalent). The full
277 	 * path would be rq->hw_context->ring->timeline->hwsp_seqno.
278 	 */
279 	const u32 *hwsp_seqno;
280 
281 	/* Position in the ring of the start of the request */
282 	u32 head;
283 
284 	/* Position in the ring of the start of the user packets */
285 	u32 infix;
286 
287 	/*
288 	 * Position in the ring of the start of the postfix.
289 	 * This is required to calculate the maximum available ring space
290 	 * without overwriting the postfix.
291 	 */
292 	u32 postfix;
293 
294 	/* Position in the ring of the end of the whole request */
295 	u32 tail;
296 
297 	/* Position in the ring of the end of any workarounds after the tail */
298 	u32 wa_tail;
299 
300 	/* Preallocate space in the ring for the emitting the request */
301 	u32 reserved_space;
302 
303 	/* Batch buffer pointer for selftest internal use. */
304 	I915_SELFTEST_DECLARE(struct i915_vma *batch);
305 
306 	struct i915_vma_resource *batch_res;
307 
308 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
309 	/*
310 	 * Additional buffers requested by userspace to be captured upon
311 	 * a GPU hang. The vma/obj on this list are protected by their
312 	 * active reference - all objects on this list must also be
313 	 * on the active_list (of their final request).
314 	 */
315 	struct i915_capture_list *capture_list;
316 #endif
317 
318 	/* Time at which this request was emitted, in jiffies. */
319 	unsigned long emitted_jiffies;
320 
321 	/* timeline->request entry for this request */
322 	struct list_head link;
323 
324 	/* Watchdog support fields. */
325 	struct i915_request_watchdog {
326 		struct llist_node link;
327 		struct hrtimer timer;
328 	} watchdog;
329 
330 	/*
331 	 * Requests may need to be stalled when using GuC submission waiting for
332 	 * certain GuC operations to complete. If that is the case, stalled
333 	 * requests are added to a per context list of stalled requests. The
334 	 * below list_head is the link in that list. Protected by
335 	 * ce->guc_state.lock.
336 	 */
337 	struct list_head guc_fence_link;
338 
339 	/*
340 	 * Priority level while the request is in flight. Differs
341 	 * from i915 scheduler priority. See comment above
342 	 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by
343 	 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and
344 	 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate
345 	 * if the priority has not been initialized yet or if no more updates
346 	 * are possible because the request has completed.
347 	 */
348 #define	GUC_PRIO_INIT	0xff
349 #define	GUC_PRIO_FINI	0xfe
350 	u8 guc_prio;
351 
352 	/*
353 	 * wait queue entry used to wait on the HuC load to complete
354 	 */
355 	wait_queue_entry_t hucq;
356 
357 	I915_SELFTEST_DECLARE(struct {
358 		struct list_head link;
359 		unsigned long delay;
360 	} mock;)
361 };
362 
363 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
364 
365 extern const struct dma_fence_ops i915_fence_ops;
366 
367 static inline bool dma_fence_is_i915(const struct dma_fence *fence)
368 {
369 	return fence->ops == &i915_fence_ops;
370 }
371 
372 struct kmem_cache *i915_request_slab_cache(void);
373 
374 struct i915_request * __must_check
375 __i915_request_create(struct intel_context *ce, gfp_t gfp);
376 struct i915_request * __must_check
377 i915_request_create(struct intel_context *ce);
378 
379 void __i915_request_skip(struct i915_request *rq);
380 bool i915_request_set_error_once(struct i915_request *rq, int error);
381 struct i915_request *i915_request_mark_eio(struct i915_request *rq);
382 
383 struct i915_request *__i915_request_commit(struct i915_request *request);
384 void __i915_request_queue(struct i915_request *rq,
385 			  const struct i915_sched_attr *attr);
386 void __i915_request_queue_bh(struct i915_request *rq);
387 
388 bool i915_request_retire(struct i915_request *rq);
389 void i915_request_retire_upto(struct i915_request *rq);
390 
391 static inline struct i915_request *
392 to_request(struct dma_fence *fence)
393 {
394 	/* We assume that NULL fence/request are interoperable */
395 	BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0);
396 	GEM_BUG_ON(fence && !dma_fence_is_i915(fence));
397 	return container_of(fence, struct i915_request, fence);
398 }
399 
400 static inline struct i915_request *
401 i915_request_get(struct i915_request *rq)
402 {
403 	return to_request(dma_fence_get(&rq->fence));
404 }
405 
406 static inline struct i915_request *
407 i915_request_get_rcu(struct i915_request *rq)
408 {
409 	return to_request(dma_fence_get_rcu(&rq->fence));
410 }
411 
412 static inline void
413 i915_request_put(struct i915_request *rq)
414 {
415 	dma_fence_put(&rq->fence);
416 }
417 
418 int i915_request_await_object(struct i915_request *to,
419 			      struct drm_i915_gem_object *obj,
420 			      bool write);
421 int i915_request_await_dma_fence(struct i915_request *rq,
422 				 struct dma_fence *fence);
423 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps);
424 int i915_request_await_execution(struct i915_request *rq,
425 				 struct dma_fence *fence);
426 
427 void i915_request_add(struct i915_request *rq);
428 
429 bool __i915_request_submit(struct i915_request *request);
430 void i915_request_submit(struct i915_request *request);
431 
432 void __i915_request_unsubmit(struct i915_request *request);
433 void i915_request_unsubmit(struct i915_request *request);
434 
435 void i915_request_cancel(struct i915_request *rq, int error);
436 
437 long i915_request_wait_timeout(struct i915_request *rq,
438 			       unsigned int flags,
439 			       long timeout)
440 	__attribute__((nonnull(1)));
441 
442 long i915_request_wait(struct i915_request *rq,
443 		       unsigned int flags,
444 		       long timeout)
445 	__attribute__((nonnull(1)));
446 #define I915_WAIT_INTERRUPTIBLE	BIT(0)
447 #define I915_WAIT_PRIORITY	BIT(1) /* small priority bump for the request */
448 #define I915_WAIT_ALL		BIT(2) /* used by i915_gem_object_wait() */
449 
450 void i915_request_show(struct drm_printer *m,
451 		       const struct i915_request *rq,
452 		       const char *prefix,
453 		       int indent);
454 
455 static inline bool i915_request_signaled(const struct i915_request *rq)
456 {
457 	/* The request may live longer than its HWSP, so check flags first! */
458 	return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags);
459 }
460 
461 static inline bool i915_request_is_active(const struct i915_request *rq)
462 {
463 	return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
464 }
465 
466 static inline bool i915_request_in_priority_queue(const struct i915_request *rq)
467 {
468 	return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
469 }
470 
471 static inline bool
472 i915_request_has_initial_breadcrumb(const struct i915_request *rq)
473 {
474 	return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
475 }
476 
477 /*
478  * Returns true if seq1 is later than seq2.
479  */
480 static inline bool i915_seqno_passed(u32 seq1, u32 seq2)
481 {
482 	return (s32)(seq1 - seq2) >= 0;
483 }
484 
485 static inline u32 __hwsp_seqno(const struct i915_request *rq)
486 {
487 	const u32 *hwsp = READ_ONCE(rq->hwsp_seqno);
488 
489 	return READ_ONCE(*hwsp);
490 }
491 
492 /**
493  * hwsp_seqno - the current breadcrumb value in the HW status page
494  * @rq: the request, to chase the relevant HW status page
495  *
496  * The emphasis in naming here is that hwsp_seqno() is not a property of the
497  * request, but an indication of the current HW state (associated with this
498  * request). Its value will change as the GPU executes more requests.
499  *
500  * Returns the current breadcrumb value in the associated HW status page (or
501  * the local timeline's equivalent) for this request. The request itself
502  * has the associated breadcrumb value of rq->fence.seqno, when the HW
503  * status page has that breadcrumb or later, this request is complete.
504  */
505 static inline u32 hwsp_seqno(const struct i915_request *rq)
506 {
507 	u32 seqno;
508 
509 	rcu_read_lock(); /* the HWSP may be freed at runtime */
510 	seqno = __hwsp_seqno(rq);
511 	rcu_read_unlock();
512 
513 	return seqno;
514 }
515 
516 static inline bool __i915_request_has_started(const struct i915_request *rq)
517 {
518 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1);
519 }
520 
521 /**
522  * i915_request_started - check if the request has begun being executed
523  * @rq: the request
524  *
525  * If the timeline is not using initial breadcrumbs, a request is
526  * considered started if the previous request on its timeline (i.e.
527  * context) has been signaled.
528  *
529  * If the timeline is using semaphores, it will also be emitting an
530  * "initial breadcrumb" after the semaphores are complete and just before
531  * it began executing the user payload. A request can therefore be active
532  * on the HW and not yet started as it is still busywaiting on its
533  * dependencies (via HW semaphores).
534  *
535  * If the request has started, its dependencies will have been signaled
536  * (either by fences or by semaphores) and it will have begun processing
537  * the user payload.
538  *
539  * However, even if a request has started, it may have been preempted and
540  * so no longer active, or it may have already completed.
541  *
542  * See also i915_request_is_active().
543  *
544  * Returns true if the request has begun executing the user payload, or
545  * has completed:
546  */
547 static inline bool i915_request_started(const struct i915_request *rq)
548 {
549 	bool result;
550 
551 	if (i915_request_signaled(rq))
552 		return true;
553 
554 	result = true;
555 	rcu_read_lock(); /* the HWSP may be freed at runtime */
556 	if (likely(!i915_request_signaled(rq)))
557 		/* Remember: started but may have since been preempted! */
558 		result = __i915_request_has_started(rq);
559 	rcu_read_unlock();
560 
561 	return result;
562 }
563 
564 /**
565  * i915_request_is_running - check if the request may actually be executing
566  * @rq: the request
567  *
568  * Returns true if the request is currently submitted to hardware, has passed
569  * its start point (i.e. the context is setup and not busywaiting). Note that
570  * it may no longer be running by the time the function returns!
571  */
572 static inline bool i915_request_is_running(const struct i915_request *rq)
573 {
574 	bool result;
575 
576 	if (!i915_request_is_active(rq))
577 		return false;
578 
579 	rcu_read_lock();
580 	result = __i915_request_has_started(rq) && i915_request_is_active(rq);
581 	rcu_read_unlock();
582 
583 	return result;
584 }
585 
586 /**
587  * i915_request_is_ready - check if the request is ready for execution
588  * @rq: the request
589  *
590  * Upon construction, the request is instructed to wait upon various
591  * signals before it is ready to be executed by the HW. That is, we do
592  * not want to start execution and read data before it is written. In practice,
593  * this is controlled with a mixture of interrupts and semaphores. Once
594  * the submit fence is completed, the backend scheduler will place the
595  * request into its queue and from there submit it for execution. So we
596  * can detect when a request is eligible for execution (and is under control
597  * of the scheduler) by querying where it is in any of the scheduler's lists.
598  *
599  * Returns true if the request is ready for execution (it may be inflight),
600  * false otherwise.
601  */
602 static inline bool i915_request_is_ready(const struct i915_request *rq)
603 {
604 	return !list_empty(&rq->sched.link);
605 }
606 
607 static inline bool __i915_request_is_complete(const struct i915_request *rq)
608 {
609 	return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno);
610 }
611 
612 static inline bool i915_request_completed(const struct i915_request *rq)
613 {
614 	bool result;
615 
616 	if (i915_request_signaled(rq))
617 		return true;
618 
619 	result = true;
620 	rcu_read_lock(); /* the HWSP may be freed at runtime */
621 	if (likely(!i915_request_signaled(rq)))
622 		result = __i915_request_is_complete(rq);
623 	rcu_read_unlock();
624 
625 	return result;
626 }
627 
628 static inline void i915_request_mark_complete(struct i915_request *rq)
629 {
630 	WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */
631 		   (u32 *)&rq->fence.seqno);
632 }
633 
634 static inline bool i915_request_has_waitboost(const struct i915_request *rq)
635 {
636 	return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags);
637 }
638 
639 static inline bool i915_request_has_nopreempt(const struct i915_request *rq)
640 {
641 	/* Preemption should only be disabled very rarely */
642 	return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags));
643 }
644 
645 static inline bool i915_request_has_sentinel(const struct i915_request *rq)
646 {
647 	return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags));
648 }
649 
650 static inline bool i915_request_on_hold(const struct i915_request *rq)
651 {
652 	return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags));
653 }
654 
655 static inline void i915_request_set_hold(struct i915_request *rq)
656 {
657 	set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
658 }
659 
660 static inline void i915_request_clear_hold(struct i915_request *rq)
661 {
662 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
663 }
664 
665 static inline struct intel_timeline *
666 i915_request_timeline(const struct i915_request *rq)
667 {
668 	/* Valid only while the request is being constructed (or retired). */
669 	return rcu_dereference_protected(rq->timeline,
670 					 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) ||
671 					 test_bit(CONTEXT_IS_PARKING, &rq->context->flags));
672 }
673 
674 static inline struct i915_gem_context *
675 i915_request_gem_context(const struct i915_request *rq)
676 {
677 	/* Valid only while the request is being constructed (or retired). */
678 	return rcu_dereference_protected(rq->context->gem_context, true);
679 }
680 
681 static inline struct intel_timeline *
682 i915_request_active_timeline(const struct i915_request *rq)
683 {
684 	/*
685 	 * When in use during submission, we are protected by a guarantee that
686 	 * the context/timeline is pinned and must remain pinned until after
687 	 * this submission.
688 	 */
689 	return rcu_dereference_protected(rq->timeline,
690 					 lockdep_is_held(&rq->engine->sched_engine->lock));
691 }
692 
693 static inline u32
694 i915_request_active_seqno(const struct i915_request *rq)
695 {
696 	u32 hwsp_phys_base =
697 		page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset);
698 	u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno);
699 
700 	/*
701 	 * Because of wraparound, we cannot simply take tl->hwsp_offset,
702 	 * but instead use the fact that the relative for vaddr is the
703 	 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset
704 	 * and combine them with the relative offset in rq->hwsp_seqno.
705 	 *
706 	 * As rw->hwsp_seqno is rewritten when signaled, this only works
707 	 * when the request isn't signaled yet, but at that point you
708 	 * no longer need the offset.
709 	 */
710 
711 	return hwsp_phys_base + hwsp_relative_offset;
712 }
713 
714 bool
715 i915_request_active_engine(struct i915_request *rq,
716 			   struct intel_engine_cs **active);
717 
718 void i915_request_notify_execute_cb_imm(struct i915_request *rq);
719 
720 enum i915_request_state {
721 	I915_REQUEST_UNKNOWN = 0,
722 	I915_REQUEST_COMPLETE,
723 	I915_REQUEST_PENDING,
724 	I915_REQUEST_QUEUED,
725 	I915_REQUEST_ACTIVE,
726 };
727 
728 enum i915_request_state i915_test_request_state(struct i915_request *rq);
729 
730 void i915_request_module_exit(void);
731 int i915_request_module_init(void);
732 
733 #endif /* I915_REQUEST_H */
734