1 /* 2 * Copyright © 2008-2018 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #ifndef I915_REQUEST_H 26 #define I915_REQUEST_H 27 28 #include <linux/dma-fence.h> 29 #include <linux/hrtimer.h> 30 #include <linux/irq_work.h> 31 #include <linux/llist.h> 32 #include <linux/lockdep.h> 33 34 #include <uapi/drm/i915_drm.h> 35 36 #include "gem/i915_gem_context_types.h" 37 #include "gt/intel_context_types.h" 38 #include "gt/intel_engine_types.h" 39 #include "gt/intel_timeline_types.h" 40 41 #include "i915_gem.h" 42 #include "i915_ptr_util.h" 43 #include "i915_scheduler.h" 44 #include "i915_selftest.h" 45 #include "i915_sw_fence.h" 46 #include "i915_vma_resource.h" 47 48 struct drm_file; 49 struct drm_i915_gem_object; 50 struct drm_printer; 51 struct i915_deps; 52 struct i915_request; 53 54 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 55 struct i915_capture_list { 56 struct i915_vma_resource *vma_res; 57 struct i915_capture_list *next; 58 }; 59 60 void i915_request_free_capture_list(struct i915_capture_list *capture); 61 #else 62 #define i915_request_free_capture_list(_a) do {} while (0) 63 #endif 64 65 #define RQ_TRACE(rq, fmt, ...) do { \ 66 const struct i915_request *rq__ = (rq); \ 67 ENGINE_TRACE(rq__->engine, "fence %llx:%lld, current %d " fmt, \ 68 rq__->fence.context, rq__->fence.seqno, \ 69 hwsp_seqno(rq__), ##__VA_ARGS__); \ 70 } while (0) 71 72 enum { 73 /* 74 * I915_FENCE_FLAG_ACTIVE - this request is currently submitted to HW. 75 * 76 * Set by __i915_request_submit() on handing over to HW, and cleared 77 * by __i915_request_unsubmit() if we preempt this request. 78 * 79 * Finally cleared for consistency on retiring the request, when 80 * we know the HW is no longer running this request. 81 * 82 * See i915_request_is_active() 83 */ 84 I915_FENCE_FLAG_ACTIVE = DMA_FENCE_FLAG_USER_BITS, 85 86 /* 87 * I915_FENCE_FLAG_PQUEUE - this request is ready for execution 88 * 89 * Using the scheduler, when a request is ready for execution it is put 90 * into the priority queue, and removed from that queue when transferred 91 * to the HW runlists. We want to track its membership within the 92 * priority queue so that we can easily check before rescheduling. 93 * 94 * See i915_request_in_priority_queue() 95 */ 96 I915_FENCE_FLAG_PQUEUE, 97 98 /* 99 * I915_FENCE_FLAG_HOLD - this request is currently on hold 100 * 101 * This request has been suspended, pending an ongoing investigation. 102 */ 103 I915_FENCE_FLAG_HOLD, 104 105 /* 106 * I915_FENCE_FLAG_INITIAL_BREADCRUMB - this request has the initial 107 * breadcrumb that marks the end of semaphore waits and start of the 108 * user payload. 109 */ 110 I915_FENCE_FLAG_INITIAL_BREADCRUMB, 111 112 /* 113 * I915_FENCE_FLAG_SIGNAL - this request is currently on signal_list 114 * 115 * Internal bookkeeping used by the breadcrumb code to track when 116 * a request is on the various signal_list. 117 */ 118 I915_FENCE_FLAG_SIGNAL, 119 120 /* 121 * I915_FENCE_FLAG_NOPREEMPT - this request should not be preempted 122 * 123 * The execution of some requests should not be interrupted. This is 124 * a sensitive operation as it makes the request super important, 125 * blocking other higher priority work. Abuse of this flag will 126 * lead to quality of service issues. 127 */ 128 I915_FENCE_FLAG_NOPREEMPT, 129 130 /* 131 * I915_FENCE_FLAG_SENTINEL - this request should be last in the queue 132 * 133 * A high priority sentinel request may be submitted to clear the 134 * submission queue. As it will be the only request in-flight, upon 135 * execution all other active requests will have been preempted and 136 * unsubmitted. This preemptive pulse is used to re-evaluate the 137 * in-flight requests, particularly in cases where an active context 138 * is banned and those active requests need to be cancelled. 139 */ 140 I915_FENCE_FLAG_SENTINEL, 141 142 /* 143 * I915_FENCE_FLAG_BOOST - upclock the gpu for this request 144 * 145 * Some requests are more important than others! In particular, a 146 * request that the user is waiting on is typically required for 147 * interactive latency, for which we want to minimise by upclocking 148 * the GPU. Here we track such boost requests on a per-request basis. 149 */ 150 I915_FENCE_FLAG_BOOST, 151 152 /* 153 * I915_FENCE_FLAG_SUBMIT_PARALLEL - request with a context in a 154 * parent-child relationship (parallel submission, multi-lrc) should 155 * trigger a submission to the GuC rather than just moving the context 156 * tail. 157 */ 158 I915_FENCE_FLAG_SUBMIT_PARALLEL, 159 160 /* 161 * I915_FENCE_FLAG_SKIP_PARALLEL - request with a context in a 162 * parent-child relationship (parallel submission, multi-lrc) that 163 * hit an error while generating requests in the execbuf IOCTL. 164 * Indicates this request should be skipped as another request in 165 * submission / relationship encountered an error. 166 */ 167 I915_FENCE_FLAG_SKIP_PARALLEL, 168 169 /* 170 * I915_FENCE_FLAG_COMPOSITE - Indicates fence is part of a composite 171 * fence (dma_fence_array) and i915 generated for parallel submission. 172 */ 173 I915_FENCE_FLAG_COMPOSITE, 174 }; 175 176 /* 177 * Request queue structure. 178 * 179 * The request queue allows us to note sequence numbers that have been emitted 180 * and may be associated with active buffers to be retired. 181 * 182 * By keeping this list, we can avoid having to do questionable sequence 183 * number comparisons on buffer last_read|write_seqno. It also allows an 184 * emission time to be associated with the request for tracking how far ahead 185 * of the GPU the submission is. 186 * 187 * When modifying this structure be very aware that we perform a lockless 188 * RCU lookup of it that may race against reallocation of the struct 189 * from the slab freelist. We intentionally do not zero the structure on 190 * allocation so that the lookup can use the dangling pointers (and is 191 * cognisant that those pointers may be wrong). Instead, everything that 192 * needs to be initialised must be done so explicitly. 193 * 194 * The requests are reference counted. 195 */ 196 struct i915_request { 197 struct dma_fence fence; 198 spinlock_t lock; 199 200 struct drm_i915_private *i915; 201 202 /* 203 * Context and ring buffer related to this request 204 * Contexts are refcounted, so when this request is associated with a 205 * context, we must increment the context's refcount, to guarantee that 206 * it persists while any request is linked to it. Requests themselves 207 * are also refcounted, so the request will only be freed when the last 208 * reference to it is dismissed, and the code in 209 * i915_request_free() will then decrement the refcount on the 210 * context. 211 */ 212 struct intel_engine_cs *engine; 213 struct intel_context *context; 214 struct intel_ring *ring; 215 struct intel_timeline __rcu *timeline; 216 217 struct list_head signal_link; 218 struct llist_node signal_node; 219 220 /* 221 * The rcu epoch of when this request was allocated. Used to judiciously 222 * apply backpressure on future allocations to ensure that under 223 * mempressure there is sufficient RCU ticks for us to reclaim our 224 * RCU protected slabs. 225 */ 226 unsigned long rcustate; 227 228 /* 229 * We pin the timeline->mutex while constructing the request to 230 * ensure that no caller accidentally drops it during construction. 231 * The timeline->mutex must be held to ensure that only this caller 232 * can use the ring and manipulate the associated timeline during 233 * construction. 234 */ 235 struct pin_cookie cookie; 236 237 /* 238 * Fences for the various phases in the request's lifetime. 239 * 240 * The submit fence is used to await upon all of the request's 241 * dependencies. When it is signaled, the request is ready to run. 242 * It is used by the driver to then queue the request for execution. 243 */ 244 struct i915_sw_fence submit; 245 union { 246 wait_queue_entry_t submitq; 247 struct i915_sw_dma_fence_cb dmaq; 248 struct i915_request_duration_cb { 249 struct dma_fence_cb cb; 250 ktime_t emitted; 251 } duration; 252 }; 253 struct llist_head execute_cb; 254 struct i915_sw_fence semaphore; 255 /* 256 * complete submit fence from an IRQ if needed for locking hierarchy 257 * reasons. 258 */ 259 struct irq_work submit_work; 260 261 /* 262 * A list of everyone we wait upon, and everyone who waits upon us. 263 * Even though we will not be submitted to the hardware before the 264 * submit fence is signaled (it waits for all external events as well 265 * as our own requests), the scheduler still needs to know the 266 * dependency tree for the lifetime of the request (from execbuf 267 * to retirement), i.e. bidirectional dependency information for the 268 * request not tied to individual fences. 269 */ 270 struct i915_sched_node sched; 271 struct i915_dependency dep; 272 intel_engine_mask_t execution_mask; 273 274 /* 275 * A convenience pointer to the current breadcrumb value stored in 276 * the HW status page (or our timeline's local equivalent). The full 277 * path would be rq->hw_context->ring->timeline->hwsp_seqno. 278 */ 279 const u32 *hwsp_seqno; 280 281 /* Position in the ring of the start of the request */ 282 u32 head; 283 284 /* Position in the ring of the start of the user packets */ 285 u32 infix; 286 287 /* 288 * Position in the ring of the start of the postfix. 289 * This is required to calculate the maximum available ring space 290 * without overwriting the postfix. 291 */ 292 u32 postfix; 293 294 /* Position in the ring of the end of the whole request */ 295 u32 tail; 296 297 /* Position in the ring of the end of any workarounds after the tail */ 298 u32 wa_tail; 299 300 /* Preallocate space in the ring for the emitting the request */ 301 u32 reserved_space; 302 303 /* Batch buffer pointer for selftest internal use. */ 304 I915_SELFTEST_DECLARE(struct i915_vma *batch); 305 306 struct i915_vma_resource *batch_res; 307 308 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 309 /* 310 * Additional buffers requested by userspace to be captured upon 311 * a GPU hang. The vma/obj on this list are protected by their 312 * active reference - all objects on this list must also be 313 * on the active_list (of their final request). 314 */ 315 struct i915_capture_list *capture_list; 316 #endif 317 318 /* Time at which this request was emitted, in jiffies. */ 319 unsigned long emitted_jiffies; 320 321 /* timeline->request entry for this request */ 322 struct list_head link; 323 324 /* Watchdog support fields. */ 325 struct i915_request_watchdog { 326 struct llist_node link; 327 struct hrtimer timer; 328 } watchdog; 329 330 /* 331 * Requests may need to be stalled when using GuC submission waiting for 332 * certain GuC operations to complete. If that is the case, stalled 333 * requests are added to a per context list of stalled requests. The 334 * below list_head is the link in that list. Protected by 335 * ce->guc_state.lock. 336 */ 337 struct list_head guc_fence_link; 338 339 /* 340 * Priority level while the request is in flight. Differs 341 * from i915 scheduler priority. See comment above 342 * I915_SCHEDULER_CAP_STATIC_PRIORITY_MAP for details. Protected by 343 * ce->guc_active.lock. Two special values (GUC_PRIO_INIT and 344 * GUC_PRIO_FINI) outside the GuC priority range are used to indicate 345 * if the priority has not been initialized yet or if no more updates 346 * are possible because the request has completed. 347 */ 348 #define GUC_PRIO_INIT 0xff 349 #define GUC_PRIO_FINI 0xfe 350 u8 guc_prio; 351 352 /* 353 * wait queue entry used to wait on the HuC load to complete 354 */ 355 wait_queue_entry_t hucq; 356 357 I915_SELFTEST_DECLARE(struct { 358 struct list_head link; 359 unsigned long delay; 360 } mock;) 361 }; 362 363 #define I915_FENCE_GFP (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) 364 365 extern const struct dma_fence_ops i915_fence_ops; 366 367 static inline bool dma_fence_is_i915(const struct dma_fence *fence) 368 { 369 return fence->ops == &i915_fence_ops; 370 } 371 372 struct kmem_cache *i915_request_slab_cache(void); 373 374 struct i915_request * __must_check 375 __i915_request_create(struct intel_context *ce, gfp_t gfp); 376 struct i915_request * __must_check 377 i915_request_create(struct intel_context *ce); 378 379 void __i915_request_skip(struct i915_request *rq); 380 bool i915_request_set_error_once(struct i915_request *rq, int error); 381 struct i915_request *i915_request_mark_eio(struct i915_request *rq); 382 383 struct i915_request *__i915_request_commit(struct i915_request *request); 384 void __i915_request_queue(struct i915_request *rq, 385 const struct i915_sched_attr *attr); 386 void __i915_request_queue_bh(struct i915_request *rq); 387 388 bool i915_request_retire(struct i915_request *rq); 389 void i915_request_retire_upto(struct i915_request *rq); 390 391 static inline struct i915_request * 392 to_request(struct dma_fence *fence) 393 { 394 /* We assume that NULL fence/request are interoperable */ 395 BUILD_BUG_ON(offsetof(struct i915_request, fence) != 0); 396 GEM_BUG_ON(fence && !dma_fence_is_i915(fence)); 397 return container_of(fence, struct i915_request, fence); 398 } 399 400 static inline struct i915_request * 401 i915_request_get(struct i915_request *rq) 402 { 403 return to_request(dma_fence_get(&rq->fence)); 404 } 405 406 static inline struct i915_request * 407 i915_request_get_rcu(struct i915_request *rq) 408 { 409 return to_request(dma_fence_get_rcu(&rq->fence)); 410 } 411 412 static inline void 413 i915_request_put(struct i915_request *rq) 414 { 415 dma_fence_put(&rq->fence); 416 } 417 418 int i915_request_await_object(struct i915_request *to, 419 struct drm_i915_gem_object *obj, 420 bool write); 421 int i915_request_await_dma_fence(struct i915_request *rq, 422 struct dma_fence *fence); 423 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps); 424 int i915_request_await_execution(struct i915_request *rq, 425 struct dma_fence *fence); 426 427 void i915_request_add(struct i915_request *rq); 428 429 bool __i915_request_submit(struct i915_request *request); 430 void i915_request_submit(struct i915_request *request); 431 432 void __i915_request_unsubmit(struct i915_request *request); 433 void i915_request_unsubmit(struct i915_request *request); 434 435 void i915_request_cancel(struct i915_request *rq, int error); 436 437 long i915_request_wait_timeout(struct i915_request *rq, 438 unsigned int flags, 439 long timeout) 440 __attribute__((nonnull(1))); 441 442 long i915_request_wait(struct i915_request *rq, 443 unsigned int flags, 444 long timeout) 445 __attribute__((nonnull(1))); 446 #define I915_WAIT_INTERRUPTIBLE BIT(0) 447 #define I915_WAIT_PRIORITY BIT(1) /* small priority bump for the request */ 448 #define I915_WAIT_ALL BIT(2) /* used by i915_gem_object_wait() */ 449 450 void i915_request_show(struct drm_printer *m, 451 const struct i915_request *rq, 452 const char *prefix, 453 int indent); 454 455 static inline bool i915_request_signaled(const struct i915_request *rq) 456 { 457 /* The request may live longer than its HWSP, so check flags first! */ 458 return test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags); 459 } 460 461 static inline bool i915_request_is_active(const struct i915_request *rq) 462 { 463 return test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 464 } 465 466 static inline bool i915_request_in_priority_queue(const struct i915_request *rq) 467 { 468 return test_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 469 } 470 471 static inline bool 472 i915_request_has_initial_breadcrumb(const struct i915_request *rq) 473 { 474 return test_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags); 475 } 476 477 /* 478 * Returns true if seq1 is later than seq2. 479 */ 480 static inline bool i915_seqno_passed(u32 seq1, u32 seq2) 481 { 482 return (s32)(seq1 - seq2) >= 0; 483 } 484 485 static inline u32 __hwsp_seqno(const struct i915_request *rq) 486 { 487 const u32 *hwsp = READ_ONCE(rq->hwsp_seqno); 488 489 return READ_ONCE(*hwsp); 490 } 491 492 /** 493 * hwsp_seqno - the current breadcrumb value in the HW status page 494 * @rq: the request, to chase the relevant HW status page 495 * 496 * The emphasis in naming here is that hwsp_seqno() is not a property of the 497 * request, but an indication of the current HW state (associated with this 498 * request). Its value will change as the GPU executes more requests. 499 * 500 * Returns the current breadcrumb value in the associated HW status page (or 501 * the local timeline's equivalent) for this request. The request itself 502 * has the associated breadcrumb value of rq->fence.seqno, when the HW 503 * status page has that breadcrumb or later, this request is complete. 504 */ 505 static inline u32 hwsp_seqno(const struct i915_request *rq) 506 { 507 u32 seqno; 508 509 rcu_read_lock(); /* the HWSP may be freed at runtime */ 510 seqno = __hwsp_seqno(rq); 511 rcu_read_unlock(); 512 513 return seqno; 514 } 515 516 static inline bool __i915_request_has_started(const struct i915_request *rq) 517 { 518 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno - 1); 519 } 520 521 /** 522 * i915_request_started - check if the request has begun being executed 523 * @rq: the request 524 * 525 * If the timeline is not using initial breadcrumbs, a request is 526 * considered started if the previous request on its timeline (i.e. 527 * context) has been signaled. 528 * 529 * If the timeline is using semaphores, it will also be emitting an 530 * "initial breadcrumb" after the semaphores are complete and just before 531 * it began executing the user payload. A request can therefore be active 532 * on the HW and not yet started as it is still busywaiting on its 533 * dependencies (via HW semaphores). 534 * 535 * If the request has started, its dependencies will have been signaled 536 * (either by fences or by semaphores) and it will have begun processing 537 * the user payload. 538 * 539 * However, even if a request has started, it may have been preempted and 540 * so no longer active, or it may have already completed. 541 * 542 * See also i915_request_is_active(). 543 * 544 * Returns true if the request has begun executing the user payload, or 545 * has completed: 546 */ 547 static inline bool i915_request_started(const struct i915_request *rq) 548 { 549 bool result; 550 551 if (i915_request_signaled(rq)) 552 return true; 553 554 result = true; 555 rcu_read_lock(); /* the HWSP may be freed at runtime */ 556 if (likely(!i915_request_signaled(rq))) 557 /* Remember: started but may have since been preempted! */ 558 result = __i915_request_has_started(rq); 559 rcu_read_unlock(); 560 561 return result; 562 } 563 564 /** 565 * i915_request_is_running - check if the request may actually be executing 566 * @rq: the request 567 * 568 * Returns true if the request is currently submitted to hardware, has passed 569 * its start point (i.e. the context is setup and not busywaiting). Note that 570 * it may no longer be running by the time the function returns! 571 */ 572 static inline bool i915_request_is_running(const struct i915_request *rq) 573 { 574 bool result; 575 576 if (!i915_request_is_active(rq)) 577 return false; 578 579 rcu_read_lock(); 580 result = __i915_request_has_started(rq) && i915_request_is_active(rq); 581 rcu_read_unlock(); 582 583 return result; 584 } 585 586 /** 587 * i915_request_is_ready - check if the request is ready for execution 588 * @rq: the request 589 * 590 * Upon construction, the request is instructed to wait upon various 591 * signals before it is ready to be executed by the HW. That is, we do 592 * not want to start execution and read data before it is written. In practice, 593 * this is controlled with a mixture of interrupts and semaphores. Once 594 * the submit fence is completed, the backend scheduler will place the 595 * request into its queue and from there submit it for execution. So we 596 * can detect when a request is eligible for execution (and is under control 597 * of the scheduler) by querying where it is in any of the scheduler's lists. 598 * 599 * Returns true if the request is ready for execution (it may be inflight), 600 * false otherwise. 601 */ 602 static inline bool i915_request_is_ready(const struct i915_request *rq) 603 { 604 return !list_empty(&rq->sched.link); 605 } 606 607 static inline bool __i915_request_is_complete(const struct i915_request *rq) 608 { 609 return i915_seqno_passed(__hwsp_seqno(rq), rq->fence.seqno); 610 } 611 612 static inline bool i915_request_completed(const struct i915_request *rq) 613 { 614 bool result; 615 616 if (i915_request_signaled(rq)) 617 return true; 618 619 result = true; 620 rcu_read_lock(); /* the HWSP may be freed at runtime */ 621 if (likely(!i915_request_signaled(rq))) 622 result = __i915_request_is_complete(rq); 623 rcu_read_unlock(); 624 625 return result; 626 } 627 628 static inline void i915_request_mark_complete(struct i915_request *rq) 629 { 630 WRITE_ONCE(rq->hwsp_seqno, /* decouple from HWSP */ 631 (u32 *)&rq->fence.seqno); 632 } 633 634 static inline bool i915_request_has_waitboost(const struct i915_request *rq) 635 { 636 return test_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); 637 } 638 639 static inline bool i915_request_has_nopreempt(const struct i915_request *rq) 640 { 641 /* Preemption should only be disabled very rarely */ 642 return unlikely(test_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags)); 643 } 644 645 static inline bool i915_request_has_sentinel(const struct i915_request *rq) 646 { 647 return unlikely(test_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags)); 648 } 649 650 static inline bool i915_request_on_hold(const struct i915_request *rq) 651 { 652 return unlikely(test_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags)); 653 } 654 655 static inline void i915_request_set_hold(struct i915_request *rq) 656 { 657 set_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 658 } 659 660 static inline void i915_request_clear_hold(struct i915_request *rq) 661 { 662 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 663 } 664 665 static inline struct intel_timeline * 666 i915_request_timeline(const struct i915_request *rq) 667 { 668 /* Valid only while the request is being constructed (or retired). */ 669 return rcu_dereference_protected(rq->timeline, 670 lockdep_is_held(&rcu_access_pointer(rq->timeline)->mutex) || 671 test_bit(CONTEXT_IS_PARKING, &rq->context->flags)); 672 } 673 674 static inline struct i915_gem_context * 675 i915_request_gem_context(const struct i915_request *rq) 676 { 677 /* Valid only while the request is being constructed (or retired). */ 678 return rcu_dereference_protected(rq->context->gem_context, true); 679 } 680 681 static inline struct intel_timeline * 682 i915_request_active_timeline(const struct i915_request *rq) 683 { 684 /* 685 * When in use during submission, we are protected by a guarantee that 686 * the context/timeline is pinned and must remain pinned until after 687 * this submission. 688 */ 689 return rcu_dereference_protected(rq->timeline, 690 lockdep_is_held(&rq->engine->sched_engine->lock)); 691 } 692 693 static inline u32 694 i915_request_active_seqno(const struct i915_request *rq) 695 { 696 u32 hwsp_phys_base = 697 page_mask_bits(i915_request_active_timeline(rq)->hwsp_offset); 698 u32 hwsp_relative_offset = offset_in_page(rq->hwsp_seqno); 699 700 /* 701 * Because of wraparound, we cannot simply take tl->hwsp_offset, 702 * but instead use the fact that the relative for vaddr is the 703 * offset as for hwsp_offset. Take the top bits from tl->hwsp_offset 704 * and combine them with the relative offset in rq->hwsp_seqno. 705 * 706 * As rw->hwsp_seqno is rewritten when signaled, this only works 707 * when the request isn't signaled yet, but at that point you 708 * no longer need the offset. 709 */ 710 711 return hwsp_phys_base + hwsp_relative_offset; 712 } 713 714 bool 715 i915_request_active_engine(struct i915_request *rq, 716 struct intel_engine_cs **active); 717 718 void i915_request_notify_execute_cb_imm(struct i915_request *rq); 719 720 enum i915_request_state { 721 I915_REQUEST_UNKNOWN = 0, 722 I915_REQUEST_COMPLETE, 723 I915_REQUEST_PENDING, 724 I915_REQUEST_QUEUED, 725 I915_REQUEST_ACTIVE, 726 }; 727 728 enum i915_request_state i915_test_request_state(struct i915_request *rq); 729 730 void i915_request_module_exit(void); 731 int i915_request_module_init(void); 732 733 #endif /* I915_REQUEST_H */ 734