1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_config.h" 47 #include "i915_deps.h" 48 #include "i915_driver.h" 49 #include "i915_drv.h" 50 #include "i915_trace.h" 51 52 struct execute_cb { 53 struct irq_work work; 54 struct i915_sw_fence *fence; 55 struct i915_request *signal; 56 }; 57 58 static struct kmem_cache *slab_requests; 59 static struct kmem_cache *slab_execute_cbs; 60 61 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 62 { 63 return dev_name(to_request(fence)->i915->drm.dev); 64 } 65 66 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 67 { 68 const struct i915_gem_context *ctx; 69 70 /* 71 * The timeline struct (as part of the ppgtt underneath a context) 72 * may be freed when the request is no longer in use by the GPU. 73 * We could extend the life of a context to beyond that of all 74 * fences, possibly keeping the hw resource around indefinitely, 75 * or we just give them a false name. Since 76 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 77 * lie seems justifiable. 78 */ 79 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 80 return "signaled"; 81 82 ctx = i915_request_gem_context(to_request(fence)); 83 if (!ctx) 84 return "[" DRIVER_NAME "]"; 85 86 return ctx->name; 87 } 88 89 static bool i915_fence_signaled(struct dma_fence *fence) 90 { 91 return i915_request_completed(to_request(fence)); 92 } 93 94 static bool i915_fence_enable_signaling(struct dma_fence *fence) 95 { 96 return i915_request_enable_breadcrumb(to_request(fence)); 97 } 98 99 static signed long i915_fence_wait(struct dma_fence *fence, 100 bool interruptible, 101 signed long timeout) 102 { 103 return i915_request_wait_timeout(to_request(fence), 104 interruptible | I915_WAIT_PRIORITY, 105 timeout); 106 } 107 108 struct kmem_cache *i915_request_slab_cache(void) 109 { 110 return slab_requests; 111 } 112 113 static void i915_fence_release(struct dma_fence *fence) 114 { 115 struct i915_request *rq = to_request(fence); 116 117 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 118 rq->guc_prio != GUC_PRIO_FINI); 119 120 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 121 if (rq->batch_res) { 122 i915_vma_resource_put(rq->batch_res); 123 rq->batch_res = NULL; 124 } 125 126 /* 127 * The request is put onto a RCU freelist (i.e. the address 128 * is immediately reused), mark the fences as being freed now. 129 * Otherwise the debugobjects for the fences are only marked as 130 * freed when the slab cache itself is freed, and so we would get 131 * caught trying to reuse dead objects. 132 */ 133 i915_sw_fence_fini(&rq->submit); 134 i915_sw_fence_fini(&rq->semaphore); 135 136 /* 137 * Keep one request on each engine for reserved use under mempressure 138 * do not use with virtual engines as this really is only needed for 139 * kernel contexts. 140 * 141 * We do not hold a reference to the engine here and so have to be 142 * very careful in what rq->engine we poke. The virtual engine is 143 * referenced via the rq->context and we released that ref during 144 * i915_request_retire(), ergo we must not dereference a virtual 145 * engine here. Not that we would want to, as the only consumer of 146 * the reserved engine->request_pool is the power management parking, 147 * which must-not-fail, and that is only run on the physical engines. 148 * 149 * Since the request must have been executed to be have completed, 150 * we know that it will have been processed by the HW and will 151 * not be unsubmitted again, so rq->engine and rq->execution_mask 152 * at this point is stable. rq->execution_mask will be a single 153 * bit if the last and _only_ engine it could execution on was a 154 * physical engine, if it's multiple bits then it started on and 155 * could still be on a virtual engine. Thus if the mask is not a 156 * power-of-two we assume that rq->engine may still be a virtual 157 * engine and so a dangling invalid pointer that we cannot dereference 158 * 159 * For example, consider the flow of a bonded request through a virtual 160 * engine. The request is created with a wide engine mask (all engines 161 * that we might execute on). On processing the bond, the request mask 162 * is reduced to one or more engines. If the request is subsequently 163 * bound to a single engine, it will then be constrained to only 164 * execute on that engine and never returned to the virtual engine 165 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 166 * know that if the rq->execution_mask is a single bit, rq->engine 167 * can be a physical engine with the exact corresponding mask. 168 */ 169 if (!intel_engine_is_virtual(rq->engine) && 170 is_power_of_2(rq->execution_mask) && 171 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 172 return; 173 174 kmem_cache_free(slab_requests, rq); 175 } 176 177 const struct dma_fence_ops i915_fence_ops = { 178 .get_driver_name = i915_fence_get_driver_name, 179 .get_timeline_name = i915_fence_get_timeline_name, 180 .enable_signaling = i915_fence_enable_signaling, 181 .signaled = i915_fence_signaled, 182 .wait = i915_fence_wait, 183 .release = i915_fence_release, 184 }; 185 186 static void irq_execute_cb(struct irq_work *wrk) 187 { 188 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 189 190 i915_sw_fence_complete(cb->fence); 191 kmem_cache_free(slab_execute_cbs, cb); 192 } 193 194 static __always_inline void 195 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 196 { 197 struct execute_cb *cb, *cn; 198 199 if (llist_empty(&rq->execute_cb)) 200 return; 201 202 llist_for_each_entry_safe(cb, cn, 203 llist_del_all(&rq->execute_cb), 204 work.node.llist) 205 fn(&cb->work); 206 } 207 208 static void __notify_execute_cb_irq(struct i915_request *rq) 209 { 210 __notify_execute_cb(rq, irq_work_queue); 211 } 212 213 static bool irq_work_imm(struct irq_work *wrk) 214 { 215 wrk->func(wrk); 216 return false; 217 } 218 219 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 220 { 221 __notify_execute_cb(rq, irq_work_imm); 222 } 223 224 static void __i915_request_fill(struct i915_request *rq, u8 val) 225 { 226 void *vaddr = rq->ring->vaddr; 227 u32 head; 228 229 head = rq->infix; 230 if (rq->postfix < head) { 231 memset(vaddr + head, val, rq->ring->size - head); 232 head = 0; 233 } 234 memset(vaddr + head, val, rq->postfix - head); 235 } 236 237 /** 238 * i915_request_active_engine 239 * @rq: request to inspect 240 * @active: pointer in which to return the active engine 241 * 242 * Fills the currently active engine to the @active pointer if the request 243 * is active and still not completed. 244 * 245 * Returns true if request was active or false otherwise. 246 */ 247 bool 248 i915_request_active_engine(struct i915_request *rq, 249 struct intel_engine_cs **active) 250 { 251 struct intel_engine_cs *engine, *locked; 252 bool ret = false; 253 254 /* 255 * Serialise with __i915_request_submit() so that it sees 256 * is-banned?, or we know the request is already inflight. 257 * 258 * Note that rq->engine is unstable, and so we double 259 * check that we have acquired the lock on the final engine. 260 */ 261 locked = READ_ONCE(rq->engine); 262 spin_lock_irq(&locked->sched_engine->lock); 263 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 264 spin_unlock(&locked->sched_engine->lock); 265 locked = engine; 266 spin_lock(&locked->sched_engine->lock); 267 } 268 269 if (i915_request_is_active(rq)) { 270 if (!__i915_request_is_complete(rq)) 271 *active = locked; 272 ret = true; 273 } 274 275 spin_unlock_irq(&locked->sched_engine->lock); 276 277 return ret; 278 } 279 280 static void __rq_init_watchdog(struct i915_request *rq) 281 { 282 rq->watchdog.timer.function = NULL; 283 } 284 285 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 286 { 287 struct i915_request *rq = 288 container_of(hrtimer, struct i915_request, watchdog.timer); 289 struct intel_gt *gt = rq->engine->gt; 290 291 if (!i915_request_completed(rq)) { 292 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 293 queue_work(gt->i915->unordered_wq, >->watchdog.work); 294 } else { 295 i915_request_put(rq); 296 } 297 298 return HRTIMER_NORESTART; 299 } 300 301 static void __rq_arm_watchdog(struct i915_request *rq) 302 { 303 struct i915_request_watchdog *wdg = &rq->watchdog; 304 struct intel_context *ce = rq->context; 305 306 if (!ce->watchdog.timeout_us) 307 return; 308 309 i915_request_get(rq); 310 311 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 312 wdg->timer.function = __rq_watchdog_expired; 313 hrtimer_start_range_ns(&wdg->timer, 314 ns_to_ktime(ce->watchdog.timeout_us * 315 NSEC_PER_USEC), 316 NSEC_PER_MSEC, 317 HRTIMER_MODE_REL); 318 } 319 320 static void __rq_cancel_watchdog(struct i915_request *rq) 321 { 322 struct i915_request_watchdog *wdg = &rq->watchdog; 323 324 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 325 i915_request_put(rq); 326 } 327 328 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 329 330 /** 331 * i915_request_free_capture_list - Free a capture list 332 * @capture: Pointer to the first list item or NULL 333 * 334 */ 335 void i915_request_free_capture_list(struct i915_capture_list *capture) 336 { 337 while (capture) { 338 struct i915_capture_list *next = capture->next; 339 340 i915_vma_resource_put(capture->vma_res); 341 kfree(capture); 342 capture = next; 343 } 344 } 345 346 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 347 348 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 349 350 #else 351 352 #define i915_request_free_capture_list(_a) do {} while (0) 353 354 #define assert_capture_list_is_null(_a) do {} while (0) 355 356 #define clear_capture_list(_rq) do {} while (0) 357 358 #endif 359 360 bool i915_request_retire(struct i915_request *rq) 361 { 362 if (!__i915_request_is_complete(rq)) 363 return false; 364 365 RQ_TRACE(rq, "\n"); 366 367 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 368 trace_i915_request_retire(rq); 369 i915_request_mark_complete(rq); 370 371 __rq_cancel_watchdog(rq); 372 373 /* 374 * We know the GPU must have read the request to have 375 * sent us the seqno + interrupt, so use the position 376 * of tail of the request to update the last known position 377 * of the GPU head. 378 * 379 * Note this requires that we are always called in request 380 * completion order. 381 */ 382 GEM_BUG_ON(!list_is_first(&rq->link, 383 &i915_request_timeline(rq)->requests)); 384 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 385 /* Poison before we release our space in the ring */ 386 __i915_request_fill(rq, POISON_FREE); 387 rq->ring->head = rq->postfix; 388 389 if (!i915_request_signaled(rq)) { 390 spin_lock_irq(&rq->lock); 391 dma_fence_signal_locked(&rq->fence); 392 spin_unlock_irq(&rq->lock); 393 } 394 395 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 396 intel_rps_dec_waiters(&rq->engine->gt->rps); 397 398 /* 399 * We only loosely track inflight requests across preemption, 400 * and so we may find ourselves attempting to retire a _completed_ 401 * request that we have removed from the HW and put back on a run 402 * queue. 403 * 404 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 405 * after removing the breadcrumb and signaling it, so that we do not 406 * inadvertently attach the breadcrumb to a completed request. 407 */ 408 rq->engine->remove_active_request(rq); 409 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 410 411 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 412 413 intel_context_exit(rq->context); 414 intel_context_unpin(rq->context); 415 416 i915_sched_node_fini(&rq->sched); 417 i915_request_put(rq); 418 419 return true; 420 } 421 422 void i915_request_retire_upto(struct i915_request *rq) 423 { 424 struct intel_timeline * const tl = i915_request_timeline(rq); 425 struct i915_request *tmp; 426 427 RQ_TRACE(rq, "\n"); 428 GEM_BUG_ON(!__i915_request_is_complete(rq)); 429 430 do { 431 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 432 GEM_BUG_ON(!i915_request_completed(tmp)); 433 } while (i915_request_retire(tmp) && tmp != rq); 434 } 435 436 static struct i915_request * const * 437 __engine_active(struct intel_engine_cs *engine) 438 { 439 return READ_ONCE(engine->execlists.active); 440 } 441 442 static bool __request_in_flight(const struct i915_request *signal) 443 { 444 struct i915_request * const *port, *rq; 445 bool inflight = false; 446 447 if (!i915_request_is_ready(signal)) 448 return false; 449 450 /* 451 * Even if we have unwound the request, it may still be on 452 * the GPU (preempt-to-busy). If that request is inside an 453 * unpreemptible critical section, it will not be removed. Some 454 * GPU functions may even be stuck waiting for the paired request 455 * (__await_execution) to be submitted and cannot be preempted 456 * until the bond is executing. 457 * 458 * As we know that there are always preemption points between 459 * requests, we know that only the currently executing request 460 * may be still active even though we have cleared the flag. 461 * However, we can't rely on our tracking of ELSP[0] to know 462 * which request is currently active and so maybe stuck, as 463 * the tracking maybe an event behind. Instead assume that 464 * if the context is still inflight, then it is still active 465 * even if the active flag has been cleared. 466 * 467 * To further complicate matters, if there a pending promotion, the HW 468 * may either perform a context switch to the second inflight execlists, 469 * or it may switch to the pending set of execlists. In the case of the 470 * latter, it may send the ACK and we process the event copying the 471 * pending[] over top of inflight[], _overwriting_ our *active. Since 472 * this implies the HW is arbitrating and not struck in *active, we do 473 * not worry about complete accuracy, but we do require no read/write 474 * tearing of the pointer [the read of the pointer must be valid, even 475 * as the array is being overwritten, for which we require the writes 476 * to avoid tearing.] 477 * 478 * Note that the read of *execlists->active may race with the promotion 479 * of execlists->pending[] to execlists->inflight[], overwritting 480 * the value at *execlists->active. This is fine. The promotion implies 481 * that we received an ACK from the HW, and so the context is not 482 * stuck -- if we do not see ourselves in *active, the inflight status 483 * is valid. If instead we see ourselves being copied into *active, 484 * we are inflight and may signal the callback. 485 */ 486 if (!intel_context_inflight(signal->context)) 487 return false; 488 489 rcu_read_lock(); 490 for (port = __engine_active(signal->engine); 491 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 492 port++) { 493 if (rq->context == signal->context) { 494 inflight = i915_seqno_passed(rq->fence.seqno, 495 signal->fence.seqno); 496 break; 497 } 498 } 499 rcu_read_unlock(); 500 501 return inflight; 502 } 503 504 static int 505 __await_execution(struct i915_request *rq, 506 struct i915_request *signal, 507 gfp_t gfp) 508 { 509 struct execute_cb *cb; 510 511 if (i915_request_is_active(signal)) 512 return 0; 513 514 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 515 if (!cb) 516 return -ENOMEM; 517 518 cb->fence = &rq->submit; 519 i915_sw_fence_await(cb->fence); 520 init_irq_work(&cb->work, irq_execute_cb); 521 522 /* 523 * Register the callback first, then see if the signaler is already 524 * active. This ensures that if we race with the 525 * __notify_execute_cb from i915_request_submit() and we are not 526 * included in that list, we get a second bite of the cherry and 527 * execute it ourselves. After this point, a future 528 * i915_request_submit() will notify us. 529 * 530 * In i915_request_retire() we set the ACTIVE bit on a completed 531 * request (then flush the execute_cb). So by registering the 532 * callback first, then checking the ACTIVE bit, we serialise with 533 * the completed/retired request. 534 */ 535 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 536 if (i915_request_is_active(signal) || 537 __request_in_flight(signal)) 538 i915_request_notify_execute_cb_imm(signal); 539 } 540 541 return 0; 542 } 543 544 static bool fatal_error(int error) 545 { 546 switch (error) { 547 case 0: /* not an error! */ 548 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 549 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 550 return false; 551 default: 552 return true; 553 } 554 } 555 556 void __i915_request_skip(struct i915_request *rq) 557 { 558 GEM_BUG_ON(!fatal_error(rq->fence.error)); 559 560 if (rq->infix == rq->postfix) 561 return; 562 563 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 564 565 /* 566 * As this request likely depends on state from the lost 567 * context, clear out all the user operations leaving the 568 * breadcrumb at the end (so we get the fence notifications). 569 */ 570 __i915_request_fill(rq, 0); 571 rq->infix = rq->postfix; 572 } 573 574 bool i915_request_set_error_once(struct i915_request *rq, int error) 575 { 576 int old; 577 578 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 579 580 if (i915_request_signaled(rq)) 581 return false; 582 583 old = READ_ONCE(rq->fence.error); 584 do { 585 if (fatal_error(old)) 586 return false; 587 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 588 589 return true; 590 } 591 592 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 593 { 594 if (__i915_request_is_complete(rq)) 595 return NULL; 596 597 GEM_BUG_ON(i915_request_signaled(rq)); 598 599 /* As soon as the request is completed, it may be retired */ 600 rq = i915_request_get(rq); 601 602 i915_request_set_error_once(rq, -EIO); 603 i915_request_mark_complete(rq); 604 605 return rq; 606 } 607 608 bool __i915_request_submit(struct i915_request *request) 609 { 610 struct intel_engine_cs *engine = request->engine; 611 bool result = false; 612 613 RQ_TRACE(request, "\n"); 614 615 GEM_BUG_ON(!irqs_disabled()); 616 lockdep_assert_held(&engine->sched_engine->lock); 617 618 /* 619 * With the advent of preempt-to-busy, we frequently encounter 620 * requests that we have unsubmitted from HW, but left running 621 * until the next ack and so have completed in the meantime. On 622 * resubmission of that completed request, we can skip 623 * updating the payload, and execlists can even skip submitting 624 * the request. 625 * 626 * We must remove the request from the caller's priority queue, 627 * and the caller must only call us when the request is in their 628 * priority queue, under the sched_engine->lock. This ensures that the 629 * request has *not* yet been retired and we can safely move 630 * the request into the engine->active.list where it will be 631 * dropped upon retiring. (Otherwise if resubmit a *retired* 632 * request, this would be a horrible use-after-free.) 633 */ 634 if (__i915_request_is_complete(request)) { 635 list_del_init(&request->sched.link); 636 goto active; 637 } 638 639 if (unlikely(!intel_context_is_schedulable(request->context))) 640 i915_request_set_error_once(request, -EIO); 641 642 if (unlikely(fatal_error(request->fence.error))) 643 __i915_request_skip(request); 644 645 /* 646 * Are we using semaphores when the gpu is already saturated? 647 * 648 * Using semaphores incurs a cost in having the GPU poll a 649 * memory location, busywaiting for it to change. The continual 650 * memory reads can have a noticeable impact on the rest of the 651 * system with the extra bus traffic, stalling the cpu as it too 652 * tries to access memory across the bus (perf stat -e bus-cycles). 653 * 654 * If we installed a semaphore on this request and we only submit 655 * the request after the signaler completed, that indicates the 656 * system is overloaded and using semaphores at this time only 657 * increases the amount of work we are doing. If so, we disable 658 * further use of semaphores until we are idle again, whence we 659 * optimistically try again. 660 */ 661 if (request->sched.semaphores && 662 i915_sw_fence_signaled(&request->semaphore)) 663 engine->saturated |= request->sched.semaphores; 664 665 engine->emit_fini_breadcrumb(request, 666 request->ring->vaddr + request->postfix); 667 668 trace_i915_request_execute(request); 669 if (engine->bump_serial) 670 engine->bump_serial(engine); 671 else 672 engine->serial++; 673 674 result = true; 675 676 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 677 engine->add_active_request(request); 678 active: 679 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 680 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 681 682 /* 683 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 684 * 685 * In the future, perhaps when we have an active time-slicing scheduler, 686 * it will be interesting to unsubmit parallel execution and remove 687 * busywaits from the GPU until their master is restarted. This is 688 * quite hairy, we have to carefully rollback the fence and do a 689 * preempt-to-idle cycle on the target engine, all the while the 690 * master execute_cb may refire. 691 */ 692 __notify_execute_cb_irq(request); 693 694 /* We may be recursing from the signal callback of another i915 fence */ 695 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 696 i915_request_enable_breadcrumb(request); 697 698 return result; 699 } 700 701 void i915_request_submit(struct i915_request *request) 702 { 703 struct intel_engine_cs *engine = request->engine; 704 unsigned long flags; 705 706 /* Will be called from irq-context when using foreign fences. */ 707 spin_lock_irqsave(&engine->sched_engine->lock, flags); 708 709 __i915_request_submit(request); 710 711 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 712 } 713 714 void __i915_request_unsubmit(struct i915_request *request) 715 { 716 struct intel_engine_cs *engine = request->engine; 717 718 /* 719 * Only unwind in reverse order, required so that the per-context list 720 * is kept in seqno/ring order. 721 */ 722 RQ_TRACE(request, "\n"); 723 724 GEM_BUG_ON(!irqs_disabled()); 725 lockdep_assert_held(&engine->sched_engine->lock); 726 727 /* 728 * Before we remove this breadcrumb from the signal list, we have 729 * to ensure that a concurrent dma_fence_enable_signaling() does not 730 * attach itself. We first mark the request as no longer active and 731 * make sure that is visible to other cores, and then remove the 732 * breadcrumb if attached. 733 */ 734 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 735 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 736 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 737 i915_request_cancel_breadcrumb(request); 738 739 /* We've already spun, don't charge on resubmitting. */ 740 if (request->sched.semaphores && __i915_request_has_started(request)) 741 request->sched.semaphores = 0; 742 743 /* 744 * We don't need to wake_up any waiters on request->execute, they 745 * will get woken by any other event or us re-adding this request 746 * to the engine timeline (__i915_request_submit()). The waiters 747 * should be quite adapt at finding that the request now has a new 748 * global_seqno to the one they went to sleep on. 749 */ 750 } 751 752 void i915_request_unsubmit(struct i915_request *request) 753 { 754 struct intel_engine_cs *engine = request->engine; 755 unsigned long flags; 756 757 /* Will be called from irq-context when using foreign fences. */ 758 spin_lock_irqsave(&engine->sched_engine->lock, flags); 759 760 __i915_request_unsubmit(request); 761 762 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 763 } 764 765 void i915_request_cancel(struct i915_request *rq, int error) 766 { 767 if (!i915_request_set_error_once(rq, error)) 768 return; 769 770 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 771 772 intel_context_cancel_request(rq->context, rq); 773 } 774 775 static int 776 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 777 { 778 struct i915_request *request = 779 container_of(fence, typeof(*request), submit); 780 781 switch (state) { 782 case FENCE_COMPLETE: 783 trace_i915_request_submit(request); 784 785 if (unlikely(fence->error)) 786 i915_request_set_error_once(request, fence->error); 787 else 788 __rq_arm_watchdog(request); 789 790 /* 791 * We need to serialize use of the submit_request() callback 792 * with its hotplugging performed during an emergency 793 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 794 * critical section in order to force i915_gem_set_wedged() to 795 * wait until the submit_request() is completed before 796 * proceeding. 797 */ 798 rcu_read_lock(); 799 request->engine->submit_request(request); 800 rcu_read_unlock(); 801 break; 802 803 case FENCE_FREE: 804 i915_request_put(request); 805 break; 806 } 807 808 return NOTIFY_DONE; 809 } 810 811 static int 812 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 813 { 814 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 815 816 switch (state) { 817 case FENCE_COMPLETE: 818 break; 819 820 case FENCE_FREE: 821 i915_request_put(rq); 822 break; 823 } 824 825 return NOTIFY_DONE; 826 } 827 828 static void retire_requests(struct intel_timeline *tl) 829 { 830 struct i915_request *rq, *rn; 831 832 list_for_each_entry_safe(rq, rn, &tl->requests, link) 833 if (!i915_request_retire(rq)) 834 break; 835 } 836 837 static noinline struct i915_request * 838 request_alloc_slow(struct intel_timeline *tl, 839 struct i915_request **rsvd, 840 gfp_t gfp) 841 { 842 struct i915_request *rq; 843 844 /* If we cannot wait, dip into our reserves */ 845 if (!gfpflags_allow_blocking(gfp)) { 846 rq = xchg(rsvd, NULL); 847 if (!rq) /* Use the normal failure path for one final WARN */ 848 goto out; 849 850 return rq; 851 } 852 853 if (list_empty(&tl->requests)) 854 goto out; 855 856 /* Move our oldest request to the slab-cache (if not in use!) */ 857 rq = list_first_entry(&tl->requests, typeof(*rq), link); 858 i915_request_retire(rq); 859 860 rq = kmem_cache_alloc(slab_requests, 861 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 862 if (rq) 863 return rq; 864 865 /* Ratelimit ourselves to prevent oom from malicious clients */ 866 rq = list_last_entry(&tl->requests, typeof(*rq), link); 867 cond_synchronize_rcu(rq->rcustate); 868 869 /* Retire our old requests in the hope that we free some */ 870 retire_requests(tl); 871 872 out: 873 return kmem_cache_alloc(slab_requests, gfp); 874 } 875 876 static void __i915_request_ctor(void *arg) 877 { 878 struct i915_request *rq = arg; 879 880 spin_lock_init(&rq->lock); 881 i915_sched_node_init(&rq->sched); 882 i915_sw_fence_init(&rq->submit, submit_notify); 883 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 884 885 clear_capture_list(rq); 886 rq->batch_res = NULL; 887 888 init_llist_head(&rq->execute_cb); 889 } 890 891 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 892 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 893 #else 894 #define clear_batch_ptr(_a) do {} while (0) 895 #endif 896 897 struct i915_request * 898 __i915_request_create(struct intel_context *ce, gfp_t gfp) 899 { 900 struct intel_timeline *tl = ce->timeline; 901 struct i915_request *rq; 902 u32 seqno; 903 int ret; 904 905 might_alloc(gfp); 906 907 /* Check that the caller provided an already pinned context */ 908 __intel_context_pin(ce); 909 910 /* 911 * Beware: Dragons be flying overhead. 912 * 913 * We use RCU to look up requests in flight. The lookups may 914 * race with the request being allocated from the slab freelist. 915 * That is the request we are writing to here, may be in the process 916 * of being read by __i915_active_request_get_rcu(). As such, 917 * we have to be very careful when overwriting the contents. During 918 * the RCU lookup, we change chase the request->engine pointer, 919 * read the request->global_seqno and increment the reference count. 920 * 921 * The reference count is incremented atomically. If it is zero, 922 * the lookup knows the request is unallocated and complete. Otherwise, 923 * it is either still in use, or has been reallocated and reset 924 * with dma_fence_init(). This increment is safe for release as we 925 * check that the request we have a reference to and matches the active 926 * request. 927 * 928 * Before we increment the refcount, we chase the request->engine 929 * pointer. We must not call kmem_cache_zalloc() or else we set 930 * that pointer to NULL and cause a crash during the lookup. If 931 * we see the request is completed (based on the value of the 932 * old engine and seqno), the lookup is complete and reports NULL. 933 * If we decide the request is not completed (new engine or seqno), 934 * then we grab a reference and double check that it is still the 935 * active request - which it won't be and restart the lookup. 936 * 937 * Do not use kmem_cache_zalloc() here! 938 */ 939 rq = kmem_cache_alloc(slab_requests, 940 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 941 if (unlikely(!rq)) { 942 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 943 if (!rq) { 944 ret = -ENOMEM; 945 goto err_unreserve; 946 } 947 } 948 949 rq->context = ce; 950 rq->engine = ce->engine; 951 rq->ring = ce->ring; 952 rq->execution_mask = ce->engine->mask; 953 rq->i915 = ce->engine->i915; 954 955 ret = intel_timeline_get_seqno(tl, rq, &seqno); 956 if (ret) 957 goto err_free; 958 959 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 960 tl->fence_context, seqno); 961 962 RCU_INIT_POINTER(rq->timeline, tl); 963 rq->hwsp_seqno = tl->hwsp_seqno; 964 GEM_BUG_ON(__i915_request_is_complete(rq)); 965 966 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 967 968 rq->guc_prio = GUC_PRIO_INIT; 969 970 /* We bump the ref for the fence chain */ 971 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 972 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 973 974 i915_sched_node_reinit(&rq->sched); 975 976 /* No zalloc, everything must be cleared after use */ 977 clear_batch_ptr(rq); 978 __rq_init_watchdog(rq); 979 assert_capture_list_is_null(rq); 980 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 981 GEM_BUG_ON(rq->batch_res); 982 983 /* 984 * Reserve space in the ring buffer for all the commands required to 985 * eventually emit this request. This is to guarantee that the 986 * i915_request_add() call can't fail. Note that the reserve may need 987 * to be redone if the request is not actually submitted straight 988 * away, e.g. because a GPU scheduler has deferred it. 989 * 990 * Note that due to how we add reserved_space to intel_ring_begin() 991 * we need to double our request to ensure that if we need to wrap 992 * around inside i915_request_add() there is sufficient space at 993 * the beginning of the ring as well. 994 */ 995 rq->reserved_space = 996 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 997 998 /* 999 * Record the position of the start of the request so that 1000 * should we detect the updated seqno part-way through the 1001 * GPU processing the request, we never over-estimate the 1002 * position of the head. 1003 */ 1004 rq->head = rq->ring->emit; 1005 1006 ret = rq->engine->request_alloc(rq); 1007 if (ret) 1008 goto err_unwind; 1009 1010 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1011 1012 intel_context_mark_active(ce); 1013 list_add_tail_rcu(&rq->link, &tl->requests); 1014 1015 return rq; 1016 1017 err_unwind: 1018 ce->ring->emit = rq->head; 1019 1020 /* Make sure we didn't add ourselves to external state before freeing */ 1021 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1022 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1023 1024 err_free: 1025 kmem_cache_free(slab_requests, rq); 1026 err_unreserve: 1027 intel_context_unpin(ce); 1028 return ERR_PTR(ret); 1029 } 1030 1031 struct i915_request * 1032 i915_request_create(struct intel_context *ce) 1033 { 1034 struct i915_request *rq; 1035 struct intel_timeline *tl; 1036 1037 tl = intel_context_timeline_lock(ce); 1038 if (IS_ERR(tl)) 1039 return ERR_CAST(tl); 1040 1041 /* Move our oldest request to the slab-cache (if not in use!) */ 1042 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1043 if (!list_is_last(&rq->link, &tl->requests)) 1044 i915_request_retire(rq); 1045 1046 intel_context_enter(ce); 1047 rq = __i915_request_create(ce, GFP_KERNEL); 1048 intel_context_exit(ce); /* active reference transferred to request */ 1049 if (IS_ERR(rq)) 1050 goto err_unlock; 1051 1052 /* Check that we do not interrupt ourselves with a new request */ 1053 rq->cookie = lockdep_pin_lock(&tl->mutex); 1054 1055 return rq; 1056 1057 err_unlock: 1058 intel_context_timeline_unlock(tl); 1059 return rq; 1060 } 1061 1062 static int 1063 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1064 { 1065 struct dma_fence *fence; 1066 int err; 1067 1068 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1069 return 0; 1070 1071 if (i915_request_started(signal)) 1072 return 0; 1073 1074 /* 1075 * The caller holds a reference on @signal, but we do not serialise 1076 * against it being retired and removed from the lists. 1077 * 1078 * We do not hold a reference to the request before @signal, and 1079 * so must be very careful to ensure that it is not _recycled_ as 1080 * we follow the link backwards. 1081 */ 1082 fence = NULL; 1083 rcu_read_lock(); 1084 do { 1085 struct list_head *pos = READ_ONCE(signal->link.prev); 1086 struct i915_request *prev; 1087 1088 /* Confirm signal has not been retired, the link is valid */ 1089 if (unlikely(__i915_request_has_started(signal))) 1090 break; 1091 1092 /* Is signal the earliest request on its timeline? */ 1093 if (pos == &rcu_dereference(signal->timeline)->requests) 1094 break; 1095 1096 /* 1097 * Peek at the request before us in the timeline. That 1098 * request will only be valid before it is retired, so 1099 * after acquiring a reference to it, confirm that it is 1100 * still part of the signaler's timeline. 1101 */ 1102 prev = list_entry(pos, typeof(*prev), link); 1103 if (!i915_request_get_rcu(prev)) 1104 break; 1105 1106 /* After the strong barrier, confirm prev is still attached */ 1107 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1108 i915_request_put(prev); 1109 break; 1110 } 1111 1112 fence = &prev->fence; 1113 } while (0); 1114 rcu_read_unlock(); 1115 if (!fence) 1116 return 0; 1117 1118 err = 0; 1119 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1120 err = i915_sw_fence_await_dma_fence(&rq->submit, 1121 fence, 0, 1122 I915_FENCE_GFP); 1123 dma_fence_put(fence); 1124 1125 return err; 1126 } 1127 1128 static intel_engine_mask_t 1129 already_busywaiting(struct i915_request *rq) 1130 { 1131 /* 1132 * Polling a semaphore causes bus traffic, delaying other users of 1133 * both the GPU and CPU. We want to limit the impact on others, 1134 * while taking advantage of early submission to reduce GPU 1135 * latency. Therefore we restrict ourselves to not using more 1136 * than one semaphore from each source, and not using a semaphore 1137 * if we have detected the engine is saturated (i.e. would not be 1138 * submitted early and cause bus traffic reading an already passed 1139 * semaphore). 1140 * 1141 * See the are-we-too-late? check in __i915_request_submit(). 1142 */ 1143 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1144 } 1145 1146 static int 1147 __emit_semaphore_wait(struct i915_request *to, 1148 struct i915_request *from, 1149 u32 seqno) 1150 { 1151 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1152 u32 hwsp_offset; 1153 int len, err; 1154 u32 *cs; 1155 1156 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1157 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1158 1159 /* We need to pin the signaler's HWSP until we are finished reading. */ 1160 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1161 if (err) 1162 return err; 1163 1164 len = 4; 1165 if (has_token) 1166 len += 2; 1167 1168 cs = intel_ring_begin(to, len); 1169 if (IS_ERR(cs)) 1170 return PTR_ERR(cs); 1171 1172 /* 1173 * Using greater-than-or-equal here means we have to worry 1174 * about seqno wraparound. To side step that issue, we swap 1175 * the timeline HWSP upon wrapping, so that everyone listening 1176 * for the old (pre-wrap) values do not see the much smaller 1177 * (post-wrap) values than they were expecting (and so wait 1178 * forever). 1179 */ 1180 *cs++ = (MI_SEMAPHORE_WAIT | 1181 MI_SEMAPHORE_GLOBAL_GTT | 1182 MI_SEMAPHORE_POLL | 1183 MI_SEMAPHORE_SAD_GTE_SDD) + 1184 has_token; 1185 *cs++ = seqno; 1186 *cs++ = hwsp_offset; 1187 *cs++ = 0; 1188 if (has_token) { 1189 *cs++ = 0; 1190 *cs++ = MI_NOOP; 1191 } 1192 1193 intel_ring_advance(to, cs); 1194 return 0; 1195 } 1196 1197 static bool 1198 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1199 { 1200 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1201 } 1202 1203 static int 1204 emit_semaphore_wait(struct i915_request *to, 1205 struct i915_request *from, 1206 gfp_t gfp) 1207 { 1208 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1209 struct i915_sw_fence *wait = &to->submit; 1210 1211 if (!can_use_semaphore_wait(to, from)) 1212 goto await_fence; 1213 1214 if (!intel_context_use_semaphores(to->context)) 1215 goto await_fence; 1216 1217 if (i915_request_has_initial_breadcrumb(to)) 1218 goto await_fence; 1219 1220 /* 1221 * If this or its dependents are waiting on an external fence 1222 * that may fail catastrophically, then we want to avoid using 1223 * sempahores as they bypass the fence signaling metadata, and we 1224 * lose the fence->error propagation. 1225 */ 1226 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1227 goto await_fence; 1228 1229 /* Just emit the first semaphore we see as request space is limited. */ 1230 if (already_busywaiting(to) & mask) 1231 goto await_fence; 1232 1233 if (i915_request_await_start(to, from) < 0) 1234 goto await_fence; 1235 1236 /* Only submit our spinner after the signaler is running! */ 1237 if (__await_execution(to, from, gfp)) 1238 goto await_fence; 1239 1240 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1241 goto await_fence; 1242 1243 to->sched.semaphores |= mask; 1244 wait = &to->semaphore; 1245 1246 await_fence: 1247 return i915_sw_fence_await_dma_fence(wait, 1248 &from->fence, 0, 1249 I915_FENCE_GFP); 1250 } 1251 1252 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1253 struct dma_fence *fence) 1254 { 1255 return __intel_timeline_sync_is_later(tl, 1256 fence->context, 1257 fence->seqno - 1); 1258 } 1259 1260 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1261 const struct dma_fence *fence) 1262 { 1263 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1264 } 1265 1266 static int 1267 __i915_request_await_execution(struct i915_request *to, 1268 struct i915_request *from) 1269 { 1270 int err; 1271 1272 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1273 1274 /* Submit both requests at the same time */ 1275 err = __await_execution(to, from, I915_FENCE_GFP); 1276 if (err) 1277 return err; 1278 1279 /* Squash repeated depenendices to the same timelines */ 1280 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1281 &from->fence)) 1282 return 0; 1283 1284 /* 1285 * Wait until the start of this request. 1286 * 1287 * The execution cb fires when we submit the request to HW. But in 1288 * many cases this may be long before the request itself is ready to 1289 * run (consider that we submit 2 requests for the same context, where 1290 * the request of interest is behind an indefinite spinner). So we hook 1291 * up to both to reduce our queues and keep the execution lag minimised 1292 * in the worst case, though we hope that the await_start is elided. 1293 */ 1294 err = i915_request_await_start(to, from); 1295 if (err < 0) 1296 return err; 1297 1298 /* 1299 * Ensure both start together [after all semaphores in signal] 1300 * 1301 * Now that we are queued to the HW at roughly the same time (thanks 1302 * to the execute cb) and are ready to run at roughly the same time 1303 * (thanks to the await start), our signaler may still be indefinitely 1304 * delayed by waiting on a semaphore from a remote engine. If our 1305 * signaler depends on a semaphore, so indirectly do we, and we do not 1306 * want to start our payload until our signaler also starts theirs. 1307 * So we wait. 1308 * 1309 * However, there is also a second condition for which we need to wait 1310 * for the precise start of the signaler. Consider that the signaler 1311 * was submitted in a chain of requests following another context 1312 * (with just an ordinary intra-engine fence dependency between the 1313 * two). In this case the signaler is queued to HW, but not for 1314 * immediate execution, and so we must wait until it reaches the 1315 * active slot. 1316 */ 1317 if (can_use_semaphore_wait(to, from) && 1318 intel_engine_has_semaphores(to->engine) && 1319 !i915_request_has_initial_breadcrumb(to)) { 1320 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1321 if (err < 0) 1322 return err; 1323 } 1324 1325 /* Couple the dependency tree for PI on this exposed to->fence */ 1326 if (to->engine->sched_engine->schedule) { 1327 err = i915_sched_node_add_dependency(&to->sched, 1328 &from->sched, 1329 I915_DEPENDENCY_WEAK); 1330 if (err < 0) 1331 return err; 1332 } 1333 1334 return intel_timeline_sync_set_start(i915_request_timeline(to), 1335 &from->fence); 1336 } 1337 1338 static void mark_external(struct i915_request *rq) 1339 { 1340 /* 1341 * The downside of using semaphores is that we lose metadata passing 1342 * along the signaling chain. This is particularly nasty when we 1343 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1344 * fatal errors we want to scrub the request before it is executed, 1345 * which means that we cannot preload the request onto HW and have 1346 * it wait upon a semaphore. 1347 */ 1348 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1349 } 1350 1351 static int 1352 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1353 { 1354 mark_external(rq); 1355 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1356 i915_fence_context_timeout(rq->engine->i915, 1357 fence->context), 1358 I915_FENCE_GFP); 1359 } 1360 1361 static int 1362 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1363 { 1364 struct dma_fence *iter; 1365 int err = 0; 1366 1367 if (!to_dma_fence_chain(fence)) 1368 return __i915_request_await_external(rq, fence); 1369 1370 dma_fence_chain_for_each(iter, fence) { 1371 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1372 1373 if (!dma_fence_is_i915(chain->fence)) { 1374 err = __i915_request_await_external(rq, iter); 1375 break; 1376 } 1377 1378 err = i915_request_await_dma_fence(rq, chain->fence); 1379 if (err < 0) 1380 break; 1381 } 1382 1383 dma_fence_put(iter); 1384 return err; 1385 } 1386 1387 static inline bool is_parallel_rq(struct i915_request *rq) 1388 { 1389 return intel_context_is_parallel(rq->context); 1390 } 1391 1392 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1393 { 1394 return intel_context_to_parent(rq->context); 1395 } 1396 1397 static bool is_same_parallel_context(struct i915_request *to, 1398 struct i915_request *from) 1399 { 1400 if (is_parallel_rq(to)) 1401 return request_to_parent(to) == request_to_parent(from); 1402 1403 return false; 1404 } 1405 1406 int 1407 i915_request_await_execution(struct i915_request *rq, 1408 struct dma_fence *fence) 1409 { 1410 struct dma_fence **child = &fence; 1411 unsigned int nchild = 1; 1412 int ret; 1413 1414 if (dma_fence_is_array(fence)) { 1415 struct dma_fence_array *array = to_dma_fence_array(fence); 1416 1417 /* XXX Error for signal-on-any fence arrays */ 1418 1419 child = array->fences; 1420 nchild = array->num_fences; 1421 GEM_BUG_ON(!nchild); 1422 } 1423 1424 do { 1425 fence = *child++; 1426 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1427 continue; 1428 1429 if (fence->context == rq->fence.context) 1430 continue; 1431 1432 /* 1433 * We don't squash repeated fence dependencies here as we 1434 * want to run our callback in all cases. 1435 */ 1436 1437 if (dma_fence_is_i915(fence)) { 1438 if (is_same_parallel_context(rq, to_request(fence))) 1439 continue; 1440 ret = __i915_request_await_execution(rq, 1441 to_request(fence)); 1442 } else { 1443 ret = i915_request_await_external(rq, fence); 1444 } 1445 if (ret < 0) 1446 return ret; 1447 } while (--nchild); 1448 1449 return 0; 1450 } 1451 1452 static int 1453 await_request_submit(struct i915_request *to, struct i915_request *from) 1454 { 1455 /* 1456 * If we are waiting on a virtual engine, then it may be 1457 * constrained to execute on a single engine *prior* to submission. 1458 * When it is submitted, it will be first submitted to the virtual 1459 * engine and then passed to the physical engine. We cannot allow 1460 * the waiter to be submitted immediately to the physical engine 1461 * as it may then bypass the virtual request. 1462 */ 1463 if (to->engine == READ_ONCE(from->engine)) 1464 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1465 &from->submit, 1466 I915_FENCE_GFP); 1467 else 1468 return __i915_request_await_execution(to, from); 1469 } 1470 1471 static int 1472 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1473 { 1474 int ret; 1475 1476 GEM_BUG_ON(to == from); 1477 GEM_BUG_ON(to->timeline == from->timeline); 1478 1479 if (i915_request_completed(from)) { 1480 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1481 return 0; 1482 } 1483 1484 if (to->engine->sched_engine->schedule) { 1485 ret = i915_sched_node_add_dependency(&to->sched, 1486 &from->sched, 1487 I915_DEPENDENCY_EXTERNAL); 1488 if (ret < 0) 1489 return ret; 1490 } 1491 1492 if (!intel_engine_uses_guc(to->engine) && 1493 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1494 ret = await_request_submit(to, from); 1495 else 1496 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1497 if (ret < 0) 1498 return ret; 1499 1500 return 0; 1501 } 1502 1503 int 1504 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1505 { 1506 struct dma_fence **child = &fence; 1507 unsigned int nchild = 1; 1508 int ret; 1509 1510 /* 1511 * Note that if the fence-array was created in signal-on-any mode, 1512 * we should *not* decompose it into its individual fences. However, 1513 * we don't currently store which mode the fence-array is operating 1514 * in. Fortunately, the only user of signal-on-any is private to 1515 * amdgpu and we should not see any incoming fence-array from 1516 * sync-file being in signal-on-any mode. 1517 */ 1518 if (dma_fence_is_array(fence)) { 1519 struct dma_fence_array *array = to_dma_fence_array(fence); 1520 1521 child = array->fences; 1522 nchild = array->num_fences; 1523 GEM_BUG_ON(!nchild); 1524 } 1525 1526 do { 1527 fence = *child++; 1528 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1529 continue; 1530 1531 /* 1532 * Requests on the same timeline are explicitly ordered, along 1533 * with their dependencies, by i915_request_add() which ensures 1534 * that requests are submitted in-order through each ring. 1535 */ 1536 if (fence->context == rq->fence.context) 1537 continue; 1538 1539 /* Squash repeated waits to the same timelines */ 1540 if (fence->context && 1541 intel_timeline_sync_is_later(i915_request_timeline(rq), 1542 fence)) 1543 continue; 1544 1545 if (dma_fence_is_i915(fence)) { 1546 if (is_same_parallel_context(rq, to_request(fence))) 1547 continue; 1548 ret = i915_request_await_request(rq, to_request(fence)); 1549 } else { 1550 ret = i915_request_await_external(rq, fence); 1551 } 1552 if (ret < 0) 1553 return ret; 1554 1555 /* Record the latest fence used against each timeline */ 1556 if (fence->context) 1557 intel_timeline_sync_set(i915_request_timeline(rq), 1558 fence); 1559 } while (--nchild); 1560 1561 return 0; 1562 } 1563 1564 /** 1565 * i915_request_await_deps - set this request to (async) wait upon a struct 1566 * i915_deps dma_fence collection 1567 * @rq: request we are wishing to use 1568 * @deps: The struct i915_deps containing the dependencies. 1569 * 1570 * Returns 0 if successful, negative error code on error. 1571 */ 1572 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1573 { 1574 int i, err; 1575 1576 for (i = 0; i < deps->num_deps; ++i) { 1577 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1578 if (err) 1579 return err; 1580 } 1581 1582 return 0; 1583 } 1584 1585 /** 1586 * i915_request_await_object - set this request to (async) wait upon a bo 1587 * @to: request we are wishing to use 1588 * @obj: object which may be in use on another ring. 1589 * @write: whether the wait is on behalf of a writer 1590 * 1591 * This code is meant to abstract object synchronization with the GPU. 1592 * Conceptually we serialise writes between engines inside the GPU. 1593 * We only allow one engine to write into a buffer at any time, but 1594 * multiple readers. To ensure each has a coherent view of memory, we must: 1595 * 1596 * - If there is an outstanding write request to the object, the new 1597 * request must wait for it to complete (either CPU or in hw, requests 1598 * on the same ring will be naturally ordered). 1599 * 1600 * - If we are a write request (pending_write_domain is set), the new 1601 * request must wait for outstanding read requests to complete. 1602 * 1603 * Returns 0 if successful, else propagates up the lower layer error. 1604 */ 1605 int 1606 i915_request_await_object(struct i915_request *to, 1607 struct drm_i915_gem_object *obj, 1608 bool write) 1609 { 1610 struct dma_resv_iter cursor; 1611 struct dma_fence *fence; 1612 int ret = 0; 1613 1614 dma_resv_for_each_fence(&cursor, obj->base.resv, 1615 dma_resv_usage_rw(write), fence) { 1616 ret = i915_request_await_dma_fence(to, fence); 1617 if (ret) 1618 break; 1619 } 1620 1621 return ret; 1622 } 1623 1624 static void i915_request_await_huc(struct i915_request *rq) 1625 { 1626 struct intel_huc *huc = &rq->context->engine->gt->uc.huc; 1627 1628 /* don't stall kernel submissions! */ 1629 if (!rcu_access_pointer(rq->context->gem_context)) 1630 return; 1631 1632 if (intel_huc_wait_required(huc)) 1633 i915_sw_fence_await_sw_fence(&rq->submit, 1634 &huc->delayed_load.fence, 1635 &rq->hucq); 1636 } 1637 1638 static struct i915_request * 1639 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1640 struct intel_timeline *timeline) 1641 { 1642 struct i915_request *prev; 1643 1644 GEM_BUG_ON(!is_parallel_rq(rq)); 1645 1646 prev = request_to_parent(rq)->parallel.last_rq; 1647 if (prev) { 1648 if (!__i915_request_is_complete(prev)) { 1649 i915_sw_fence_await_sw_fence(&rq->submit, 1650 &prev->submit, 1651 &rq->submitq); 1652 1653 if (rq->engine->sched_engine->schedule) 1654 __i915_sched_node_add_dependency(&rq->sched, 1655 &prev->sched, 1656 &rq->dep, 1657 0); 1658 } 1659 i915_request_put(prev); 1660 } 1661 1662 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1663 1664 /* 1665 * Users have to put a reference potentially got by 1666 * __i915_active_fence_set() to the returned request 1667 * when no longer needed 1668 */ 1669 return to_request(__i915_active_fence_set(&timeline->last_request, 1670 &rq->fence)); 1671 } 1672 1673 static struct i915_request * 1674 __i915_request_ensure_ordering(struct i915_request *rq, 1675 struct intel_timeline *timeline) 1676 { 1677 struct i915_request *prev; 1678 1679 GEM_BUG_ON(is_parallel_rq(rq)); 1680 1681 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1682 &rq->fence)); 1683 1684 if (prev && !__i915_request_is_complete(prev)) { 1685 bool uses_guc = intel_engine_uses_guc(rq->engine); 1686 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1687 rq->engine->mask); 1688 bool same_context = prev->context == rq->context; 1689 1690 /* 1691 * The requests are supposed to be kept in order. However, 1692 * we need to be wary in case the timeline->last_request 1693 * is used as a barrier for external modification to this 1694 * context. 1695 */ 1696 GEM_BUG_ON(same_context && 1697 i915_seqno_passed(prev->fence.seqno, 1698 rq->fence.seqno)); 1699 1700 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1701 i915_sw_fence_await_sw_fence(&rq->submit, 1702 &prev->submit, 1703 &rq->submitq); 1704 else 1705 __i915_sw_fence_await_dma_fence(&rq->submit, 1706 &prev->fence, 1707 &rq->dmaq); 1708 if (rq->engine->sched_engine->schedule) 1709 __i915_sched_node_add_dependency(&rq->sched, 1710 &prev->sched, 1711 &rq->dep, 1712 0); 1713 } 1714 1715 /* 1716 * Users have to put the reference to prev potentially got 1717 * by __i915_active_fence_set() when no longer needed 1718 */ 1719 return prev; 1720 } 1721 1722 static struct i915_request * 1723 __i915_request_add_to_timeline(struct i915_request *rq) 1724 { 1725 struct intel_timeline *timeline = i915_request_timeline(rq); 1726 struct i915_request *prev; 1727 1728 /* 1729 * Media workloads may require HuC, so stall them until HuC loading is 1730 * complete. Note that HuC not being loaded when a user submission 1731 * arrives can only happen when HuC is loaded via GSC and in that case 1732 * we still expect the window between us starting to accept submissions 1733 * and HuC loading completion to be small (a few hundred ms). 1734 */ 1735 if (rq->engine->class == VIDEO_DECODE_CLASS) 1736 i915_request_await_huc(rq); 1737 1738 /* 1739 * Dependency tracking and request ordering along the timeline 1740 * is special cased so that we can eliminate redundant ordering 1741 * operations while building the request (we know that the timeline 1742 * itself is ordered, and here we guarantee it). 1743 * 1744 * As we know we will need to emit tracking along the timeline, 1745 * we embed the hooks into our request struct -- at the cost of 1746 * having to have specialised no-allocation interfaces (which will 1747 * be beneficial elsewhere). 1748 * 1749 * A second benefit to open-coding i915_request_await_request is 1750 * that we can apply a slight variant of the rules specialised 1751 * for timelines that jump between engines (such as virtual engines). 1752 * If we consider the case of virtual engine, we must emit a dma-fence 1753 * to prevent scheduling of the second request until the first is 1754 * complete (to maximise our greedy late load balancing) and this 1755 * precludes optimising to use semaphores serialisation of a single 1756 * timeline across engines. 1757 * 1758 * We do not order parallel submission requests on the timeline as each 1759 * parallel submission context has its own timeline and the ordering 1760 * rules for parallel requests are that they must be submitted in the 1761 * order received from the execbuf IOCTL. So rather than using the 1762 * timeline we store a pointer to last request submitted in the 1763 * relationship in the gem context and insert a submission fence 1764 * between that request and request passed into this function or 1765 * alternatively we use completion fence if gem context has a single 1766 * timeline and this is the first submission of an execbuf IOCTL. 1767 */ 1768 if (likely(!is_parallel_rq(rq))) 1769 prev = __i915_request_ensure_ordering(rq, timeline); 1770 else 1771 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1772 if (prev) 1773 i915_request_put(prev); 1774 1775 /* 1776 * Make sure that no request gazumped us - if it was allocated after 1777 * our i915_request_alloc() and called __i915_request_add() before 1778 * us, the timeline will hold its seqno which is later than ours. 1779 */ 1780 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1781 1782 return prev; 1783 } 1784 1785 /* 1786 * NB: This function is not allowed to fail. Doing so would mean the the 1787 * request is not being tracked for completion but the work itself is 1788 * going to happen on the hardware. This would be a Bad Thing(tm). 1789 */ 1790 struct i915_request *__i915_request_commit(struct i915_request *rq) 1791 { 1792 struct intel_engine_cs *engine = rq->engine; 1793 struct intel_ring *ring = rq->ring; 1794 u32 *cs; 1795 1796 RQ_TRACE(rq, "\n"); 1797 1798 /* 1799 * To ensure that this call will not fail, space for its emissions 1800 * should already have been reserved in the ring buffer. Let the ring 1801 * know that it is time to use that space up. 1802 */ 1803 GEM_BUG_ON(rq->reserved_space > ring->space); 1804 rq->reserved_space = 0; 1805 rq->emitted_jiffies = jiffies; 1806 1807 /* 1808 * Record the position of the start of the breadcrumb so that 1809 * should we detect the updated seqno part-way through the 1810 * GPU processing the request, we never over-estimate the 1811 * position of the ring's HEAD. 1812 */ 1813 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1814 GEM_BUG_ON(IS_ERR(cs)); 1815 rq->postfix = intel_ring_offset(rq, cs); 1816 1817 return __i915_request_add_to_timeline(rq); 1818 } 1819 1820 void __i915_request_queue_bh(struct i915_request *rq) 1821 { 1822 i915_sw_fence_commit(&rq->semaphore); 1823 i915_sw_fence_commit(&rq->submit); 1824 } 1825 1826 void __i915_request_queue(struct i915_request *rq, 1827 const struct i915_sched_attr *attr) 1828 { 1829 /* 1830 * Let the backend know a new request has arrived that may need 1831 * to adjust the existing execution schedule due to a high priority 1832 * request - i.e. we may want to preempt the current request in order 1833 * to run a high priority dependency chain *before* we can execute this 1834 * request. 1835 * 1836 * This is called before the request is ready to run so that we can 1837 * decide whether to preempt the entire chain so that it is ready to 1838 * run at the earliest possible convenience. 1839 */ 1840 if (attr && rq->engine->sched_engine->schedule) 1841 rq->engine->sched_engine->schedule(rq, attr); 1842 1843 local_bh_disable(); 1844 __i915_request_queue_bh(rq); 1845 local_bh_enable(); /* kick tasklets */ 1846 } 1847 1848 void i915_request_add(struct i915_request *rq) 1849 { 1850 struct intel_timeline * const tl = i915_request_timeline(rq); 1851 struct i915_sched_attr attr = {}; 1852 struct i915_gem_context *ctx; 1853 1854 lockdep_assert_held(&tl->mutex); 1855 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1856 1857 trace_i915_request_add(rq); 1858 __i915_request_commit(rq); 1859 1860 /* XXX placeholder for selftests */ 1861 rcu_read_lock(); 1862 ctx = rcu_dereference(rq->context->gem_context); 1863 if (ctx) 1864 attr = ctx->sched; 1865 rcu_read_unlock(); 1866 1867 __i915_request_queue(rq, &attr); 1868 1869 mutex_unlock(&tl->mutex); 1870 } 1871 1872 static unsigned long local_clock_ns(unsigned int *cpu) 1873 { 1874 unsigned long t; 1875 1876 /* 1877 * Cheaply and approximately convert from nanoseconds to microseconds. 1878 * The result and subsequent calculations are also defined in the same 1879 * approximate microseconds units. The principal source of timing 1880 * error here is from the simple truncation. 1881 * 1882 * Note that local_clock() is only defined wrt to the current CPU; 1883 * the comparisons are no longer valid if we switch CPUs. Instead of 1884 * blocking preemption for the entire busywait, we can detect the CPU 1885 * switch and use that as indicator of system load and a reason to 1886 * stop busywaiting, see busywait_stop(). 1887 */ 1888 *cpu = get_cpu(); 1889 t = local_clock(); 1890 put_cpu(); 1891 1892 return t; 1893 } 1894 1895 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1896 { 1897 unsigned int this_cpu; 1898 1899 if (time_after(local_clock_ns(&this_cpu), timeout)) 1900 return true; 1901 1902 return this_cpu != cpu; 1903 } 1904 1905 static bool __i915_spin_request(struct i915_request * const rq, int state) 1906 { 1907 unsigned long timeout_ns; 1908 unsigned int cpu; 1909 1910 /* 1911 * Only wait for the request if we know it is likely to complete. 1912 * 1913 * We don't track the timestamps around requests, nor the average 1914 * request length, so we do not have a good indicator that this 1915 * request will complete within the timeout. What we do know is the 1916 * order in which requests are executed by the context and so we can 1917 * tell if the request has been started. If the request is not even 1918 * running yet, it is a fair assumption that it will not complete 1919 * within our relatively short timeout. 1920 */ 1921 if (!i915_request_is_running(rq)) 1922 return false; 1923 1924 /* 1925 * When waiting for high frequency requests, e.g. during synchronous 1926 * rendering split between the CPU and GPU, the finite amount of time 1927 * required to set up the irq and wait upon it limits the response 1928 * rate. By busywaiting on the request completion for a short while we 1929 * can service the high frequency waits as quick as possible. However, 1930 * if it is a slow request, we want to sleep as quickly as possible. 1931 * The tradeoff between waiting and sleeping is roughly the time it 1932 * takes to sleep on a request, on the order of a microsecond. 1933 */ 1934 1935 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1936 timeout_ns += local_clock_ns(&cpu); 1937 do { 1938 if (dma_fence_is_signaled(&rq->fence)) 1939 return true; 1940 1941 if (signal_pending_state(state, current)) 1942 break; 1943 1944 if (busywait_stop(timeout_ns, cpu)) 1945 break; 1946 1947 cpu_relax(); 1948 } while (!need_resched()); 1949 1950 return false; 1951 } 1952 1953 struct request_wait { 1954 struct dma_fence_cb cb; 1955 struct task_struct *tsk; 1956 }; 1957 1958 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1959 { 1960 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1961 1962 wake_up_process(fetch_and_zero(&wait->tsk)); 1963 } 1964 1965 /** 1966 * i915_request_wait_timeout - wait until execution of request has finished 1967 * @rq: the request to wait upon 1968 * @flags: how to wait 1969 * @timeout: how long to wait in jiffies 1970 * 1971 * i915_request_wait_timeout() waits for the request to be completed, for a 1972 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1973 * unbounded wait). 1974 * 1975 * Returns the remaining time (in jiffies) if the request completed, which may 1976 * be zero if the request is unfinished after the timeout expires. 1977 * If the timeout is 0, it will return 1 if the fence is signaled. 1978 * 1979 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1980 * pending before the request completes. 1981 * 1982 * NOTE: This function has the same wait semantics as dma-fence. 1983 */ 1984 long i915_request_wait_timeout(struct i915_request *rq, 1985 unsigned int flags, 1986 long timeout) 1987 { 1988 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1989 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1990 struct request_wait wait; 1991 1992 might_sleep(); 1993 GEM_BUG_ON(timeout < 0); 1994 1995 if (dma_fence_is_signaled(&rq->fence)) 1996 return timeout ?: 1; 1997 1998 if (!timeout) 1999 return -ETIME; 2000 2001 trace_i915_request_wait_begin(rq, flags); 2002 2003 /* 2004 * We must never wait on the GPU while holding a lock as we 2005 * may need to perform a GPU reset. So while we don't need to 2006 * serialise wait/reset with an explicit lock, we do want 2007 * lockdep to detect potential dependency cycles. 2008 */ 2009 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2010 2011 /* 2012 * Optimistic spin before touching IRQs. 2013 * 2014 * We may use a rather large value here to offset the penalty of 2015 * switching away from the active task. Frequently, the client will 2016 * wait upon an old swapbuffer to throttle itself to remain within a 2017 * frame of the gpu. If the client is running in lockstep with the gpu, 2018 * then it should not be waiting long at all, and a sleep now will incur 2019 * extra scheduler latency in producing the next frame. To try to 2020 * avoid adding the cost of enabling/disabling the interrupt to the 2021 * short wait, we first spin to see if the request would have completed 2022 * in the time taken to setup the interrupt. 2023 * 2024 * We need upto 5us to enable the irq, and upto 20us to hide the 2025 * scheduler latency of a context switch, ignoring the secondary 2026 * impacts from a context switch such as cache eviction. 2027 * 2028 * The scheme used for low-latency IO is called "hybrid interrupt 2029 * polling". The suggestion there is to sleep until just before you 2030 * expect to be woken by the device interrupt and then poll for its 2031 * completion. That requires having a good predictor for the request 2032 * duration, which we currently lack. 2033 */ 2034 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2035 __i915_spin_request(rq, state)) 2036 goto out; 2037 2038 /* 2039 * This client is about to stall waiting for the GPU. In many cases 2040 * this is undesirable and limits the throughput of the system, as 2041 * many clients cannot continue processing user input/output whilst 2042 * blocked. RPS autotuning may take tens of milliseconds to respond 2043 * to the GPU load and thus incurs additional latency for the client. 2044 * We can circumvent that by promoting the GPU frequency to maximum 2045 * before we sleep. This makes the GPU throttle up much more quickly 2046 * (good for benchmarks and user experience, e.g. window animations), 2047 * but at a cost of spending more power processing the workload 2048 * (bad for battery). 2049 */ 2050 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2051 intel_rps_boost(rq); 2052 2053 wait.tsk = current; 2054 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2055 goto out; 2056 2057 /* 2058 * Flush the submission tasklet, but only if it may help this request. 2059 * 2060 * We sometimes experience some latency between the HW interrupts and 2061 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2062 * be due to lazy CS events), so lets run the tasklet manually if there 2063 * is a chance it may submit this request. If the request is not ready 2064 * to run, as it is waiting for other fences to be signaled, flushing 2065 * the tasklet is busy work without any advantage for this client. 2066 * 2067 * If the HW is being lazy, this is the last chance before we go to 2068 * sleep to catch any pending events. We will check periodically in 2069 * the heartbeat to flush the submission tasklets as a last resort 2070 * for unhappy HW. 2071 */ 2072 if (i915_request_is_ready(rq)) 2073 __intel_engine_flush_submission(rq->engine, false); 2074 2075 for (;;) { 2076 set_current_state(state); 2077 2078 if (dma_fence_is_signaled(&rq->fence)) 2079 break; 2080 2081 if (signal_pending_state(state, current)) { 2082 timeout = -ERESTARTSYS; 2083 break; 2084 } 2085 2086 if (!timeout) { 2087 timeout = -ETIME; 2088 break; 2089 } 2090 2091 timeout = io_schedule_timeout(timeout); 2092 } 2093 __set_current_state(TASK_RUNNING); 2094 2095 if (READ_ONCE(wait.tsk)) 2096 dma_fence_remove_callback(&rq->fence, &wait.cb); 2097 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2098 2099 out: 2100 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2101 trace_i915_request_wait_end(rq); 2102 return timeout; 2103 } 2104 2105 /** 2106 * i915_request_wait - wait until execution of request has finished 2107 * @rq: the request to wait upon 2108 * @flags: how to wait 2109 * @timeout: how long to wait in jiffies 2110 * 2111 * i915_request_wait() waits for the request to be completed, for a 2112 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2113 * unbounded wait). 2114 * 2115 * Returns the remaining time (in jiffies) if the request completed, which may 2116 * be zero or -ETIME if the request is unfinished after the timeout expires. 2117 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2118 * pending before the request completes. 2119 * 2120 * NOTE: This function behaves differently from dma-fence wait semantics for 2121 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2122 */ 2123 long i915_request_wait(struct i915_request *rq, 2124 unsigned int flags, 2125 long timeout) 2126 { 2127 long ret = i915_request_wait_timeout(rq, flags, timeout); 2128 2129 if (!ret) 2130 return -ETIME; 2131 2132 if (ret > 0 && !timeout) 2133 return 0; 2134 2135 return ret; 2136 } 2137 2138 static int print_sched_attr(const struct i915_sched_attr *attr, 2139 char *buf, int x, int len) 2140 { 2141 if (attr->priority == I915_PRIORITY_INVALID) 2142 return x; 2143 2144 x += snprintf(buf + x, len - x, 2145 " prio=%d", attr->priority); 2146 2147 return x; 2148 } 2149 2150 static char queue_status(const struct i915_request *rq) 2151 { 2152 if (i915_request_is_active(rq)) 2153 return 'E'; 2154 2155 if (i915_request_is_ready(rq)) 2156 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2157 2158 return 'U'; 2159 } 2160 2161 static const char *run_status(const struct i915_request *rq) 2162 { 2163 if (__i915_request_is_complete(rq)) 2164 return "!"; 2165 2166 if (__i915_request_has_started(rq)) 2167 return "*"; 2168 2169 if (!i915_sw_fence_signaled(&rq->semaphore)) 2170 return "&"; 2171 2172 return ""; 2173 } 2174 2175 static const char *fence_status(const struct i915_request *rq) 2176 { 2177 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2178 return "+"; 2179 2180 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2181 return "-"; 2182 2183 return ""; 2184 } 2185 2186 void i915_request_show(struct drm_printer *m, 2187 const struct i915_request *rq, 2188 const char *prefix, 2189 int indent) 2190 { 2191 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2192 char buf[80] = ""; 2193 int x = 0; 2194 2195 /* 2196 * The prefix is used to show the queue status, for which we use 2197 * the following flags: 2198 * 2199 * U [Unready] 2200 * - initial status upon being submitted by the user 2201 * 2202 * - the request is not ready for execution as it is waiting 2203 * for external fences 2204 * 2205 * R [Ready] 2206 * - all fences the request was waiting on have been signaled, 2207 * and the request is now ready for execution and will be 2208 * in a backend queue 2209 * 2210 * - a ready request may still need to wait on semaphores 2211 * [internal fences] 2212 * 2213 * V [Ready/virtual] 2214 * - same as ready, but queued over multiple backends 2215 * 2216 * E [Executing] 2217 * - the request has been transferred from the backend queue and 2218 * submitted for execution on HW 2219 * 2220 * - a completed request may still be regarded as executing, its 2221 * status may not be updated until it is retired and removed 2222 * from the lists 2223 */ 2224 2225 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2226 2227 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2228 prefix, indent, " ", 2229 queue_status(rq), 2230 rq->fence.context, rq->fence.seqno, 2231 run_status(rq), 2232 fence_status(rq), 2233 buf, 2234 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2235 name); 2236 } 2237 2238 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2239 { 2240 u32 ring = ENGINE_READ(engine, RING_START); 2241 2242 return ring == i915_ggtt_offset(rq->ring->vma); 2243 } 2244 2245 static bool match_ring(struct i915_request *rq) 2246 { 2247 struct intel_engine_cs *engine; 2248 bool found; 2249 int i; 2250 2251 if (!intel_engine_is_virtual(rq->engine)) 2252 return engine_match_ring(rq->engine, rq); 2253 2254 found = false; 2255 i = 0; 2256 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2257 found = engine_match_ring(engine, rq); 2258 if (found) 2259 break; 2260 } 2261 2262 return found; 2263 } 2264 2265 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2266 { 2267 if (i915_request_completed(rq)) 2268 return I915_REQUEST_COMPLETE; 2269 2270 if (!i915_request_started(rq)) 2271 return I915_REQUEST_PENDING; 2272 2273 if (match_ring(rq)) 2274 return I915_REQUEST_ACTIVE; 2275 2276 return I915_REQUEST_QUEUED; 2277 } 2278 2279 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2280 #include "selftests/mock_request.c" 2281 #include "selftests/i915_request.c" 2282 #endif 2283 2284 void i915_request_module_exit(void) 2285 { 2286 kmem_cache_destroy(slab_execute_cbs); 2287 kmem_cache_destroy(slab_requests); 2288 } 2289 2290 int __init i915_request_module_init(void) 2291 { 2292 slab_requests = 2293 kmem_cache_create("i915_request", 2294 sizeof(struct i915_request), 2295 __alignof__(struct i915_request), 2296 SLAB_HWCACHE_ALIGN | 2297 SLAB_RECLAIM_ACCOUNT | 2298 SLAB_TYPESAFE_BY_RCU, 2299 __i915_request_ctor); 2300 if (!slab_requests) 2301 return -ENOMEM; 2302 2303 slab_execute_cbs = KMEM_CACHE(execute_cb, 2304 SLAB_HWCACHE_ALIGN | 2305 SLAB_RECLAIM_ACCOUNT | 2306 SLAB_TYPESAFE_BY_RCU); 2307 if (!slab_execute_cbs) 2308 goto err_requests; 2309 2310 return 0; 2311 2312 err_requests: 2313 kmem_cache_destroy(slab_requests); 2314 return -ENOMEM; 2315 } 2316