1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_breadcrumbs.h" 35 #include "gt/intel_context.h" 36 #include "gt/intel_engine.h" 37 #include "gt/intel_engine_heartbeat.h" 38 #include "gt/intel_gpu_commands.h" 39 #include "gt/intel_reset.h" 40 #include "gt/intel_ring.h" 41 #include "gt/intel_rps.h" 42 43 #include "i915_active.h" 44 #include "i915_drv.h" 45 #include "i915_globals.h" 46 #include "i915_trace.h" 47 #include "intel_pm.h" 48 49 struct execute_cb { 50 struct irq_work work; 51 struct i915_sw_fence *fence; 52 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 53 struct i915_request *signal; 54 }; 55 56 static struct i915_global_request { 57 struct i915_global base; 58 struct kmem_cache *slab_requests; 59 struct kmem_cache *slab_execute_cbs; 60 } global; 61 62 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 63 { 64 return dev_name(to_request(fence)->engine->i915->drm.dev); 65 } 66 67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 68 { 69 const struct i915_gem_context *ctx; 70 71 /* 72 * The timeline struct (as part of the ppgtt underneath a context) 73 * may be freed when the request is no longer in use by the GPU. 74 * We could extend the life of a context to beyond that of all 75 * fences, possibly keeping the hw resource around indefinitely, 76 * or we just give them a false name. Since 77 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 78 * lie seems justifiable. 79 */ 80 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 81 return "signaled"; 82 83 ctx = i915_request_gem_context(to_request(fence)); 84 if (!ctx) 85 return "[" DRIVER_NAME "]"; 86 87 return ctx->name; 88 } 89 90 static bool i915_fence_signaled(struct dma_fence *fence) 91 { 92 return i915_request_completed(to_request(fence)); 93 } 94 95 static bool i915_fence_enable_signaling(struct dma_fence *fence) 96 { 97 return i915_request_enable_breadcrumb(to_request(fence)); 98 } 99 100 static signed long i915_fence_wait(struct dma_fence *fence, 101 bool interruptible, 102 signed long timeout) 103 { 104 return i915_request_wait(to_request(fence), 105 interruptible | I915_WAIT_PRIORITY, 106 timeout); 107 } 108 109 struct kmem_cache *i915_request_slab_cache(void) 110 { 111 return global.slab_requests; 112 } 113 114 static void i915_fence_release(struct dma_fence *fence) 115 { 116 struct i915_request *rq = to_request(fence); 117 118 /* 119 * The request is put onto a RCU freelist (i.e. the address 120 * is immediately reused), mark the fences as being freed now. 121 * Otherwise the debugobjects for the fences are only marked as 122 * freed when the slab cache itself is freed, and so we would get 123 * caught trying to reuse dead objects. 124 */ 125 i915_sw_fence_fini(&rq->submit); 126 i915_sw_fence_fini(&rq->semaphore); 127 128 /* 129 * Keep one request on each engine for reserved use under mempressure 130 * 131 * We do not hold a reference to the engine here and so have to be 132 * very careful in what rq->engine we poke. The virtual engine is 133 * referenced via the rq->context and we released that ref during 134 * i915_request_retire(), ergo we must not dereference a virtual 135 * engine here. Not that we would want to, as the only consumer of 136 * the reserved engine->request_pool is the power management parking, 137 * which must-not-fail, and that is only run on the physical engines. 138 * 139 * Since the request must have been executed to be have completed, 140 * we know that it will have been processed by the HW and will 141 * not be unsubmitted again, so rq->engine and rq->execution_mask 142 * at this point is stable. rq->execution_mask will be a single 143 * bit if the last and _only_ engine it could execution on was a 144 * physical engine, if it's multiple bits then it started on and 145 * could still be on a virtual engine. Thus if the mask is not a 146 * power-of-two we assume that rq->engine may still be a virtual 147 * engine and so a dangling invalid pointer that we cannot dereference 148 * 149 * For example, consider the flow of a bonded request through a virtual 150 * engine. The request is created with a wide engine mask (all engines 151 * that we might execute on). On processing the bond, the request mask 152 * is reduced to one or more engines. If the request is subsequently 153 * bound to a single engine, it will then be constrained to only 154 * execute on that engine and never returned to the virtual engine 155 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 156 * know that if the rq->execution_mask is a single bit, rq->engine 157 * can be a physical engine with the exact corresponding mask. 158 */ 159 if (is_power_of_2(rq->execution_mask) && 160 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 161 return; 162 163 kmem_cache_free(global.slab_requests, rq); 164 } 165 166 const struct dma_fence_ops i915_fence_ops = { 167 .get_driver_name = i915_fence_get_driver_name, 168 .get_timeline_name = i915_fence_get_timeline_name, 169 .enable_signaling = i915_fence_enable_signaling, 170 .signaled = i915_fence_signaled, 171 .wait = i915_fence_wait, 172 .release = i915_fence_release, 173 }; 174 175 static void irq_execute_cb(struct irq_work *wrk) 176 { 177 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 178 179 i915_sw_fence_complete(cb->fence); 180 kmem_cache_free(global.slab_execute_cbs, cb); 181 } 182 183 static void irq_execute_cb_hook(struct irq_work *wrk) 184 { 185 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 186 187 cb->hook(container_of(cb->fence, struct i915_request, submit), 188 &cb->signal->fence); 189 i915_request_put(cb->signal); 190 191 irq_execute_cb(wrk); 192 } 193 194 static __always_inline void 195 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 196 { 197 struct execute_cb *cb, *cn; 198 199 if (llist_empty(&rq->execute_cb)) 200 return; 201 202 llist_for_each_entry_safe(cb, cn, 203 llist_del_all(&rq->execute_cb), 204 work.node.llist) 205 fn(&cb->work); 206 } 207 208 static void __notify_execute_cb_irq(struct i915_request *rq) 209 { 210 __notify_execute_cb(rq, irq_work_queue); 211 } 212 213 static bool irq_work_imm(struct irq_work *wrk) 214 { 215 wrk->func(wrk); 216 return false; 217 } 218 219 static void __notify_execute_cb_imm(struct i915_request *rq) 220 { 221 __notify_execute_cb(rq, irq_work_imm); 222 } 223 224 static void free_capture_list(struct i915_request *request) 225 { 226 struct i915_capture_list *capture; 227 228 capture = fetch_and_zero(&request->capture_list); 229 while (capture) { 230 struct i915_capture_list *next = capture->next; 231 232 kfree(capture); 233 capture = next; 234 } 235 } 236 237 static void __i915_request_fill(struct i915_request *rq, u8 val) 238 { 239 void *vaddr = rq->ring->vaddr; 240 u32 head; 241 242 head = rq->infix; 243 if (rq->postfix < head) { 244 memset(vaddr + head, val, rq->ring->size - head); 245 head = 0; 246 } 247 memset(vaddr + head, val, rq->postfix - head); 248 } 249 250 /** 251 * i915_request_active_engine 252 * @rq: request to inspect 253 * @active: pointer in which to return the active engine 254 * 255 * Fills the currently active engine to the @active pointer if the request 256 * is active and still not completed. 257 * 258 * Returns true if request was active or false otherwise. 259 */ 260 bool 261 i915_request_active_engine(struct i915_request *rq, 262 struct intel_engine_cs **active) 263 { 264 struct intel_engine_cs *engine, *locked; 265 bool ret = false; 266 267 /* 268 * Serialise with __i915_request_submit() so that it sees 269 * is-banned?, or we know the request is already inflight. 270 * 271 * Note that rq->engine is unstable, and so we double 272 * check that we have acquired the lock on the final engine. 273 */ 274 locked = READ_ONCE(rq->engine); 275 spin_lock_irq(&locked->active.lock); 276 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 277 spin_unlock(&locked->active.lock); 278 locked = engine; 279 spin_lock(&locked->active.lock); 280 } 281 282 if (i915_request_is_active(rq)) { 283 if (!__i915_request_is_complete(rq)) 284 *active = locked; 285 ret = true; 286 } 287 288 spin_unlock_irq(&locked->active.lock); 289 290 return ret; 291 } 292 293 294 static void remove_from_engine(struct i915_request *rq) 295 { 296 struct intel_engine_cs *engine, *locked; 297 298 /* 299 * Virtual engines complicate acquiring the engine timeline lock, 300 * as their rq->engine pointer is not stable until under that 301 * engine lock. The simple ploy we use is to take the lock then 302 * check that the rq still belongs to the newly locked engine. 303 */ 304 locked = READ_ONCE(rq->engine); 305 spin_lock_irq(&locked->active.lock); 306 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 307 spin_unlock(&locked->active.lock); 308 spin_lock(&engine->active.lock); 309 locked = engine; 310 } 311 list_del_init(&rq->sched.link); 312 313 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 314 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 315 316 /* Prevent further __await_execution() registering a cb, then flush */ 317 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 318 319 spin_unlock_irq(&locked->active.lock); 320 321 __notify_execute_cb_imm(rq); 322 } 323 324 static void __rq_init_watchdog(struct i915_request *rq) 325 { 326 rq->watchdog.timer.function = NULL; 327 } 328 329 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 330 { 331 struct i915_request *rq = 332 container_of(hrtimer, struct i915_request, watchdog.timer); 333 struct intel_gt *gt = rq->engine->gt; 334 335 if (!i915_request_completed(rq)) { 336 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 337 schedule_work(>->watchdog.work); 338 } else { 339 i915_request_put(rq); 340 } 341 342 return HRTIMER_NORESTART; 343 } 344 345 static void __rq_arm_watchdog(struct i915_request *rq) 346 { 347 struct i915_request_watchdog *wdg = &rq->watchdog; 348 struct intel_context *ce = rq->context; 349 350 if (!ce->watchdog.timeout_us) 351 return; 352 353 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 354 wdg->timer.function = __rq_watchdog_expired; 355 hrtimer_start_range_ns(&wdg->timer, 356 ns_to_ktime(ce->watchdog.timeout_us * 357 NSEC_PER_USEC), 358 NSEC_PER_MSEC, 359 HRTIMER_MODE_REL); 360 i915_request_get(rq); 361 } 362 363 static void __rq_cancel_watchdog(struct i915_request *rq) 364 { 365 struct i915_request_watchdog *wdg = &rq->watchdog; 366 367 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 368 i915_request_put(rq); 369 } 370 371 bool i915_request_retire(struct i915_request *rq) 372 { 373 if (!__i915_request_is_complete(rq)) 374 return false; 375 376 RQ_TRACE(rq, "\n"); 377 378 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 379 trace_i915_request_retire(rq); 380 i915_request_mark_complete(rq); 381 382 __rq_cancel_watchdog(rq); 383 384 /* 385 * We know the GPU must have read the request to have 386 * sent us the seqno + interrupt, so use the position 387 * of tail of the request to update the last known position 388 * of the GPU head. 389 * 390 * Note this requires that we are always called in request 391 * completion order. 392 */ 393 GEM_BUG_ON(!list_is_first(&rq->link, 394 &i915_request_timeline(rq)->requests)); 395 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 396 /* Poison before we release our space in the ring */ 397 __i915_request_fill(rq, POISON_FREE); 398 rq->ring->head = rq->postfix; 399 400 if (!i915_request_signaled(rq)) { 401 spin_lock_irq(&rq->lock); 402 dma_fence_signal_locked(&rq->fence); 403 spin_unlock_irq(&rq->lock); 404 } 405 406 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 407 atomic_dec(&rq->engine->gt->rps.num_waiters); 408 409 /* 410 * We only loosely track inflight requests across preemption, 411 * and so we may find ourselves attempting to retire a _completed_ 412 * request that we have removed from the HW and put back on a run 413 * queue. 414 * 415 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 416 * after removing the breadcrumb and signaling it, so that we do not 417 * inadvertently attach the breadcrumb to a completed request. 418 */ 419 if (!list_empty(&rq->sched.link)) 420 remove_from_engine(rq); 421 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 422 423 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 424 425 intel_context_exit(rq->context); 426 intel_context_unpin(rq->context); 427 428 free_capture_list(rq); 429 i915_sched_node_fini(&rq->sched); 430 i915_request_put(rq); 431 432 return true; 433 } 434 435 void i915_request_retire_upto(struct i915_request *rq) 436 { 437 struct intel_timeline * const tl = i915_request_timeline(rq); 438 struct i915_request *tmp; 439 440 RQ_TRACE(rq, "\n"); 441 GEM_BUG_ON(!__i915_request_is_complete(rq)); 442 443 do { 444 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 445 } while (i915_request_retire(tmp) && tmp != rq); 446 } 447 448 static struct i915_request * const * 449 __engine_active(struct intel_engine_cs *engine) 450 { 451 return READ_ONCE(engine->execlists.active); 452 } 453 454 static bool __request_in_flight(const struct i915_request *signal) 455 { 456 struct i915_request * const *port, *rq; 457 bool inflight = false; 458 459 if (!i915_request_is_ready(signal)) 460 return false; 461 462 /* 463 * Even if we have unwound the request, it may still be on 464 * the GPU (preempt-to-busy). If that request is inside an 465 * unpreemptible critical section, it will not be removed. Some 466 * GPU functions may even be stuck waiting for the paired request 467 * (__await_execution) to be submitted and cannot be preempted 468 * until the bond is executing. 469 * 470 * As we know that there are always preemption points between 471 * requests, we know that only the currently executing request 472 * may be still active even though we have cleared the flag. 473 * However, we can't rely on our tracking of ELSP[0] to know 474 * which request is currently active and so maybe stuck, as 475 * the tracking maybe an event behind. Instead assume that 476 * if the context is still inflight, then it is still active 477 * even if the active flag has been cleared. 478 * 479 * To further complicate matters, if there a pending promotion, the HW 480 * may either perform a context switch to the second inflight execlists, 481 * or it may switch to the pending set of execlists. In the case of the 482 * latter, it may send the ACK and we process the event copying the 483 * pending[] over top of inflight[], _overwriting_ our *active. Since 484 * this implies the HW is arbitrating and not struck in *active, we do 485 * not worry about complete accuracy, but we do require no read/write 486 * tearing of the pointer [the read of the pointer must be valid, even 487 * as the array is being overwritten, for which we require the writes 488 * to avoid tearing.] 489 * 490 * Note that the read of *execlists->active may race with the promotion 491 * of execlists->pending[] to execlists->inflight[], overwritting 492 * the value at *execlists->active. This is fine. The promotion implies 493 * that we received an ACK from the HW, and so the context is not 494 * stuck -- if we do not see ourselves in *active, the inflight status 495 * is valid. If instead we see ourselves being copied into *active, 496 * we are inflight and may signal the callback. 497 */ 498 if (!intel_context_inflight(signal->context)) 499 return false; 500 501 rcu_read_lock(); 502 for (port = __engine_active(signal->engine); 503 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 504 port++) { 505 if (rq->context == signal->context) { 506 inflight = i915_seqno_passed(rq->fence.seqno, 507 signal->fence.seqno); 508 break; 509 } 510 } 511 rcu_read_unlock(); 512 513 return inflight; 514 } 515 516 static int 517 __await_execution(struct i915_request *rq, 518 struct i915_request *signal, 519 void (*hook)(struct i915_request *rq, 520 struct dma_fence *signal), 521 gfp_t gfp) 522 { 523 struct execute_cb *cb; 524 525 if (i915_request_is_active(signal)) { 526 if (hook) 527 hook(rq, &signal->fence); 528 return 0; 529 } 530 531 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 532 if (!cb) 533 return -ENOMEM; 534 535 cb->fence = &rq->submit; 536 i915_sw_fence_await(cb->fence); 537 init_irq_work(&cb->work, irq_execute_cb); 538 539 if (hook) { 540 cb->hook = hook; 541 cb->signal = i915_request_get(signal); 542 cb->work.func = irq_execute_cb_hook; 543 } 544 545 /* 546 * Register the callback first, then see if the signaler is already 547 * active. This ensures that if we race with the 548 * __notify_execute_cb from i915_request_submit() and we are not 549 * included in that list, we get a second bite of the cherry and 550 * execute it ourselves. After this point, a future 551 * i915_request_submit() will notify us. 552 * 553 * In i915_request_retire() we set the ACTIVE bit on a completed 554 * request (then flush the execute_cb). So by registering the 555 * callback first, then checking the ACTIVE bit, we serialise with 556 * the completed/retired request. 557 */ 558 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 559 if (i915_request_is_active(signal) || 560 __request_in_flight(signal)) 561 __notify_execute_cb_imm(signal); 562 } 563 564 return 0; 565 } 566 567 static bool fatal_error(int error) 568 { 569 switch (error) { 570 case 0: /* not an error! */ 571 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 572 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 573 return false; 574 default: 575 return true; 576 } 577 } 578 579 void __i915_request_skip(struct i915_request *rq) 580 { 581 GEM_BUG_ON(!fatal_error(rq->fence.error)); 582 583 if (rq->infix == rq->postfix) 584 return; 585 586 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 587 588 /* 589 * As this request likely depends on state from the lost 590 * context, clear out all the user operations leaving the 591 * breadcrumb at the end (so we get the fence notifications). 592 */ 593 __i915_request_fill(rq, 0); 594 rq->infix = rq->postfix; 595 } 596 597 bool i915_request_set_error_once(struct i915_request *rq, int error) 598 { 599 int old; 600 601 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 602 603 if (i915_request_signaled(rq)) 604 return false; 605 606 old = READ_ONCE(rq->fence.error); 607 do { 608 if (fatal_error(old)) 609 return false; 610 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 611 612 return true; 613 } 614 615 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 616 { 617 if (__i915_request_is_complete(rq)) 618 return NULL; 619 620 GEM_BUG_ON(i915_request_signaled(rq)); 621 622 /* As soon as the request is completed, it may be retired */ 623 rq = i915_request_get(rq); 624 625 i915_request_set_error_once(rq, -EIO); 626 i915_request_mark_complete(rq); 627 628 return rq; 629 } 630 631 bool __i915_request_submit(struct i915_request *request) 632 { 633 struct intel_engine_cs *engine = request->engine; 634 bool result = false; 635 636 RQ_TRACE(request, "\n"); 637 638 GEM_BUG_ON(!irqs_disabled()); 639 lockdep_assert_held(&engine->active.lock); 640 641 /* 642 * With the advent of preempt-to-busy, we frequently encounter 643 * requests that we have unsubmitted from HW, but left running 644 * until the next ack and so have completed in the meantime. On 645 * resubmission of that completed request, we can skip 646 * updating the payload, and execlists can even skip submitting 647 * the request. 648 * 649 * We must remove the request from the caller's priority queue, 650 * and the caller must only call us when the request is in their 651 * priority queue, under the active.lock. This ensures that the 652 * request has *not* yet been retired and we can safely move 653 * the request into the engine->active.list where it will be 654 * dropped upon retiring. (Otherwise if resubmit a *retired* 655 * request, this would be a horrible use-after-free.) 656 */ 657 if (__i915_request_is_complete(request)) { 658 list_del_init(&request->sched.link); 659 goto active; 660 } 661 662 if (unlikely(intel_context_is_banned(request->context))) 663 i915_request_set_error_once(request, -EIO); 664 665 if (unlikely(fatal_error(request->fence.error))) 666 __i915_request_skip(request); 667 668 /* 669 * Are we using semaphores when the gpu is already saturated? 670 * 671 * Using semaphores incurs a cost in having the GPU poll a 672 * memory location, busywaiting for it to change. The continual 673 * memory reads can have a noticeable impact on the rest of the 674 * system with the extra bus traffic, stalling the cpu as it too 675 * tries to access memory across the bus (perf stat -e bus-cycles). 676 * 677 * If we installed a semaphore on this request and we only submit 678 * the request after the signaler completed, that indicates the 679 * system is overloaded and using semaphores at this time only 680 * increases the amount of work we are doing. If so, we disable 681 * further use of semaphores until we are idle again, whence we 682 * optimistically try again. 683 */ 684 if (request->sched.semaphores && 685 i915_sw_fence_signaled(&request->semaphore)) 686 engine->saturated |= request->sched.semaphores; 687 688 engine->emit_fini_breadcrumb(request, 689 request->ring->vaddr + request->postfix); 690 691 trace_i915_request_execute(request); 692 engine->serial++; 693 result = true; 694 695 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 696 list_move_tail(&request->sched.link, &engine->active.requests); 697 active: 698 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 699 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 700 701 /* 702 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 703 * 704 * In the future, perhaps when we have an active time-slicing scheduler, 705 * it will be interesting to unsubmit parallel execution and remove 706 * busywaits from the GPU until their master is restarted. This is 707 * quite hairy, we have to carefully rollback the fence and do a 708 * preempt-to-idle cycle on the target engine, all the while the 709 * master execute_cb may refire. 710 */ 711 __notify_execute_cb_irq(request); 712 713 /* We may be recursing from the signal callback of another i915 fence */ 714 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 715 i915_request_enable_breadcrumb(request); 716 717 return result; 718 } 719 720 void i915_request_submit(struct i915_request *request) 721 { 722 struct intel_engine_cs *engine = request->engine; 723 unsigned long flags; 724 725 /* Will be called from irq-context when using foreign fences. */ 726 spin_lock_irqsave(&engine->active.lock, flags); 727 728 __i915_request_submit(request); 729 730 spin_unlock_irqrestore(&engine->active.lock, flags); 731 } 732 733 void __i915_request_unsubmit(struct i915_request *request) 734 { 735 struct intel_engine_cs *engine = request->engine; 736 737 /* 738 * Only unwind in reverse order, required so that the per-context list 739 * is kept in seqno/ring order. 740 */ 741 RQ_TRACE(request, "\n"); 742 743 GEM_BUG_ON(!irqs_disabled()); 744 lockdep_assert_held(&engine->active.lock); 745 746 /* 747 * Before we remove this breadcrumb from the signal list, we have 748 * to ensure that a concurrent dma_fence_enable_signaling() does not 749 * attach itself. We first mark the request as no longer active and 750 * make sure that is visible to other cores, and then remove the 751 * breadcrumb if attached. 752 */ 753 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 754 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 755 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 756 i915_request_cancel_breadcrumb(request); 757 758 /* We've already spun, don't charge on resubmitting. */ 759 if (request->sched.semaphores && __i915_request_has_started(request)) 760 request->sched.semaphores = 0; 761 762 /* 763 * We don't need to wake_up any waiters on request->execute, they 764 * will get woken by any other event or us re-adding this request 765 * to the engine timeline (__i915_request_submit()). The waiters 766 * should be quite adapt at finding that the request now has a new 767 * global_seqno to the one they went to sleep on. 768 */ 769 } 770 771 void i915_request_unsubmit(struct i915_request *request) 772 { 773 struct intel_engine_cs *engine = request->engine; 774 unsigned long flags; 775 776 /* Will be called from irq-context when using foreign fences. */ 777 spin_lock_irqsave(&engine->active.lock, flags); 778 779 __i915_request_unsubmit(request); 780 781 spin_unlock_irqrestore(&engine->active.lock, flags); 782 } 783 784 static void __cancel_request(struct i915_request *rq) 785 { 786 struct intel_engine_cs *engine = NULL; 787 788 i915_request_active_engine(rq, &engine); 789 790 if (engine && intel_engine_pulse(engine)) 791 intel_gt_handle_error(engine->gt, engine->mask, 0, 792 "request cancellation by %s", 793 current->comm); 794 } 795 796 void i915_request_cancel(struct i915_request *rq, int error) 797 { 798 if (!i915_request_set_error_once(rq, error)) 799 return; 800 801 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 802 803 __cancel_request(rq); 804 } 805 806 static int __i915_sw_fence_call 807 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 808 { 809 struct i915_request *request = 810 container_of(fence, typeof(*request), submit); 811 812 switch (state) { 813 case FENCE_COMPLETE: 814 trace_i915_request_submit(request); 815 816 if (unlikely(fence->error)) 817 i915_request_set_error_once(request, fence->error); 818 else 819 __rq_arm_watchdog(request); 820 821 /* 822 * We need to serialize use of the submit_request() callback 823 * with its hotplugging performed during an emergency 824 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 825 * critical section in order to force i915_gem_set_wedged() to 826 * wait until the submit_request() is completed before 827 * proceeding. 828 */ 829 rcu_read_lock(); 830 request->engine->submit_request(request); 831 rcu_read_unlock(); 832 break; 833 834 case FENCE_FREE: 835 i915_request_put(request); 836 break; 837 } 838 839 return NOTIFY_DONE; 840 } 841 842 static int __i915_sw_fence_call 843 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 844 { 845 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 846 847 switch (state) { 848 case FENCE_COMPLETE: 849 break; 850 851 case FENCE_FREE: 852 i915_request_put(rq); 853 break; 854 } 855 856 return NOTIFY_DONE; 857 } 858 859 static void retire_requests(struct intel_timeline *tl) 860 { 861 struct i915_request *rq, *rn; 862 863 list_for_each_entry_safe(rq, rn, &tl->requests, link) 864 if (!i915_request_retire(rq)) 865 break; 866 } 867 868 static noinline struct i915_request * 869 request_alloc_slow(struct intel_timeline *tl, 870 struct i915_request **rsvd, 871 gfp_t gfp) 872 { 873 struct i915_request *rq; 874 875 /* If we cannot wait, dip into our reserves */ 876 if (!gfpflags_allow_blocking(gfp)) { 877 rq = xchg(rsvd, NULL); 878 if (!rq) /* Use the normal failure path for one final WARN */ 879 goto out; 880 881 return rq; 882 } 883 884 if (list_empty(&tl->requests)) 885 goto out; 886 887 /* Move our oldest request to the slab-cache (if not in use!) */ 888 rq = list_first_entry(&tl->requests, typeof(*rq), link); 889 i915_request_retire(rq); 890 891 rq = kmem_cache_alloc(global.slab_requests, 892 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 893 if (rq) 894 return rq; 895 896 /* Ratelimit ourselves to prevent oom from malicious clients */ 897 rq = list_last_entry(&tl->requests, typeof(*rq), link); 898 cond_synchronize_rcu(rq->rcustate); 899 900 /* Retire our old requests in the hope that we free some */ 901 retire_requests(tl); 902 903 out: 904 return kmem_cache_alloc(global.slab_requests, gfp); 905 } 906 907 static void __i915_request_ctor(void *arg) 908 { 909 struct i915_request *rq = arg; 910 911 spin_lock_init(&rq->lock); 912 i915_sched_node_init(&rq->sched); 913 i915_sw_fence_init(&rq->submit, submit_notify); 914 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 915 916 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 917 918 rq->capture_list = NULL; 919 920 init_llist_head(&rq->execute_cb); 921 } 922 923 struct i915_request * 924 __i915_request_create(struct intel_context *ce, gfp_t gfp) 925 { 926 struct intel_timeline *tl = ce->timeline; 927 struct i915_request *rq; 928 u32 seqno; 929 int ret; 930 931 might_sleep_if(gfpflags_allow_blocking(gfp)); 932 933 /* Check that the caller provided an already pinned context */ 934 __intel_context_pin(ce); 935 936 /* 937 * Beware: Dragons be flying overhead. 938 * 939 * We use RCU to look up requests in flight. The lookups may 940 * race with the request being allocated from the slab freelist. 941 * That is the request we are writing to here, may be in the process 942 * of being read by __i915_active_request_get_rcu(). As such, 943 * we have to be very careful when overwriting the contents. During 944 * the RCU lookup, we change chase the request->engine pointer, 945 * read the request->global_seqno and increment the reference count. 946 * 947 * The reference count is incremented atomically. If it is zero, 948 * the lookup knows the request is unallocated and complete. Otherwise, 949 * it is either still in use, or has been reallocated and reset 950 * with dma_fence_init(). This increment is safe for release as we 951 * check that the request we have a reference to and matches the active 952 * request. 953 * 954 * Before we increment the refcount, we chase the request->engine 955 * pointer. We must not call kmem_cache_zalloc() or else we set 956 * that pointer to NULL and cause a crash during the lookup. If 957 * we see the request is completed (based on the value of the 958 * old engine and seqno), the lookup is complete and reports NULL. 959 * If we decide the request is not completed (new engine or seqno), 960 * then we grab a reference and double check that it is still the 961 * active request - which it won't be and restart the lookup. 962 * 963 * Do not use kmem_cache_zalloc() here! 964 */ 965 rq = kmem_cache_alloc(global.slab_requests, 966 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 967 if (unlikely(!rq)) { 968 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 969 if (!rq) { 970 ret = -ENOMEM; 971 goto err_unreserve; 972 } 973 } 974 975 rq->context = ce; 976 rq->engine = ce->engine; 977 rq->ring = ce->ring; 978 rq->execution_mask = ce->engine->mask; 979 980 kref_init(&rq->fence.refcount); 981 rq->fence.flags = 0; 982 rq->fence.error = 0; 983 INIT_LIST_HEAD(&rq->fence.cb_list); 984 985 ret = intel_timeline_get_seqno(tl, rq, &seqno); 986 if (ret) 987 goto err_free; 988 989 rq->fence.context = tl->fence_context; 990 rq->fence.seqno = seqno; 991 992 RCU_INIT_POINTER(rq->timeline, tl); 993 rq->hwsp_seqno = tl->hwsp_seqno; 994 GEM_BUG_ON(__i915_request_is_complete(rq)); 995 996 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 997 998 /* We bump the ref for the fence chain */ 999 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 1000 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 1001 1002 i915_sched_node_reinit(&rq->sched); 1003 1004 /* No zalloc, everything must be cleared after use */ 1005 rq->batch = NULL; 1006 __rq_init_watchdog(rq); 1007 GEM_BUG_ON(rq->capture_list); 1008 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 1009 1010 /* 1011 * Reserve space in the ring buffer for all the commands required to 1012 * eventually emit this request. This is to guarantee that the 1013 * i915_request_add() call can't fail. Note that the reserve may need 1014 * to be redone if the request is not actually submitted straight 1015 * away, e.g. because a GPU scheduler has deferred it. 1016 * 1017 * Note that due to how we add reserved_space to intel_ring_begin() 1018 * we need to double our request to ensure that if we need to wrap 1019 * around inside i915_request_add() there is sufficient space at 1020 * the beginning of the ring as well. 1021 */ 1022 rq->reserved_space = 1023 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 1024 1025 /* 1026 * Record the position of the start of the request so that 1027 * should we detect the updated seqno part-way through the 1028 * GPU processing the request, we never over-estimate the 1029 * position of the head. 1030 */ 1031 rq->head = rq->ring->emit; 1032 1033 ret = rq->engine->request_alloc(rq); 1034 if (ret) 1035 goto err_unwind; 1036 1037 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1038 1039 intel_context_mark_active(ce); 1040 list_add_tail_rcu(&rq->link, &tl->requests); 1041 1042 return rq; 1043 1044 err_unwind: 1045 ce->ring->emit = rq->head; 1046 1047 /* Make sure we didn't add ourselves to external state before freeing */ 1048 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1049 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1050 1051 err_free: 1052 kmem_cache_free(global.slab_requests, rq); 1053 err_unreserve: 1054 intel_context_unpin(ce); 1055 return ERR_PTR(ret); 1056 } 1057 1058 struct i915_request * 1059 i915_request_create(struct intel_context *ce) 1060 { 1061 struct i915_request *rq; 1062 struct intel_timeline *tl; 1063 1064 tl = intel_context_timeline_lock(ce); 1065 if (IS_ERR(tl)) 1066 return ERR_CAST(tl); 1067 1068 /* Move our oldest request to the slab-cache (if not in use!) */ 1069 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1070 if (!list_is_last(&rq->link, &tl->requests)) 1071 i915_request_retire(rq); 1072 1073 intel_context_enter(ce); 1074 rq = __i915_request_create(ce, GFP_KERNEL); 1075 intel_context_exit(ce); /* active reference transferred to request */ 1076 if (IS_ERR(rq)) 1077 goto err_unlock; 1078 1079 /* Check that we do not interrupt ourselves with a new request */ 1080 rq->cookie = lockdep_pin_lock(&tl->mutex); 1081 1082 return rq; 1083 1084 err_unlock: 1085 intel_context_timeline_unlock(tl); 1086 return rq; 1087 } 1088 1089 static int 1090 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1091 { 1092 struct dma_fence *fence; 1093 int err; 1094 1095 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1096 return 0; 1097 1098 if (i915_request_started(signal)) 1099 return 0; 1100 1101 /* 1102 * The caller holds a reference on @signal, but we do not serialise 1103 * against it being retired and removed from the lists. 1104 * 1105 * We do not hold a reference to the request before @signal, and 1106 * so must be very careful to ensure that it is not _recycled_ as 1107 * we follow the link backwards. 1108 */ 1109 fence = NULL; 1110 rcu_read_lock(); 1111 do { 1112 struct list_head *pos = READ_ONCE(signal->link.prev); 1113 struct i915_request *prev; 1114 1115 /* Confirm signal has not been retired, the link is valid */ 1116 if (unlikely(__i915_request_has_started(signal))) 1117 break; 1118 1119 /* Is signal the earliest request on its timeline? */ 1120 if (pos == &rcu_dereference(signal->timeline)->requests) 1121 break; 1122 1123 /* 1124 * Peek at the request before us in the timeline. That 1125 * request will only be valid before it is retired, so 1126 * after acquiring a reference to it, confirm that it is 1127 * still part of the signaler's timeline. 1128 */ 1129 prev = list_entry(pos, typeof(*prev), link); 1130 if (!i915_request_get_rcu(prev)) 1131 break; 1132 1133 /* After the strong barrier, confirm prev is still attached */ 1134 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1135 i915_request_put(prev); 1136 break; 1137 } 1138 1139 fence = &prev->fence; 1140 } while (0); 1141 rcu_read_unlock(); 1142 if (!fence) 1143 return 0; 1144 1145 err = 0; 1146 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1147 err = i915_sw_fence_await_dma_fence(&rq->submit, 1148 fence, 0, 1149 I915_FENCE_GFP); 1150 dma_fence_put(fence); 1151 1152 return err; 1153 } 1154 1155 static intel_engine_mask_t 1156 already_busywaiting(struct i915_request *rq) 1157 { 1158 /* 1159 * Polling a semaphore causes bus traffic, delaying other users of 1160 * both the GPU and CPU. We want to limit the impact on others, 1161 * while taking advantage of early submission to reduce GPU 1162 * latency. Therefore we restrict ourselves to not using more 1163 * than one semaphore from each source, and not using a semaphore 1164 * if we have detected the engine is saturated (i.e. would not be 1165 * submitted early and cause bus traffic reading an already passed 1166 * semaphore). 1167 * 1168 * See the are-we-too-late? check in __i915_request_submit(). 1169 */ 1170 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1171 } 1172 1173 static int 1174 __emit_semaphore_wait(struct i915_request *to, 1175 struct i915_request *from, 1176 u32 seqno) 1177 { 1178 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1179 u32 hwsp_offset; 1180 int len, err; 1181 u32 *cs; 1182 1183 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1184 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1185 1186 /* We need to pin the signaler's HWSP until we are finished reading. */ 1187 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1188 if (err) 1189 return err; 1190 1191 len = 4; 1192 if (has_token) 1193 len += 2; 1194 1195 cs = intel_ring_begin(to, len); 1196 if (IS_ERR(cs)) 1197 return PTR_ERR(cs); 1198 1199 /* 1200 * Using greater-than-or-equal here means we have to worry 1201 * about seqno wraparound. To side step that issue, we swap 1202 * the timeline HWSP upon wrapping, so that everyone listening 1203 * for the old (pre-wrap) values do not see the much smaller 1204 * (post-wrap) values than they were expecting (and so wait 1205 * forever). 1206 */ 1207 *cs++ = (MI_SEMAPHORE_WAIT | 1208 MI_SEMAPHORE_GLOBAL_GTT | 1209 MI_SEMAPHORE_POLL | 1210 MI_SEMAPHORE_SAD_GTE_SDD) + 1211 has_token; 1212 *cs++ = seqno; 1213 *cs++ = hwsp_offset; 1214 *cs++ = 0; 1215 if (has_token) { 1216 *cs++ = 0; 1217 *cs++ = MI_NOOP; 1218 } 1219 1220 intel_ring_advance(to, cs); 1221 return 0; 1222 } 1223 1224 static int 1225 emit_semaphore_wait(struct i915_request *to, 1226 struct i915_request *from, 1227 gfp_t gfp) 1228 { 1229 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1230 struct i915_sw_fence *wait = &to->submit; 1231 1232 if (!intel_context_use_semaphores(to->context)) 1233 goto await_fence; 1234 1235 if (i915_request_has_initial_breadcrumb(to)) 1236 goto await_fence; 1237 1238 /* 1239 * If this or its dependents are waiting on an external fence 1240 * that may fail catastrophically, then we want to avoid using 1241 * sempahores as they bypass the fence signaling metadata, and we 1242 * lose the fence->error propagation. 1243 */ 1244 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1245 goto await_fence; 1246 1247 /* Just emit the first semaphore we see as request space is limited. */ 1248 if (already_busywaiting(to) & mask) 1249 goto await_fence; 1250 1251 if (i915_request_await_start(to, from) < 0) 1252 goto await_fence; 1253 1254 /* Only submit our spinner after the signaler is running! */ 1255 if (__await_execution(to, from, NULL, gfp)) 1256 goto await_fence; 1257 1258 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1259 goto await_fence; 1260 1261 to->sched.semaphores |= mask; 1262 wait = &to->semaphore; 1263 1264 await_fence: 1265 return i915_sw_fence_await_dma_fence(wait, 1266 &from->fence, 0, 1267 I915_FENCE_GFP); 1268 } 1269 1270 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1271 struct dma_fence *fence) 1272 { 1273 return __intel_timeline_sync_is_later(tl, 1274 fence->context, 1275 fence->seqno - 1); 1276 } 1277 1278 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1279 const struct dma_fence *fence) 1280 { 1281 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1282 } 1283 1284 static int 1285 __i915_request_await_execution(struct i915_request *to, 1286 struct i915_request *from, 1287 void (*hook)(struct i915_request *rq, 1288 struct dma_fence *signal)) 1289 { 1290 int err; 1291 1292 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1293 1294 /* Submit both requests at the same time */ 1295 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1296 if (err) 1297 return err; 1298 1299 /* Squash repeated depenendices to the same timelines */ 1300 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1301 &from->fence)) 1302 return 0; 1303 1304 /* 1305 * Wait until the start of this request. 1306 * 1307 * The execution cb fires when we submit the request to HW. But in 1308 * many cases this may be long before the request itself is ready to 1309 * run (consider that we submit 2 requests for the same context, where 1310 * the request of interest is behind an indefinite spinner). So we hook 1311 * up to both to reduce our queues and keep the execution lag minimised 1312 * in the worst case, though we hope that the await_start is elided. 1313 */ 1314 err = i915_request_await_start(to, from); 1315 if (err < 0) 1316 return err; 1317 1318 /* 1319 * Ensure both start together [after all semaphores in signal] 1320 * 1321 * Now that we are queued to the HW at roughly the same time (thanks 1322 * to the execute cb) and are ready to run at roughly the same time 1323 * (thanks to the await start), our signaler may still be indefinitely 1324 * delayed by waiting on a semaphore from a remote engine. If our 1325 * signaler depends on a semaphore, so indirectly do we, and we do not 1326 * want to start our payload until our signaler also starts theirs. 1327 * So we wait. 1328 * 1329 * However, there is also a second condition for which we need to wait 1330 * for the precise start of the signaler. Consider that the signaler 1331 * was submitted in a chain of requests following another context 1332 * (with just an ordinary intra-engine fence dependency between the 1333 * two). In this case the signaler is queued to HW, but not for 1334 * immediate execution, and so we must wait until it reaches the 1335 * active slot. 1336 */ 1337 if (intel_engine_has_semaphores(to->engine) && 1338 !i915_request_has_initial_breadcrumb(to)) { 1339 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1340 if (err < 0) 1341 return err; 1342 } 1343 1344 /* Couple the dependency tree for PI on this exposed to->fence */ 1345 if (to->engine->schedule) { 1346 err = i915_sched_node_add_dependency(&to->sched, 1347 &from->sched, 1348 I915_DEPENDENCY_WEAK); 1349 if (err < 0) 1350 return err; 1351 } 1352 1353 return intel_timeline_sync_set_start(i915_request_timeline(to), 1354 &from->fence); 1355 } 1356 1357 static void mark_external(struct i915_request *rq) 1358 { 1359 /* 1360 * The downside of using semaphores is that we lose metadata passing 1361 * along the signaling chain. This is particularly nasty when we 1362 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1363 * fatal errors we want to scrub the request before it is executed, 1364 * which means that we cannot preload the request onto HW and have 1365 * it wait upon a semaphore. 1366 */ 1367 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1368 } 1369 1370 static int 1371 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1372 { 1373 mark_external(rq); 1374 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1375 i915_fence_context_timeout(rq->engine->i915, 1376 fence->context), 1377 I915_FENCE_GFP); 1378 } 1379 1380 static int 1381 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1382 { 1383 struct dma_fence *iter; 1384 int err = 0; 1385 1386 if (!to_dma_fence_chain(fence)) 1387 return __i915_request_await_external(rq, fence); 1388 1389 dma_fence_chain_for_each(iter, fence) { 1390 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1391 1392 if (!dma_fence_is_i915(chain->fence)) { 1393 err = __i915_request_await_external(rq, iter); 1394 break; 1395 } 1396 1397 err = i915_request_await_dma_fence(rq, chain->fence); 1398 if (err < 0) 1399 break; 1400 } 1401 1402 dma_fence_put(iter); 1403 return err; 1404 } 1405 1406 int 1407 i915_request_await_execution(struct i915_request *rq, 1408 struct dma_fence *fence, 1409 void (*hook)(struct i915_request *rq, 1410 struct dma_fence *signal)) 1411 { 1412 struct dma_fence **child = &fence; 1413 unsigned int nchild = 1; 1414 int ret; 1415 1416 if (dma_fence_is_array(fence)) { 1417 struct dma_fence_array *array = to_dma_fence_array(fence); 1418 1419 /* XXX Error for signal-on-any fence arrays */ 1420 1421 child = array->fences; 1422 nchild = array->num_fences; 1423 GEM_BUG_ON(!nchild); 1424 } 1425 1426 do { 1427 fence = *child++; 1428 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1429 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1430 continue; 1431 } 1432 1433 if (fence->context == rq->fence.context) 1434 continue; 1435 1436 /* 1437 * We don't squash repeated fence dependencies here as we 1438 * want to run our callback in all cases. 1439 */ 1440 1441 if (dma_fence_is_i915(fence)) 1442 ret = __i915_request_await_execution(rq, 1443 to_request(fence), 1444 hook); 1445 else 1446 ret = i915_request_await_external(rq, fence); 1447 if (ret < 0) 1448 return ret; 1449 } while (--nchild); 1450 1451 return 0; 1452 } 1453 1454 static int 1455 await_request_submit(struct i915_request *to, struct i915_request *from) 1456 { 1457 /* 1458 * If we are waiting on a virtual engine, then it may be 1459 * constrained to execute on a single engine *prior* to submission. 1460 * When it is submitted, it will be first submitted to the virtual 1461 * engine and then passed to the physical engine. We cannot allow 1462 * the waiter to be submitted immediately to the physical engine 1463 * as it may then bypass the virtual request. 1464 */ 1465 if (to->engine == READ_ONCE(from->engine)) 1466 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1467 &from->submit, 1468 I915_FENCE_GFP); 1469 else 1470 return __i915_request_await_execution(to, from, NULL); 1471 } 1472 1473 static int 1474 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1475 { 1476 int ret; 1477 1478 GEM_BUG_ON(to == from); 1479 GEM_BUG_ON(to->timeline == from->timeline); 1480 1481 if (i915_request_completed(from)) { 1482 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1483 return 0; 1484 } 1485 1486 if (to->engine->schedule) { 1487 ret = i915_sched_node_add_dependency(&to->sched, 1488 &from->sched, 1489 I915_DEPENDENCY_EXTERNAL); 1490 if (ret < 0) 1491 return ret; 1492 } 1493 1494 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1495 ret = await_request_submit(to, from); 1496 else 1497 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1498 if (ret < 0) 1499 return ret; 1500 1501 return 0; 1502 } 1503 1504 int 1505 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1506 { 1507 struct dma_fence **child = &fence; 1508 unsigned int nchild = 1; 1509 int ret; 1510 1511 /* 1512 * Note that if the fence-array was created in signal-on-any mode, 1513 * we should *not* decompose it into its individual fences. However, 1514 * we don't currently store which mode the fence-array is operating 1515 * in. Fortunately, the only user of signal-on-any is private to 1516 * amdgpu and we should not see any incoming fence-array from 1517 * sync-file being in signal-on-any mode. 1518 */ 1519 if (dma_fence_is_array(fence)) { 1520 struct dma_fence_array *array = to_dma_fence_array(fence); 1521 1522 child = array->fences; 1523 nchild = array->num_fences; 1524 GEM_BUG_ON(!nchild); 1525 } 1526 1527 do { 1528 fence = *child++; 1529 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1530 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1531 continue; 1532 } 1533 1534 /* 1535 * Requests on the same timeline are explicitly ordered, along 1536 * with their dependencies, by i915_request_add() which ensures 1537 * that requests are submitted in-order through each ring. 1538 */ 1539 if (fence->context == rq->fence.context) 1540 continue; 1541 1542 /* Squash repeated waits to the same timelines */ 1543 if (fence->context && 1544 intel_timeline_sync_is_later(i915_request_timeline(rq), 1545 fence)) 1546 continue; 1547 1548 if (dma_fence_is_i915(fence)) 1549 ret = i915_request_await_request(rq, to_request(fence)); 1550 else 1551 ret = i915_request_await_external(rq, fence); 1552 if (ret < 0) 1553 return ret; 1554 1555 /* Record the latest fence used against each timeline */ 1556 if (fence->context) 1557 intel_timeline_sync_set(i915_request_timeline(rq), 1558 fence); 1559 } while (--nchild); 1560 1561 return 0; 1562 } 1563 1564 /** 1565 * i915_request_await_object - set this request to (async) wait upon a bo 1566 * @to: request we are wishing to use 1567 * @obj: object which may be in use on another ring. 1568 * @write: whether the wait is on behalf of a writer 1569 * 1570 * This code is meant to abstract object synchronization with the GPU. 1571 * Conceptually we serialise writes between engines inside the GPU. 1572 * We only allow one engine to write into a buffer at any time, but 1573 * multiple readers. To ensure each has a coherent view of memory, we must: 1574 * 1575 * - If there is an outstanding write request to the object, the new 1576 * request must wait for it to complete (either CPU or in hw, requests 1577 * on the same ring will be naturally ordered). 1578 * 1579 * - If we are a write request (pending_write_domain is set), the new 1580 * request must wait for outstanding read requests to complete. 1581 * 1582 * Returns 0 if successful, else propagates up the lower layer error. 1583 */ 1584 int 1585 i915_request_await_object(struct i915_request *to, 1586 struct drm_i915_gem_object *obj, 1587 bool write) 1588 { 1589 struct dma_fence *excl; 1590 int ret = 0; 1591 1592 if (write) { 1593 struct dma_fence **shared; 1594 unsigned int count, i; 1595 1596 ret = dma_resv_get_fences_rcu(obj->base.resv, 1597 &excl, &count, &shared); 1598 if (ret) 1599 return ret; 1600 1601 for (i = 0; i < count; i++) { 1602 ret = i915_request_await_dma_fence(to, shared[i]); 1603 if (ret) 1604 break; 1605 1606 dma_fence_put(shared[i]); 1607 } 1608 1609 for (; i < count; i++) 1610 dma_fence_put(shared[i]); 1611 kfree(shared); 1612 } else { 1613 excl = dma_resv_get_excl_rcu(obj->base.resv); 1614 } 1615 1616 if (excl) { 1617 if (ret == 0) 1618 ret = i915_request_await_dma_fence(to, excl); 1619 1620 dma_fence_put(excl); 1621 } 1622 1623 return ret; 1624 } 1625 1626 static struct i915_request * 1627 __i915_request_add_to_timeline(struct i915_request *rq) 1628 { 1629 struct intel_timeline *timeline = i915_request_timeline(rq); 1630 struct i915_request *prev; 1631 1632 /* 1633 * Dependency tracking and request ordering along the timeline 1634 * is special cased so that we can eliminate redundant ordering 1635 * operations while building the request (we know that the timeline 1636 * itself is ordered, and here we guarantee it). 1637 * 1638 * As we know we will need to emit tracking along the timeline, 1639 * we embed the hooks into our request struct -- at the cost of 1640 * having to have specialised no-allocation interfaces (which will 1641 * be beneficial elsewhere). 1642 * 1643 * A second benefit to open-coding i915_request_await_request is 1644 * that we can apply a slight variant of the rules specialised 1645 * for timelines that jump between engines (such as virtual engines). 1646 * If we consider the case of virtual engine, we must emit a dma-fence 1647 * to prevent scheduling of the second request until the first is 1648 * complete (to maximise our greedy late load balancing) and this 1649 * precludes optimising to use semaphores serialisation of a single 1650 * timeline across engines. 1651 */ 1652 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1653 &rq->fence)); 1654 if (prev && !__i915_request_is_complete(prev)) { 1655 /* 1656 * The requests are supposed to be kept in order. However, 1657 * we need to be wary in case the timeline->last_request 1658 * is used as a barrier for external modification to this 1659 * context. 1660 */ 1661 GEM_BUG_ON(prev->context == rq->context && 1662 i915_seqno_passed(prev->fence.seqno, 1663 rq->fence.seqno)); 1664 1665 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1666 i915_sw_fence_await_sw_fence(&rq->submit, 1667 &prev->submit, 1668 &rq->submitq); 1669 else 1670 __i915_sw_fence_await_dma_fence(&rq->submit, 1671 &prev->fence, 1672 &rq->dmaq); 1673 if (rq->engine->schedule) 1674 __i915_sched_node_add_dependency(&rq->sched, 1675 &prev->sched, 1676 &rq->dep, 1677 0); 1678 } 1679 1680 /* 1681 * Make sure that no request gazumped us - if it was allocated after 1682 * our i915_request_alloc() and called __i915_request_add() before 1683 * us, the timeline will hold its seqno which is later than ours. 1684 */ 1685 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1686 1687 return prev; 1688 } 1689 1690 /* 1691 * NB: This function is not allowed to fail. Doing so would mean the the 1692 * request is not being tracked for completion but the work itself is 1693 * going to happen on the hardware. This would be a Bad Thing(tm). 1694 */ 1695 struct i915_request *__i915_request_commit(struct i915_request *rq) 1696 { 1697 struct intel_engine_cs *engine = rq->engine; 1698 struct intel_ring *ring = rq->ring; 1699 u32 *cs; 1700 1701 RQ_TRACE(rq, "\n"); 1702 1703 /* 1704 * To ensure that this call will not fail, space for its emissions 1705 * should already have been reserved in the ring buffer. Let the ring 1706 * know that it is time to use that space up. 1707 */ 1708 GEM_BUG_ON(rq->reserved_space > ring->space); 1709 rq->reserved_space = 0; 1710 rq->emitted_jiffies = jiffies; 1711 1712 /* 1713 * Record the position of the start of the breadcrumb so that 1714 * should we detect the updated seqno part-way through the 1715 * GPU processing the request, we never over-estimate the 1716 * position of the ring's HEAD. 1717 */ 1718 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1719 GEM_BUG_ON(IS_ERR(cs)); 1720 rq->postfix = intel_ring_offset(rq, cs); 1721 1722 return __i915_request_add_to_timeline(rq); 1723 } 1724 1725 void __i915_request_queue_bh(struct i915_request *rq) 1726 { 1727 i915_sw_fence_commit(&rq->semaphore); 1728 i915_sw_fence_commit(&rq->submit); 1729 } 1730 1731 void __i915_request_queue(struct i915_request *rq, 1732 const struct i915_sched_attr *attr) 1733 { 1734 /* 1735 * Let the backend know a new request has arrived that may need 1736 * to adjust the existing execution schedule due to a high priority 1737 * request - i.e. we may want to preempt the current request in order 1738 * to run a high priority dependency chain *before* we can execute this 1739 * request. 1740 * 1741 * This is called before the request is ready to run so that we can 1742 * decide whether to preempt the entire chain so that it is ready to 1743 * run at the earliest possible convenience. 1744 */ 1745 if (attr && rq->engine->schedule) 1746 rq->engine->schedule(rq, attr); 1747 1748 local_bh_disable(); 1749 __i915_request_queue_bh(rq); 1750 local_bh_enable(); /* kick tasklets */ 1751 } 1752 1753 void i915_request_add(struct i915_request *rq) 1754 { 1755 struct intel_timeline * const tl = i915_request_timeline(rq); 1756 struct i915_sched_attr attr = {}; 1757 struct i915_gem_context *ctx; 1758 1759 lockdep_assert_held(&tl->mutex); 1760 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1761 1762 trace_i915_request_add(rq); 1763 __i915_request_commit(rq); 1764 1765 /* XXX placeholder for selftests */ 1766 rcu_read_lock(); 1767 ctx = rcu_dereference(rq->context->gem_context); 1768 if (ctx) 1769 attr = ctx->sched; 1770 rcu_read_unlock(); 1771 1772 __i915_request_queue(rq, &attr); 1773 1774 mutex_unlock(&tl->mutex); 1775 } 1776 1777 static unsigned long local_clock_ns(unsigned int *cpu) 1778 { 1779 unsigned long t; 1780 1781 /* 1782 * Cheaply and approximately convert from nanoseconds to microseconds. 1783 * The result and subsequent calculations are also defined in the same 1784 * approximate microseconds units. The principal source of timing 1785 * error here is from the simple truncation. 1786 * 1787 * Note that local_clock() is only defined wrt to the current CPU; 1788 * the comparisons are no longer valid if we switch CPUs. Instead of 1789 * blocking preemption for the entire busywait, we can detect the CPU 1790 * switch and use that as indicator of system load and a reason to 1791 * stop busywaiting, see busywait_stop(). 1792 */ 1793 *cpu = get_cpu(); 1794 t = local_clock(); 1795 put_cpu(); 1796 1797 return t; 1798 } 1799 1800 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1801 { 1802 unsigned int this_cpu; 1803 1804 if (time_after(local_clock_ns(&this_cpu), timeout)) 1805 return true; 1806 1807 return this_cpu != cpu; 1808 } 1809 1810 static bool __i915_spin_request(struct i915_request * const rq, int state) 1811 { 1812 unsigned long timeout_ns; 1813 unsigned int cpu; 1814 1815 /* 1816 * Only wait for the request if we know it is likely to complete. 1817 * 1818 * We don't track the timestamps around requests, nor the average 1819 * request length, so we do not have a good indicator that this 1820 * request will complete within the timeout. What we do know is the 1821 * order in which requests are executed by the context and so we can 1822 * tell if the request has been started. If the request is not even 1823 * running yet, it is a fair assumption that it will not complete 1824 * within our relatively short timeout. 1825 */ 1826 if (!i915_request_is_running(rq)) 1827 return false; 1828 1829 /* 1830 * When waiting for high frequency requests, e.g. during synchronous 1831 * rendering split between the CPU and GPU, the finite amount of time 1832 * required to set up the irq and wait upon it limits the response 1833 * rate. By busywaiting on the request completion for a short while we 1834 * can service the high frequency waits as quick as possible. However, 1835 * if it is a slow request, we want to sleep as quickly as possible. 1836 * The tradeoff between waiting and sleeping is roughly the time it 1837 * takes to sleep on a request, on the order of a microsecond. 1838 */ 1839 1840 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1841 timeout_ns += local_clock_ns(&cpu); 1842 do { 1843 if (dma_fence_is_signaled(&rq->fence)) 1844 return true; 1845 1846 if (signal_pending_state(state, current)) 1847 break; 1848 1849 if (busywait_stop(timeout_ns, cpu)) 1850 break; 1851 1852 cpu_relax(); 1853 } while (!need_resched()); 1854 1855 return false; 1856 } 1857 1858 struct request_wait { 1859 struct dma_fence_cb cb; 1860 struct task_struct *tsk; 1861 }; 1862 1863 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1864 { 1865 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1866 1867 wake_up_process(fetch_and_zero(&wait->tsk)); 1868 } 1869 1870 /** 1871 * i915_request_wait - wait until execution of request has finished 1872 * @rq: the request to wait upon 1873 * @flags: how to wait 1874 * @timeout: how long to wait in jiffies 1875 * 1876 * i915_request_wait() waits for the request to be completed, for a 1877 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1878 * unbounded wait). 1879 * 1880 * Returns the remaining time (in jiffies) if the request completed, which may 1881 * be zero or -ETIME if the request is unfinished after the timeout expires. 1882 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1883 * pending before the request completes. 1884 */ 1885 long i915_request_wait(struct i915_request *rq, 1886 unsigned int flags, 1887 long timeout) 1888 { 1889 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1890 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1891 struct request_wait wait; 1892 1893 might_sleep(); 1894 GEM_BUG_ON(timeout < 0); 1895 1896 if (dma_fence_is_signaled(&rq->fence)) 1897 return timeout; 1898 1899 if (!timeout) 1900 return -ETIME; 1901 1902 trace_i915_request_wait_begin(rq, flags); 1903 1904 /* 1905 * We must never wait on the GPU while holding a lock as we 1906 * may need to perform a GPU reset. So while we don't need to 1907 * serialise wait/reset with an explicit lock, we do want 1908 * lockdep to detect potential dependency cycles. 1909 */ 1910 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1911 1912 /* 1913 * Optimistic spin before touching IRQs. 1914 * 1915 * We may use a rather large value here to offset the penalty of 1916 * switching away from the active task. Frequently, the client will 1917 * wait upon an old swapbuffer to throttle itself to remain within a 1918 * frame of the gpu. If the client is running in lockstep with the gpu, 1919 * then it should not be waiting long at all, and a sleep now will incur 1920 * extra scheduler latency in producing the next frame. To try to 1921 * avoid adding the cost of enabling/disabling the interrupt to the 1922 * short wait, we first spin to see if the request would have completed 1923 * in the time taken to setup the interrupt. 1924 * 1925 * We need upto 5us to enable the irq, and upto 20us to hide the 1926 * scheduler latency of a context switch, ignoring the secondary 1927 * impacts from a context switch such as cache eviction. 1928 * 1929 * The scheme used for low-latency IO is called "hybrid interrupt 1930 * polling". The suggestion there is to sleep until just before you 1931 * expect to be woken by the device interrupt and then poll for its 1932 * completion. That requires having a good predictor for the request 1933 * duration, which we currently lack. 1934 */ 1935 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1936 __i915_spin_request(rq, state)) 1937 goto out; 1938 1939 /* 1940 * This client is about to stall waiting for the GPU. In many cases 1941 * this is undesirable and limits the throughput of the system, as 1942 * many clients cannot continue processing user input/output whilst 1943 * blocked. RPS autotuning may take tens of milliseconds to respond 1944 * to the GPU load and thus incurs additional latency for the client. 1945 * We can circumvent that by promoting the GPU frequency to maximum 1946 * before we sleep. This makes the GPU throttle up much more quickly 1947 * (good for benchmarks and user experience, e.g. window animations), 1948 * but at a cost of spending more power processing the workload 1949 * (bad for battery). 1950 */ 1951 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1952 intel_rps_boost(rq); 1953 1954 wait.tsk = current; 1955 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1956 goto out; 1957 1958 /* 1959 * Flush the submission tasklet, but only if it may help this request. 1960 * 1961 * We sometimes experience some latency between the HW interrupts and 1962 * tasklet execution (mostly due to ksoftirqd latency, but it can also 1963 * be due to lazy CS events), so lets run the tasklet manually if there 1964 * is a chance it may submit this request. If the request is not ready 1965 * to run, as it is waiting for other fences to be signaled, flushing 1966 * the tasklet is busy work without any advantage for this client. 1967 * 1968 * If the HW is being lazy, this is the last chance before we go to 1969 * sleep to catch any pending events. We will check periodically in 1970 * the heartbeat to flush the submission tasklets as a last resort 1971 * for unhappy HW. 1972 */ 1973 if (i915_request_is_ready(rq)) 1974 __intel_engine_flush_submission(rq->engine, false); 1975 1976 for (;;) { 1977 set_current_state(state); 1978 1979 if (dma_fence_is_signaled(&rq->fence)) 1980 break; 1981 1982 if (signal_pending_state(state, current)) { 1983 timeout = -ERESTARTSYS; 1984 break; 1985 } 1986 1987 if (!timeout) { 1988 timeout = -ETIME; 1989 break; 1990 } 1991 1992 timeout = io_schedule_timeout(timeout); 1993 } 1994 __set_current_state(TASK_RUNNING); 1995 1996 if (READ_ONCE(wait.tsk)) 1997 dma_fence_remove_callback(&rq->fence, &wait.cb); 1998 GEM_BUG_ON(!list_empty(&wait.cb.node)); 1999 2000 out: 2001 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2002 trace_i915_request_wait_end(rq); 2003 return timeout; 2004 } 2005 2006 static int print_sched_attr(const struct i915_sched_attr *attr, 2007 char *buf, int x, int len) 2008 { 2009 if (attr->priority == I915_PRIORITY_INVALID) 2010 return x; 2011 2012 x += snprintf(buf + x, len - x, 2013 " prio=%d", attr->priority); 2014 2015 return x; 2016 } 2017 2018 static char queue_status(const struct i915_request *rq) 2019 { 2020 if (i915_request_is_active(rq)) 2021 return 'E'; 2022 2023 if (i915_request_is_ready(rq)) 2024 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2025 2026 return 'U'; 2027 } 2028 2029 static const char *run_status(const struct i915_request *rq) 2030 { 2031 if (__i915_request_is_complete(rq)) 2032 return "!"; 2033 2034 if (__i915_request_has_started(rq)) 2035 return "*"; 2036 2037 if (!i915_sw_fence_signaled(&rq->semaphore)) 2038 return "&"; 2039 2040 return ""; 2041 } 2042 2043 static const char *fence_status(const struct i915_request *rq) 2044 { 2045 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2046 return "+"; 2047 2048 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2049 return "-"; 2050 2051 return ""; 2052 } 2053 2054 void i915_request_show(struct drm_printer *m, 2055 const struct i915_request *rq, 2056 const char *prefix, 2057 int indent) 2058 { 2059 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2060 char buf[80] = ""; 2061 int x = 0; 2062 2063 /* 2064 * The prefix is used to show the queue status, for which we use 2065 * the following flags: 2066 * 2067 * U [Unready] 2068 * - initial status upon being submitted by the user 2069 * 2070 * - the request is not ready for execution as it is waiting 2071 * for external fences 2072 * 2073 * R [Ready] 2074 * - all fences the request was waiting on have been signaled, 2075 * and the request is now ready for execution and will be 2076 * in a backend queue 2077 * 2078 * - a ready request may still need to wait on semaphores 2079 * [internal fences] 2080 * 2081 * V [Ready/virtual] 2082 * - same as ready, but queued over multiple backends 2083 * 2084 * E [Executing] 2085 * - the request has been transferred from the backend queue and 2086 * submitted for execution on HW 2087 * 2088 * - a completed request may still be regarded as executing, its 2089 * status may not be updated until it is retired and removed 2090 * from the lists 2091 */ 2092 2093 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2094 2095 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2096 prefix, indent, " ", 2097 queue_status(rq), 2098 rq->fence.context, rq->fence.seqno, 2099 run_status(rq), 2100 fence_status(rq), 2101 buf, 2102 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2103 name); 2104 } 2105 2106 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2107 #include "selftests/mock_request.c" 2108 #include "selftests/i915_request.c" 2109 #endif 2110 2111 static void i915_global_request_shrink(void) 2112 { 2113 kmem_cache_shrink(global.slab_execute_cbs); 2114 kmem_cache_shrink(global.slab_requests); 2115 } 2116 2117 static void i915_global_request_exit(void) 2118 { 2119 kmem_cache_destroy(global.slab_execute_cbs); 2120 kmem_cache_destroy(global.slab_requests); 2121 } 2122 2123 static struct i915_global_request global = { { 2124 .shrink = i915_global_request_shrink, 2125 .exit = i915_global_request_exit, 2126 } }; 2127 2128 int __init i915_global_request_init(void) 2129 { 2130 global.slab_requests = 2131 kmem_cache_create("i915_request", 2132 sizeof(struct i915_request), 2133 __alignof__(struct i915_request), 2134 SLAB_HWCACHE_ALIGN | 2135 SLAB_RECLAIM_ACCOUNT | 2136 SLAB_TYPESAFE_BY_RCU, 2137 __i915_request_ctor); 2138 if (!global.slab_requests) 2139 return -ENOMEM; 2140 2141 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 2142 SLAB_HWCACHE_ALIGN | 2143 SLAB_RECLAIM_ACCOUNT | 2144 SLAB_TYPESAFE_BY_RCU); 2145 if (!global.slab_execute_cbs) 2146 goto err_requests; 2147 2148 i915_global_register(&global.base); 2149 return 0; 2150 2151 err_requests: 2152 kmem_cache_destroy(global.slab_requests); 2153 return -ENOMEM; 2154 } 2155