xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 9c39c6ffe0c2945c7cf814814c096bc23b63f53d)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_engine.h"
37 #include "gt/intel_engine_heartbeat.h"
38 #include "gt/intel_gpu_commands.h"
39 #include "gt/intel_reset.h"
40 #include "gt/intel_ring.h"
41 #include "gt/intel_rps.h"
42 
43 #include "i915_active.h"
44 #include "i915_drv.h"
45 #include "i915_globals.h"
46 #include "i915_trace.h"
47 #include "intel_pm.h"
48 
49 struct execute_cb {
50 	struct irq_work work;
51 	struct i915_sw_fence *fence;
52 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
53 	struct i915_request *signal;
54 };
55 
56 static struct i915_global_request {
57 	struct i915_global base;
58 	struct kmem_cache *slab_requests;
59 	struct kmem_cache *slab_execute_cbs;
60 } global;
61 
62 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
63 {
64 	return dev_name(to_request(fence)->engine->i915->drm.dev);
65 }
66 
67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
68 {
69 	const struct i915_gem_context *ctx;
70 
71 	/*
72 	 * The timeline struct (as part of the ppgtt underneath a context)
73 	 * may be freed when the request is no longer in use by the GPU.
74 	 * We could extend the life of a context to beyond that of all
75 	 * fences, possibly keeping the hw resource around indefinitely,
76 	 * or we just give them a false name. Since
77 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
78 	 * lie seems justifiable.
79 	 */
80 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
81 		return "signaled";
82 
83 	ctx = i915_request_gem_context(to_request(fence));
84 	if (!ctx)
85 		return "[" DRIVER_NAME "]";
86 
87 	return ctx->name;
88 }
89 
90 static bool i915_fence_signaled(struct dma_fence *fence)
91 {
92 	return i915_request_completed(to_request(fence));
93 }
94 
95 static bool i915_fence_enable_signaling(struct dma_fence *fence)
96 {
97 	return i915_request_enable_breadcrumb(to_request(fence));
98 }
99 
100 static signed long i915_fence_wait(struct dma_fence *fence,
101 				   bool interruptible,
102 				   signed long timeout)
103 {
104 	return i915_request_wait(to_request(fence),
105 				 interruptible | I915_WAIT_PRIORITY,
106 				 timeout);
107 }
108 
109 struct kmem_cache *i915_request_slab_cache(void)
110 {
111 	return global.slab_requests;
112 }
113 
114 static void i915_fence_release(struct dma_fence *fence)
115 {
116 	struct i915_request *rq = to_request(fence);
117 
118 	/*
119 	 * The request is put onto a RCU freelist (i.e. the address
120 	 * is immediately reused), mark the fences as being freed now.
121 	 * Otherwise the debugobjects for the fences are only marked as
122 	 * freed when the slab cache itself is freed, and so we would get
123 	 * caught trying to reuse dead objects.
124 	 */
125 	i915_sw_fence_fini(&rq->submit);
126 	i915_sw_fence_fini(&rq->semaphore);
127 
128 	/*
129 	 * Keep one request on each engine for reserved use under mempressure
130 	 *
131 	 * We do not hold a reference to the engine here and so have to be
132 	 * very careful in what rq->engine we poke. The virtual engine is
133 	 * referenced via the rq->context and we released that ref during
134 	 * i915_request_retire(), ergo we must not dereference a virtual
135 	 * engine here. Not that we would want to, as the only consumer of
136 	 * the reserved engine->request_pool is the power management parking,
137 	 * which must-not-fail, and that is only run on the physical engines.
138 	 *
139 	 * Since the request must have been executed to be have completed,
140 	 * we know that it will have been processed by the HW and will
141 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
142 	 * at this point is stable. rq->execution_mask will be a single
143 	 * bit if the last and _only_ engine it could execution on was a
144 	 * physical engine, if it's multiple bits then it started on and
145 	 * could still be on a virtual engine. Thus if the mask is not a
146 	 * power-of-two we assume that rq->engine may still be a virtual
147 	 * engine and so a dangling invalid pointer that we cannot dereference
148 	 *
149 	 * For example, consider the flow of a bonded request through a virtual
150 	 * engine. The request is created with a wide engine mask (all engines
151 	 * that we might execute on). On processing the bond, the request mask
152 	 * is reduced to one or more engines. If the request is subsequently
153 	 * bound to a single engine, it will then be constrained to only
154 	 * execute on that engine and never returned to the virtual engine
155 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
156 	 * know that if the rq->execution_mask is a single bit, rq->engine
157 	 * can be a physical engine with the exact corresponding mask.
158 	 */
159 	if (is_power_of_2(rq->execution_mask) &&
160 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
161 		return;
162 
163 	kmem_cache_free(global.slab_requests, rq);
164 }
165 
166 const struct dma_fence_ops i915_fence_ops = {
167 	.get_driver_name = i915_fence_get_driver_name,
168 	.get_timeline_name = i915_fence_get_timeline_name,
169 	.enable_signaling = i915_fence_enable_signaling,
170 	.signaled = i915_fence_signaled,
171 	.wait = i915_fence_wait,
172 	.release = i915_fence_release,
173 };
174 
175 static void irq_execute_cb(struct irq_work *wrk)
176 {
177 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
178 
179 	i915_sw_fence_complete(cb->fence);
180 	kmem_cache_free(global.slab_execute_cbs, cb);
181 }
182 
183 static void irq_execute_cb_hook(struct irq_work *wrk)
184 {
185 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
186 
187 	cb->hook(container_of(cb->fence, struct i915_request, submit),
188 		 &cb->signal->fence);
189 	i915_request_put(cb->signal);
190 
191 	irq_execute_cb(wrk);
192 }
193 
194 static __always_inline void
195 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
196 {
197 	struct execute_cb *cb, *cn;
198 
199 	if (llist_empty(&rq->execute_cb))
200 		return;
201 
202 	llist_for_each_entry_safe(cb, cn,
203 				  llist_del_all(&rq->execute_cb),
204 				  work.node.llist)
205 		fn(&cb->work);
206 }
207 
208 static void __notify_execute_cb_irq(struct i915_request *rq)
209 {
210 	__notify_execute_cb(rq, irq_work_queue);
211 }
212 
213 static bool irq_work_imm(struct irq_work *wrk)
214 {
215 	wrk->func(wrk);
216 	return false;
217 }
218 
219 static void __notify_execute_cb_imm(struct i915_request *rq)
220 {
221 	__notify_execute_cb(rq, irq_work_imm);
222 }
223 
224 static void free_capture_list(struct i915_request *request)
225 {
226 	struct i915_capture_list *capture;
227 
228 	capture = fetch_and_zero(&request->capture_list);
229 	while (capture) {
230 		struct i915_capture_list *next = capture->next;
231 
232 		kfree(capture);
233 		capture = next;
234 	}
235 }
236 
237 static void __i915_request_fill(struct i915_request *rq, u8 val)
238 {
239 	void *vaddr = rq->ring->vaddr;
240 	u32 head;
241 
242 	head = rq->infix;
243 	if (rq->postfix < head) {
244 		memset(vaddr + head, val, rq->ring->size - head);
245 		head = 0;
246 	}
247 	memset(vaddr + head, val, rq->postfix - head);
248 }
249 
250 /**
251  * i915_request_active_engine
252  * @rq: request to inspect
253  * @active: pointer in which to return the active engine
254  *
255  * Fills the currently active engine to the @active pointer if the request
256  * is active and still not completed.
257  *
258  * Returns true if request was active or false otherwise.
259  */
260 bool
261 i915_request_active_engine(struct i915_request *rq,
262 			   struct intel_engine_cs **active)
263 {
264 	struct intel_engine_cs *engine, *locked;
265 	bool ret = false;
266 
267 	/*
268 	 * Serialise with __i915_request_submit() so that it sees
269 	 * is-banned?, or we know the request is already inflight.
270 	 *
271 	 * Note that rq->engine is unstable, and so we double
272 	 * check that we have acquired the lock on the final engine.
273 	 */
274 	locked = READ_ONCE(rq->engine);
275 	spin_lock_irq(&locked->active.lock);
276 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
277 		spin_unlock(&locked->active.lock);
278 		locked = engine;
279 		spin_lock(&locked->active.lock);
280 	}
281 
282 	if (i915_request_is_active(rq)) {
283 		if (!__i915_request_is_complete(rq))
284 			*active = locked;
285 		ret = true;
286 	}
287 
288 	spin_unlock_irq(&locked->active.lock);
289 
290 	return ret;
291 }
292 
293 
294 static void remove_from_engine(struct i915_request *rq)
295 {
296 	struct intel_engine_cs *engine, *locked;
297 
298 	/*
299 	 * Virtual engines complicate acquiring the engine timeline lock,
300 	 * as their rq->engine pointer is not stable until under that
301 	 * engine lock. The simple ploy we use is to take the lock then
302 	 * check that the rq still belongs to the newly locked engine.
303 	 */
304 	locked = READ_ONCE(rq->engine);
305 	spin_lock_irq(&locked->active.lock);
306 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
307 		spin_unlock(&locked->active.lock);
308 		spin_lock(&engine->active.lock);
309 		locked = engine;
310 	}
311 	list_del_init(&rq->sched.link);
312 
313 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
314 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
315 
316 	/* Prevent further __await_execution() registering a cb, then flush */
317 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
318 
319 	spin_unlock_irq(&locked->active.lock);
320 
321 	__notify_execute_cb_imm(rq);
322 }
323 
324 static void __rq_init_watchdog(struct i915_request *rq)
325 {
326 	rq->watchdog.timer.function = NULL;
327 }
328 
329 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
330 {
331 	struct i915_request *rq =
332 		container_of(hrtimer, struct i915_request, watchdog.timer);
333 	struct intel_gt *gt = rq->engine->gt;
334 
335 	if (!i915_request_completed(rq)) {
336 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
337 			schedule_work(&gt->watchdog.work);
338 	} else {
339 		i915_request_put(rq);
340 	}
341 
342 	return HRTIMER_NORESTART;
343 }
344 
345 static void __rq_arm_watchdog(struct i915_request *rq)
346 {
347 	struct i915_request_watchdog *wdg = &rq->watchdog;
348 	struct intel_context *ce = rq->context;
349 
350 	if (!ce->watchdog.timeout_us)
351 		return;
352 
353 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
354 	wdg->timer.function = __rq_watchdog_expired;
355 	hrtimer_start_range_ns(&wdg->timer,
356 			       ns_to_ktime(ce->watchdog.timeout_us *
357 					   NSEC_PER_USEC),
358 			       NSEC_PER_MSEC,
359 			       HRTIMER_MODE_REL);
360 	i915_request_get(rq);
361 }
362 
363 static void __rq_cancel_watchdog(struct i915_request *rq)
364 {
365 	struct i915_request_watchdog *wdg = &rq->watchdog;
366 
367 	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
368 		i915_request_put(rq);
369 }
370 
371 bool i915_request_retire(struct i915_request *rq)
372 {
373 	if (!__i915_request_is_complete(rq))
374 		return false;
375 
376 	RQ_TRACE(rq, "\n");
377 
378 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
379 	trace_i915_request_retire(rq);
380 	i915_request_mark_complete(rq);
381 
382 	__rq_cancel_watchdog(rq);
383 
384 	/*
385 	 * We know the GPU must have read the request to have
386 	 * sent us the seqno + interrupt, so use the position
387 	 * of tail of the request to update the last known position
388 	 * of the GPU head.
389 	 *
390 	 * Note this requires that we are always called in request
391 	 * completion order.
392 	 */
393 	GEM_BUG_ON(!list_is_first(&rq->link,
394 				  &i915_request_timeline(rq)->requests));
395 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
396 		/* Poison before we release our space in the ring */
397 		__i915_request_fill(rq, POISON_FREE);
398 	rq->ring->head = rq->postfix;
399 
400 	if (!i915_request_signaled(rq)) {
401 		spin_lock_irq(&rq->lock);
402 		dma_fence_signal_locked(&rq->fence);
403 		spin_unlock_irq(&rq->lock);
404 	}
405 
406 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
407 		atomic_dec(&rq->engine->gt->rps.num_waiters);
408 
409 	/*
410 	 * We only loosely track inflight requests across preemption,
411 	 * and so we may find ourselves attempting to retire a _completed_
412 	 * request that we have removed from the HW and put back on a run
413 	 * queue.
414 	 *
415 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
416 	 * after removing the breadcrumb and signaling it, so that we do not
417 	 * inadvertently attach the breadcrumb to a completed request.
418 	 */
419 	if (!list_empty(&rq->sched.link))
420 		remove_from_engine(rq);
421 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
422 
423 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
424 
425 	intel_context_exit(rq->context);
426 	intel_context_unpin(rq->context);
427 
428 	free_capture_list(rq);
429 	i915_sched_node_fini(&rq->sched);
430 	i915_request_put(rq);
431 
432 	return true;
433 }
434 
435 void i915_request_retire_upto(struct i915_request *rq)
436 {
437 	struct intel_timeline * const tl = i915_request_timeline(rq);
438 	struct i915_request *tmp;
439 
440 	RQ_TRACE(rq, "\n");
441 	GEM_BUG_ON(!__i915_request_is_complete(rq));
442 
443 	do {
444 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
445 	} while (i915_request_retire(tmp) && tmp != rq);
446 }
447 
448 static struct i915_request * const *
449 __engine_active(struct intel_engine_cs *engine)
450 {
451 	return READ_ONCE(engine->execlists.active);
452 }
453 
454 static bool __request_in_flight(const struct i915_request *signal)
455 {
456 	struct i915_request * const *port, *rq;
457 	bool inflight = false;
458 
459 	if (!i915_request_is_ready(signal))
460 		return false;
461 
462 	/*
463 	 * Even if we have unwound the request, it may still be on
464 	 * the GPU (preempt-to-busy). If that request is inside an
465 	 * unpreemptible critical section, it will not be removed. Some
466 	 * GPU functions may even be stuck waiting for the paired request
467 	 * (__await_execution) to be submitted and cannot be preempted
468 	 * until the bond is executing.
469 	 *
470 	 * As we know that there are always preemption points between
471 	 * requests, we know that only the currently executing request
472 	 * may be still active even though we have cleared the flag.
473 	 * However, we can't rely on our tracking of ELSP[0] to know
474 	 * which request is currently active and so maybe stuck, as
475 	 * the tracking maybe an event behind. Instead assume that
476 	 * if the context is still inflight, then it is still active
477 	 * even if the active flag has been cleared.
478 	 *
479 	 * To further complicate matters, if there a pending promotion, the HW
480 	 * may either perform a context switch to the second inflight execlists,
481 	 * or it may switch to the pending set of execlists. In the case of the
482 	 * latter, it may send the ACK and we process the event copying the
483 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
484 	 * this implies the HW is arbitrating and not struck in *active, we do
485 	 * not worry about complete accuracy, but we do require no read/write
486 	 * tearing of the pointer [the read of the pointer must be valid, even
487 	 * as the array is being overwritten, for which we require the writes
488 	 * to avoid tearing.]
489 	 *
490 	 * Note that the read of *execlists->active may race with the promotion
491 	 * of execlists->pending[] to execlists->inflight[], overwritting
492 	 * the value at *execlists->active. This is fine. The promotion implies
493 	 * that we received an ACK from the HW, and so the context is not
494 	 * stuck -- if we do not see ourselves in *active, the inflight status
495 	 * is valid. If instead we see ourselves being copied into *active,
496 	 * we are inflight and may signal the callback.
497 	 */
498 	if (!intel_context_inflight(signal->context))
499 		return false;
500 
501 	rcu_read_lock();
502 	for (port = __engine_active(signal->engine);
503 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
504 	     port++) {
505 		if (rq->context == signal->context) {
506 			inflight = i915_seqno_passed(rq->fence.seqno,
507 						     signal->fence.seqno);
508 			break;
509 		}
510 	}
511 	rcu_read_unlock();
512 
513 	return inflight;
514 }
515 
516 static int
517 __await_execution(struct i915_request *rq,
518 		  struct i915_request *signal,
519 		  void (*hook)(struct i915_request *rq,
520 			       struct dma_fence *signal),
521 		  gfp_t gfp)
522 {
523 	struct execute_cb *cb;
524 
525 	if (i915_request_is_active(signal)) {
526 		if (hook)
527 			hook(rq, &signal->fence);
528 		return 0;
529 	}
530 
531 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
532 	if (!cb)
533 		return -ENOMEM;
534 
535 	cb->fence = &rq->submit;
536 	i915_sw_fence_await(cb->fence);
537 	init_irq_work(&cb->work, irq_execute_cb);
538 
539 	if (hook) {
540 		cb->hook = hook;
541 		cb->signal = i915_request_get(signal);
542 		cb->work.func = irq_execute_cb_hook;
543 	}
544 
545 	/*
546 	 * Register the callback first, then see if the signaler is already
547 	 * active. This ensures that if we race with the
548 	 * __notify_execute_cb from i915_request_submit() and we are not
549 	 * included in that list, we get a second bite of the cherry and
550 	 * execute it ourselves. After this point, a future
551 	 * i915_request_submit() will notify us.
552 	 *
553 	 * In i915_request_retire() we set the ACTIVE bit on a completed
554 	 * request (then flush the execute_cb). So by registering the
555 	 * callback first, then checking the ACTIVE bit, we serialise with
556 	 * the completed/retired request.
557 	 */
558 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
559 		if (i915_request_is_active(signal) ||
560 		    __request_in_flight(signal))
561 			__notify_execute_cb_imm(signal);
562 	}
563 
564 	return 0;
565 }
566 
567 static bool fatal_error(int error)
568 {
569 	switch (error) {
570 	case 0: /* not an error! */
571 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
572 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
573 		return false;
574 	default:
575 		return true;
576 	}
577 }
578 
579 void __i915_request_skip(struct i915_request *rq)
580 {
581 	GEM_BUG_ON(!fatal_error(rq->fence.error));
582 
583 	if (rq->infix == rq->postfix)
584 		return;
585 
586 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
587 
588 	/*
589 	 * As this request likely depends on state from the lost
590 	 * context, clear out all the user operations leaving the
591 	 * breadcrumb at the end (so we get the fence notifications).
592 	 */
593 	__i915_request_fill(rq, 0);
594 	rq->infix = rq->postfix;
595 }
596 
597 bool i915_request_set_error_once(struct i915_request *rq, int error)
598 {
599 	int old;
600 
601 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
602 
603 	if (i915_request_signaled(rq))
604 		return false;
605 
606 	old = READ_ONCE(rq->fence.error);
607 	do {
608 		if (fatal_error(old))
609 			return false;
610 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
611 
612 	return true;
613 }
614 
615 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
616 {
617 	if (__i915_request_is_complete(rq))
618 		return NULL;
619 
620 	GEM_BUG_ON(i915_request_signaled(rq));
621 
622 	/* As soon as the request is completed, it may be retired */
623 	rq = i915_request_get(rq);
624 
625 	i915_request_set_error_once(rq, -EIO);
626 	i915_request_mark_complete(rq);
627 
628 	return rq;
629 }
630 
631 bool __i915_request_submit(struct i915_request *request)
632 {
633 	struct intel_engine_cs *engine = request->engine;
634 	bool result = false;
635 
636 	RQ_TRACE(request, "\n");
637 
638 	GEM_BUG_ON(!irqs_disabled());
639 	lockdep_assert_held(&engine->active.lock);
640 
641 	/*
642 	 * With the advent of preempt-to-busy, we frequently encounter
643 	 * requests that we have unsubmitted from HW, but left running
644 	 * until the next ack and so have completed in the meantime. On
645 	 * resubmission of that completed request, we can skip
646 	 * updating the payload, and execlists can even skip submitting
647 	 * the request.
648 	 *
649 	 * We must remove the request from the caller's priority queue,
650 	 * and the caller must only call us when the request is in their
651 	 * priority queue, under the active.lock. This ensures that the
652 	 * request has *not* yet been retired and we can safely move
653 	 * the request into the engine->active.list where it will be
654 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
655 	 * request, this would be a horrible use-after-free.)
656 	 */
657 	if (__i915_request_is_complete(request)) {
658 		list_del_init(&request->sched.link);
659 		goto active;
660 	}
661 
662 	if (unlikely(intel_context_is_banned(request->context)))
663 		i915_request_set_error_once(request, -EIO);
664 
665 	if (unlikely(fatal_error(request->fence.error)))
666 		__i915_request_skip(request);
667 
668 	/*
669 	 * Are we using semaphores when the gpu is already saturated?
670 	 *
671 	 * Using semaphores incurs a cost in having the GPU poll a
672 	 * memory location, busywaiting for it to change. The continual
673 	 * memory reads can have a noticeable impact on the rest of the
674 	 * system with the extra bus traffic, stalling the cpu as it too
675 	 * tries to access memory across the bus (perf stat -e bus-cycles).
676 	 *
677 	 * If we installed a semaphore on this request and we only submit
678 	 * the request after the signaler completed, that indicates the
679 	 * system is overloaded and using semaphores at this time only
680 	 * increases the amount of work we are doing. If so, we disable
681 	 * further use of semaphores until we are idle again, whence we
682 	 * optimistically try again.
683 	 */
684 	if (request->sched.semaphores &&
685 	    i915_sw_fence_signaled(&request->semaphore))
686 		engine->saturated |= request->sched.semaphores;
687 
688 	engine->emit_fini_breadcrumb(request,
689 				     request->ring->vaddr + request->postfix);
690 
691 	trace_i915_request_execute(request);
692 	engine->serial++;
693 	result = true;
694 
695 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
696 	list_move_tail(&request->sched.link, &engine->active.requests);
697 active:
698 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
699 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
700 
701 	/*
702 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
703 	 *
704 	 * In the future, perhaps when we have an active time-slicing scheduler,
705 	 * it will be interesting to unsubmit parallel execution and remove
706 	 * busywaits from the GPU until their master is restarted. This is
707 	 * quite hairy, we have to carefully rollback the fence and do a
708 	 * preempt-to-idle cycle on the target engine, all the while the
709 	 * master execute_cb may refire.
710 	 */
711 	__notify_execute_cb_irq(request);
712 
713 	/* We may be recursing from the signal callback of another i915 fence */
714 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
715 		i915_request_enable_breadcrumb(request);
716 
717 	return result;
718 }
719 
720 void i915_request_submit(struct i915_request *request)
721 {
722 	struct intel_engine_cs *engine = request->engine;
723 	unsigned long flags;
724 
725 	/* Will be called from irq-context when using foreign fences. */
726 	spin_lock_irqsave(&engine->active.lock, flags);
727 
728 	__i915_request_submit(request);
729 
730 	spin_unlock_irqrestore(&engine->active.lock, flags);
731 }
732 
733 void __i915_request_unsubmit(struct i915_request *request)
734 {
735 	struct intel_engine_cs *engine = request->engine;
736 
737 	/*
738 	 * Only unwind in reverse order, required so that the per-context list
739 	 * is kept in seqno/ring order.
740 	 */
741 	RQ_TRACE(request, "\n");
742 
743 	GEM_BUG_ON(!irqs_disabled());
744 	lockdep_assert_held(&engine->active.lock);
745 
746 	/*
747 	 * Before we remove this breadcrumb from the signal list, we have
748 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
749 	 * attach itself. We first mark the request as no longer active and
750 	 * make sure that is visible to other cores, and then remove the
751 	 * breadcrumb if attached.
752 	 */
753 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
754 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
755 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
756 		i915_request_cancel_breadcrumb(request);
757 
758 	/* We've already spun, don't charge on resubmitting. */
759 	if (request->sched.semaphores && __i915_request_has_started(request))
760 		request->sched.semaphores = 0;
761 
762 	/*
763 	 * We don't need to wake_up any waiters on request->execute, they
764 	 * will get woken by any other event or us re-adding this request
765 	 * to the engine timeline (__i915_request_submit()). The waiters
766 	 * should be quite adapt at finding that the request now has a new
767 	 * global_seqno to the one they went to sleep on.
768 	 */
769 }
770 
771 void i915_request_unsubmit(struct i915_request *request)
772 {
773 	struct intel_engine_cs *engine = request->engine;
774 	unsigned long flags;
775 
776 	/* Will be called from irq-context when using foreign fences. */
777 	spin_lock_irqsave(&engine->active.lock, flags);
778 
779 	__i915_request_unsubmit(request);
780 
781 	spin_unlock_irqrestore(&engine->active.lock, flags);
782 }
783 
784 static void __cancel_request(struct i915_request *rq)
785 {
786 	struct intel_engine_cs *engine = NULL;
787 
788 	i915_request_active_engine(rq, &engine);
789 
790 	if (engine && intel_engine_pulse(engine))
791 		intel_gt_handle_error(engine->gt, engine->mask, 0,
792 				      "request cancellation by %s",
793 				      current->comm);
794 }
795 
796 void i915_request_cancel(struct i915_request *rq, int error)
797 {
798 	if (!i915_request_set_error_once(rq, error))
799 		return;
800 
801 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
802 
803 	__cancel_request(rq);
804 }
805 
806 static int __i915_sw_fence_call
807 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
808 {
809 	struct i915_request *request =
810 		container_of(fence, typeof(*request), submit);
811 
812 	switch (state) {
813 	case FENCE_COMPLETE:
814 		trace_i915_request_submit(request);
815 
816 		if (unlikely(fence->error))
817 			i915_request_set_error_once(request, fence->error);
818 		else
819 			__rq_arm_watchdog(request);
820 
821 		/*
822 		 * We need to serialize use of the submit_request() callback
823 		 * with its hotplugging performed during an emergency
824 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
825 		 * critical section in order to force i915_gem_set_wedged() to
826 		 * wait until the submit_request() is completed before
827 		 * proceeding.
828 		 */
829 		rcu_read_lock();
830 		request->engine->submit_request(request);
831 		rcu_read_unlock();
832 		break;
833 
834 	case FENCE_FREE:
835 		i915_request_put(request);
836 		break;
837 	}
838 
839 	return NOTIFY_DONE;
840 }
841 
842 static int __i915_sw_fence_call
843 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
844 {
845 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
846 
847 	switch (state) {
848 	case FENCE_COMPLETE:
849 		break;
850 
851 	case FENCE_FREE:
852 		i915_request_put(rq);
853 		break;
854 	}
855 
856 	return NOTIFY_DONE;
857 }
858 
859 static void retire_requests(struct intel_timeline *tl)
860 {
861 	struct i915_request *rq, *rn;
862 
863 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
864 		if (!i915_request_retire(rq))
865 			break;
866 }
867 
868 static noinline struct i915_request *
869 request_alloc_slow(struct intel_timeline *tl,
870 		   struct i915_request **rsvd,
871 		   gfp_t gfp)
872 {
873 	struct i915_request *rq;
874 
875 	/* If we cannot wait, dip into our reserves */
876 	if (!gfpflags_allow_blocking(gfp)) {
877 		rq = xchg(rsvd, NULL);
878 		if (!rq) /* Use the normal failure path for one final WARN */
879 			goto out;
880 
881 		return rq;
882 	}
883 
884 	if (list_empty(&tl->requests))
885 		goto out;
886 
887 	/* Move our oldest request to the slab-cache (if not in use!) */
888 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
889 	i915_request_retire(rq);
890 
891 	rq = kmem_cache_alloc(global.slab_requests,
892 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
893 	if (rq)
894 		return rq;
895 
896 	/* Ratelimit ourselves to prevent oom from malicious clients */
897 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
898 	cond_synchronize_rcu(rq->rcustate);
899 
900 	/* Retire our old requests in the hope that we free some */
901 	retire_requests(tl);
902 
903 out:
904 	return kmem_cache_alloc(global.slab_requests, gfp);
905 }
906 
907 static void __i915_request_ctor(void *arg)
908 {
909 	struct i915_request *rq = arg;
910 
911 	spin_lock_init(&rq->lock);
912 	i915_sched_node_init(&rq->sched);
913 	i915_sw_fence_init(&rq->submit, submit_notify);
914 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
915 
916 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
917 
918 	rq->capture_list = NULL;
919 
920 	init_llist_head(&rq->execute_cb);
921 }
922 
923 struct i915_request *
924 __i915_request_create(struct intel_context *ce, gfp_t gfp)
925 {
926 	struct intel_timeline *tl = ce->timeline;
927 	struct i915_request *rq;
928 	u32 seqno;
929 	int ret;
930 
931 	might_sleep_if(gfpflags_allow_blocking(gfp));
932 
933 	/* Check that the caller provided an already pinned context */
934 	__intel_context_pin(ce);
935 
936 	/*
937 	 * Beware: Dragons be flying overhead.
938 	 *
939 	 * We use RCU to look up requests in flight. The lookups may
940 	 * race with the request being allocated from the slab freelist.
941 	 * That is the request we are writing to here, may be in the process
942 	 * of being read by __i915_active_request_get_rcu(). As such,
943 	 * we have to be very careful when overwriting the contents. During
944 	 * the RCU lookup, we change chase the request->engine pointer,
945 	 * read the request->global_seqno and increment the reference count.
946 	 *
947 	 * The reference count is incremented atomically. If it is zero,
948 	 * the lookup knows the request is unallocated and complete. Otherwise,
949 	 * it is either still in use, or has been reallocated and reset
950 	 * with dma_fence_init(). This increment is safe for release as we
951 	 * check that the request we have a reference to and matches the active
952 	 * request.
953 	 *
954 	 * Before we increment the refcount, we chase the request->engine
955 	 * pointer. We must not call kmem_cache_zalloc() or else we set
956 	 * that pointer to NULL and cause a crash during the lookup. If
957 	 * we see the request is completed (based on the value of the
958 	 * old engine and seqno), the lookup is complete and reports NULL.
959 	 * If we decide the request is not completed (new engine or seqno),
960 	 * then we grab a reference and double check that it is still the
961 	 * active request - which it won't be and restart the lookup.
962 	 *
963 	 * Do not use kmem_cache_zalloc() here!
964 	 */
965 	rq = kmem_cache_alloc(global.slab_requests,
966 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
967 	if (unlikely(!rq)) {
968 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
969 		if (!rq) {
970 			ret = -ENOMEM;
971 			goto err_unreserve;
972 		}
973 	}
974 
975 	rq->context = ce;
976 	rq->engine = ce->engine;
977 	rq->ring = ce->ring;
978 	rq->execution_mask = ce->engine->mask;
979 
980 	kref_init(&rq->fence.refcount);
981 	rq->fence.flags = 0;
982 	rq->fence.error = 0;
983 	INIT_LIST_HEAD(&rq->fence.cb_list);
984 
985 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
986 	if (ret)
987 		goto err_free;
988 
989 	rq->fence.context = tl->fence_context;
990 	rq->fence.seqno = seqno;
991 
992 	RCU_INIT_POINTER(rq->timeline, tl);
993 	rq->hwsp_seqno = tl->hwsp_seqno;
994 	GEM_BUG_ON(__i915_request_is_complete(rq));
995 
996 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
997 
998 	/* We bump the ref for the fence chain */
999 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
1000 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
1001 
1002 	i915_sched_node_reinit(&rq->sched);
1003 
1004 	/* No zalloc, everything must be cleared after use */
1005 	rq->batch = NULL;
1006 	__rq_init_watchdog(rq);
1007 	GEM_BUG_ON(rq->capture_list);
1008 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
1009 
1010 	/*
1011 	 * Reserve space in the ring buffer for all the commands required to
1012 	 * eventually emit this request. This is to guarantee that the
1013 	 * i915_request_add() call can't fail. Note that the reserve may need
1014 	 * to be redone if the request is not actually submitted straight
1015 	 * away, e.g. because a GPU scheduler has deferred it.
1016 	 *
1017 	 * Note that due to how we add reserved_space to intel_ring_begin()
1018 	 * we need to double our request to ensure that if we need to wrap
1019 	 * around inside i915_request_add() there is sufficient space at
1020 	 * the beginning of the ring as well.
1021 	 */
1022 	rq->reserved_space =
1023 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
1024 
1025 	/*
1026 	 * Record the position of the start of the request so that
1027 	 * should we detect the updated seqno part-way through the
1028 	 * GPU processing the request, we never over-estimate the
1029 	 * position of the head.
1030 	 */
1031 	rq->head = rq->ring->emit;
1032 
1033 	ret = rq->engine->request_alloc(rq);
1034 	if (ret)
1035 		goto err_unwind;
1036 
1037 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1038 
1039 	intel_context_mark_active(ce);
1040 	list_add_tail_rcu(&rq->link, &tl->requests);
1041 
1042 	return rq;
1043 
1044 err_unwind:
1045 	ce->ring->emit = rq->head;
1046 
1047 	/* Make sure we didn't add ourselves to external state before freeing */
1048 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1049 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1050 
1051 err_free:
1052 	kmem_cache_free(global.slab_requests, rq);
1053 err_unreserve:
1054 	intel_context_unpin(ce);
1055 	return ERR_PTR(ret);
1056 }
1057 
1058 struct i915_request *
1059 i915_request_create(struct intel_context *ce)
1060 {
1061 	struct i915_request *rq;
1062 	struct intel_timeline *tl;
1063 
1064 	tl = intel_context_timeline_lock(ce);
1065 	if (IS_ERR(tl))
1066 		return ERR_CAST(tl);
1067 
1068 	/* Move our oldest request to the slab-cache (if not in use!) */
1069 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1070 	if (!list_is_last(&rq->link, &tl->requests))
1071 		i915_request_retire(rq);
1072 
1073 	intel_context_enter(ce);
1074 	rq = __i915_request_create(ce, GFP_KERNEL);
1075 	intel_context_exit(ce); /* active reference transferred to request */
1076 	if (IS_ERR(rq))
1077 		goto err_unlock;
1078 
1079 	/* Check that we do not interrupt ourselves with a new request */
1080 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1081 
1082 	return rq;
1083 
1084 err_unlock:
1085 	intel_context_timeline_unlock(tl);
1086 	return rq;
1087 }
1088 
1089 static int
1090 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1091 {
1092 	struct dma_fence *fence;
1093 	int err;
1094 
1095 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1096 		return 0;
1097 
1098 	if (i915_request_started(signal))
1099 		return 0;
1100 
1101 	/*
1102 	 * The caller holds a reference on @signal, but we do not serialise
1103 	 * against it being retired and removed from the lists.
1104 	 *
1105 	 * We do not hold a reference to the request before @signal, and
1106 	 * so must be very careful to ensure that it is not _recycled_ as
1107 	 * we follow the link backwards.
1108 	 */
1109 	fence = NULL;
1110 	rcu_read_lock();
1111 	do {
1112 		struct list_head *pos = READ_ONCE(signal->link.prev);
1113 		struct i915_request *prev;
1114 
1115 		/* Confirm signal has not been retired, the link is valid */
1116 		if (unlikely(__i915_request_has_started(signal)))
1117 			break;
1118 
1119 		/* Is signal the earliest request on its timeline? */
1120 		if (pos == &rcu_dereference(signal->timeline)->requests)
1121 			break;
1122 
1123 		/*
1124 		 * Peek at the request before us in the timeline. That
1125 		 * request will only be valid before it is retired, so
1126 		 * after acquiring a reference to it, confirm that it is
1127 		 * still part of the signaler's timeline.
1128 		 */
1129 		prev = list_entry(pos, typeof(*prev), link);
1130 		if (!i915_request_get_rcu(prev))
1131 			break;
1132 
1133 		/* After the strong barrier, confirm prev is still attached */
1134 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1135 			i915_request_put(prev);
1136 			break;
1137 		}
1138 
1139 		fence = &prev->fence;
1140 	} while (0);
1141 	rcu_read_unlock();
1142 	if (!fence)
1143 		return 0;
1144 
1145 	err = 0;
1146 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1147 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1148 						    fence, 0,
1149 						    I915_FENCE_GFP);
1150 	dma_fence_put(fence);
1151 
1152 	return err;
1153 }
1154 
1155 static intel_engine_mask_t
1156 already_busywaiting(struct i915_request *rq)
1157 {
1158 	/*
1159 	 * Polling a semaphore causes bus traffic, delaying other users of
1160 	 * both the GPU and CPU. We want to limit the impact on others,
1161 	 * while taking advantage of early submission to reduce GPU
1162 	 * latency. Therefore we restrict ourselves to not using more
1163 	 * than one semaphore from each source, and not using a semaphore
1164 	 * if we have detected the engine is saturated (i.e. would not be
1165 	 * submitted early and cause bus traffic reading an already passed
1166 	 * semaphore).
1167 	 *
1168 	 * See the are-we-too-late? check in __i915_request_submit().
1169 	 */
1170 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1171 }
1172 
1173 static int
1174 __emit_semaphore_wait(struct i915_request *to,
1175 		      struct i915_request *from,
1176 		      u32 seqno)
1177 {
1178 	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1179 	u32 hwsp_offset;
1180 	int len, err;
1181 	u32 *cs;
1182 
1183 	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1184 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1185 
1186 	/* We need to pin the signaler's HWSP until we are finished reading. */
1187 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1188 	if (err)
1189 		return err;
1190 
1191 	len = 4;
1192 	if (has_token)
1193 		len += 2;
1194 
1195 	cs = intel_ring_begin(to, len);
1196 	if (IS_ERR(cs))
1197 		return PTR_ERR(cs);
1198 
1199 	/*
1200 	 * Using greater-than-or-equal here means we have to worry
1201 	 * about seqno wraparound. To side step that issue, we swap
1202 	 * the timeline HWSP upon wrapping, so that everyone listening
1203 	 * for the old (pre-wrap) values do not see the much smaller
1204 	 * (post-wrap) values than they were expecting (and so wait
1205 	 * forever).
1206 	 */
1207 	*cs++ = (MI_SEMAPHORE_WAIT |
1208 		 MI_SEMAPHORE_GLOBAL_GTT |
1209 		 MI_SEMAPHORE_POLL |
1210 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1211 		has_token;
1212 	*cs++ = seqno;
1213 	*cs++ = hwsp_offset;
1214 	*cs++ = 0;
1215 	if (has_token) {
1216 		*cs++ = 0;
1217 		*cs++ = MI_NOOP;
1218 	}
1219 
1220 	intel_ring_advance(to, cs);
1221 	return 0;
1222 }
1223 
1224 static int
1225 emit_semaphore_wait(struct i915_request *to,
1226 		    struct i915_request *from,
1227 		    gfp_t gfp)
1228 {
1229 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1230 	struct i915_sw_fence *wait = &to->submit;
1231 
1232 	if (!intel_context_use_semaphores(to->context))
1233 		goto await_fence;
1234 
1235 	if (i915_request_has_initial_breadcrumb(to))
1236 		goto await_fence;
1237 
1238 	/*
1239 	 * If this or its dependents are waiting on an external fence
1240 	 * that may fail catastrophically, then we want to avoid using
1241 	 * sempahores as they bypass the fence signaling metadata, and we
1242 	 * lose the fence->error propagation.
1243 	 */
1244 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1245 		goto await_fence;
1246 
1247 	/* Just emit the first semaphore we see as request space is limited. */
1248 	if (already_busywaiting(to) & mask)
1249 		goto await_fence;
1250 
1251 	if (i915_request_await_start(to, from) < 0)
1252 		goto await_fence;
1253 
1254 	/* Only submit our spinner after the signaler is running! */
1255 	if (__await_execution(to, from, NULL, gfp))
1256 		goto await_fence;
1257 
1258 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1259 		goto await_fence;
1260 
1261 	to->sched.semaphores |= mask;
1262 	wait = &to->semaphore;
1263 
1264 await_fence:
1265 	return i915_sw_fence_await_dma_fence(wait,
1266 					     &from->fence, 0,
1267 					     I915_FENCE_GFP);
1268 }
1269 
1270 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1271 					  struct dma_fence *fence)
1272 {
1273 	return __intel_timeline_sync_is_later(tl,
1274 					      fence->context,
1275 					      fence->seqno - 1);
1276 }
1277 
1278 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1279 					 const struct dma_fence *fence)
1280 {
1281 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1282 }
1283 
1284 static int
1285 __i915_request_await_execution(struct i915_request *to,
1286 			       struct i915_request *from,
1287 			       void (*hook)(struct i915_request *rq,
1288 					    struct dma_fence *signal))
1289 {
1290 	int err;
1291 
1292 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1293 
1294 	/* Submit both requests at the same time */
1295 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1296 	if (err)
1297 		return err;
1298 
1299 	/* Squash repeated depenendices to the same timelines */
1300 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1301 					  &from->fence))
1302 		return 0;
1303 
1304 	/*
1305 	 * Wait until the start of this request.
1306 	 *
1307 	 * The execution cb fires when we submit the request to HW. But in
1308 	 * many cases this may be long before the request itself is ready to
1309 	 * run (consider that we submit 2 requests for the same context, where
1310 	 * the request of interest is behind an indefinite spinner). So we hook
1311 	 * up to both to reduce our queues and keep the execution lag minimised
1312 	 * in the worst case, though we hope that the await_start is elided.
1313 	 */
1314 	err = i915_request_await_start(to, from);
1315 	if (err < 0)
1316 		return err;
1317 
1318 	/*
1319 	 * Ensure both start together [after all semaphores in signal]
1320 	 *
1321 	 * Now that we are queued to the HW at roughly the same time (thanks
1322 	 * to the execute cb) and are ready to run at roughly the same time
1323 	 * (thanks to the await start), our signaler may still be indefinitely
1324 	 * delayed by waiting on a semaphore from a remote engine. If our
1325 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1326 	 * want to start our payload until our signaler also starts theirs.
1327 	 * So we wait.
1328 	 *
1329 	 * However, there is also a second condition for which we need to wait
1330 	 * for the precise start of the signaler. Consider that the signaler
1331 	 * was submitted in a chain of requests following another context
1332 	 * (with just an ordinary intra-engine fence dependency between the
1333 	 * two). In this case the signaler is queued to HW, but not for
1334 	 * immediate execution, and so we must wait until it reaches the
1335 	 * active slot.
1336 	 */
1337 	if (intel_engine_has_semaphores(to->engine) &&
1338 	    !i915_request_has_initial_breadcrumb(to)) {
1339 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1340 		if (err < 0)
1341 			return err;
1342 	}
1343 
1344 	/* Couple the dependency tree for PI on this exposed to->fence */
1345 	if (to->engine->schedule) {
1346 		err = i915_sched_node_add_dependency(&to->sched,
1347 						     &from->sched,
1348 						     I915_DEPENDENCY_WEAK);
1349 		if (err < 0)
1350 			return err;
1351 	}
1352 
1353 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1354 					     &from->fence);
1355 }
1356 
1357 static void mark_external(struct i915_request *rq)
1358 {
1359 	/*
1360 	 * The downside of using semaphores is that we lose metadata passing
1361 	 * along the signaling chain. This is particularly nasty when we
1362 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1363 	 * fatal errors we want to scrub the request before it is executed,
1364 	 * which means that we cannot preload the request onto HW and have
1365 	 * it wait upon a semaphore.
1366 	 */
1367 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1368 }
1369 
1370 static int
1371 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1372 {
1373 	mark_external(rq);
1374 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1375 					     i915_fence_context_timeout(rq->engine->i915,
1376 									fence->context),
1377 					     I915_FENCE_GFP);
1378 }
1379 
1380 static int
1381 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1382 {
1383 	struct dma_fence *iter;
1384 	int err = 0;
1385 
1386 	if (!to_dma_fence_chain(fence))
1387 		return __i915_request_await_external(rq, fence);
1388 
1389 	dma_fence_chain_for_each(iter, fence) {
1390 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1391 
1392 		if (!dma_fence_is_i915(chain->fence)) {
1393 			err = __i915_request_await_external(rq, iter);
1394 			break;
1395 		}
1396 
1397 		err = i915_request_await_dma_fence(rq, chain->fence);
1398 		if (err < 0)
1399 			break;
1400 	}
1401 
1402 	dma_fence_put(iter);
1403 	return err;
1404 }
1405 
1406 int
1407 i915_request_await_execution(struct i915_request *rq,
1408 			     struct dma_fence *fence,
1409 			     void (*hook)(struct i915_request *rq,
1410 					  struct dma_fence *signal))
1411 {
1412 	struct dma_fence **child = &fence;
1413 	unsigned int nchild = 1;
1414 	int ret;
1415 
1416 	if (dma_fence_is_array(fence)) {
1417 		struct dma_fence_array *array = to_dma_fence_array(fence);
1418 
1419 		/* XXX Error for signal-on-any fence arrays */
1420 
1421 		child = array->fences;
1422 		nchild = array->num_fences;
1423 		GEM_BUG_ON(!nchild);
1424 	}
1425 
1426 	do {
1427 		fence = *child++;
1428 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1429 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1430 			continue;
1431 		}
1432 
1433 		if (fence->context == rq->fence.context)
1434 			continue;
1435 
1436 		/*
1437 		 * We don't squash repeated fence dependencies here as we
1438 		 * want to run our callback in all cases.
1439 		 */
1440 
1441 		if (dma_fence_is_i915(fence))
1442 			ret = __i915_request_await_execution(rq,
1443 							     to_request(fence),
1444 							     hook);
1445 		else
1446 			ret = i915_request_await_external(rq, fence);
1447 		if (ret < 0)
1448 			return ret;
1449 	} while (--nchild);
1450 
1451 	return 0;
1452 }
1453 
1454 static int
1455 await_request_submit(struct i915_request *to, struct i915_request *from)
1456 {
1457 	/*
1458 	 * If we are waiting on a virtual engine, then it may be
1459 	 * constrained to execute on a single engine *prior* to submission.
1460 	 * When it is submitted, it will be first submitted to the virtual
1461 	 * engine and then passed to the physical engine. We cannot allow
1462 	 * the waiter to be submitted immediately to the physical engine
1463 	 * as it may then bypass the virtual request.
1464 	 */
1465 	if (to->engine == READ_ONCE(from->engine))
1466 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1467 							&from->submit,
1468 							I915_FENCE_GFP);
1469 	else
1470 		return __i915_request_await_execution(to, from, NULL);
1471 }
1472 
1473 static int
1474 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1475 {
1476 	int ret;
1477 
1478 	GEM_BUG_ON(to == from);
1479 	GEM_BUG_ON(to->timeline == from->timeline);
1480 
1481 	if (i915_request_completed(from)) {
1482 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1483 		return 0;
1484 	}
1485 
1486 	if (to->engine->schedule) {
1487 		ret = i915_sched_node_add_dependency(&to->sched,
1488 						     &from->sched,
1489 						     I915_DEPENDENCY_EXTERNAL);
1490 		if (ret < 0)
1491 			return ret;
1492 	}
1493 
1494 	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1495 		ret = await_request_submit(to, from);
1496 	else
1497 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1498 	if (ret < 0)
1499 		return ret;
1500 
1501 	return 0;
1502 }
1503 
1504 int
1505 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1506 {
1507 	struct dma_fence **child = &fence;
1508 	unsigned int nchild = 1;
1509 	int ret;
1510 
1511 	/*
1512 	 * Note that if the fence-array was created in signal-on-any mode,
1513 	 * we should *not* decompose it into its individual fences. However,
1514 	 * we don't currently store which mode the fence-array is operating
1515 	 * in. Fortunately, the only user of signal-on-any is private to
1516 	 * amdgpu and we should not see any incoming fence-array from
1517 	 * sync-file being in signal-on-any mode.
1518 	 */
1519 	if (dma_fence_is_array(fence)) {
1520 		struct dma_fence_array *array = to_dma_fence_array(fence);
1521 
1522 		child = array->fences;
1523 		nchild = array->num_fences;
1524 		GEM_BUG_ON(!nchild);
1525 	}
1526 
1527 	do {
1528 		fence = *child++;
1529 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1530 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1531 			continue;
1532 		}
1533 
1534 		/*
1535 		 * Requests on the same timeline are explicitly ordered, along
1536 		 * with their dependencies, by i915_request_add() which ensures
1537 		 * that requests are submitted in-order through each ring.
1538 		 */
1539 		if (fence->context == rq->fence.context)
1540 			continue;
1541 
1542 		/* Squash repeated waits to the same timelines */
1543 		if (fence->context &&
1544 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1545 						 fence))
1546 			continue;
1547 
1548 		if (dma_fence_is_i915(fence))
1549 			ret = i915_request_await_request(rq, to_request(fence));
1550 		else
1551 			ret = i915_request_await_external(rq, fence);
1552 		if (ret < 0)
1553 			return ret;
1554 
1555 		/* Record the latest fence used against each timeline */
1556 		if (fence->context)
1557 			intel_timeline_sync_set(i915_request_timeline(rq),
1558 						fence);
1559 	} while (--nchild);
1560 
1561 	return 0;
1562 }
1563 
1564 /**
1565  * i915_request_await_object - set this request to (async) wait upon a bo
1566  * @to: request we are wishing to use
1567  * @obj: object which may be in use on another ring.
1568  * @write: whether the wait is on behalf of a writer
1569  *
1570  * This code is meant to abstract object synchronization with the GPU.
1571  * Conceptually we serialise writes between engines inside the GPU.
1572  * We only allow one engine to write into a buffer at any time, but
1573  * multiple readers. To ensure each has a coherent view of memory, we must:
1574  *
1575  * - If there is an outstanding write request to the object, the new
1576  *   request must wait for it to complete (either CPU or in hw, requests
1577  *   on the same ring will be naturally ordered).
1578  *
1579  * - If we are a write request (pending_write_domain is set), the new
1580  *   request must wait for outstanding read requests to complete.
1581  *
1582  * Returns 0 if successful, else propagates up the lower layer error.
1583  */
1584 int
1585 i915_request_await_object(struct i915_request *to,
1586 			  struct drm_i915_gem_object *obj,
1587 			  bool write)
1588 {
1589 	struct dma_fence *excl;
1590 	int ret = 0;
1591 
1592 	if (write) {
1593 		struct dma_fence **shared;
1594 		unsigned int count, i;
1595 
1596 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1597 							&excl, &count, &shared);
1598 		if (ret)
1599 			return ret;
1600 
1601 		for (i = 0; i < count; i++) {
1602 			ret = i915_request_await_dma_fence(to, shared[i]);
1603 			if (ret)
1604 				break;
1605 
1606 			dma_fence_put(shared[i]);
1607 		}
1608 
1609 		for (; i < count; i++)
1610 			dma_fence_put(shared[i]);
1611 		kfree(shared);
1612 	} else {
1613 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1614 	}
1615 
1616 	if (excl) {
1617 		if (ret == 0)
1618 			ret = i915_request_await_dma_fence(to, excl);
1619 
1620 		dma_fence_put(excl);
1621 	}
1622 
1623 	return ret;
1624 }
1625 
1626 static struct i915_request *
1627 __i915_request_add_to_timeline(struct i915_request *rq)
1628 {
1629 	struct intel_timeline *timeline = i915_request_timeline(rq);
1630 	struct i915_request *prev;
1631 
1632 	/*
1633 	 * Dependency tracking and request ordering along the timeline
1634 	 * is special cased so that we can eliminate redundant ordering
1635 	 * operations while building the request (we know that the timeline
1636 	 * itself is ordered, and here we guarantee it).
1637 	 *
1638 	 * As we know we will need to emit tracking along the timeline,
1639 	 * we embed the hooks into our request struct -- at the cost of
1640 	 * having to have specialised no-allocation interfaces (which will
1641 	 * be beneficial elsewhere).
1642 	 *
1643 	 * A second benefit to open-coding i915_request_await_request is
1644 	 * that we can apply a slight variant of the rules specialised
1645 	 * for timelines that jump between engines (such as virtual engines).
1646 	 * If we consider the case of virtual engine, we must emit a dma-fence
1647 	 * to prevent scheduling of the second request until the first is
1648 	 * complete (to maximise our greedy late load balancing) and this
1649 	 * precludes optimising to use semaphores serialisation of a single
1650 	 * timeline across engines.
1651 	 */
1652 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1653 						  &rq->fence));
1654 	if (prev && !__i915_request_is_complete(prev)) {
1655 		/*
1656 		 * The requests are supposed to be kept in order. However,
1657 		 * we need to be wary in case the timeline->last_request
1658 		 * is used as a barrier for external modification to this
1659 		 * context.
1660 		 */
1661 		GEM_BUG_ON(prev->context == rq->context &&
1662 			   i915_seqno_passed(prev->fence.seqno,
1663 					     rq->fence.seqno));
1664 
1665 		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1666 			i915_sw_fence_await_sw_fence(&rq->submit,
1667 						     &prev->submit,
1668 						     &rq->submitq);
1669 		else
1670 			__i915_sw_fence_await_dma_fence(&rq->submit,
1671 							&prev->fence,
1672 							&rq->dmaq);
1673 		if (rq->engine->schedule)
1674 			__i915_sched_node_add_dependency(&rq->sched,
1675 							 &prev->sched,
1676 							 &rq->dep,
1677 							 0);
1678 	}
1679 
1680 	/*
1681 	 * Make sure that no request gazumped us - if it was allocated after
1682 	 * our i915_request_alloc() and called __i915_request_add() before
1683 	 * us, the timeline will hold its seqno which is later than ours.
1684 	 */
1685 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1686 
1687 	return prev;
1688 }
1689 
1690 /*
1691  * NB: This function is not allowed to fail. Doing so would mean the the
1692  * request is not being tracked for completion but the work itself is
1693  * going to happen on the hardware. This would be a Bad Thing(tm).
1694  */
1695 struct i915_request *__i915_request_commit(struct i915_request *rq)
1696 {
1697 	struct intel_engine_cs *engine = rq->engine;
1698 	struct intel_ring *ring = rq->ring;
1699 	u32 *cs;
1700 
1701 	RQ_TRACE(rq, "\n");
1702 
1703 	/*
1704 	 * To ensure that this call will not fail, space for its emissions
1705 	 * should already have been reserved in the ring buffer. Let the ring
1706 	 * know that it is time to use that space up.
1707 	 */
1708 	GEM_BUG_ON(rq->reserved_space > ring->space);
1709 	rq->reserved_space = 0;
1710 	rq->emitted_jiffies = jiffies;
1711 
1712 	/*
1713 	 * Record the position of the start of the breadcrumb so that
1714 	 * should we detect the updated seqno part-way through the
1715 	 * GPU processing the request, we never over-estimate the
1716 	 * position of the ring's HEAD.
1717 	 */
1718 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1719 	GEM_BUG_ON(IS_ERR(cs));
1720 	rq->postfix = intel_ring_offset(rq, cs);
1721 
1722 	return __i915_request_add_to_timeline(rq);
1723 }
1724 
1725 void __i915_request_queue_bh(struct i915_request *rq)
1726 {
1727 	i915_sw_fence_commit(&rq->semaphore);
1728 	i915_sw_fence_commit(&rq->submit);
1729 }
1730 
1731 void __i915_request_queue(struct i915_request *rq,
1732 			  const struct i915_sched_attr *attr)
1733 {
1734 	/*
1735 	 * Let the backend know a new request has arrived that may need
1736 	 * to adjust the existing execution schedule due to a high priority
1737 	 * request - i.e. we may want to preempt the current request in order
1738 	 * to run a high priority dependency chain *before* we can execute this
1739 	 * request.
1740 	 *
1741 	 * This is called before the request is ready to run so that we can
1742 	 * decide whether to preempt the entire chain so that it is ready to
1743 	 * run at the earliest possible convenience.
1744 	 */
1745 	if (attr && rq->engine->schedule)
1746 		rq->engine->schedule(rq, attr);
1747 
1748 	local_bh_disable();
1749 	__i915_request_queue_bh(rq);
1750 	local_bh_enable(); /* kick tasklets */
1751 }
1752 
1753 void i915_request_add(struct i915_request *rq)
1754 {
1755 	struct intel_timeline * const tl = i915_request_timeline(rq);
1756 	struct i915_sched_attr attr = {};
1757 	struct i915_gem_context *ctx;
1758 
1759 	lockdep_assert_held(&tl->mutex);
1760 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1761 
1762 	trace_i915_request_add(rq);
1763 	__i915_request_commit(rq);
1764 
1765 	/* XXX placeholder for selftests */
1766 	rcu_read_lock();
1767 	ctx = rcu_dereference(rq->context->gem_context);
1768 	if (ctx)
1769 		attr = ctx->sched;
1770 	rcu_read_unlock();
1771 
1772 	__i915_request_queue(rq, &attr);
1773 
1774 	mutex_unlock(&tl->mutex);
1775 }
1776 
1777 static unsigned long local_clock_ns(unsigned int *cpu)
1778 {
1779 	unsigned long t;
1780 
1781 	/*
1782 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1783 	 * The result and subsequent calculations are also defined in the same
1784 	 * approximate microseconds units. The principal source of timing
1785 	 * error here is from the simple truncation.
1786 	 *
1787 	 * Note that local_clock() is only defined wrt to the current CPU;
1788 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1789 	 * blocking preemption for the entire busywait, we can detect the CPU
1790 	 * switch and use that as indicator of system load and a reason to
1791 	 * stop busywaiting, see busywait_stop().
1792 	 */
1793 	*cpu = get_cpu();
1794 	t = local_clock();
1795 	put_cpu();
1796 
1797 	return t;
1798 }
1799 
1800 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1801 {
1802 	unsigned int this_cpu;
1803 
1804 	if (time_after(local_clock_ns(&this_cpu), timeout))
1805 		return true;
1806 
1807 	return this_cpu != cpu;
1808 }
1809 
1810 static bool __i915_spin_request(struct i915_request * const rq, int state)
1811 {
1812 	unsigned long timeout_ns;
1813 	unsigned int cpu;
1814 
1815 	/*
1816 	 * Only wait for the request if we know it is likely to complete.
1817 	 *
1818 	 * We don't track the timestamps around requests, nor the average
1819 	 * request length, so we do not have a good indicator that this
1820 	 * request will complete within the timeout. What we do know is the
1821 	 * order in which requests are executed by the context and so we can
1822 	 * tell if the request has been started. If the request is not even
1823 	 * running yet, it is a fair assumption that it will not complete
1824 	 * within our relatively short timeout.
1825 	 */
1826 	if (!i915_request_is_running(rq))
1827 		return false;
1828 
1829 	/*
1830 	 * When waiting for high frequency requests, e.g. during synchronous
1831 	 * rendering split between the CPU and GPU, the finite amount of time
1832 	 * required to set up the irq and wait upon it limits the response
1833 	 * rate. By busywaiting on the request completion for a short while we
1834 	 * can service the high frequency waits as quick as possible. However,
1835 	 * if it is a slow request, we want to sleep as quickly as possible.
1836 	 * The tradeoff between waiting and sleeping is roughly the time it
1837 	 * takes to sleep on a request, on the order of a microsecond.
1838 	 */
1839 
1840 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1841 	timeout_ns += local_clock_ns(&cpu);
1842 	do {
1843 		if (dma_fence_is_signaled(&rq->fence))
1844 			return true;
1845 
1846 		if (signal_pending_state(state, current))
1847 			break;
1848 
1849 		if (busywait_stop(timeout_ns, cpu))
1850 			break;
1851 
1852 		cpu_relax();
1853 	} while (!need_resched());
1854 
1855 	return false;
1856 }
1857 
1858 struct request_wait {
1859 	struct dma_fence_cb cb;
1860 	struct task_struct *tsk;
1861 };
1862 
1863 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1864 {
1865 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1866 
1867 	wake_up_process(fetch_and_zero(&wait->tsk));
1868 }
1869 
1870 /**
1871  * i915_request_wait - wait until execution of request has finished
1872  * @rq: the request to wait upon
1873  * @flags: how to wait
1874  * @timeout: how long to wait in jiffies
1875  *
1876  * i915_request_wait() waits for the request to be completed, for a
1877  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1878  * unbounded wait).
1879  *
1880  * Returns the remaining time (in jiffies) if the request completed, which may
1881  * be zero or -ETIME if the request is unfinished after the timeout expires.
1882  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1883  * pending before the request completes.
1884  */
1885 long i915_request_wait(struct i915_request *rq,
1886 		       unsigned int flags,
1887 		       long timeout)
1888 {
1889 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1890 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1891 	struct request_wait wait;
1892 
1893 	might_sleep();
1894 	GEM_BUG_ON(timeout < 0);
1895 
1896 	if (dma_fence_is_signaled(&rq->fence))
1897 		return timeout;
1898 
1899 	if (!timeout)
1900 		return -ETIME;
1901 
1902 	trace_i915_request_wait_begin(rq, flags);
1903 
1904 	/*
1905 	 * We must never wait on the GPU while holding a lock as we
1906 	 * may need to perform a GPU reset. So while we don't need to
1907 	 * serialise wait/reset with an explicit lock, we do want
1908 	 * lockdep to detect potential dependency cycles.
1909 	 */
1910 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1911 
1912 	/*
1913 	 * Optimistic spin before touching IRQs.
1914 	 *
1915 	 * We may use a rather large value here to offset the penalty of
1916 	 * switching away from the active task. Frequently, the client will
1917 	 * wait upon an old swapbuffer to throttle itself to remain within a
1918 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1919 	 * then it should not be waiting long at all, and a sleep now will incur
1920 	 * extra scheduler latency in producing the next frame. To try to
1921 	 * avoid adding the cost of enabling/disabling the interrupt to the
1922 	 * short wait, we first spin to see if the request would have completed
1923 	 * in the time taken to setup the interrupt.
1924 	 *
1925 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1926 	 * scheduler latency of a context switch, ignoring the secondary
1927 	 * impacts from a context switch such as cache eviction.
1928 	 *
1929 	 * The scheme used for low-latency IO is called "hybrid interrupt
1930 	 * polling". The suggestion there is to sleep until just before you
1931 	 * expect to be woken by the device interrupt and then poll for its
1932 	 * completion. That requires having a good predictor for the request
1933 	 * duration, which we currently lack.
1934 	 */
1935 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1936 	    __i915_spin_request(rq, state))
1937 		goto out;
1938 
1939 	/*
1940 	 * This client is about to stall waiting for the GPU. In many cases
1941 	 * this is undesirable and limits the throughput of the system, as
1942 	 * many clients cannot continue processing user input/output whilst
1943 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1944 	 * to the GPU load and thus incurs additional latency for the client.
1945 	 * We can circumvent that by promoting the GPU frequency to maximum
1946 	 * before we sleep. This makes the GPU throttle up much more quickly
1947 	 * (good for benchmarks and user experience, e.g. window animations),
1948 	 * but at a cost of spending more power processing the workload
1949 	 * (bad for battery).
1950 	 */
1951 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1952 		intel_rps_boost(rq);
1953 
1954 	wait.tsk = current;
1955 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1956 		goto out;
1957 
1958 	/*
1959 	 * Flush the submission tasklet, but only if it may help this request.
1960 	 *
1961 	 * We sometimes experience some latency between the HW interrupts and
1962 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1963 	 * be due to lazy CS events), so lets run the tasklet manually if there
1964 	 * is a chance it may submit this request. If the request is not ready
1965 	 * to run, as it is waiting for other fences to be signaled, flushing
1966 	 * the tasklet is busy work without any advantage for this client.
1967 	 *
1968 	 * If the HW is being lazy, this is the last chance before we go to
1969 	 * sleep to catch any pending events. We will check periodically in
1970 	 * the heartbeat to flush the submission tasklets as a last resort
1971 	 * for unhappy HW.
1972 	 */
1973 	if (i915_request_is_ready(rq))
1974 		__intel_engine_flush_submission(rq->engine, false);
1975 
1976 	for (;;) {
1977 		set_current_state(state);
1978 
1979 		if (dma_fence_is_signaled(&rq->fence))
1980 			break;
1981 
1982 		if (signal_pending_state(state, current)) {
1983 			timeout = -ERESTARTSYS;
1984 			break;
1985 		}
1986 
1987 		if (!timeout) {
1988 			timeout = -ETIME;
1989 			break;
1990 		}
1991 
1992 		timeout = io_schedule_timeout(timeout);
1993 	}
1994 	__set_current_state(TASK_RUNNING);
1995 
1996 	if (READ_ONCE(wait.tsk))
1997 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1998 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1999 
2000 out:
2001 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2002 	trace_i915_request_wait_end(rq);
2003 	return timeout;
2004 }
2005 
2006 static int print_sched_attr(const struct i915_sched_attr *attr,
2007 			    char *buf, int x, int len)
2008 {
2009 	if (attr->priority == I915_PRIORITY_INVALID)
2010 		return x;
2011 
2012 	x += snprintf(buf + x, len - x,
2013 		      " prio=%d", attr->priority);
2014 
2015 	return x;
2016 }
2017 
2018 static char queue_status(const struct i915_request *rq)
2019 {
2020 	if (i915_request_is_active(rq))
2021 		return 'E';
2022 
2023 	if (i915_request_is_ready(rq))
2024 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2025 
2026 	return 'U';
2027 }
2028 
2029 static const char *run_status(const struct i915_request *rq)
2030 {
2031 	if (__i915_request_is_complete(rq))
2032 		return "!";
2033 
2034 	if (__i915_request_has_started(rq))
2035 		return "*";
2036 
2037 	if (!i915_sw_fence_signaled(&rq->semaphore))
2038 		return "&";
2039 
2040 	return "";
2041 }
2042 
2043 static const char *fence_status(const struct i915_request *rq)
2044 {
2045 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2046 		return "+";
2047 
2048 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2049 		return "-";
2050 
2051 	return "";
2052 }
2053 
2054 void i915_request_show(struct drm_printer *m,
2055 		       const struct i915_request *rq,
2056 		       const char *prefix,
2057 		       int indent)
2058 {
2059 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2060 	char buf[80] = "";
2061 	int x = 0;
2062 
2063 	/*
2064 	 * The prefix is used to show the queue status, for which we use
2065 	 * the following flags:
2066 	 *
2067 	 *  U [Unready]
2068 	 *    - initial status upon being submitted by the user
2069 	 *
2070 	 *    - the request is not ready for execution as it is waiting
2071 	 *      for external fences
2072 	 *
2073 	 *  R [Ready]
2074 	 *    - all fences the request was waiting on have been signaled,
2075 	 *      and the request is now ready for execution and will be
2076 	 *      in a backend queue
2077 	 *
2078 	 *    - a ready request may still need to wait on semaphores
2079 	 *      [internal fences]
2080 	 *
2081 	 *  V [Ready/virtual]
2082 	 *    - same as ready, but queued over multiple backends
2083 	 *
2084 	 *  E [Executing]
2085 	 *    - the request has been transferred from the backend queue and
2086 	 *      submitted for execution on HW
2087 	 *
2088 	 *    - a completed request may still be regarded as executing, its
2089 	 *      status may not be updated until it is retired and removed
2090 	 *      from the lists
2091 	 */
2092 
2093 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2094 
2095 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2096 		   prefix, indent, "                ",
2097 		   queue_status(rq),
2098 		   rq->fence.context, rq->fence.seqno,
2099 		   run_status(rq),
2100 		   fence_status(rq),
2101 		   buf,
2102 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2103 		   name);
2104 }
2105 
2106 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2107 #include "selftests/mock_request.c"
2108 #include "selftests/i915_request.c"
2109 #endif
2110 
2111 static void i915_global_request_shrink(void)
2112 {
2113 	kmem_cache_shrink(global.slab_execute_cbs);
2114 	kmem_cache_shrink(global.slab_requests);
2115 }
2116 
2117 static void i915_global_request_exit(void)
2118 {
2119 	kmem_cache_destroy(global.slab_execute_cbs);
2120 	kmem_cache_destroy(global.slab_requests);
2121 }
2122 
2123 static struct i915_global_request global = { {
2124 	.shrink = i915_global_request_shrink,
2125 	.exit = i915_global_request_exit,
2126 } };
2127 
2128 int __init i915_global_request_init(void)
2129 {
2130 	global.slab_requests =
2131 		kmem_cache_create("i915_request",
2132 				  sizeof(struct i915_request),
2133 				  __alignof__(struct i915_request),
2134 				  SLAB_HWCACHE_ALIGN |
2135 				  SLAB_RECLAIM_ACCOUNT |
2136 				  SLAB_TYPESAFE_BY_RCU,
2137 				  __i915_request_ctor);
2138 	if (!global.slab_requests)
2139 		return -ENOMEM;
2140 
2141 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
2142 					     SLAB_HWCACHE_ALIGN |
2143 					     SLAB_RECLAIM_ACCOUNT |
2144 					     SLAB_TYPESAFE_BY_RCU);
2145 	if (!global.slab_execute_cbs)
2146 		goto err_requests;
2147 
2148 	i915_global_register(&global.base);
2149 	return 0;
2150 
2151 err_requests:
2152 	kmem_cache_destroy(global.slab_requests);
2153 	return -ENOMEM;
2154 }
2155