1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include <drm/drm_print.h> 35 36 #include "gem/i915_gem_context.h" 37 #include "gt/intel_breadcrumbs.h" 38 #include "gt/intel_context.h" 39 #include "gt/intel_engine.h" 40 #include "gt/intel_engine_heartbeat.h" 41 #include "gt/intel_engine_regs.h" 42 #include "gt/intel_gpu_commands.h" 43 #include "gt/intel_reset.h" 44 #include "gt/intel_ring.h" 45 #include "gt/intel_rps.h" 46 47 #include "i915_active.h" 48 #include "i915_config.h" 49 #include "i915_deps.h" 50 #include "i915_driver.h" 51 #include "i915_drv.h" 52 #include "i915_trace.h" 53 54 struct execute_cb { 55 struct irq_work work; 56 struct i915_sw_fence *fence; 57 }; 58 59 static struct kmem_cache *slab_requests; 60 static struct kmem_cache *slab_execute_cbs; 61 62 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 63 { 64 return dev_name(to_request(fence)->i915->drm.dev); 65 } 66 67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 68 { 69 const struct i915_gem_context *ctx; 70 71 /* 72 * The timeline struct (as part of the ppgtt underneath a context) 73 * may be freed when the request is no longer in use by the GPU. 74 * We could extend the life of a context to beyond that of all 75 * fences, possibly keeping the hw resource around indefinitely, 76 * or we just give them a false name. Since 77 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 78 * lie seems justifiable. 79 */ 80 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 81 return "signaled"; 82 83 ctx = i915_request_gem_context(to_request(fence)); 84 if (!ctx) 85 return "[" DRIVER_NAME "]"; 86 87 return ctx->name; 88 } 89 90 static bool i915_fence_signaled(struct dma_fence *fence) 91 { 92 return i915_request_completed(to_request(fence)); 93 } 94 95 static bool i915_fence_enable_signaling(struct dma_fence *fence) 96 { 97 return i915_request_enable_breadcrumb(to_request(fence)); 98 } 99 100 static signed long i915_fence_wait(struct dma_fence *fence, 101 bool interruptible, 102 signed long timeout) 103 { 104 return i915_request_wait_timeout(to_request(fence), 105 interruptible | I915_WAIT_PRIORITY, 106 timeout); 107 } 108 109 struct kmem_cache *i915_request_slab_cache(void) 110 { 111 return slab_requests; 112 } 113 114 static void i915_fence_release(struct dma_fence *fence) 115 { 116 struct i915_request *rq = to_request(fence); 117 118 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 119 rq->guc_prio != GUC_PRIO_FINI); 120 121 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 122 if (rq->batch_res) { 123 i915_vma_resource_put(rq->batch_res); 124 rq->batch_res = NULL; 125 } 126 127 /* 128 * The request is put onto a RCU freelist (i.e. the address 129 * is immediately reused), mark the fences as being freed now. 130 * Otherwise the debugobjects for the fences are only marked as 131 * freed when the slab cache itself is freed, and so we would get 132 * caught trying to reuse dead objects. 133 */ 134 i915_sw_fence_fini(&rq->submit); 135 i915_sw_fence_fini(&rq->semaphore); 136 137 /* 138 * Keep one request on each engine for reserved use under mempressure. 139 * 140 * We do not hold a reference to the engine here and so have to be 141 * very careful in what rq->engine we poke. The virtual engine is 142 * referenced via the rq->context and we released that ref during 143 * i915_request_retire(), ergo we must not dereference a virtual 144 * engine here. Not that we would want to, as the only consumer of 145 * the reserved engine->request_pool is the power management parking, 146 * which must-not-fail, and that is only run on the physical engines. 147 * 148 * Since the request must have been executed to be have completed, 149 * we know that it will have been processed by the HW and will 150 * not be unsubmitted again, so rq->engine and rq->execution_mask 151 * at this point is stable. rq->execution_mask will be a single 152 * bit if the last and _only_ engine it could execution on was a 153 * physical engine, if it's multiple bits then it started on and 154 * could still be on a virtual engine. Thus if the mask is not a 155 * power-of-two we assume that rq->engine may still be a virtual 156 * engine and so a dangling invalid pointer that we cannot dereference 157 * 158 * For example, consider the flow of a bonded request through a virtual 159 * engine. The request is created with a wide engine mask (all engines 160 * that we might execute on). On processing the bond, the request mask 161 * is reduced to one or more engines. If the request is subsequently 162 * bound to a single engine, it will then be constrained to only 163 * execute on that engine and never returned to the virtual engine 164 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 165 * know that if the rq->execution_mask is a single bit, rq->engine 166 * can be a physical engine with the exact corresponding mask. 167 */ 168 if (is_power_of_2(rq->execution_mask) && 169 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 170 return; 171 172 kmem_cache_free(slab_requests, rq); 173 } 174 175 const struct dma_fence_ops i915_fence_ops = { 176 .get_driver_name = i915_fence_get_driver_name, 177 .get_timeline_name = i915_fence_get_timeline_name, 178 .enable_signaling = i915_fence_enable_signaling, 179 .signaled = i915_fence_signaled, 180 .wait = i915_fence_wait, 181 .release = i915_fence_release, 182 }; 183 184 static void irq_execute_cb(struct irq_work *wrk) 185 { 186 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 187 188 i915_sw_fence_complete(cb->fence); 189 kmem_cache_free(slab_execute_cbs, cb); 190 } 191 192 static __always_inline void 193 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 194 { 195 struct execute_cb *cb, *cn; 196 197 if (llist_empty(&rq->execute_cb)) 198 return; 199 200 llist_for_each_entry_safe(cb, cn, 201 llist_del_all(&rq->execute_cb), 202 work.node.llist) 203 fn(&cb->work); 204 } 205 206 static void __notify_execute_cb_irq(struct i915_request *rq) 207 { 208 __notify_execute_cb(rq, irq_work_queue); 209 } 210 211 static bool irq_work_imm(struct irq_work *wrk) 212 { 213 wrk->func(wrk); 214 return false; 215 } 216 217 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 218 { 219 __notify_execute_cb(rq, irq_work_imm); 220 } 221 222 static void __i915_request_fill(struct i915_request *rq, u8 val) 223 { 224 void *vaddr = rq->ring->vaddr; 225 u32 head; 226 227 head = rq->infix; 228 if (rq->postfix < head) { 229 memset(vaddr + head, val, rq->ring->size - head); 230 head = 0; 231 } 232 memset(vaddr + head, val, rq->postfix - head); 233 } 234 235 /** 236 * i915_request_active_engine 237 * @rq: request to inspect 238 * @active: pointer in which to return the active engine 239 * 240 * Fills the currently active engine to the @active pointer if the request 241 * is active and still not completed. 242 * 243 * Returns true if request was active or false otherwise. 244 */ 245 bool 246 i915_request_active_engine(struct i915_request *rq, 247 struct intel_engine_cs **active) 248 { 249 struct intel_engine_cs *engine, *locked; 250 bool ret = false; 251 252 /* 253 * Serialise with __i915_request_submit() so that it sees 254 * is-banned?, or we know the request is already inflight. 255 * 256 * Note that rq->engine is unstable, and so we double 257 * check that we have acquired the lock on the final engine. 258 */ 259 locked = READ_ONCE(rq->engine); 260 spin_lock_irq(&locked->sched_engine->lock); 261 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 262 spin_unlock(&locked->sched_engine->lock); 263 locked = engine; 264 spin_lock(&locked->sched_engine->lock); 265 } 266 267 if (i915_request_is_active(rq)) { 268 if (!__i915_request_is_complete(rq)) 269 *active = locked; 270 ret = true; 271 } 272 273 spin_unlock_irq(&locked->sched_engine->lock); 274 275 return ret; 276 } 277 278 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 279 { 280 struct i915_request *rq = 281 container_of(hrtimer, struct i915_request, watchdog.timer); 282 struct intel_gt *gt = rq->engine->gt; 283 284 if (!i915_request_completed(rq)) { 285 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 286 queue_work(gt->i915->unordered_wq, >->watchdog.work); 287 } else { 288 i915_request_put(rq); 289 } 290 291 return HRTIMER_NORESTART; 292 } 293 294 static void __rq_init_watchdog(struct i915_request *rq) 295 { 296 struct i915_request_watchdog *wdg = &rq->watchdog; 297 298 hrtimer_setup(&wdg->timer, __rq_watchdog_expired, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 299 } 300 301 static void __rq_arm_watchdog(struct i915_request *rq) 302 { 303 struct i915_request_watchdog *wdg = &rq->watchdog; 304 struct intel_context *ce = rq->context; 305 306 if (!ce->watchdog.timeout_us) 307 return; 308 309 i915_request_get(rq); 310 311 hrtimer_start_range_ns(&wdg->timer, 312 ns_to_ktime(ce->watchdog.timeout_us * 313 NSEC_PER_USEC), 314 NSEC_PER_MSEC, 315 HRTIMER_MODE_REL); 316 } 317 318 static void __rq_cancel_watchdog(struct i915_request *rq) 319 { 320 struct i915_request_watchdog *wdg = &rq->watchdog; 321 322 if (hrtimer_try_to_cancel(&wdg->timer) > 0) 323 i915_request_put(rq); 324 } 325 326 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 327 328 /** 329 * i915_request_free_capture_list - Free a capture list 330 * @capture: Pointer to the first list item or NULL 331 * 332 */ 333 void i915_request_free_capture_list(struct i915_capture_list *capture) 334 { 335 while (capture) { 336 struct i915_capture_list *next = capture->next; 337 338 i915_vma_resource_put(capture->vma_res); 339 kfree(capture); 340 capture = next; 341 } 342 } 343 344 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 345 346 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 347 348 #else 349 350 #define i915_request_free_capture_list(_a) do {} while (0) 351 352 #define assert_capture_list_is_null(_a) do {} while (0) 353 354 #define clear_capture_list(_rq) do {} while (0) 355 356 #endif 357 358 bool i915_request_retire(struct i915_request *rq) 359 { 360 if (!__i915_request_is_complete(rq)) 361 return false; 362 363 RQ_TRACE(rq, "\n"); 364 365 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 366 trace_i915_request_retire(rq); 367 i915_request_mark_complete(rq); 368 369 __rq_cancel_watchdog(rq); 370 371 /* 372 * We know the GPU must have read the request to have 373 * sent us the seqno + interrupt, so use the position 374 * of tail of the request to update the last known position 375 * of the GPU head. 376 * 377 * Note this requires that we are always called in request 378 * completion order. 379 */ 380 GEM_BUG_ON(!list_is_first(&rq->link, 381 &i915_request_timeline(rq)->requests)); 382 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 383 /* Poison before we release our space in the ring */ 384 __i915_request_fill(rq, POISON_FREE); 385 rq->ring->head = rq->postfix; 386 387 if (!i915_request_signaled(rq)) { 388 spin_lock_irq(&rq->lock); 389 dma_fence_signal_locked(&rq->fence); 390 spin_unlock_irq(&rq->lock); 391 } 392 393 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 394 intel_rps_dec_waiters(&rq->engine->gt->rps); 395 396 /* 397 * We only loosely track inflight requests across preemption, 398 * and so we may find ourselves attempting to retire a _completed_ 399 * request that we have removed from the HW and put back on a run 400 * queue. 401 * 402 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 403 * after removing the breadcrumb and signaling it, so that we do not 404 * inadvertently attach the breadcrumb to a completed request. 405 */ 406 rq->engine->remove_active_request(rq); 407 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 408 409 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 410 411 intel_context_exit(rq->context); 412 intel_context_unpin(rq->context); 413 414 i915_sched_node_fini(&rq->sched); 415 i915_request_put(rq); 416 417 return true; 418 } 419 420 void i915_request_retire_upto(struct i915_request *rq) 421 { 422 struct intel_timeline * const tl = i915_request_timeline(rq); 423 struct i915_request *tmp; 424 425 RQ_TRACE(rq, "\n"); 426 GEM_BUG_ON(!__i915_request_is_complete(rq)); 427 428 do { 429 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 430 GEM_BUG_ON(!i915_request_completed(tmp)); 431 } while (i915_request_retire(tmp) && tmp != rq); 432 } 433 434 static struct i915_request * const * 435 __engine_active(struct intel_engine_cs *engine) 436 { 437 return READ_ONCE(engine->execlists.active); 438 } 439 440 static bool __request_in_flight(const struct i915_request *signal) 441 { 442 struct i915_request * const *port, *rq; 443 bool inflight = false; 444 445 if (!i915_request_is_ready(signal)) 446 return false; 447 448 /* 449 * Even if we have unwound the request, it may still be on 450 * the GPU (preempt-to-busy). If that request is inside an 451 * unpreemptible critical section, it will not be removed. Some 452 * GPU functions may even be stuck waiting for the paired request 453 * (__await_execution) to be submitted and cannot be preempted 454 * until the bond is executing. 455 * 456 * As we know that there are always preemption points between 457 * requests, we know that only the currently executing request 458 * may be still active even though we have cleared the flag. 459 * However, we can't rely on our tracking of ELSP[0] to know 460 * which request is currently active and so maybe stuck, as 461 * the tracking maybe an event behind. Instead assume that 462 * if the context is still inflight, then it is still active 463 * even if the active flag has been cleared. 464 * 465 * To further complicate matters, if there a pending promotion, the HW 466 * may either perform a context switch to the second inflight execlists, 467 * or it may switch to the pending set of execlists. In the case of the 468 * latter, it may send the ACK and we process the event copying the 469 * pending[] over top of inflight[], _overwriting_ our *active. Since 470 * this implies the HW is arbitrating and not struck in *active, we do 471 * not worry about complete accuracy, but we do require no read/write 472 * tearing of the pointer [the read of the pointer must be valid, even 473 * as the array is being overwritten, for which we require the writes 474 * to avoid tearing.] 475 * 476 * Note that the read of *execlists->active may race with the promotion 477 * of execlists->pending[] to execlists->inflight[], overwriting 478 * the value at *execlists->active. This is fine. The promotion implies 479 * that we received an ACK from the HW, and so the context is not 480 * stuck -- if we do not see ourselves in *active, the inflight status 481 * is valid. If instead we see ourselves being copied into *active, 482 * we are inflight and may signal the callback. 483 */ 484 if (!intel_context_inflight(signal->context)) 485 return false; 486 487 rcu_read_lock(); 488 for (port = __engine_active(signal->engine); 489 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 490 port++) { 491 if (rq->context == signal->context) { 492 inflight = i915_seqno_passed(rq->fence.seqno, 493 signal->fence.seqno); 494 break; 495 } 496 } 497 rcu_read_unlock(); 498 499 return inflight; 500 } 501 502 static int 503 __await_execution(struct i915_request *rq, 504 struct i915_request *signal, 505 gfp_t gfp) 506 { 507 struct execute_cb *cb; 508 509 if (i915_request_is_active(signal)) 510 return 0; 511 512 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 513 if (!cb) 514 return -ENOMEM; 515 516 cb->fence = &rq->submit; 517 i915_sw_fence_await(cb->fence); 518 init_irq_work(&cb->work, irq_execute_cb); 519 520 /* 521 * Register the callback first, then see if the signaler is already 522 * active. This ensures that if we race with the 523 * __notify_execute_cb from i915_request_submit() and we are not 524 * included in that list, we get a second bite of the cherry and 525 * execute it ourselves. After this point, a future 526 * i915_request_submit() will notify us. 527 * 528 * In i915_request_retire() we set the ACTIVE bit on a completed 529 * request (then flush the execute_cb). So by registering the 530 * callback first, then checking the ACTIVE bit, we serialise with 531 * the completed/retired request. 532 */ 533 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 534 if (i915_request_is_active(signal) || 535 __request_in_flight(signal)) 536 i915_request_notify_execute_cb_imm(signal); 537 } 538 539 return 0; 540 } 541 542 static bool fatal_error(int error) 543 { 544 switch (error) { 545 case 0: /* not an error! */ 546 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 547 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 548 return false; 549 default: 550 return true; 551 } 552 } 553 554 void __i915_request_skip(struct i915_request *rq) 555 { 556 GEM_BUG_ON(!fatal_error(rq->fence.error)); 557 558 if (rq->infix == rq->postfix) 559 return; 560 561 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 562 563 /* 564 * As this request likely depends on state from the lost 565 * context, clear out all the user operations leaving the 566 * breadcrumb at the end (so we get the fence notifications). 567 */ 568 __i915_request_fill(rq, 0); 569 rq->infix = rq->postfix; 570 } 571 572 bool i915_request_set_error_once(struct i915_request *rq, int error) 573 { 574 int old; 575 576 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 577 578 if (i915_request_signaled(rq)) 579 return false; 580 581 old = READ_ONCE(rq->fence.error); 582 do { 583 if (fatal_error(old)) 584 return false; 585 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 586 587 return true; 588 } 589 590 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 591 { 592 if (__i915_request_is_complete(rq)) 593 return NULL; 594 595 GEM_BUG_ON(i915_request_signaled(rq)); 596 597 /* As soon as the request is completed, it may be retired */ 598 rq = i915_request_get(rq); 599 600 i915_request_set_error_once(rq, -EIO); 601 i915_request_mark_complete(rq); 602 603 return rq; 604 } 605 606 bool __i915_request_submit(struct i915_request *request) 607 { 608 struct intel_engine_cs *engine = request->engine; 609 bool result = false; 610 611 RQ_TRACE(request, "\n"); 612 613 GEM_BUG_ON(!irqs_disabled()); 614 lockdep_assert_held(&engine->sched_engine->lock); 615 616 /* 617 * With the advent of preempt-to-busy, we frequently encounter 618 * requests that we have unsubmitted from HW, but left running 619 * until the next ack and so have completed in the meantime. On 620 * resubmission of that completed request, we can skip 621 * updating the payload, and execlists can even skip submitting 622 * the request. 623 * 624 * We must remove the request from the caller's priority queue, 625 * and the caller must only call us when the request is in their 626 * priority queue, under the sched_engine->lock. This ensures that the 627 * request has *not* yet been retired and we can safely move 628 * the request into the engine->active.list where it will be 629 * dropped upon retiring. (Otherwise if resubmit a *retired* 630 * request, this would be a horrible use-after-free.) 631 */ 632 if (__i915_request_is_complete(request)) { 633 list_del_init(&request->sched.link); 634 goto active; 635 } 636 637 if (unlikely(!intel_context_is_schedulable(request->context))) 638 i915_request_set_error_once(request, -EIO); 639 640 if (unlikely(fatal_error(request->fence.error))) 641 __i915_request_skip(request); 642 643 /* 644 * Are we using semaphores when the gpu is already saturated? 645 * 646 * Using semaphores incurs a cost in having the GPU poll a 647 * memory location, busywaiting for it to change. The continual 648 * memory reads can have a noticeable impact on the rest of the 649 * system with the extra bus traffic, stalling the cpu as it too 650 * tries to access memory across the bus (perf stat -e bus-cycles). 651 * 652 * If we installed a semaphore on this request and we only submit 653 * the request after the signaler completed, that indicates the 654 * system is overloaded and using semaphores at this time only 655 * increases the amount of work we are doing. If so, we disable 656 * further use of semaphores until we are idle again, whence we 657 * optimistically try again. 658 */ 659 if (request->sched.semaphores && 660 i915_sw_fence_signaled(&request->semaphore)) 661 engine->saturated |= request->sched.semaphores; 662 663 engine->emit_fini_breadcrumb(request, 664 request->ring->vaddr + request->postfix); 665 666 trace_i915_request_execute(request); 667 if (engine->bump_serial) 668 engine->bump_serial(engine); 669 else 670 engine->serial++; 671 672 result = true; 673 674 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 675 engine->add_active_request(request); 676 active: 677 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 678 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 679 680 /* 681 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 682 * 683 * In the future, perhaps when we have an active time-slicing scheduler, 684 * it will be interesting to unsubmit parallel execution and remove 685 * busywaits from the GPU until their master is restarted. This is 686 * quite hairy, we have to carefully rollback the fence and do a 687 * preempt-to-idle cycle on the target engine, all the while the 688 * master execute_cb may refire. 689 */ 690 __notify_execute_cb_irq(request); 691 692 /* We may be recursing from the signal callback of another i915 fence */ 693 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 694 i915_request_enable_breadcrumb(request); 695 696 return result; 697 } 698 699 void i915_request_submit(struct i915_request *request) 700 { 701 struct intel_engine_cs *engine = request->engine; 702 unsigned long flags; 703 704 /* Will be called from irq-context when using foreign fences. */ 705 spin_lock_irqsave(&engine->sched_engine->lock, flags); 706 707 __i915_request_submit(request); 708 709 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 710 } 711 712 void __i915_request_unsubmit(struct i915_request *request) 713 { 714 struct intel_engine_cs *engine = request->engine; 715 716 /* 717 * Only unwind in reverse order, required so that the per-context list 718 * is kept in seqno/ring order. 719 */ 720 RQ_TRACE(request, "\n"); 721 722 GEM_BUG_ON(!irqs_disabled()); 723 lockdep_assert_held(&engine->sched_engine->lock); 724 725 /* 726 * Before we remove this breadcrumb from the signal list, we have 727 * to ensure that a concurrent dma_fence_enable_signaling() does not 728 * attach itself. We first mark the request as no longer active and 729 * make sure that is visible to other cores, and then remove the 730 * breadcrumb if attached. 731 */ 732 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 733 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 734 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 735 i915_request_cancel_breadcrumb(request); 736 737 /* We've already spun, don't charge on resubmitting. */ 738 if (request->sched.semaphores && __i915_request_has_started(request)) 739 request->sched.semaphores = 0; 740 741 /* 742 * We don't need to wake_up any waiters on request->execute, they 743 * will get woken by any other event or us re-adding this request 744 * to the engine timeline (__i915_request_submit()). The waiters 745 * should be quite adapt at finding that the request now has a new 746 * global_seqno to the one they went to sleep on. 747 */ 748 } 749 750 void i915_request_unsubmit(struct i915_request *request) 751 { 752 struct intel_engine_cs *engine = request->engine; 753 unsigned long flags; 754 755 /* Will be called from irq-context when using foreign fences. */ 756 spin_lock_irqsave(&engine->sched_engine->lock, flags); 757 758 __i915_request_unsubmit(request); 759 760 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 761 } 762 763 void i915_request_cancel(struct i915_request *rq, int error) 764 { 765 if (!i915_request_set_error_once(rq, error)) 766 return; 767 768 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 769 770 intel_context_cancel_request(rq->context, rq); 771 } 772 773 static int 774 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 775 { 776 struct i915_request *request = 777 container_of(fence, typeof(*request), submit); 778 779 switch (state) { 780 case FENCE_COMPLETE: 781 trace_i915_request_submit(request); 782 783 if (unlikely(fence->error)) 784 i915_request_set_error_once(request, fence->error); 785 else 786 __rq_arm_watchdog(request); 787 788 /* 789 * We need to serialize use of the submit_request() callback 790 * with its hotplugging performed during an emergency 791 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 792 * critical section in order to force i915_gem_set_wedged() to 793 * wait until the submit_request() is completed before 794 * proceeding. 795 */ 796 rcu_read_lock(); 797 request->engine->submit_request(request); 798 rcu_read_unlock(); 799 break; 800 801 case FENCE_FREE: 802 i915_request_put(request); 803 break; 804 } 805 806 return NOTIFY_DONE; 807 } 808 809 static int 810 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 811 { 812 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 813 814 switch (state) { 815 case FENCE_COMPLETE: 816 break; 817 818 case FENCE_FREE: 819 i915_request_put(rq); 820 break; 821 } 822 823 return NOTIFY_DONE; 824 } 825 826 static void retire_requests(struct intel_timeline *tl) 827 { 828 struct i915_request *rq, *rn; 829 830 list_for_each_entry_safe(rq, rn, &tl->requests, link) 831 if (!i915_request_retire(rq)) 832 break; 833 } 834 835 static noinline struct i915_request * 836 request_alloc_slow(struct intel_timeline *tl, 837 struct i915_request **rsvd, 838 gfp_t gfp) 839 { 840 struct i915_request *rq; 841 842 /* If we cannot wait, dip into our reserves */ 843 if (!gfpflags_allow_blocking(gfp)) { 844 rq = xchg(rsvd, NULL); 845 if (!rq) /* Use the normal failure path for one final WARN */ 846 goto out; 847 848 return rq; 849 } 850 851 if (list_empty(&tl->requests)) 852 goto out; 853 854 /* Move our oldest request to the slab-cache (if not in use!) */ 855 rq = list_first_entry(&tl->requests, typeof(*rq), link); 856 i915_request_retire(rq); 857 858 rq = kmem_cache_alloc(slab_requests, 859 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 860 if (rq) 861 return rq; 862 863 /* Ratelimit ourselves to prevent oom from malicious clients */ 864 rq = list_last_entry(&tl->requests, typeof(*rq), link); 865 cond_synchronize_rcu(rq->rcustate); 866 867 /* Retire our old requests in the hope that we free some */ 868 retire_requests(tl); 869 870 out: 871 return kmem_cache_alloc(slab_requests, gfp); 872 } 873 874 static void __i915_request_ctor(void *arg) 875 { 876 struct i915_request *rq = arg; 877 878 spin_lock_init(&rq->lock); 879 i915_sched_node_init(&rq->sched); 880 i915_sw_fence_init(&rq->submit, submit_notify); 881 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 882 883 clear_capture_list(rq); 884 rq->batch_res = NULL; 885 886 init_llist_head(&rq->execute_cb); 887 } 888 889 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 890 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 891 #else 892 #define clear_batch_ptr(_a) do {} while (0) 893 #endif 894 895 struct i915_request * 896 __i915_request_create(struct intel_context *ce, gfp_t gfp) 897 { 898 struct intel_timeline *tl = ce->timeline; 899 struct i915_request *rq; 900 u32 seqno; 901 int ret; 902 903 might_alloc(gfp); 904 905 /* Check that the caller provided an already pinned context */ 906 __intel_context_pin(ce); 907 908 /* 909 * Beware: Dragons be flying overhead. 910 * 911 * We use RCU to look up requests in flight. The lookups may 912 * race with the request being allocated from the slab freelist. 913 * That is the request we are writing to here, may be in the process 914 * of being read by __i915_active_request_get_rcu(). As such, 915 * we have to be very careful when overwriting the contents. During 916 * the RCU lookup, we change chase the request->engine pointer, 917 * read the request->global_seqno and increment the reference count. 918 * 919 * The reference count is incremented atomically. If it is zero, 920 * the lookup knows the request is unallocated and complete. Otherwise, 921 * it is either still in use, or has been reallocated and reset 922 * with dma_fence_init(). This increment is safe for release as we 923 * check that the request we have a reference to and matches the active 924 * request. 925 * 926 * Before we increment the refcount, we chase the request->engine 927 * pointer. We must not call kmem_cache_zalloc() or else we set 928 * that pointer to NULL and cause a crash during the lookup. If 929 * we see the request is completed (based on the value of the 930 * old engine and seqno), the lookup is complete and reports NULL. 931 * If we decide the request is not completed (new engine or seqno), 932 * then we grab a reference and double check that it is still the 933 * active request - which it won't be and restart the lookup. 934 * 935 * Do not use kmem_cache_zalloc() here! 936 */ 937 rq = kmem_cache_alloc(slab_requests, 938 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 939 if (unlikely(!rq)) { 940 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 941 if (!rq) { 942 ret = -ENOMEM; 943 goto err_unreserve; 944 } 945 } 946 947 rq->context = ce; 948 rq->engine = ce->engine; 949 rq->ring = ce->ring; 950 rq->execution_mask = ce->engine->mask; 951 rq->i915 = ce->engine->i915; 952 953 ret = intel_timeline_get_seqno(tl, rq, &seqno); 954 if (ret) 955 goto err_free; 956 957 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 958 tl->fence_context, seqno); 959 960 RCU_INIT_POINTER(rq->timeline, tl); 961 rq->hwsp_seqno = tl->hwsp_seqno; 962 GEM_BUG_ON(__i915_request_is_complete(rq)); 963 964 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 965 966 rq->guc_prio = GUC_PRIO_INIT; 967 968 /* We bump the ref for the fence chain */ 969 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 970 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 971 972 i915_sched_node_reinit(&rq->sched); 973 974 /* No zalloc, everything must be cleared after use */ 975 clear_batch_ptr(rq); 976 __rq_init_watchdog(rq); 977 assert_capture_list_is_null(rq); 978 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 979 GEM_BUG_ON(rq->batch_res); 980 981 /* 982 * Reserve space in the ring buffer for all the commands required to 983 * eventually emit this request. This is to guarantee that the 984 * i915_request_add() call can't fail. Note that the reserve may need 985 * to be redone if the request is not actually submitted straight 986 * away, e.g. because a GPU scheduler has deferred it. 987 * 988 * Note that due to how we add reserved_space to intel_ring_begin() 989 * we need to double our request to ensure that if we need to wrap 990 * around inside i915_request_add() there is sufficient space at 991 * the beginning of the ring as well. 992 */ 993 rq->reserved_space = 994 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 995 996 /* 997 * Record the position of the start of the request so that 998 * should we detect the updated seqno part-way through the 999 * GPU processing the request, we never over-estimate the 1000 * position of the head. 1001 */ 1002 rq->head = rq->ring->emit; 1003 1004 ret = rq->engine->request_alloc(rq); 1005 if (ret) 1006 goto err_unwind; 1007 1008 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 1009 1010 intel_context_mark_active(ce); 1011 list_add_tail_rcu(&rq->link, &tl->requests); 1012 1013 return rq; 1014 1015 err_unwind: 1016 ce->ring->emit = rq->head; 1017 1018 /* Make sure we didn't add ourselves to external state before freeing */ 1019 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1020 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1021 1022 err_free: 1023 kmem_cache_free(slab_requests, rq); 1024 err_unreserve: 1025 intel_context_unpin(ce); 1026 return ERR_PTR(ret); 1027 } 1028 1029 struct i915_request * 1030 i915_request_create(struct intel_context *ce) 1031 { 1032 struct i915_request *rq; 1033 struct intel_timeline *tl; 1034 1035 tl = intel_context_timeline_lock(ce); 1036 if (IS_ERR(tl)) 1037 return ERR_CAST(tl); 1038 1039 /* Move our oldest request to the slab-cache (if not in use!) */ 1040 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1041 if (!list_is_last(&rq->link, &tl->requests)) 1042 i915_request_retire(rq); 1043 1044 intel_context_enter(ce); 1045 rq = __i915_request_create(ce, GFP_KERNEL); 1046 intel_context_exit(ce); /* active reference transferred to request */ 1047 if (IS_ERR(rq)) 1048 goto err_unlock; 1049 1050 /* Check that we do not interrupt ourselves with a new request */ 1051 rq->cookie = lockdep_pin_lock(&tl->mutex); 1052 1053 return rq; 1054 1055 err_unlock: 1056 intel_context_timeline_unlock(tl); 1057 return rq; 1058 } 1059 1060 static int 1061 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1062 { 1063 struct dma_fence *fence; 1064 int err; 1065 1066 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1067 return 0; 1068 1069 if (i915_request_started(signal)) 1070 return 0; 1071 1072 /* 1073 * The caller holds a reference on @signal, but we do not serialise 1074 * against it being retired and removed from the lists. 1075 * 1076 * We do not hold a reference to the request before @signal, and 1077 * so must be very careful to ensure that it is not _recycled_ as 1078 * we follow the link backwards. 1079 */ 1080 fence = NULL; 1081 rcu_read_lock(); 1082 do { 1083 struct list_head *pos = READ_ONCE(signal->link.prev); 1084 struct i915_request *prev; 1085 1086 /* Confirm signal has not been retired, the link is valid */ 1087 if (unlikely(__i915_request_has_started(signal))) 1088 break; 1089 1090 /* Is signal the earliest request on its timeline? */ 1091 if (pos == &rcu_dereference(signal->timeline)->requests) 1092 break; 1093 1094 /* 1095 * Peek at the request before us in the timeline. That 1096 * request will only be valid before it is retired, so 1097 * after acquiring a reference to it, confirm that it is 1098 * still part of the signaler's timeline. 1099 */ 1100 prev = list_entry(pos, typeof(*prev), link); 1101 if (!i915_request_get_rcu(prev)) 1102 break; 1103 1104 /* After the strong barrier, confirm prev is still attached */ 1105 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1106 i915_request_put(prev); 1107 break; 1108 } 1109 1110 fence = &prev->fence; 1111 } while (0); 1112 rcu_read_unlock(); 1113 if (!fence) 1114 return 0; 1115 1116 err = 0; 1117 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1118 err = i915_sw_fence_await_dma_fence(&rq->submit, 1119 fence, 0, 1120 I915_FENCE_GFP); 1121 dma_fence_put(fence); 1122 1123 return err; 1124 } 1125 1126 static intel_engine_mask_t 1127 already_busywaiting(struct i915_request *rq) 1128 { 1129 /* 1130 * Polling a semaphore causes bus traffic, delaying other users of 1131 * both the GPU and CPU. We want to limit the impact on others, 1132 * while taking advantage of early submission to reduce GPU 1133 * latency. Therefore we restrict ourselves to not using more 1134 * than one semaphore from each source, and not using a semaphore 1135 * if we have detected the engine is saturated (i.e. would not be 1136 * submitted early and cause bus traffic reading an already passed 1137 * semaphore). 1138 * 1139 * See the are-we-too-late? check in __i915_request_submit(). 1140 */ 1141 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1142 } 1143 1144 static int 1145 __emit_semaphore_wait(struct i915_request *to, 1146 struct i915_request *from, 1147 u32 seqno) 1148 { 1149 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1150 u32 hwsp_offset; 1151 int len, err; 1152 u32 *cs; 1153 1154 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1155 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1156 1157 /* We need to pin the signaler's HWSP until we are finished reading. */ 1158 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1159 if (err) 1160 return err; 1161 1162 len = 4; 1163 if (has_token) 1164 len += 2; 1165 1166 cs = intel_ring_begin(to, len); 1167 if (IS_ERR(cs)) 1168 return PTR_ERR(cs); 1169 1170 /* 1171 * Using greater-than-or-equal here means we have to worry 1172 * about seqno wraparound. To side step that issue, we swap 1173 * the timeline HWSP upon wrapping, so that everyone listening 1174 * for the old (pre-wrap) values do not see the much smaller 1175 * (post-wrap) values than they were expecting (and so wait 1176 * forever). 1177 */ 1178 *cs++ = (MI_SEMAPHORE_WAIT | 1179 MI_SEMAPHORE_GLOBAL_GTT | 1180 MI_SEMAPHORE_POLL | 1181 MI_SEMAPHORE_SAD_GTE_SDD) + 1182 has_token; 1183 *cs++ = seqno; 1184 *cs++ = hwsp_offset; 1185 *cs++ = 0; 1186 if (has_token) { 1187 *cs++ = 0; 1188 *cs++ = MI_NOOP; 1189 } 1190 1191 intel_ring_advance(to, cs); 1192 return 0; 1193 } 1194 1195 static bool 1196 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1197 { 1198 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1199 } 1200 1201 static int 1202 emit_semaphore_wait(struct i915_request *to, 1203 struct i915_request *from, 1204 gfp_t gfp) 1205 { 1206 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1207 struct i915_sw_fence *wait = &to->submit; 1208 1209 if (!can_use_semaphore_wait(to, from)) 1210 goto await_fence; 1211 1212 if (!intel_context_use_semaphores(to->context)) 1213 goto await_fence; 1214 1215 if (i915_request_has_initial_breadcrumb(to)) 1216 goto await_fence; 1217 1218 /* 1219 * If this or its dependents are waiting on an external fence 1220 * that may fail catastrophically, then we want to avoid using 1221 * semaphores as they bypass the fence signaling metadata, and we 1222 * lose the fence->error propagation. 1223 */ 1224 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1225 goto await_fence; 1226 1227 /* Just emit the first semaphore we see as request space is limited. */ 1228 if (already_busywaiting(to) & mask) 1229 goto await_fence; 1230 1231 if (i915_request_await_start(to, from) < 0) 1232 goto await_fence; 1233 1234 /* Only submit our spinner after the signaler is running! */ 1235 if (__await_execution(to, from, gfp)) 1236 goto await_fence; 1237 1238 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1239 goto await_fence; 1240 1241 to->sched.semaphores |= mask; 1242 wait = &to->semaphore; 1243 1244 await_fence: 1245 return i915_sw_fence_await_dma_fence(wait, 1246 &from->fence, 0, 1247 I915_FENCE_GFP); 1248 } 1249 1250 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1251 struct dma_fence *fence) 1252 { 1253 return __intel_timeline_sync_is_later(tl, 1254 fence->context, 1255 fence->seqno - 1); 1256 } 1257 1258 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1259 const struct dma_fence *fence) 1260 { 1261 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1262 } 1263 1264 static int 1265 __i915_request_await_execution(struct i915_request *to, 1266 struct i915_request *from) 1267 { 1268 int err; 1269 1270 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1271 1272 /* Submit both requests at the same time */ 1273 err = __await_execution(to, from, I915_FENCE_GFP); 1274 if (err) 1275 return err; 1276 1277 /* Squash repeated depenendices to the same timelines */ 1278 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1279 &from->fence)) 1280 return 0; 1281 1282 /* 1283 * Wait until the start of this request. 1284 * 1285 * The execution cb fires when we submit the request to HW. But in 1286 * many cases this may be long before the request itself is ready to 1287 * run (consider that we submit 2 requests for the same context, where 1288 * the request of interest is behind an indefinite spinner). So we hook 1289 * up to both to reduce our queues and keep the execution lag minimised 1290 * in the worst case, though we hope that the await_start is elided. 1291 */ 1292 err = i915_request_await_start(to, from); 1293 if (err < 0) 1294 return err; 1295 1296 /* 1297 * Ensure both start together [after all semaphores in signal] 1298 * 1299 * Now that we are queued to the HW at roughly the same time (thanks 1300 * to the execute cb) and are ready to run at roughly the same time 1301 * (thanks to the await start), our signaler may still be indefinitely 1302 * delayed by waiting on a semaphore from a remote engine. If our 1303 * signaler depends on a semaphore, so indirectly do we, and we do not 1304 * want to start our payload until our signaler also starts theirs. 1305 * So we wait. 1306 * 1307 * However, there is also a second condition for which we need to wait 1308 * for the precise start of the signaler. Consider that the signaler 1309 * was submitted in a chain of requests following another context 1310 * (with just an ordinary intra-engine fence dependency between the 1311 * two). In this case the signaler is queued to HW, but not for 1312 * immediate execution, and so we must wait until it reaches the 1313 * active slot. 1314 */ 1315 if (can_use_semaphore_wait(to, from) && 1316 intel_engine_has_semaphores(to->engine) && 1317 !i915_request_has_initial_breadcrumb(to)) { 1318 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1319 if (err < 0) 1320 return err; 1321 } 1322 1323 /* Couple the dependency tree for PI on this exposed to->fence */ 1324 if (to->engine->sched_engine->schedule) { 1325 err = i915_sched_node_add_dependency(&to->sched, 1326 &from->sched, 1327 I915_DEPENDENCY_WEAK); 1328 if (err < 0) 1329 return err; 1330 } 1331 1332 return intel_timeline_sync_set_start(i915_request_timeline(to), 1333 &from->fence); 1334 } 1335 1336 static void mark_external(struct i915_request *rq) 1337 { 1338 /* 1339 * The downside of using semaphores is that we lose metadata passing 1340 * along the signaling chain. This is particularly nasty when we 1341 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1342 * fatal errors we want to scrub the request before it is executed, 1343 * which means that we cannot preload the request onto HW and have 1344 * it wait upon a semaphore. 1345 */ 1346 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1347 } 1348 1349 static int 1350 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1351 { 1352 mark_external(rq); 1353 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1354 i915_fence_context_timeout(rq->i915, 1355 fence->context), 1356 I915_FENCE_GFP); 1357 } 1358 1359 static int 1360 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1361 { 1362 struct dma_fence *iter; 1363 int err = 0; 1364 1365 if (!to_dma_fence_chain(fence)) 1366 return __i915_request_await_external(rq, fence); 1367 1368 dma_fence_chain_for_each(iter, fence) { 1369 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1370 1371 if (!dma_fence_is_i915(chain->fence)) { 1372 err = __i915_request_await_external(rq, iter); 1373 break; 1374 } 1375 1376 err = i915_request_await_dma_fence(rq, chain->fence); 1377 if (err < 0) 1378 break; 1379 } 1380 1381 dma_fence_put(iter); 1382 return err; 1383 } 1384 1385 static inline bool is_parallel_rq(struct i915_request *rq) 1386 { 1387 return intel_context_is_parallel(rq->context); 1388 } 1389 1390 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1391 { 1392 return intel_context_to_parent(rq->context); 1393 } 1394 1395 static bool is_same_parallel_context(struct i915_request *to, 1396 struct i915_request *from) 1397 { 1398 if (is_parallel_rq(to)) 1399 return request_to_parent(to) == request_to_parent(from); 1400 1401 return false; 1402 } 1403 1404 int 1405 i915_request_await_execution(struct i915_request *rq, 1406 struct dma_fence *fence) 1407 { 1408 struct dma_fence **child = &fence; 1409 unsigned int nchild = 1; 1410 int ret; 1411 1412 if (dma_fence_is_array(fence)) { 1413 struct dma_fence_array *array = to_dma_fence_array(fence); 1414 1415 /* XXX Error for signal-on-any fence arrays */ 1416 1417 child = array->fences; 1418 nchild = array->num_fences; 1419 GEM_BUG_ON(!nchild); 1420 } 1421 1422 do { 1423 fence = *child++; 1424 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1425 continue; 1426 1427 if (fence->context == rq->fence.context) 1428 continue; 1429 1430 /* 1431 * We don't squash repeated fence dependencies here as we 1432 * want to run our callback in all cases. 1433 */ 1434 1435 if (dma_fence_is_i915(fence)) { 1436 if (is_same_parallel_context(rq, to_request(fence))) 1437 continue; 1438 ret = __i915_request_await_execution(rq, 1439 to_request(fence)); 1440 } else { 1441 ret = i915_request_await_external(rq, fence); 1442 } 1443 if (ret < 0) 1444 return ret; 1445 } while (--nchild); 1446 1447 return 0; 1448 } 1449 1450 static int 1451 await_request_submit(struct i915_request *to, struct i915_request *from) 1452 { 1453 /* 1454 * If we are waiting on a virtual engine, then it may be 1455 * constrained to execute on a single engine *prior* to submission. 1456 * When it is submitted, it will be first submitted to the virtual 1457 * engine and then passed to the physical engine. We cannot allow 1458 * the waiter to be submitted immediately to the physical engine 1459 * as it may then bypass the virtual request. 1460 */ 1461 if (to->engine == READ_ONCE(from->engine)) 1462 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1463 &from->submit, 1464 I915_FENCE_GFP); 1465 else 1466 return __i915_request_await_execution(to, from); 1467 } 1468 1469 static int 1470 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1471 { 1472 int ret; 1473 1474 GEM_BUG_ON(to == from); 1475 GEM_BUG_ON(to->timeline == from->timeline); 1476 1477 if (i915_request_completed(from)) { 1478 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1479 return 0; 1480 } 1481 1482 if (to->engine->sched_engine->schedule) { 1483 ret = i915_sched_node_add_dependency(&to->sched, 1484 &from->sched, 1485 I915_DEPENDENCY_EXTERNAL); 1486 if (ret < 0) 1487 return ret; 1488 } 1489 1490 if (!intel_engine_uses_guc(to->engine) && 1491 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1492 ret = await_request_submit(to, from); 1493 else 1494 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1495 if (ret < 0) 1496 return ret; 1497 1498 return 0; 1499 } 1500 1501 int 1502 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1503 { 1504 struct dma_fence **child = &fence; 1505 unsigned int nchild = 1; 1506 int ret; 1507 1508 /* 1509 * Note that if the fence-array was created in signal-on-any mode, 1510 * we should *not* decompose it into its individual fences. However, 1511 * we don't currently store which mode the fence-array is operating 1512 * in. Fortunately, the only user of signal-on-any is private to 1513 * amdgpu and we should not see any incoming fence-array from 1514 * sync-file being in signal-on-any mode. 1515 */ 1516 if (dma_fence_is_array(fence)) { 1517 struct dma_fence_array *array = to_dma_fence_array(fence); 1518 1519 child = array->fences; 1520 nchild = array->num_fences; 1521 GEM_BUG_ON(!nchild); 1522 } 1523 1524 do { 1525 fence = *child++; 1526 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1527 continue; 1528 1529 /* 1530 * Requests on the same timeline are explicitly ordered, along 1531 * with their dependencies, by i915_request_add() which ensures 1532 * that requests are submitted in-order through each ring. 1533 */ 1534 if (fence->context == rq->fence.context) 1535 continue; 1536 1537 /* Squash repeated waits to the same timelines */ 1538 if (fence->context && 1539 intel_timeline_sync_is_later(i915_request_timeline(rq), 1540 fence)) 1541 continue; 1542 1543 if (dma_fence_is_i915(fence)) { 1544 if (is_same_parallel_context(rq, to_request(fence))) 1545 continue; 1546 ret = i915_request_await_request(rq, to_request(fence)); 1547 } else { 1548 ret = i915_request_await_external(rq, fence); 1549 } 1550 if (ret < 0) 1551 return ret; 1552 1553 /* Record the latest fence used against each timeline */ 1554 if (fence->context) 1555 intel_timeline_sync_set(i915_request_timeline(rq), 1556 fence); 1557 } while (--nchild); 1558 1559 return 0; 1560 } 1561 1562 /** 1563 * i915_request_await_deps - set this request to (async) wait upon a struct 1564 * i915_deps dma_fence collection 1565 * @rq: request we are wishing to use 1566 * @deps: The struct i915_deps containing the dependencies. 1567 * 1568 * Returns 0 if successful, negative error code on error. 1569 */ 1570 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1571 { 1572 int i, err; 1573 1574 for (i = 0; i < deps->num_deps; ++i) { 1575 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1576 if (err) 1577 return err; 1578 } 1579 1580 return 0; 1581 } 1582 1583 /** 1584 * i915_request_await_object - set this request to (async) wait upon a bo 1585 * @to: request we are wishing to use 1586 * @obj: object which may be in use on another ring. 1587 * @write: whether the wait is on behalf of a writer 1588 * 1589 * This code is meant to abstract object synchronization with the GPU. 1590 * Conceptually we serialise writes between engines inside the GPU. 1591 * We only allow one engine to write into a buffer at any time, but 1592 * multiple readers. To ensure each has a coherent view of memory, we must: 1593 * 1594 * - If there is an outstanding write request to the object, the new 1595 * request must wait for it to complete (either CPU or in hw, requests 1596 * on the same ring will be naturally ordered). 1597 * 1598 * - If we are a write request (pending_write_domain is set), the new 1599 * request must wait for outstanding read requests to complete. 1600 * 1601 * Returns 0 if successful, else propagates up the lower layer error. 1602 */ 1603 int 1604 i915_request_await_object(struct i915_request *to, 1605 struct drm_i915_gem_object *obj, 1606 bool write) 1607 { 1608 struct dma_resv_iter cursor; 1609 struct dma_fence *fence; 1610 int ret = 0; 1611 1612 dma_resv_for_each_fence(&cursor, obj->base.resv, 1613 dma_resv_usage_rw(write), fence) { 1614 ret = i915_request_await_dma_fence(to, fence); 1615 if (ret) 1616 break; 1617 } 1618 1619 return ret; 1620 } 1621 1622 static void i915_request_await_huc(struct i915_request *rq) 1623 { 1624 struct intel_huc *huc = &rq->context->engine->gt->uc.huc; 1625 1626 /* don't stall kernel submissions! */ 1627 if (!rcu_access_pointer(rq->context->gem_context)) 1628 return; 1629 1630 if (intel_huc_wait_required(huc)) 1631 i915_sw_fence_await_sw_fence(&rq->submit, 1632 &huc->delayed_load.fence, 1633 &rq->hucq); 1634 } 1635 1636 static struct i915_request * 1637 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1638 struct intel_timeline *timeline) 1639 { 1640 struct i915_request *prev; 1641 1642 GEM_BUG_ON(!is_parallel_rq(rq)); 1643 1644 prev = request_to_parent(rq)->parallel.last_rq; 1645 if (prev) { 1646 if (!__i915_request_is_complete(prev)) { 1647 i915_sw_fence_await_sw_fence(&rq->submit, 1648 &prev->submit, 1649 &rq->submitq); 1650 1651 if (rq->engine->sched_engine->schedule) 1652 __i915_sched_node_add_dependency(&rq->sched, 1653 &prev->sched, 1654 &rq->dep, 1655 0); 1656 } 1657 i915_request_put(prev); 1658 } 1659 1660 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1661 1662 /* 1663 * Users have to put a reference potentially got by 1664 * __i915_active_fence_set() to the returned request 1665 * when no longer needed 1666 */ 1667 return to_request(__i915_active_fence_set(&timeline->last_request, 1668 &rq->fence)); 1669 } 1670 1671 static struct i915_request * 1672 __i915_request_ensure_ordering(struct i915_request *rq, 1673 struct intel_timeline *timeline) 1674 { 1675 struct i915_request *prev; 1676 1677 GEM_BUG_ON(is_parallel_rq(rq)); 1678 1679 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1680 &rq->fence)); 1681 1682 if (prev && !__i915_request_is_complete(prev)) { 1683 bool uses_guc = intel_engine_uses_guc(rq->engine); 1684 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1685 rq->engine->mask); 1686 bool same_context = prev->context == rq->context; 1687 1688 /* 1689 * The requests are supposed to be kept in order. However, 1690 * we need to be wary in case the timeline->last_request 1691 * is used as a barrier for external modification to this 1692 * context. 1693 */ 1694 GEM_BUG_ON(same_context && 1695 i915_seqno_passed(prev->fence.seqno, 1696 rq->fence.seqno)); 1697 1698 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1699 i915_sw_fence_await_sw_fence(&rq->submit, 1700 &prev->submit, 1701 &rq->submitq); 1702 else 1703 __i915_sw_fence_await_dma_fence(&rq->submit, 1704 &prev->fence, 1705 &rq->dmaq); 1706 if (rq->engine->sched_engine->schedule) 1707 __i915_sched_node_add_dependency(&rq->sched, 1708 &prev->sched, 1709 &rq->dep, 1710 0); 1711 } 1712 1713 /* 1714 * Users have to put the reference to prev potentially got 1715 * by __i915_active_fence_set() when no longer needed 1716 */ 1717 return prev; 1718 } 1719 1720 static struct i915_request * 1721 __i915_request_add_to_timeline(struct i915_request *rq) 1722 { 1723 struct intel_timeline *timeline = i915_request_timeline(rq); 1724 struct i915_request *prev; 1725 1726 /* 1727 * Media workloads may require HuC, so stall them until HuC loading is 1728 * complete. Note that HuC not being loaded when a user submission 1729 * arrives can only happen when HuC is loaded via GSC and in that case 1730 * we still expect the window between us starting to accept submissions 1731 * and HuC loading completion to be small (a few hundred ms). 1732 */ 1733 if (rq->engine->class == VIDEO_DECODE_CLASS) 1734 i915_request_await_huc(rq); 1735 1736 /* 1737 * Dependency tracking and request ordering along the timeline 1738 * is special cased so that we can eliminate redundant ordering 1739 * operations while building the request (we know that the timeline 1740 * itself is ordered, and here we guarantee it). 1741 * 1742 * As we know we will need to emit tracking along the timeline, 1743 * we embed the hooks into our request struct -- at the cost of 1744 * having to have specialised no-allocation interfaces (which will 1745 * be beneficial elsewhere). 1746 * 1747 * A second benefit to open-coding i915_request_await_request is 1748 * that we can apply a slight variant of the rules specialised 1749 * for timelines that jump between engines (such as virtual engines). 1750 * If we consider the case of virtual engine, we must emit a dma-fence 1751 * to prevent scheduling of the second request until the first is 1752 * complete (to maximise our greedy late load balancing) and this 1753 * precludes optimising to use semaphores serialisation of a single 1754 * timeline across engines. 1755 * 1756 * We do not order parallel submission requests on the timeline as each 1757 * parallel submission context has its own timeline and the ordering 1758 * rules for parallel requests are that they must be submitted in the 1759 * order received from the execbuf IOCTL. So rather than using the 1760 * timeline we store a pointer to last request submitted in the 1761 * relationship in the gem context and insert a submission fence 1762 * between that request and request passed into this function or 1763 * alternatively we use completion fence if gem context has a single 1764 * timeline and this is the first submission of an execbuf IOCTL. 1765 */ 1766 if (likely(!is_parallel_rq(rq))) 1767 prev = __i915_request_ensure_ordering(rq, timeline); 1768 else 1769 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1770 if (prev) 1771 i915_request_put(prev); 1772 1773 /* 1774 * Make sure that no request gazumped us - if it was allocated after 1775 * our i915_request_alloc() and called __i915_request_add() before 1776 * us, the timeline will hold its seqno which is later than ours. 1777 */ 1778 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1779 1780 return prev; 1781 } 1782 1783 /* 1784 * NB: This function is not allowed to fail. Doing so would mean the the 1785 * request is not being tracked for completion but the work itself is 1786 * going to happen on the hardware. This would be a Bad Thing(tm). 1787 */ 1788 struct i915_request *__i915_request_commit(struct i915_request *rq) 1789 { 1790 struct intel_engine_cs *engine = rq->engine; 1791 struct intel_ring *ring = rq->ring; 1792 u32 *cs; 1793 1794 RQ_TRACE(rq, "\n"); 1795 1796 /* 1797 * To ensure that this call will not fail, space for its emissions 1798 * should already have been reserved in the ring buffer. Let the ring 1799 * know that it is time to use that space up. 1800 */ 1801 GEM_BUG_ON(rq->reserved_space > ring->space); 1802 rq->reserved_space = 0; 1803 rq->emitted_jiffies = jiffies; 1804 1805 /* 1806 * Record the position of the start of the breadcrumb so that 1807 * should we detect the updated seqno part-way through the 1808 * GPU processing the request, we never over-estimate the 1809 * position of the ring's HEAD. 1810 */ 1811 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1812 GEM_BUG_ON(IS_ERR(cs)); 1813 rq->postfix = intel_ring_offset(rq, cs); 1814 1815 return __i915_request_add_to_timeline(rq); 1816 } 1817 1818 void __i915_request_queue_bh(struct i915_request *rq) 1819 { 1820 i915_sw_fence_commit(&rq->semaphore); 1821 i915_sw_fence_commit(&rq->submit); 1822 } 1823 1824 void __i915_request_queue(struct i915_request *rq, 1825 const struct i915_sched_attr *attr) 1826 { 1827 /* 1828 * Let the backend know a new request has arrived that may need 1829 * to adjust the existing execution schedule due to a high priority 1830 * request - i.e. we may want to preempt the current request in order 1831 * to run a high priority dependency chain *before* we can execute this 1832 * request. 1833 * 1834 * This is called before the request is ready to run so that we can 1835 * decide whether to preempt the entire chain so that it is ready to 1836 * run at the earliest possible convenience. 1837 */ 1838 if (attr && rq->engine->sched_engine->schedule) 1839 rq->engine->sched_engine->schedule(rq, attr); 1840 1841 local_bh_disable(); 1842 __i915_request_queue_bh(rq); 1843 local_bh_enable(); /* kick tasklets */ 1844 } 1845 1846 void i915_request_add(struct i915_request *rq) 1847 { 1848 struct intel_timeline * const tl = i915_request_timeline(rq); 1849 struct i915_sched_attr attr = {}; 1850 struct i915_gem_context *ctx; 1851 1852 lockdep_assert_held(&tl->mutex); 1853 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1854 1855 trace_i915_request_add(rq); 1856 __i915_request_commit(rq); 1857 1858 /* XXX placeholder for selftests */ 1859 rcu_read_lock(); 1860 ctx = rcu_dereference(rq->context->gem_context); 1861 if (ctx) 1862 attr = ctx->sched; 1863 rcu_read_unlock(); 1864 1865 __i915_request_queue(rq, &attr); 1866 1867 mutex_unlock(&tl->mutex); 1868 } 1869 1870 static unsigned long local_clock_ns(unsigned int *cpu) 1871 { 1872 unsigned long t; 1873 1874 /* 1875 * Cheaply and approximately convert from nanoseconds to microseconds. 1876 * The result and subsequent calculations are also defined in the same 1877 * approximate microseconds units. The principal source of timing 1878 * error here is from the simple truncation. 1879 * 1880 * Note that local_clock() is only defined wrt to the current CPU; 1881 * the comparisons are no longer valid if we switch CPUs. Instead of 1882 * blocking preemption for the entire busywait, we can detect the CPU 1883 * switch and use that as indicator of system load and a reason to 1884 * stop busywaiting, see busywait_stop(). 1885 */ 1886 *cpu = get_cpu(); 1887 t = local_clock(); 1888 put_cpu(); 1889 1890 return t; 1891 } 1892 1893 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1894 { 1895 unsigned int this_cpu; 1896 1897 if (time_after(local_clock_ns(&this_cpu), timeout)) 1898 return true; 1899 1900 return this_cpu != cpu; 1901 } 1902 1903 static bool __i915_spin_request(struct i915_request * const rq, int state) 1904 { 1905 unsigned long timeout_ns; 1906 unsigned int cpu; 1907 1908 /* 1909 * Only wait for the request if we know it is likely to complete. 1910 * 1911 * We don't track the timestamps around requests, nor the average 1912 * request length, so we do not have a good indicator that this 1913 * request will complete within the timeout. What we do know is the 1914 * order in which requests are executed by the context and so we can 1915 * tell if the request has been started. If the request is not even 1916 * running yet, it is a fair assumption that it will not complete 1917 * within our relatively short timeout. 1918 */ 1919 if (!i915_request_is_running(rq)) 1920 return false; 1921 1922 /* 1923 * When waiting for high frequency requests, e.g. during synchronous 1924 * rendering split between the CPU and GPU, the finite amount of time 1925 * required to set up the irq and wait upon it limits the response 1926 * rate. By busywaiting on the request completion for a short while we 1927 * can service the high frequency waits as quick as possible. However, 1928 * if it is a slow request, we want to sleep as quickly as possible. 1929 * The tradeoff between waiting and sleeping is roughly the time it 1930 * takes to sleep on a request, on the order of a microsecond. 1931 */ 1932 1933 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1934 timeout_ns += local_clock_ns(&cpu); 1935 do { 1936 if (dma_fence_is_signaled(&rq->fence)) 1937 return true; 1938 1939 if (signal_pending_state(state, current)) 1940 break; 1941 1942 if (busywait_stop(timeout_ns, cpu)) 1943 break; 1944 1945 cpu_relax(); 1946 } while (!need_resched()); 1947 1948 return false; 1949 } 1950 1951 struct request_wait { 1952 struct dma_fence_cb cb; 1953 struct task_struct *tsk; 1954 }; 1955 1956 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1957 { 1958 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1959 1960 wake_up_process(fetch_and_zero(&wait->tsk)); 1961 } 1962 1963 /** 1964 * i915_request_wait_timeout - wait until execution of request has finished 1965 * @rq: the request to wait upon 1966 * @flags: how to wait 1967 * @timeout: how long to wait in jiffies 1968 * 1969 * i915_request_wait_timeout() waits for the request to be completed, for a 1970 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1971 * unbounded wait). 1972 * 1973 * Returns the remaining time (in jiffies) if the request completed, which may 1974 * be zero if the request is unfinished after the timeout expires. 1975 * If the timeout is 0, it will return 1 if the fence is signaled. 1976 * 1977 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1978 * pending before the request completes. 1979 * 1980 * NOTE: This function has the same wait semantics as dma-fence. 1981 */ 1982 long i915_request_wait_timeout(struct i915_request *rq, 1983 unsigned int flags, 1984 long timeout) 1985 { 1986 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1987 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1988 struct request_wait wait; 1989 1990 might_sleep(); 1991 GEM_BUG_ON(timeout < 0); 1992 1993 if (dma_fence_is_signaled(&rq->fence)) 1994 return timeout ?: 1; 1995 1996 if (!timeout) 1997 return -ETIME; 1998 1999 trace_i915_request_wait_begin(rq, flags); 2000 2001 /* 2002 * We must never wait on the GPU while holding a lock as we 2003 * may need to perform a GPU reset. So while we don't need to 2004 * serialise wait/reset with an explicit lock, we do want 2005 * lockdep to detect potential dependency cycles. 2006 */ 2007 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 2008 2009 /* 2010 * Optimistic spin before touching IRQs. 2011 * 2012 * We may use a rather large value here to offset the penalty of 2013 * switching away from the active task. Frequently, the client will 2014 * wait upon an old swapbuffer to throttle itself to remain within a 2015 * frame of the gpu. If the client is running in lockstep with the gpu, 2016 * then it should not be waiting long at all, and a sleep now will incur 2017 * extra scheduler latency in producing the next frame. To try to 2018 * avoid adding the cost of enabling/disabling the interrupt to the 2019 * short wait, we first spin to see if the request would have completed 2020 * in the time taken to setup the interrupt. 2021 * 2022 * We need upto 5us to enable the irq, and upto 20us to hide the 2023 * scheduler latency of a context switch, ignoring the secondary 2024 * impacts from a context switch such as cache eviction. 2025 * 2026 * The scheme used for low-latency IO is called "hybrid interrupt 2027 * polling". The suggestion there is to sleep until just before you 2028 * expect to be woken by the device interrupt and then poll for its 2029 * completion. That requires having a good predictor for the request 2030 * duration, which we currently lack. 2031 */ 2032 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 2033 __i915_spin_request(rq, state)) 2034 goto out; 2035 2036 /* 2037 * This client is about to stall waiting for the GPU. In many cases 2038 * this is undesirable and limits the throughput of the system, as 2039 * many clients cannot continue processing user input/output whilst 2040 * blocked. RPS autotuning may take tens of milliseconds to respond 2041 * to the GPU load and thus incurs additional latency for the client. 2042 * We can circumvent that by promoting the GPU frequency to maximum 2043 * before we sleep. This makes the GPU throttle up much more quickly 2044 * (good for benchmarks and user experience, e.g. window animations), 2045 * but at a cost of spending more power processing the workload 2046 * (bad for battery). 2047 */ 2048 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 2049 intel_rps_boost(rq); 2050 2051 wait.tsk = current; 2052 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2053 goto out; 2054 2055 /* 2056 * Flush the submission tasklet, but only if it may help this request. 2057 * 2058 * We sometimes experience some latency between the HW interrupts and 2059 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2060 * be due to lazy CS events), so lets run the tasklet manually if there 2061 * is a chance it may submit this request. If the request is not ready 2062 * to run, as it is waiting for other fences to be signaled, flushing 2063 * the tasklet is busy work without any advantage for this client. 2064 * 2065 * If the HW is being lazy, this is the last chance before we go to 2066 * sleep to catch any pending events. We will check periodically in 2067 * the heartbeat to flush the submission tasklets as a last resort 2068 * for unhappy HW. 2069 */ 2070 if (i915_request_is_ready(rq)) 2071 __intel_engine_flush_submission(rq->engine, false); 2072 2073 for (;;) { 2074 set_current_state(state); 2075 2076 if (dma_fence_is_signaled(&rq->fence)) 2077 break; 2078 2079 if (signal_pending_state(state, current)) { 2080 timeout = -ERESTARTSYS; 2081 break; 2082 } 2083 2084 if (!timeout) { 2085 timeout = -ETIME; 2086 break; 2087 } 2088 2089 timeout = io_schedule_timeout(timeout); 2090 } 2091 __set_current_state(TASK_RUNNING); 2092 2093 if (READ_ONCE(wait.tsk)) 2094 dma_fence_remove_callback(&rq->fence, &wait.cb); 2095 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2096 2097 out: 2098 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2099 trace_i915_request_wait_end(rq); 2100 return timeout; 2101 } 2102 2103 /** 2104 * i915_request_wait - wait until execution of request has finished 2105 * @rq: the request to wait upon 2106 * @flags: how to wait 2107 * @timeout: how long to wait in jiffies 2108 * 2109 * i915_request_wait() waits for the request to be completed, for a 2110 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2111 * unbounded wait). 2112 * 2113 * Returns the remaining time (in jiffies) if the request completed, which may 2114 * be zero or -ETIME if the request is unfinished after the timeout expires. 2115 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2116 * pending before the request completes. 2117 * 2118 * NOTE: This function behaves differently from dma-fence wait semantics for 2119 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2120 */ 2121 long i915_request_wait(struct i915_request *rq, 2122 unsigned int flags, 2123 long timeout) 2124 { 2125 long ret = i915_request_wait_timeout(rq, flags, timeout); 2126 2127 if (!ret) 2128 return -ETIME; 2129 2130 if (ret > 0 && !timeout) 2131 return 0; 2132 2133 return ret; 2134 } 2135 2136 static int print_sched_attr(const struct i915_sched_attr *attr, 2137 char *buf, int x, int len) 2138 { 2139 if (attr->priority == I915_PRIORITY_INVALID) 2140 return x; 2141 2142 x += snprintf(buf + x, len - x, 2143 " prio=%d", attr->priority); 2144 2145 return x; 2146 } 2147 2148 static char queue_status(const struct i915_request *rq) 2149 { 2150 if (i915_request_is_active(rq)) 2151 return 'E'; 2152 2153 if (i915_request_is_ready(rq)) 2154 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2155 2156 return 'U'; 2157 } 2158 2159 static const char *run_status(const struct i915_request *rq) 2160 { 2161 if (__i915_request_is_complete(rq)) 2162 return "!"; 2163 2164 if (__i915_request_has_started(rq)) 2165 return "*"; 2166 2167 if (!i915_sw_fence_signaled(&rq->semaphore)) 2168 return "&"; 2169 2170 return ""; 2171 } 2172 2173 static const char *fence_status(const struct i915_request *rq) 2174 { 2175 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2176 return "+"; 2177 2178 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2179 return "-"; 2180 2181 return ""; 2182 } 2183 2184 void i915_request_show(struct drm_printer *m, 2185 const struct i915_request *rq, 2186 const char *prefix, 2187 int indent) 2188 { 2189 const char __rcu *timeline; 2190 char buf[80] = ""; 2191 int x = 0; 2192 2193 /* 2194 * The prefix is used to show the queue status, for which we use 2195 * the following flags: 2196 * 2197 * U [Unready] 2198 * - initial status upon being submitted by the user 2199 * 2200 * - the request is not ready for execution as it is waiting 2201 * for external fences 2202 * 2203 * R [Ready] 2204 * - all fences the request was waiting on have been signaled, 2205 * and the request is now ready for execution and will be 2206 * in a backend queue 2207 * 2208 * - a ready request may still need to wait on semaphores 2209 * [internal fences] 2210 * 2211 * V [Ready/virtual] 2212 * - same as ready, but queued over multiple backends 2213 * 2214 * E [Executing] 2215 * - the request has been transferred from the backend queue and 2216 * submitted for execution on HW 2217 * 2218 * - a completed request may still be regarded as executing, its 2219 * status may not be updated until it is retired and removed 2220 * from the lists 2221 */ 2222 2223 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2224 2225 rcu_read_lock(); 2226 timeline = dma_fence_timeline_name((struct dma_fence *)&rq->fence); 2227 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2228 prefix, indent, " ", 2229 queue_status(rq), 2230 rq->fence.context, rq->fence.seqno, 2231 run_status(rq), 2232 fence_status(rq), 2233 buf, 2234 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2235 rcu_dereference(timeline)); 2236 rcu_read_unlock(); 2237 } 2238 2239 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2240 { 2241 u32 ring = ENGINE_READ(engine, RING_START); 2242 2243 return ring == i915_ggtt_offset(rq->ring->vma); 2244 } 2245 2246 static bool match_ring(struct i915_request *rq) 2247 { 2248 struct intel_engine_cs *engine; 2249 bool found; 2250 int i; 2251 2252 if (!intel_engine_is_virtual(rq->engine)) 2253 return engine_match_ring(rq->engine, rq); 2254 2255 found = false; 2256 i = 0; 2257 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2258 found = engine_match_ring(engine, rq); 2259 if (found) 2260 break; 2261 } 2262 2263 return found; 2264 } 2265 2266 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2267 { 2268 if (i915_request_completed(rq)) 2269 return I915_REQUEST_COMPLETE; 2270 2271 if (!i915_request_started(rq)) 2272 return I915_REQUEST_PENDING; 2273 2274 if (match_ring(rq)) 2275 return I915_REQUEST_ACTIVE; 2276 2277 return I915_REQUEST_QUEUED; 2278 } 2279 2280 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2281 #include "selftests/mock_request.c" 2282 #include "selftests/i915_request.c" 2283 #endif 2284 2285 void i915_request_module_exit(void) 2286 { 2287 kmem_cache_destroy(slab_execute_cbs); 2288 kmem_cache_destroy(slab_requests); 2289 } 2290 2291 int __init i915_request_module_init(void) 2292 { 2293 slab_requests = 2294 kmem_cache_create("i915_request", 2295 sizeof(struct i915_request), 2296 __alignof__(struct i915_request), 2297 SLAB_HWCACHE_ALIGN | 2298 SLAB_RECLAIM_ACCOUNT | 2299 SLAB_TYPESAFE_BY_RCU, 2300 __i915_request_ctor); 2301 if (!slab_requests) 2302 return -ENOMEM; 2303 2304 slab_execute_cbs = KMEM_CACHE(execute_cb, 2305 SLAB_HWCACHE_ALIGN | 2306 SLAB_RECLAIM_ACCOUNT | 2307 SLAB_TYPESAFE_BY_RCU); 2308 if (!slab_execute_cbs) 2309 goto err_requests; 2310 2311 return 0; 2312 2313 err_requests: 2314 kmem_cache_destroy(slab_requests); 2315 return -ENOMEM; 2316 } 2317