xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 74ba587f402d5501af2c85e50cf1e4044263b6ca)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/mm.h>
33 
34 #include <drm/drm_print.h>
35 
36 #include "gem/i915_gem_context.h"
37 #include "gt/intel_breadcrumbs.h"
38 #include "gt/intel_context.h"
39 #include "gt/intel_engine.h"
40 #include "gt/intel_engine_heartbeat.h"
41 #include "gt/intel_engine_regs.h"
42 #include "gt/intel_gpu_commands.h"
43 #include "gt/intel_reset.h"
44 #include "gt/intel_ring.h"
45 #include "gt/intel_rps.h"
46 
47 #include "i915_active.h"
48 #include "i915_config.h"
49 #include "i915_deps.h"
50 #include "i915_driver.h"
51 #include "i915_drv.h"
52 #include "i915_trace.h"
53 
54 struct execute_cb {
55 	struct irq_work work;
56 	struct i915_sw_fence *fence;
57 };
58 
59 static struct kmem_cache *slab_requests;
60 static struct kmem_cache *slab_execute_cbs;
61 
62 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
63 {
64 	return dev_name(to_request(fence)->i915->drm.dev);
65 }
66 
67 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
68 {
69 	const struct i915_gem_context *ctx;
70 
71 	/*
72 	 * The timeline struct (as part of the ppgtt underneath a context)
73 	 * may be freed when the request is no longer in use by the GPU.
74 	 * We could extend the life of a context to beyond that of all
75 	 * fences, possibly keeping the hw resource around indefinitely,
76 	 * or we just give them a false name. Since
77 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
78 	 * lie seems justifiable.
79 	 */
80 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
81 		return "signaled";
82 
83 	ctx = i915_request_gem_context(to_request(fence));
84 	if (!ctx)
85 		return "[" DRIVER_NAME "]";
86 
87 	return ctx->name;
88 }
89 
90 static bool i915_fence_signaled(struct dma_fence *fence)
91 {
92 	return i915_request_completed(to_request(fence));
93 }
94 
95 static bool i915_fence_enable_signaling(struct dma_fence *fence)
96 {
97 	return i915_request_enable_breadcrumb(to_request(fence));
98 }
99 
100 static signed long i915_fence_wait(struct dma_fence *fence,
101 				   bool interruptible,
102 				   signed long timeout)
103 {
104 	return i915_request_wait_timeout(to_request(fence),
105 					 interruptible | I915_WAIT_PRIORITY,
106 					 timeout);
107 }
108 
109 struct kmem_cache *i915_request_slab_cache(void)
110 {
111 	return slab_requests;
112 }
113 
114 static void i915_fence_release(struct dma_fence *fence)
115 {
116 	struct i915_request *rq = to_request(fence);
117 
118 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
119 		   rq->guc_prio != GUC_PRIO_FINI);
120 
121 	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
122 	if (rq->batch_res) {
123 		i915_vma_resource_put(rq->batch_res);
124 		rq->batch_res = NULL;
125 	}
126 
127 	/*
128 	 * The request is put onto a RCU freelist (i.e. the address
129 	 * is immediately reused), mark the fences as being freed now.
130 	 * Otherwise the debugobjects for the fences are only marked as
131 	 * freed when the slab cache itself is freed, and so we would get
132 	 * caught trying to reuse dead objects.
133 	 */
134 	i915_sw_fence_fini(&rq->submit);
135 	i915_sw_fence_fini(&rq->semaphore);
136 
137 	/*
138 	 * Keep one request on each engine for reserved use under mempressure.
139 	 *
140 	 * We do not hold a reference to the engine here and so have to be
141 	 * very careful in what rq->engine we poke. The virtual engine is
142 	 * referenced via the rq->context and we released that ref during
143 	 * i915_request_retire(), ergo we must not dereference a virtual
144 	 * engine here. Not that we would want to, as the only consumer of
145 	 * the reserved engine->request_pool is the power management parking,
146 	 * which must-not-fail, and that is only run on the physical engines.
147 	 *
148 	 * Since the request must have been executed to be have completed,
149 	 * we know that it will have been processed by the HW and will
150 	 * not be unsubmitted again, so rq->engine and rq->execution_mask
151 	 * at this point is stable. rq->execution_mask will be a single
152 	 * bit if the last and _only_ engine it could execution on was a
153 	 * physical engine, if it's multiple bits then it started on and
154 	 * could still be on a virtual engine. Thus if the mask is not a
155 	 * power-of-two we assume that rq->engine may still be a virtual
156 	 * engine and so a dangling invalid pointer that we cannot dereference
157 	 *
158 	 * For example, consider the flow of a bonded request through a virtual
159 	 * engine. The request is created with a wide engine mask (all engines
160 	 * that we might execute on). On processing the bond, the request mask
161 	 * is reduced to one or more engines. If the request is subsequently
162 	 * bound to a single engine, it will then be constrained to only
163 	 * execute on that engine and never returned to the virtual engine
164 	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
165 	 * know that if the rq->execution_mask is a single bit, rq->engine
166 	 * can be a physical engine with the exact corresponding mask.
167 	 */
168 	if (is_power_of_2(rq->execution_mask) &&
169 	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
170 		return;
171 
172 	kmem_cache_free(slab_requests, rq);
173 }
174 
175 const struct dma_fence_ops i915_fence_ops = {
176 	.get_driver_name = i915_fence_get_driver_name,
177 	.get_timeline_name = i915_fence_get_timeline_name,
178 	.enable_signaling = i915_fence_enable_signaling,
179 	.signaled = i915_fence_signaled,
180 	.wait = i915_fence_wait,
181 	.release = i915_fence_release,
182 };
183 
184 static void irq_execute_cb(struct irq_work *wrk)
185 {
186 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
187 
188 	i915_sw_fence_complete(cb->fence);
189 	kmem_cache_free(slab_execute_cbs, cb);
190 }
191 
192 static __always_inline void
193 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
194 {
195 	struct execute_cb *cb, *cn;
196 
197 	if (llist_empty(&rq->execute_cb))
198 		return;
199 
200 	llist_for_each_entry_safe(cb, cn,
201 				  llist_del_all(&rq->execute_cb),
202 				  work.node.llist)
203 		fn(&cb->work);
204 }
205 
206 static void __notify_execute_cb_irq(struct i915_request *rq)
207 {
208 	__notify_execute_cb(rq, irq_work_queue);
209 }
210 
211 static bool irq_work_imm(struct irq_work *wrk)
212 {
213 	wrk->func(wrk);
214 	return false;
215 }
216 
217 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
218 {
219 	__notify_execute_cb(rq, irq_work_imm);
220 }
221 
222 static void __i915_request_fill(struct i915_request *rq, u8 val)
223 {
224 	void *vaddr = rq->ring->vaddr;
225 	u32 head;
226 
227 	head = rq->infix;
228 	if (rq->postfix < head) {
229 		memset(vaddr + head, val, rq->ring->size - head);
230 		head = 0;
231 	}
232 	memset(vaddr + head, val, rq->postfix - head);
233 }
234 
235 /**
236  * i915_request_active_engine
237  * @rq: request to inspect
238  * @active: pointer in which to return the active engine
239  *
240  * Fills the currently active engine to the @active pointer if the request
241  * is active and still not completed.
242  *
243  * Returns true if request was active or false otherwise.
244  */
245 bool
246 i915_request_active_engine(struct i915_request *rq,
247 			   struct intel_engine_cs **active)
248 {
249 	struct intel_engine_cs *engine, *locked;
250 	bool ret = false;
251 
252 	/*
253 	 * Serialise with __i915_request_submit() so that it sees
254 	 * is-banned?, or we know the request is already inflight.
255 	 *
256 	 * Note that rq->engine is unstable, and so we double
257 	 * check that we have acquired the lock on the final engine.
258 	 */
259 	locked = READ_ONCE(rq->engine);
260 	spin_lock_irq(&locked->sched_engine->lock);
261 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
262 		spin_unlock(&locked->sched_engine->lock);
263 		locked = engine;
264 		spin_lock(&locked->sched_engine->lock);
265 	}
266 
267 	if (i915_request_is_active(rq)) {
268 		if (!__i915_request_is_complete(rq))
269 			*active = locked;
270 		ret = true;
271 	}
272 
273 	spin_unlock_irq(&locked->sched_engine->lock);
274 
275 	return ret;
276 }
277 
278 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
279 {
280 	struct i915_request *rq =
281 		container_of(hrtimer, struct i915_request, watchdog.timer);
282 	struct intel_gt *gt = rq->engine->gt;
283 
284 	if (!i915_request_completed(rq)) {
285 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
286 			queue_work(gt->i915->unordered_wq, &gt->watchdog.work);
287 	} else {
288 		i915_request_put(rq);
289 	}
290 
291 	return HRTIMER_NORESTART;
292 }
293 
294 static void __rq_init_watchdog(struct i915_request *rq)
295 {
296 	struct i915_request_watchdog *wdg = &rq->watchdog;
297 
298 	hrtimer_setup(&wdg->timer, __rq_watchdog_expired, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
299 }
300 
301 static void __rq_arm_watchdog(struct i915_request *rq)
302 {
303 	struct i915_request_watchdog *wdg = &rq->watchdog;
304 	struct intel_context *ce = rq->context;
305 
306 	if (!ce->watchdog.timeout_us)
307 		return;
308 
309 	i915_request_get(rq);
310 
311 	hrtimer_start_range_ns(&wdg->timer,
312 			       ns_to_ktime(ce->watchdog.timeout_us *
313 					   NSEC_PER_USEC),
314 			       NSEC_PER_MSEC,
315 			       HRTIMER_MODE_REL);
316 }
317 
318 static void __rq_cancel_watchdog(struct i915_request *rq)
319 {
320 	struct i915_request_watchdog *wdg = &rq->watchdog;
321 
322 	if (hrtimer_try_to_cancel(&wdg->timer) > 0)
323 		i915_request_put(rq);
324 }
325 
326 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
327 
328 /**
329  * i915_request_free_capture_list - Free a capture list
330  * @capture: Pointer to the first list item or NULL
331  *
332  */
333 void i915_request_free_capture_list(struct i915_capture_list *capture)
334 {
335 	while (capture) {
336 		struct i915_capture_list *next = capture->next;
337 
338 		i915_vma_resource_put(capture->vma_res);
339 		kfree(capture);
340 		capture = next;
341 	}
342 }
343 
344 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
345 
346 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
347 
348 #else
349 
350 #define i915_request_free_capture_list(_a) do {} while (0)
351 
352 #define assert_capture_list_is_null(_a) do {} while (0)
353 
354 #define clear_capture_list(_rq) do {} while (0)
355 
356 #endif
357 
358 bool i915_request_retire(struct i915_request *rq)
359 {
360 	if (!__i915_request_is_complete(rq))
361 		return false;
362 
363 	RQ_TRACE(rq, "\n");
364 
365 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
366 	trace_i915_request_retire(rq);
367 	i915_request_mark_complete(rq);
368 
369 	__rq_cancel_watchdog(rq);
370 
371 	/*
372 	 * We know the GPU must have read the request to have
373 	 * sent us the seqno + interrupt, so use the position
374 	 * of tail of the request to update the last known position
375 	 * of the GPU head.
376 	 *
377 	 * Note this requires that we are always called in request
378 	 * completion order.
379 	 */
380 	GEM_BUG_ON(!list_is_first(&rq->link,
381 				  &i915_request_timeline(rq)->requests));
382 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
383 		/* Poison before we release our space in the ring */
384 		__i915_request_fill(rq, POISON_FREE);
385 	rq->ring->head = rq->postfix;
386 
387 	if (!i915_request_signaled(rq)) {
388 		spin_lock_irq(&rq->lock);
389 		dma_fence_signal_locked(&rq->fence);
390 		spin_unlock_irq(&rq->lock);
391 	}
392 
393 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
394 		intel_rps_dec_waiters(&rq->engine->gt->rps);
395 
396 	/*
397 	 * We only loosely track inflight requests across preemption,
398 	 * and so we may find ourselves attempting to retire a _completed_
399 	 * request that we have removed from the HW and put back on a run
400 	 * queue.
401 	 *
402 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
403 	 * after removing the breadcrumb and signaling it, so that we do not
404 	 * inadvertently attach the breadcrumb to a completed request.
405 	 */
406 	rq->engine->remove_active_request(rq);
407 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
408 
409 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
410 
411 	intel_context_exit(rq->context);
412 	intel_context_unpin(rq->context);
413 
414 	i915_sched_node_fini(&rq->sched);
415 	i915_request_put(rq);
416 
417 	return true;
418 }
419 
420 void i915_request_retire_upto(struct i915_request *rq)
421 {
422 	struct intel_timeline * const tl = i915_request_timeline(rq);
423 	struct i915_request *tmp;
424 
425 	RQ_TRACE(rq, "\n");
426 	GEM_BUG_ON(!__i915_request_is_complete(rq));
427 
428 	do {
429 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
430 		GEM_BUG_ON(!i915_request_completed(tmp));
431 	} while (i915_request_retire(tmp) && tmp != rq);
432 }
433 
434 static struct i915_request * const *
435 __engine_active(struct intel_engine_cs *engine)
436 {
437 	return READ_ONCE(engine->execlists.active);
438 }
439 
440 static bool __request_in_flight(const struct i915_request *signal)
441 {
442 	struct i915_request * const *port, *rq;
443 	bool inflight = false;
444 
445 	if (!i915_request_is_ready(signal))
446 		return false;
447 
448 	/*
449 	 * Even if we have unwound the request, it may still be on
450 	 * the GPU (preempt-to-busy). If that request is inside an
451 	 * unpreemptible critical section, it will not be removed. Some
452 	 * GPU functions may even be stuck waiting for the paired request
453 	 * (__await_execution) to be submitted and cannot be preempted
454 	 * until the bond is executing.
455 	 *
456 	 * As we know that there are always preemption points between
457 	 * requests, we know that only the currently executing request
458 	 * may be still active even though we have cleared the flag.
459 	 * However, we can't rely on our tracking of ELSP[0] to know
460 	 * which request is currently active and so maybe stuck, as
461 	 * the tracking maybe an event behind. Instead assume that
462 	 * if the context is still inflight, then it is still active
463 	 * even if the active flag has been cleared.
464 	 *
465 	 * To further complicate matters, if there a pending promotion, the HW
466 	 * may either perform a context switch to the second inflight execlists,
467 	 * or it may switch to the pending set of execlists. In the case of the
468 	 * latter, it may send the ACK and we process the event copying the
469 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
470 	 * this implies the HW is arbitrating and not struck in *active, we do
471 	 * not worry about complete accuracy, but we do require no read/write
472 	 * tearing of the pointer [the read of the pointer must be valid, even
473 	 * as the array is being overwritten, for which we require the writes
474 	 * to avoid tearing.]
475 	 *
476 	 * Note that the read of *execlists->active may race with the promotion
477 	 * of execlists->pending[] to execlists->inflight[], overwriting
478 	 * the value at *execlists->active. This is fine. The promotion implies
479 	 * that we received an ACK from the HW, and so the context is not
480 	 * stuck -- if we do not see ourselves in *active, the inflight status
481 	 * is valid. If instead we see ourselves being copied into *active,
482 	 * we are inflight and may signal the callback.
483 	 */
484 	if (!intel_context_inflight(signal->context))
485 		return false;
486 
487 	rcu_read_lock();
488 	for (port = __engine_active(signal->engine);
489 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
490 	     port++) {
491 		if (rq->context == signal->context) {
492 			inflight = i915_seqno_passed(rq->fence.seqno,
493 						     signal->fence.seqno);
494 			break;
495 		}
496 	}
497 	rcu_read_unlock();
498 
499 	return inflight;
500 }
501 
502 static int
503 __await_execution(struct i915_request *rq,
504 		  struct i915_request *signal,
505 		  gfp_t gfp)
506 {
507 	struct execute_cb *cb;
508 
509 	if (i915_request_is_active(signal))
510 		return 0;
511 
512 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
513 	if (!cb)
514 		return -ENOMEM;
515 
516 	cb->fence = &rq->submit;
517 	i915_sw_fence_await(cb->fence);
518 	init_irq_work(&cb->work, irq_execute_cb);
519 
520 	/*
521 	 * Register the callback first, then see if the signaler is already
522 	 * active. This ensures that if we race with the
523 	 * __notify_execute_cb from i915_request_submit() and we are not
524 	 * included in that list, we get a second bite of the cherry and
525 	 * execute it ourselves. After this point, a future
526 	 * i915_request_submit() will notify us.
527 	 *
528 	 * In i915_request_retire() we set the ACTIVE bit on a completed
529 	 * request (then flush the execute_cb). So by registering the
530 	 * callback first, then checking the ACTIVE bit, we serialise with
531 	 * the completed/retired request.
532 	 */
533 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
534 		if (i915_request_is_active(signal) ||
535 		    __request_in_flight(signal))
536 			i915_request_notify_execute_cb_imm(signal);
537 	}
538 
539 	return 0;
540 }
541 
542 static bool fatal_error(int error)
543 {
544 	switch (error) {
545 	case 0: /* not an error! */
546 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
547 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
548 		return false;
549 	default:
550 		return true;
551 	}
552 }
553 
554 void __i915_request_skip(struct i915_request *rq)
555 {
556 	GEM_BUG_ON(!fatal_error(rq->fence.error));
557 
558 	if (rq->infix == rq->postfix)
559 		return;
560 
561 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
562 
563 	/*
564 	 * As this request likely depends on state from the lost
565 	 * context, clear out all the user operations leaving the
566 	 * breadcrumb at the end (so we get the fence notifications).
567 	 */
568 	__i915_request_fill(rq, 0);
569 	rq->infix = rq->postfix;
570 }
571 
572 bool i915_request_set_error_once(struct i915_request *rq, int error)
573 {
574 	int old;
575 
576 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
577 
578 	if (i915_request_signaled(rq))
579 		return false;
580 
581 	old = READ_ONCE(rq->fence.error);
582 	do {
583 		if (fatal_error(old))
584 			return false;
585 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
586 
587 	return true;
588 }
589 
590 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
591 {
592 	if (__i915_request_is_complete(rq))
593 		return NULL;
594 
595 	GEM_BUG_ON(i915_request_signaled(rq));
596 
597 	/* As soon as the request is completed, it may be retired */
598 	rq = i915_request_get(rq);
599 
600 	i915_request_set_error_once(rq, -EIO);
601 	i915_request_mark_complete(rq);
602 
603 	return rq;
604 }
605 
606 bool __i915_request_submit(struct i915_request *request)
607 {
608 	struct intel_engine_cs *engine = request->engine;
609 	bool result = false;
610 
611 	RQ_TRACE(request, "\n");
612 
613 	GEM_BUG_ON(!irqs_disabled());
614 	lockdep_assert_held(&engine->sched_engine->lock);
615 
616 	/*
617 	 * With the advent of preempt-to-busy, we frequently encounter
618 	 * requests that we have unsubmitted from HW, but left running
619 	 * until the next ack and so have completed in the meantime. On
620 	 * resubmission of that completed request, we can skip
621 	 * updating the payload, and execlists can even skip submitting
622 	 * the request.
623 	 *
624 	 * We must remove the request from the caller's priority queue,
625 	 * and the caller must only call us when the request is in their
626 	 * priority queue, under the sched_engine->lock. This ensures that the
627 	 * request has *not* yet been retired and we can safely move
628 	 * the request into the engine->active.list where it will be
629 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
630 	 * request, this would be a horrible use-after-free.)
631 	 */
632 	if (__i915_request_is_complete(request)) {
633 		list_del_init(&request->sched.link);
634 		goto active;
635 	}
636 
637 	if (unlikely(!intel_context_is_schedulable(request->context)))
638 		i915_request_set_error_once(request, -EIO);
639 
640 	if (unlikely(fatal_error(request->fence.error)))
641 		__i915_request_skip(request);
642 
643 	/*
644 	 * Are we using semaphores when the gpu is already saturated?
645 	 *
646 	 * Using semaphores incurs a cost in having the GPU poll a
647 	 * memory location, busywaiting for it to change. The continual
648 	 * memory reads can have a noticeable impact on the rest of the
649 	 * system with the extra bus traffic, stalling the cpu as it too
650 	 * tries to access memory across the bus (perf stat -e bus-cycles).
651 	 *
652 	 * If we installed a semaphore on this request and we only submit
653 	 * the request after the signaler completed, that indicates the
654 	 * system is overloaded and using semaphores at this time only
655 	 * increases the amount of work we are doing. If so, we disable
656 	 * further use of semaphores until we are idle again, whence we
657 	 * optimistically try again.
658 	 */
659 	if (request->sched.semaphores &&
660 	    i915_sw_fence_signaled(&request->semaphore))
661 		engine->saturated |= request->sched.semaphores;
662 
663 	engine->emit_fini_breadcrumb(request,
664 				     request->ring->vaddr + request->postfix);
665 
666 	trace_i915_request_execute(request);
667 	if (engine->bump_serial)
668 		engine->bump_serial(engine);
669 	else
670 		engine->serial++;
671 
672 	result = true;
673 
674 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
675 	engine->add_active_request(request);
676 active:
677 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
678 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
679 
680 	/*
681 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
682 	 *
683 	 * In the future, perhaps when we have an active time-slicing scheduler,
684 	 * it will be interesting to unsubmit parallel execution and remove
685 	 * busywaits from the GPU until their master is restarted. This is
686 	 * quite hairy, we have to carefully rollback the fence and do a
687 	 * preempt-to-idle cycle on the target engine, all the while the
688 	 * master execute_cb may refire.
689 	 */
690 	__notify_execute_cb_irq(request);
691 
692 	/* We may be recursing from the signal callback of another i915 fence */
693 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
694 		i915_request_enable_breadcrumb(request);
695 
696 	return result;
697 }
698 
699 void i915_request_submit(struct i915_request *request)
700 {
701 	struct intel_engine_cs *engine = request->engine;
702 	unsigned long flags;
703 
704 	/* Will be called from irq-context when using foreign fences. */
705 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
706 
707 	__i915_request_submit(request);
708 
709 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
710 }
711 
712 void __i915_request_unsubmit(struct i915_request *request)
713 {
714 	struct intel_engine_cs *engine = request->engine;
715 
716 	/*
717 	 * Only unwind in reverse order, required so that the per-context list
718 	 * is kept in seqno/ring order.
719 	 */
720 	RQ_TRACE(request, "\n");
721 
722 	GEM_BUG_ON(!irqs_disabled());
723 	lockdep_assert_held(&engine->sched_engine->lock);
724 
725 	/*
726 	 * Before we remove this breadcrumb from the signal list, we have
727 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
728 	 * attach itself. We first mark the request as no longer active and
729 	 * make sure that is visible to other cores, and then remove the
730 	 * breadcrumb if attached.
731 	 */
732 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
733 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
734 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
735 		i915_request_cancel_breadcrumb(request);
736 
737 	/* We've already spun, don't charge on resubmitting. */
738 	if (request->sched.semaphores && __i915_request_has_started(request))
739 		request->sched.semaphores = 0;
740 
741 	/*
742 	 * We don't need to wake_up any waiters on request->execute, they
743 	 * will get woken by any other event or us re-adding this request
744 	 * to the engine timeline (__i915_request_submit()). The waiters
745 	 * should be quite adapt at finding that the request now has a new
746 	 * global_seqno to the one they went to sleep on.
747 	 */
748 }
749 
750 void i915_request_unsubmit(struct i915_request *request)
751 {
752 	struct intel_engine_cs *engine = request->engine;
753 	unsigned long flags;
754 
755 	/* Will be called from irq-context when using foreign fences. */
756 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
757 
758 	__i915_request_unsubmit(request);
759 
760 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
761 }
762 
763 void i915_request_cancel(struct i915_request *rq, int error)
764 {
765 	if (!i915_request_set_error_once(rq, error))
766 		return;
767 
768 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
769 
770 	intel_context_cancel_request(rq->context, rq);
771 }
772 
773 static int
774 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
775 {
776 	struct i915_request *request =
777 		container_of(fence, typeof(*request), submit);
778 
779 	switch (state) {
780 	case FENCE_COMPLETE:
781 		trace_i915_request_submit(request);
782 
783 		if (unlikely(fence->error))
784 			i915_request_set_error_once(request, fence->error);
785 		else
786 			__rq_arm_watchdog(request);
787 
788 		/*
789 		 * We need to serialize use of the submit_request() callback
790 		 * with its hotplugging performed during an emergency
791 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
792 		 * critical section in order to force i915_gem_set_wedged() to
793 		 * wait until the submit_request() is completed before
794 		 * proceeding.
795 		 */
796 		rcu_read_lock();
797 		request->engine->submit_request(request);
798 		rcu_read_unlock();
799 		break;
800 
801 	case FENCE_FREE:
802 		i915_request_put(request);
803 		break;
804 	}
805 
806 	return NOTIFY_DONE;
807 }
808 
809 static int
810 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
811 {
812 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
813 
814 	switch (state) {
815 	case FENCE_COMPLETE:
816 		break;
817 
818 	case FENCE_FREE:
819 		i915_request_put(rq);
820 		break;
821 	}
822 
823 	return NOTIFY_DONE;
824 }
825 
826 static void retire_requests(struct intel_timeline *tl)
827 {
828 	struct i915_request *rq, *rn;
829 
830 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
831 		if (!i915_request_retire(rq))
832 			break;
833 }
834 
835 static noinline struct i915_request *
836 request_alloc_slow(struct intel_timeline *tl,
837 		   struct i915_request **rsvd,
838 		   gfp_t gfp)
839 {
840 	struct i915_request *rq;
841 
842 	/* If we cannot wait, dip into our reserves */
843 	if (!gfpflags_allow_blocking(gfp)) {
844 		rq = xchg(rsvd, NULL);
845 		if (!rq) /* Use the normal failure path for one final WARN */
846 			goto out;
847 
848 		return rq;
849 	}
850 
851 	if (list_empty(&tl->requests))
852 		goto out;
853 
854 	/* Move our oldest request to the slab-cache (if not in use!) */
855 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
856 	i915_request_retire(rq);
857 
858 	rq = kmem_cache_alloc(slab_requests,
859 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
860 	if (rq)
861 		return rq;
862 
863 	/* Ratelimit ourselves to prevent oom from malicious clients */
864 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
865 	cond_synchronize_rcu(rq->rcustate);
866 
867 	/* Retire our old requests in the hope that we free some */
868 	retire_requests(tl);
869 
870 out:
871 	return kmem_cache_alloc(slab_requests, gfp);
872 }
873 
874 static void __i915_request_ctor(void *arg)
875 {
876 	struct i915_request *rq = arg;
877 
878 	spin_lock_init(&rq->lock);
879 	i915_sched_node_init(&rq->sched);
880 	i915_sw_fence_init(&rq->submit, submit_notify);
881 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
882 
883 	clear_capture_list(rq);
884 	rq->batch_res = NULL;
885 
886 	init_llist_head(&rq->execute_cb);
887 }
888 
889 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
890 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
891 #else
892 #define clear_batch_ptr(_a) do {} while (0)
893 #endif
894 
895 struct i915_request *
896 __i915_request_create(struct intel_context *ce, gfp_t gfp)
897 {
898 	struct intel_timeline *tl = ce->timeline;
899 	struct i915_request *rq;
900 	u32 seqno;
901 	int ret;
902 
903 	might_alloc(gfp);
904 
905 	/* Check that the caller provided an already pinned context */
906 	__intel_context_pin(ce);
907 
908 	/*
909 	 * Beware: Dragons be flying overhead.
910 	 *
911 	 * We use RCU to look up requests in flight. The lookups may
912 	 * race with the request being allocated from the slab freelist.
913 	 * That is the request we are writing to here, may be in the process
914 	 * of being read by __i915_active_request_get_rcu(). As such,
915 	 * we have to be very careful when overwriting the contents. During
916 	 * the RCU lookup, we change chase the request->engine pointer,
917 	 * read the request->global_seqno and increment the reference count.
918 	 *
919 	 * The reference count is incremented atomically. If it is zero,
920 	 * the lookup knows the request is unallocated and complete. Otherwise,
921 	 * it is either still in use, or has been reallocated and reset
922 	 * with dma_fence_init(). This increment is safe for release as we
923 	 * check that the request we have a reference to and matches the active
924 	 * request.
925 	 *
926 	 * Before we increment the refcount, we chase the request->engine
927 	 * pointer. We must not call kmem_cache_zalloc() or else we set
928 	 * that pointer to NULL and cause a crash during the lookup. If
929 	 * we see the request is completed (based on the value of the
930 	 * old engine and seqno), the lookup is complete and reports NULL.
931 	 * If we decide the request is not completed (new engine or seqno),
932 	 * then we grab a reference and double check that it is still the
933 	 * active request - which it won't be and restart the lookup.
934 	 *
935 	 * Do not use kmem_cache_zalloc() here!
936 	 */
937 	rq = kmem_cache_alloc(slab_requests,
938 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
939 	if (unlikely(!rq)) {
940 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
941 		if (!rq) {
942 			ret = -ENOMEM;
943 			goto err_unreserve;
944 		}
945 	}
946 
947 	rq->context = ce;
948 	rq->engine = ce->engine;
949 	rq->ring = ce->ring;
950 	rq->execution_mask = ce->engine->mask;
951 	rq->i915 = ce->engine->i915;
952 
953 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
954 	if (ret)
955 		goto err_free;
956 
957 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
958 		       tl->fence_context, seqno);
959 
960 	RCU_INIT_POINTER(rq->timeline, tl);
961 	rq->hwsp_seqno = tl->hwsp_seqno;
962 	GEM_BUG_ON(__i915_request_is_complete(rq));
963 
964 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
965 
966 	rq->guc_prio = GUC_PRIO_INIT;
967 
968 	/* We bump the ref for the fence chain */
969 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
970 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
971 
972 	i915_sched_node_reinit(&rq->sched);
973 
974 	/* No zalloc, everything must be cleared after use */
975 	clear_batch_ptr(rq);
976 	__rq_init_watchdog(rq);
977 	assert_capture_list_is_null(rq);
978 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
979 	GEM_BUG_ON(rq->batch_res);
980 
981 	/*
982 	 * Reserve space in the ring buffer for all the commands required to
983 	 * eventually emit this request. This is to guarantee that the
984 	 * i915_request_add() call can't fail. Note that the reserve may need
985 	 * to be redone if the request is not actually submitted straight
986 	 * away, e.g. because a GPU scheduler has deferred it.
987 	 *
988 	 * Note that due to how we add reserved_space to intel_ring_begin()
989 	 * we need to double our request to ensure that if we need to wrap
990 	 * around inside i915_request_add() there is sufficient space at
991 	 * the beginning of the ring as well.
992 	 */
993 	rq->reserved_space =
994 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
995 
996 	/*
997 	 * Record the position of the start of the request so that
998 	 * should we detect the updated seqno part-way through the
999 	 * GPU processing the request, we never over-estimate the
1000 	 * position of the head.
1001 	 */
1002 	rq->head = rq->ring->emit;
1003 
1004 	ret = rq->engine->request_alloc(rq);
1005 	if (ret)
1006 		goto err_unwind;
1007 
1008 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1009 
1010 	intel_context_mark_active(ce);
1011 	list_add_tail_rcu(&rq->link, &tl->requests);
1012 
1013 	return rq;
1014 
1015 err_unwind:
1016 	ce->ring->emit = rq->head;
1017 
1018 	/* Make sure we didn't add ourselves to external state before freeing */
1019 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1020 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1021 
1022 err_free:
1023 	kmem_cache_free(slab_requests, rq);
1024 err_unreserve:
1025 	intel_context_unpin(ce);
1026 	return ERR_PTR(ret);
1027 }
1028 
1029 struct i915_request *
1030 i915_request_create(struct intel_context *ce)
1031 {
1032 	struct i915_request *rq;
1033 	struct intel_timeline *tl;
1034 
1035 	tl = intel_context_timeline_lock(ce);
1036 	if (IS_ERR(tl))
1037 		return ERR_CAST(tl);
1038 
1039 	/* Move our oldest request to the slab-cache (if not in use!) */
1040 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1041 	if (!list_is_last(&rq->link, &tl->requests))
1042 		i915_request_retire(rq);
1043 
1044 	intel_context_enter(ce);
1045 	rq = __i915_request_create(ce, GFP_KERNEL);
1046 	intel_context_exit(ce); /* active reference transferred to request */
1047 	if (IS_ERR(rq))
1048 		goto err_unlock;
1049 
1050 	/* Check that we do not interrupt ourselves with a new request */
1051 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1052 
1053 	return rq;
1054 
1055 err_unlock:
1056 	intel_context_timeline_unlock(tl);
1057 	return rq;
1058 }
1059 
1060 static int
1061 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1062 {
1063 	struct dma_fence *fence;
1064 	int err;
1065 
1066 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1067 		return 0;
1068 
1069 	if (i915_request_started(signal))
1070 		return 0;
1071 
1072 	/*
1073 	 * The caller holds a reference on @signal, but we do not serialise
1074 	 * against it being retired and removed from the lists.
1075 	 *
1076 	 * We do not hold a reference to the request before @signal, and
1077 	 * so must be very careful to ensure that it is not _recycled_ as
1078 	 * we follow the link backwards.
1079 	 */
1080 	fence = NULL;
1081 	rcu_read_lock();
1082 	do {
1083 		struct list_head *pos = READ_ONCE(signal->link.prev);
1084 		struct i915_request *prev;
1085 
1086 		/* Confirm signal has not been retired, the link is valid */
1087 		if (unlikely(__i915_request_has_started(signal)))
1088 			break;
1089 
1090 		/* Is signal the earliest request on its timeline? */
1091 		if (pos == &rcu_dereference(signal->timeline)->requests)
1092 			break;
1093 
1094 		/*
1095 		 * Peek at the request before us in the timeline. That
1096 		 * request will only be valid before it is retired, so
1097 		 * after acquiring a reference to it, confirm that it is
1098 		 * still part of the signaler's timeline.
1099 		 */
1100 		prev = list_entry(pos, typeof(*prev), link);
1101 		if (!i915_request_get_rcu(prev))
1102 			break;
1103 
1104 		/* After the strong barrier, confirm prev is still attached */
1105 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1106 			i915_request_put(prev);
1107 			break;
1108 		}
1109 
1110 		fence = &prev->fence;
1111 	} while (0);
1112 	rcu_read_unlock();
1113 	if (!fence)
1114 		return 0;
1115 
1116 	err = 0;
1117 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1118 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1119 						    fence, 0,
1120 						    I915_FENCE_GFP);
1121 	dma_fence_put(fence);
1122 
1123 	return err;
1124 }
1125 
1126 static intel_engine_mask_t
1127 already_busywaiting(struct i915_request *rq)
1128 {
1129 	/*
1130 	 * Polling a semaphore causes bus traffic, delaying other users of
1131 	 * both the GPU and CPU. We want to limit the impact on others,
1132 	 * while taking advantage of early submission to reduce GPU
1133 	 * latency. Therefore we restrict ourselves to not using more
1134 	 * than one semaphore from each source, and not using a semaphore
1135 	 * if we have detected the engine is saturated (i.e. would not be
1136 	 * submitted early and cause bus traffic reading an already passed
1137 	 * semaphore).
1138 	 *
1139 	 * See the are-we-too-late? check in __i915_request_submit().
1140 	 */
1141 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1142 }
1143 
1144 static int
1145 __emit_semaphore_wait(struct i915_request *to,
1146 		      struct i915_request *from,
1147 		      u32 seqno)
1148 {
1149 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1150 	u32 hwsp_offset;
1151 	int len, err;
1152 	u32 *cs;
1153 
1154 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1155 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1156 
1157 	/* We need to pin the signaler's HWSP until we are finished reading. */
1158 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1159 	if (err)
1160 		return err;
1161 
1162 	len = 4;
1163 	if (has_token)
1164 		len += 2;
1165 
1166 	cs = intel_ring_begin(to, len);
1167 	if (IS_ERR(cs))
1168 		return PTR_ERR(cs);
1169 
1170 	/*
1171 	 * Using greater-than-or-equal here means we have to worry
1172 	 * about seqno wraparound. To side step that issue, we swap
1173 	 * the timeline HWSP upon wrapping, so that everyone listening
1174 	 * for the old (pre-wrap) values do not see the much smaller
1175 	 * (post-wrap) values than they were expecting (and so wait
1176 	 * forever).
1177 	 */
1178 	*cs++ = (MI_SEMAPHORE_WAIT |
1179 		 MI_SEMAPHORE_GLOBAL_GTT |
1180 		 MI_SEMAPHORE_POLL |
1181 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1182 		has_token;
1183 	*cs++ = seqno;
1184 	*cs++ = hwsp_offset;
1185 	*cs++ = 0;
1186 	if (has_token) {
1187 		*cs++ = 0;
1188 		*cs++ = MI_NOOP;
1189 	}
1190 
1191 	intel_ring_advance(to, cs);
1192 	return 0;
1193 }
1194 
1195 static bool
1196 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1197 {
1198 	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1199 }
1200 
1201 static int
1202 emit_semaphore_wait(struct i915_request *to,
1203 		    struct i915_request *from,
1204 		    gfp_t gfp)
1205 {
1206 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1207 	struct i915_sw_fence *wait = &to->submit;
1208 
1209 	if (!can_use_semaphore_wait(to, from))
1210 		goto await_fence;
1211 
1212 	if (!intel_context_use_semaphores(to->context))
1213 		goto await_fence;
1214 
1215 	if (i915_request_has_initial_breadcrumb(to))
1216 		goto await_fence;
1217 
1218 	/*
1219 	 * If this or its dependents are waiting on an external fence
1220 	 * that may fail catastrophically, then we want to avoid using
1221 	 * semaphores as they bypass the fence signaling metadata, and we
1222 	 * lose the fence->error propagation.
1223 	 */
1224 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1225 		goto await_fence;
1226 
1227 	/* Just emit the first semaphore we see as request space is limited. */
1228 	if (already_busywaiting(to) & mask)
1229 		goto await_fence;
1230 
1231 	if (i915_request_await_start(to, from) < 0)
1232 		goto await_fence;
1233 
1234 	/* Only submit our spinner after the signaler is running! */
1235 	if (__await_execution(to, from, gfp))
1236 		goto await_fence;
1237 
1238 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1239 		goto await_fence;
1240 
1241 	to->sched.semaphores |= mask;
1242 	wait = &to->semaphore;
1243 
1244 await_fence:
1245 	return i915_sw_fence_await_dma_fence(wait,
1246 					     &from->fence, 0,
1247 					     I915_FENCE_GFP);
1248 }
1249 
1250 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1251 					  struct dma_fence *fence)
1252 {
1253 	return __intel_timeline_sync_is_later(tl,
1254 					      fence->context,
1255 					      fence->seqno - 1);
1256 }
1257 
1258 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1259 					 const struct dma_fence *fence)
1260 {
1261 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1262 }
1263 
1264 static int
1265 __i915_request_await_execution(struct i915_request *to,
1266 			       struct i915_request *from)
1267 {
1268 	int err;
1269 
1270 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1271 
1272 	/* Submit both requests at the same time */
1273 	err = __await_execution(to, from, I915_FENCE_GFP);
1274 	if (err)
1275 		return err;
1276 
1277 	/* Squash repeated depenendices to the same timelines */
1278 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1279 					  &from->fence))
1280 		return 0;
1281 
1282 	/*
1283 	 * Wait until the start of this request.
1284 	 *
1285 	 * The execution cb fires when we submit the request to HW. But in
1286 	 * many cases this may be long before the request itself is ready to
1287 	 * run (consider that we submit 2 requests for the same context, where
1288 	 * the request of interest is behind an indefinite spinner). So we hook
1289 	 * up to both to reduce our queues and keep the execution lag minimised
1290 	 * in the worst case, though we hope that the await_start is elided.
1291 	 */
1292 	err = i915_request_await_start(to, from);
1293 	if (err < 0)
1294 		return err;
1295 
1296 	/*
1297 	 * Ensure both start together [after all semaphores in signal]
1298 	 *
1299 	 * Now that we are queued to the HW at roughly the same time (thanks
1300 	 * to the execute cb) and are ready to run at roughly the same time
1301 	 * (thanks to the await start), our signaler may still be indefinitely
1302 	 * delayed by waiting on a semaphore from a remote engine. If our
1303 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1304 	 * want to start our payload until our signaler also starts theirs.
1305 	 * So we wait.
1306 	 *
1307 	 * However, there is also a second condition for which we need to wait
1308 	 * for the precise start of the signaler. Consider that the signaler
1309 	 * was submitted in a chain of requests following another context
1310 	 * (with just an ordinary intra-engine fence dependency between the
1311 	 * two). In this case the signaler is queued to HW, but not for
1312 	 * immediate execution, and so we must wait until it reaches the
1313 	 * active slot.
1314 	 */
1315 	if (can_use_semaphore_wait(to, from) &&
1316 	    intel_engine_has_semaphores(to->engine) &&
1317 	    !i915_request_has_initial_breadcrumb(to)) {
1318 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1319 		if (err < 0)
1320 			return err;
1321 	}
1322 
1323 	/* Couple the dependency tree for PI on this exposed to->fence */
1324 	if (to->engine->sched_engine->schedule) {
1325 		err = i915_sched_node_add_dependency(&to->sched,
1326 						     &from->sched,
1327 						     I915_DEPENDENCY_WEAK);
1328 		if (err < 0)
1329 			return err;
1330 	}
1331 
1332 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1333 					     &from->fence);
1334 }
1335 
1336 static void mark_external(struct i915_request *rq)
1337 {
1338 	/*
1339 	 * The downside of using semaphores is that we lose metadata passing
1340 	 * along the signaling chain. This is particularly nasty when we
1341 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1342 	 * fatal errors we want to scrub the request before it is executed,
1343 	 * which means that we cannot preload the request onto HW and have
1344 	 * it wait upon a semaphore.
1345 	 */
1346 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1347 }
1348 
1349 static int
1350 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1351 {
1352 	mark_external(rq);
1353 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1354 					     i915_fence_context_timeout(rq->i915,
1355 									fence->context),
1356 					     I915_FENCE_GFP);
1357 }
1358 
1359 static int
1360 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1361 {
1362 	struct dma_fence *iter;
1363 	int err = 0;
1364 
1365 	if (!to_dma_fence_chain(fence))
1366 		return __i915_request_await_external(rq, fence);
1367 
1368 	dma_fence_chain_for_each(iter, fence) {
1369 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1370 
1371 		if (!dma_fence_is_i915(chain->fence)) {
1372 			err = __i915_request_await_external(rq, iter);
1373 			break;
1374 		}
1375 
1376 		err = i915_request_await_dma_fence(rq, chain->fence);
1377 		if (err < 0)
1378 			break;
1379 	}
1380 
1381 	dma_fence_put(iter);
1382 	return err;
1383 }
1384 
1385 static inline bool is_parallel_rq(struct i915_request *rq)
1386 {
1387 	return intel_context_is_parallel(rq->context);
1388 }
1389 
1390 static inline struct intel_context *request_to_parent(struct i915_request *rq)
1391 {
1392 	return intel_context_to_parent(rq->context);
1393 }
1394 
1395 static bool is_same_parallel_context(struct i915_request *to,
1396 				     struct i915_request *from)
1397 {
1398 	if (is_parallel_rq(to))
1399 		return request_to_parent(to) == request_to_parent(from);
1400 
1401 	return false;
1402 }
1403 
1404 int
1405 i915_request_await_execution(struct i915_request *rq,
1406 			     struct dma_fence *fence)
1407 {
1408 	struct dma_fence **child = &fence;
1409 	unsigned int nchild = 1;
1410 	int ret;
1411 
1412 	if (dma_fence_is_array(fence)) {
1413 		struct dma_fence_array *array = to_dma_fence_array(fence);
1414 
1415 		/* XXX Error for signal-on-any fence arrays */
1416 
1417 		child = array->fences;
1418 		nchild = array->num_fences;
1419 		GEM_BUG_ON(!nchild);
1420 	}
1421 
1422 	do {
1423 		fence = *child++;
1424 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1425 			continue;
1426 
1427 		if (fence->context == rq->fence.context)
1428 			continue;
1429 
1430 		/*
1431 		 * We don't squash repeated fence dependencies here as we
1432 		 * want to run our callback in all cases.
1433 		 */
1434 
1435 		if (dma_fence_is_i915(fence)) {
1436 			if (is_same_parallel_context(rq, to_request(fence)))
1437 				continue;
1438 			ret = __i915_request_await_execution(rq,
1439 							     to_request(fence));
1440 		} else {
1441 			ret = i915_request_await_external(rq, fence);
1442 		}
1443 		if (ret < 0)
1444 			return ret;
1445 	} while (--nchild);
1446 
1447 	return 0;
1448 }
1449 
1450 static int
1451 await_request_submit(struct i915_request *to, struct i915_request *from)
1452 {
1453 	/*
1454 	 * If we are waiting on a virtual engine, then it may be
1455 	 * constrained to execute on a single engine *prior* to submission.
1456 	 * When it is submitted, it will be first submitted to the virtual
1457 	 * engine and then passed to the physical engine. We cannot allow
1458 	 * the waiter to be submitted immediately to the physical engine
1459 	 * as it may then bypass the virtual request.
1460 	 */
1461 	if (to->engine == READ_ONCE(from->engine))
1462 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1463 							&from->submit,
1464 							I915_FENCE_GFP);
1465 	else
1466 		return __i915_request_await_execution(to, from);
1467 }
1468 
1469 static int
1470 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1471 {
1472 	int ret;
1473 
1474 	GEM_BUG_ON(to == from);
1475 	GEM_BUG_ON(to->timeline == from->timeline);
1476 
1477 	if (i915_request_completed(from)) {
1478 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1479 		return 0;
1480 	}
1481 
1482 	if (to->engine->sched_engine->schedule) {
1483 		ret = i915_sched_node_add_dependency(&to->sched,
1484 						     &from->sched,
1485 						     I915_DEPENDENCY_EXTERNAL);
1486 		if (ret < 0)
1487 			return ret;
1488 	}
1489 
1490 	if (!intel_engine_uses_guc(to->engine) &&
1491 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1492 		ret = await_request_submit(to, from);
1493 	else
1494 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1495 	if (ret < 0)
1496 		return ret;
1497 
1498 	return 0;
1499 }
1500 
1501 int
1502 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1503 {
1504 	struct dma_fence **child = &fence;
1505 	unsigned int nchild = 1;
1506 	int ret;
1507 
1508 	/*
1509 	 * Note that if the fence-array was created in signal-on-any mode,
1510 	 * we should *not* decompose it into its individual fences. However,
1511 	 * we don't currently store which mode the fence-array is operating
1512 	 * in. Fortunately, the only user of signal-on-any is private to
1513 	 * amdgpu and we should not see any incoming fence-array from
1514 	 * sync-file being in signal-on-any mode.
1515 	 */
1516 	if (dma_fence_is_array(fence)) {
1517 		struct dma_fence_array *array = to_dma_fence_array(fence);
1518 
1519 		child = array->fences;
1520 		nchild = array->num_fences;
1521 		GEM_BUG_ON(!nchild);
1522 	}
1523 
1524 	do {
1525 		fence = *child++;
1526 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1527 			continue;
1528 
1529 		/*
1530 		 * Requests on the same timeline are explicitly ordered, along
1531 		 * with their dependencies, by i915_request_add() which ensures
1532 		 * that requests are submitted in-order through each ring.
1533 		 */
1534 		if (fence->context == rq->fence.context)
1535 			continue;
1536 
1537 		/* Squash repeated waits to the same timelines */
1538 		if (fence->context &&
1539 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1540 						 fence))
1541 			continue;
1542 
1543 		if (dma_fence_is_i915(fence)) {
1544 			if (is_same_parallel_context(rq, to_request(fence)))
1545 				continue;
1546 			ret = i915_request_await_request(rq, to_request(fence));
1547 		} else {
1548 			ret = i915_request_await_external(rq, fence);
1549 		}
1550 		if (ret < 0)
1551 			return ret;
1552 
1553 		/* Record the latest fence used against each timeline */
1554 		if (fence->context)
1555 			intel_timeline_sync_set(i915_request_timeline(rq),
1556 						fence);
1557 	} while (--nchild);
1558 
1559 	return 0;
1560 }
1561 
1562 /**
1563  * i915_request_await_deps - set this request to (async) wait upon a struct
1564  * i915_deps dma_fence collection
1565  * @rq: request we are wishing to use
1566  * @deps: The struct i915_deps containing the dependencies.
1567  *
1568  * Returns 0 if successful, negative error code on error.
1569  */
1570 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1571 {
1572 	int i, err;
1573 
1574 	for (i = 0; i < deps->num_deps; ++i) {
1575 		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1576 		if (err)
1577 			return err;
1578 	}
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  * i915_request_await_object - set this request to (async) wait upon a bo
1585  * @to: request we are wishing to use
1586  * @obj: object which may be in use on another ring.
1587  * @write: whether the wait is on behalf of a writer
1588  *
1589  * This code is meant to abstract object synchronization with the GPU.
1590  * Conceptually we serialise writes between engines inside the GPU.
1591  * We only allow one engine to write into a buffer at any time, but
1592  * multiple readers. To ensure each has a coherent view of memory, we must:
1593  *
1594  * - If there is an outstanding write request to the object, the new
1595  *   request must wait for it to complete (either CPU or in hw, requests
1596  *   on the same ring will be naturally ordered).
1597  *
1598  * - If we are a write request (pending_write_domain is set), the new
1599  *   request must wait for outstanding read requests to complete.
1600  *
1601  * Returns 0 if successful, else propagates up the lower layer error.
1602  */
1603 int
1604 i915_request_await_object(struct i915_request *to,
1605 			  struct drm_i915_gem_object *obj,
1606 			  bool write)
1607 {
1608 	struct dma_resv_iter cursor;
1609 	struct dma_fence *fence;
1610 	int ret = 0;
1611 
1612 	dma_resv_for_each_fence(&cursor, obj->base.resv,
1613 				dma_resv_usage_rw(write), fence) {
1614 		ret = i915_request_await_dma_fence(to, fence);
1615 		if (ret)
1616 			break;
1617 	}
1618 
1619 	return ret;
1620 }
1621 
1622 static void i915_request_await_huc(struct i915_request *rq)
1623 {
1624 	struct intel_huc *huc = &rq->context->engine->gt->uc.huc;
1625 
1626 	/* don't stall kernel submissions! */
1627 	if (!rcu_access_pointer(rq->context->gem_context))
1628 		return;
1629 
1630 	if (intel_huc_wait_required(huc))
1631 		i915_sw_fence_await_sw_fence(&rq->submit,
1632 					     &huc->delayed_load.fence,
1633 					     &rq->hucq);
1634 }
1635 
1636 static struct i915_request *
1637 __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1638 					struct intel_timeline *timeline)
1639 {
1640 	struct i915_request *prev;
1641 
1642 	GEM_BUG_ON(!is_parallel_rq(rq));
1643 
1644 	prev = request_to_parent(rq)->parallel.last_rq;
1645 	if (prev) {
1646 		if (!__i915_request_is_complete(prev)) {
1647 			i915_sw_fence_await_sw_fence(&rq->submit,
1648 						     &prev->submit,
1649 						     &rq->submitq);
1650 
1651 			if (rq->engine->sched_engine->schedule)
1652 				__i915_sched_node_add_dependency(&rq->sched,
1653 								 &prev->sched,
1654 								 &rq->dep,
1655 								 0);
1656 		}
1657 		i915_request_put(prev);
1658 	}
1659 
1660 	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1661 
1662 	/*
1663 	 * Users have to put a reference potentially got by
1664 	 * __i915_active_fence_set() to the returned request
1665 	 * when no longer needed
1666 	 */
1667 	return to_request(__i915_active_fence_set(&timeline->last_request,
1668 						  &rq->fence));
1669 }
1670 
1671 static struct i915_request *
1672 __i915_request_ensure_ordering(struct i915_request *rq,
1673 			       struct intel_timeline *timeline)
1674 {
1675 	struct i915_request *prev;
1676 
1677 	GEM_BUG_ON(is_parallel_rq(rq));
1678 
1679 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1680 						  &rq->fence));
1681 
1682 	if (prev && !__i915_request_is_complete(prev)) {
1683 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1684 		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1685 					  rq->engine->mask);
1686 		bool same_context = prev->context == rq->context;
1687 
1688 		/*
1689 		 * The requests are supposed to be kept in order. However,
1690 		 * we need to be wary in case the timeline->last_request
1691 		 * is used as a barrier for external modification to this
1692 		 * context.
1693 		 */
1694 		GEM_BUG_ON(same_context &&
1695 			   i915_seqno_passed(prev->fence.seqno,
1696 					     rq->fence.seqno));
1697 
1698 		if ((same_context && uses_guc) || (!uses_guc && pow2))
1699 			i915_sw_fence_await_sw_fence(&rq->submit,
1700 						     &prev->submit,
1701 						     &rq->submitq);
1702 		else
1703 			__i915_sw_fence_await_dma_fence(&rq->submit,
1704 							&prev->fence,
1705 							&rq->dmaq);
1706 		if (rq->engine->sched_engine->schedule)
1707 			__i915_sched_node_add_dependency(&rq->sched,
1708 							 &prev->sched,
1709 							 &rq->dep,
1710 							 0);
1711 	}
1712 
1713 	/*
1714 	 * Users have to put the reference to prev potentially got
1715 	 * by __i915_active_fence_set() when no longer needed
1716 	 */
1717 	return prev;
1718 }
1719 
1720 static struct i915_request *
1721 __i915_request_add_to_timeline(struct i915_request *rq)
1722 {
1723 	struct intel_timeline *timeline = i915_request_timeline(rq);
1724 	struct i915_request *prev;
1725 
1726 	/*
1727 	 * Media workloads may require HuC, so stall them until HuC loading is
1728 	 * complete. Note that HuC not being loaded when a user submission
1729 	 * arrives can only happen when HuC is loaded via GSC and in that case
1730 	 * we still expect the window between us starting to accept submissions
1731 	 * and HuC loading completion to be small (a few hundred ms).
1732 	 */
1733 	if (rq->engine->class == VIDEO_DECODE_CLASS)
1734 		i915_request_await_huc(rq);
1735 
1736 	/*
1737 	 * Dependency tracking and request ordering along the timeline
1738 	 * is special cased so that we can eliminate redundant ordering
1739 	 * operations while building the request (we know that the timeline
1740 	 * itself is ordered, and here we guarantee it).
1741 	 *
1742 	 * As we know we will need to emit tracking along the timeline,
1743 	 * we embed the hooks into our request struct -- at the cost of
1744 	 * having to have specialised no-allocation interfaces (which will
1745 	 * be beneficial elsewhere).
1746 	 *
1747 	 * A second benefit to open-coding i915_request_await_request is
1748 	 * that we can apply a slight variant of the rules specialised
1749 	 * for timelines that jump between engines (such as virtual engines).
1750 	 * If we consider the case of virtual engine, we must emit a dma-fence
1751 	 * to prevent scheduling of the second request until the first is
1752 	 * complete (to maximise our greedy late load balancing) and this
1753 	 * precludes optimising to use semaphores serialisation of a single
1754 	 * timeline across engines.
1755 	 *
1756 	 * We do not order parallel submission requests on the timeline as each
1757 	 * parallel submission context has its own timeline and the ordering
1758 	 * rules for parallel requests are that they must be submitted in the
1759 	 * order received from the execbuf IOCTL. So rather than using the
1760 	 * timeline we store a pointer to last request submitted in the
1761 	 * relationship in the gem context and insert a submission fence
1762 	 * between that request and request passed into this function or
1763 	 * alternatively we use completion fence if gem context has a single
1764 	 * timeline and this is the first submission of an execbuf IOCTL.
1765 	 */
1766 	if (likely(!is_parallel_rq(rq)))
1767 		prev = __i915_request_ensure_ordering(rq, timeline);
1768 	else
1769 		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1770 	if (prev)
1771 		i915_request_put(prev);
1772 
1773 	/*
1774 	 * Make sure that no request gazumped us - if it was allocated after
1775 	 * our i915_request_alloc() and called __i915_request_add() before
1776 	 * us, the timeline will hold its seqno which is later than ours.
1777 	 */
1778 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1779 
1780 	return prev;
1781 }
1782 
1783 /*
1784  * NB: This function is not allowed to fail. Doing so would mean the the
1785  * request is not being tracked for completion but the work itself is
1786  * going to happen on the hardware. This would be a Bad Thing(tm).
1787  */
1788 struct i915_request *__i915_request_commit(struct i915_request *rq)
1789 {
1790 	struct intel_engine_cs *engine = rq->engine;
1791 	struct intel_ring *ring = rq->ring;
1792 	u32 *cs;
1793 
1794 	RQ_TRACE(rq, "\n");
1795 
1796 	/*
1797 	 * To ensure that this call will not fail, space for its emissions
1798 	 * should already have been reserved in the ring buffer. Let the ring
1799 	 * know that it is time to use that space up.
1800 	 */
1801 	GEM_BUG_ON(rq->reserved_space > ring->space);
1802 	rq->reserved_space = 0;
1803 	rq->emitted_jiffies = jiffies;
1804 
1805 	/*
1806 	 * Record the position of the start of the breadcrumb so that
1807 	 * should we detect the updated seqno part-way through the
1808 	 * GPU processing the request, we never over-estimate the
1809 	 * position of the ring's HEAD.
1810 	 */
1811 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1812 	GEM_BUG_ON(IS_ERR(cs));
1813 	rq->postfix = intel_ring_offset(rq, cs);
1814 
1815 	return __i915_request_add_to_timeline(rq);
1816 }
1817 
1818 void __i915_request_queue_bh(struct i915_request *rq)
1819 {
1820 	i915_sw_fence_commit(&rq->semaphore);
1821 	i915_sw_fence_commit(&rq->submit);
1822 }
1823 
1824 void __i915_request_queue(struct i915_request *rq,
1825 			  const struct i915_sched_attr *attr)
1826 {
1827 	/*
1828 	 * Let the backend know a new request has arrived that may need
1829 	 * to adjust the existing execution schedule due to a high priority
1830 	 * request - i.e. we may want to preempt the current request in order
1831 	 * to run a high priority dependency chain *before* we can execute this
1832 	 * request.
1833 	 *
1834 	 * This is called before the request is ready to run so that we can
1835 	 * decide whether to preempt the entire chain so that it is ready to
1836 	 * run at the earliest possible convenience.
1837 	 */
1838 	if (attr && rq->engine->sched_engine->schedule)
1839 		rq->engine->sched_engine->schedule(rq, attr);
1840 
1841 	local_bh_disable();
1842 	__i915_request_queue_bh(rq);
1843 	local_bh_enable(); /* kick tasklets */
1844 }
1845 
1846 void i915_request_add(struct i915_request *rq)
1847 {
1848 	struct intel_timeline * const tl = i915_request_timeline(rq);
1849 	struct i915_sched_attr attr = {};
1850 	struct i915_gem_context *ctx;
1851 
1852 	lockdep_assert_held(&tl->mutex);
1853 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1854 
1855 	trace_i915_request_add(rq);
1856 	__i915_request_commit(rq);
1857 
1858 	/* XXX placeholder for selftests */
1859 	rcu_read_lock();
1860 	ctx = rcu_dereference(rq->context->gem_context);
1861 	if (ctx)
1862 		attr = ctx->sched;
1863 	rcu_read_unlock();
1864 
1865 	__i915_request_queue(rq, &attr);
1866 
1867 	mutex_unlock(&tl->mutex);
1868 }
1869 
1870 static unsigned long local_clock_ns(unsigned int *cpu)
1871 {
1872 	unsigned long t;
1873 
1874 	/*
1875 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1876 	 * The result and subsequent calculations are also defined in the same
1877 	 * approximate microseconds units. The principal source of timing
1878 	 * error here is from the simple truncation.
1879 	 *
1880 	 * Note that local_clock() is only defined wrt to the current CPU;
1881 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1882 	 * blocking preemption for the entire busywait, we can detect the CPU
1883 	 * switch and use that as indicator of system load and a reason to
1884 	 * stop busywaiting, see busywait_stop().
1885 	 */
1886 	*cpu = get_cpu();
1887 	t = local_clock();
1888 	put_cpu();
1889 
1890 	return t;
1891 }
1892 
1893 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1894 {
1895 	unsigned int this_cpu;
1896 
1897 	if (time_after(local_clock_ns(&this_cpu), timeout))
1898 		return true;
1899 
1900 	return this_cpu != cpu;
1901 }
1902 
1903 static bool __i915_spin_request(struct i915_request * const rq, int state)
1904 {
1905 	unsigned long timeout_ns;
1906 	unsigned int cpu;
1907 
1908 	/*
1909 	 * Only wait for the request if we know it is likely to complete.
1910 	 *
1911 	 * We don't track the timestamps around requests, nor the average
1912 	 * request length, so we do not have a good indicator that this
1913 	 * request will complete within the timeout. What we do know is the
1914 	 * order in which requests are executed by the context and so we can
1915 	 * tell if the request has been started. If the request is not even
1916 	 * running yet, it is a fair assumption that it will not complete
1917 	 * within our relatively short timeout.
1918 	 */
1919 	if (!i915_request_is_running(rq))
1920 		return false;
1921 
1922 	/*
1923 	 * When waiting for high frequency requests, e.g. during synchronous
1924 	 * rendering split between the CPU and GPU, the finite amount of time
1925 	 * required to set up the irq and wait upon it limits the response
1926 	 * rate. By busywaiting on the request completion for a short while we
1927 	 * can service the high frequency waits as quick as possible. However,
1928 	 * if it is a slow request, we want to sleep as quickly as possible.
1929 	 * The tradeoff between waiting and sleeping is roughly the time it
1930 	 * takes to sleep on a request, on the order of a microsecond.
1931 	 */
1932 
1933 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1934 	timeout_ns += local_clock_ns(&cpu);
1935 	do {
1936 		if (dma_fence_is_signaled(&rq->fence))
1937 			return true;
1938 
1939 		if (signal_pending_state(state, current))
1940 			break;
1941 
1942 		if (busywait_stop(timeout_ns, cpu))
1943 			break;
1944 
1945 		cpu_relax();
1946 	} while (!need_resched());
1947 
1948 	return false;
1949 }
1950 
1951 struct request_wait {
1952 	struct dma_fence_cb cb;
1953 	struct task_struct *tsk;
1954 };
1955 
1956 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1957 {
1958 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1959 
1960 	wake_up_process(fetch_and_zero(&wait->tsk));
1961 }
1962 
1963 /**
1964  * i915_request_wait_timeout - wait until execution of request has finished
1965  * @rq: the request to wait upon
1966  * @flags: how to wait
1967  * @timeout: how long to wait in jiffies
1968  *
1969  * i915_request_wait_timeout() waits for the request to be completed, for a
1970  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1971  * unbounded wait).
1972  *
1973  * Returns the remaining time (in jiffies) if the request completed, which may
1974  * be zero if the request is unfinished after the timeout expires.
1975  * If the timeout is 0, it will return 1 if the fence is signaled.
1976  *
1977  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1978  * pending before the request completes.
1979  *
1980  * NOTE: This function has the same wait semantics as dma-fence.
1981  */
1982 long i915_request_wait_timeout(struct i915_request *rq,
1983 			       unsigned int flags,
1984 			       long timeout)
1985 {
1986 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1987 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1988 	struct request_wait wait;
1989 
1990 	might_sleep();
1991 	GEM_BUG_ON(timeout < 0);
1992 
1993 	if (dma_fence_is_signaled(&rq->fence))
1994 		return timeout ?: 1;
1995 
1996 	if (!timeout)
1997 		return -ETIME;
1998 
1999 	trace_i915_request_wait_begin(rq, flags);
2000 
2001 	/*
2002 	 * We must never wait on the GPU while holding a lock as we
2003 	 * may need to perform a GPU reset. So while we don't need to
2004 	 * serialise wait/reset with an explicit lock, we do want
2005 	 * lockdep to detect potential dependency cycles.
2006 	 */
2007 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
2008 
2009 	/*
2010 	 * Optimistic spin before touching IRQs.
2011 	 *
2012 	 * We may use a rather large value here to offset the penalty of
2013 	 * switching away from the active task. Frequently, the client will
2014 	 * wait upon an old swapbuffer to throttle itself to remain within a
2015 	 * frame of the gpu. If the client is running in lockstep with the gpu,
2016 	 * then it should not be waiting long at all, and a sleep now will incur
2017 	 * extra scheduler latency in producing the next frame. To try to
2018 	 * avoid adding the cost of enabling/disabling the interrupt to the
2019 	 * short wait, we first spin to see if the request would have completed
2020 	 * in the time taken to setup the interrupt.
2021 	 *
2022 	 * We need upto 5us to enable the irq, and upto 20us to hide the
2023 	 * scheduler latency of a context switch, ignoring the secondary
2024 	 * impacts from a context switch such as cache eviction.
2025 	 *
2026 	 * The scheme used for low-latency IO is called "hybrid interrupt
2027 	 * polling". The suggestion there is to sleep until just before you
2028 	 * expect to be woken by the device interrupt and then poll for its
2029 	 * completion. That requires having a good predictor for the request
2030 	 * duration, which we currently lack.
2031 	 */
2032 	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2033 	    __i915_spin_request(rq, state))
2034 		goto out;
2035 
2036 	/*
2037 	 * This client is about to stall waiting for the GPU. In many cases
2038 	 * this is undesirable and limits the throughput of the system, as
2039 	 * many clients cannot continue processing user input/output whilst
2040 	 * blocked. RPS autotuning may take tens of milliseconds to respond
2041 	 * to the GPU load and thus incurs additional latency for the client.
2042 	 * We can circumvent that by promoting the GPU frequency to maximum
2043 	 * before we sleep. This makes the GPU throttle up much more quickly
2044 	 * (good for benchmarks and user experience, e.g. window animations),
2045 	 * but at a cost of spending more power processing the workload
2046 	 * (bad for battery).
2047 	 */
2048 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2049 		intel_rps_boost(rq);
2050 
2051 	wait.tsk = current;
2052 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2053 		goto out;
2054 
2055 	/*
2056 	 * Flush the submission tasklet, but only if it may help this request.
2057 	 *
2058 	 * We sometimes experience some latency between the HW interrupts and
2059 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2060 	 * be due to lazy CS events), so lets run the tasklet manually if there
2061 	 * is a chance it may submit this request. If the request is not ready
2062 	 * to run, as it is waiting for other fences to be signaled, flushing
2063 	 * the tasklet is busy work without any advantage for this client.
2064 	 *
2065 	 * If the HW is being lazy, this is the last chance before we go to
2066 	 * sleep to catch any pending events. We will check periodically in
2067 	 * the heartbeat to flush the submission tasklets as a last resort
2068 	 * for unhappy HW.
2069 	 */
2070 	if (i915_request_is_ready(rq))
2071 		__intel_engine_flush_submission(rq->engine, false);
2072 
2073 	for (;;) {
2074 		set_current_state(state);
2075 
2076 		if (dma_fence_is_signaled(&rq->fence))
2077 			break;
2078 
2079 		if (signal_pending_state(state, current)) {
2080 			timeout = -ERESTARTSYS;
2081 			break;
2082 		}
2083 
2084 		if (!timeout) {
2085 			timeout = -ETIME;
2086 			break;
2087 		}
2088 
2089 		timeout = io_schedule_timeout(timeout);
2090 	}
2091 	__set_current_state(TASK_RUNNING);
2092 
2093 	if (READ_ONCE(wait.tsk))
2094 		dma_fence_remove_callback(&rq->fence, &wait.cb);
2095 	GEM_BUG_ON(!list_empty(&wait.cb.node));
2096 
2097 out:
2098 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2099 	trace_i915_request_wait_end(rq);
2100 	return timeout;
2101 }
2102 
2103 /**
2104  * i915_request_wait - wait until execution of request has finished
2105  * @rq: the request to wait upon
2106  * @flags: how to wait
2107  * @timeout: how long to wait in jiffies
2108  *
2109  * i915_request_wait() waits for the request to be completed, for a
2110  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2111  * unbounded wait).
2112  *
2113  * Returns the remaining time (in jiffies) if the request completed, which may
2114  * be zero or -ETIME if the request is unfinished after the timeout expires.
2115  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2116  * pending before the request completes.
2117  *
2118  * NOTE: This function behaves differently from dma-fence wait semantics for
2119  * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2120  */
2121 long i915_request_wait(struct i915_request *rq,
2122 		       unsigned int flags,
2123 		       long timeout)
2124 {
2125 	long ret = i915_request_wait_timeout(rq, flags, timeout);
2126 
2127 	if (!ret)
2128 		return -ETIME;
2129 
2130 	if (ret > 0 && !timeout)
2131 		return 0;
2132 
2133 	return ret;
2134 }
2135 
2136 static int print_sched_attr(const struct i915_sched_attr *attr,
2137 			    char *buf, int x, int len)
2138 {
2139 	if (attr->priority == I915_PRIORITY_INVALID)
2140 		return x;
2141 
2142 	x += snprintf(buf + x, len - x,
2143 		      " prio=%d", attr->priority);
2144 
2145 	return x;
2146 }
2147 
2148 static char queue_status(const struct i915_request *rq)
2149 {
2150 	if (i915_request_is_active(rq))
2151 		return 'E';
2152 
2153 	if (i915_request_is_ready(rq))
2154 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2155 
2156 	return 'U';
2157 }
2158 
2159 static const char *run_status(const struct i915_request *rq)
2160 {
2161 	if (__i915_request_is_complete(rq))
2162 		return "!";
2163 
2164 	if (__i915_request_has_started(rq))
2165 		return "*";
2166 
2167 	if (!i915_sw_fence_signaled(&rq->semaphore))
2168 		return "&";
2169 
2170 	return "";
2171 }
2172 
2173 static const char *fence_status(const struct i915_request *rq)
2174 {
2175 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2176 		return "+";
2177 
2178 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2179 		return "-";
2180 
2181 	return "";
2182 }
2183 
2184 void i915_request_show(struct drm_printer *m,
2185 		       const struct i915_request *rq,
2186 		       const char *prefix,
2187 		       int indent)
2188 {
2189 	const char __rcu *timeline;
2190 	char buf[80] = "";
2191 	int x = 0;
2192 
2193 	/*
2194 	 * The prefix is used to show the queue status, for which we use
2195 	 * the following flags:
2196 	 *
2197 	 *  U [Unready]
2198 	 *    - initial status upon being submitted by the user
2199 	 *
2200 	 *    - the request is not ready for execution as it is waiting
2201 	 *      for external fences
2202 	 *
2203 	 *  R [Ready]
2204 	 *    - all fences the request was waiting on have been signaled,
2205 	 *      and the request is now ready for execution and will be
2206 	 *      in a backend queue
2207 	 *
2208 	 *    - a ready request may still need to wait on semaphores
2209 	 *      [internal fences]
2210 	 *
2211 	 *  V [Ready/virtual]
2212 	 *    - same as ready, but queued over multiple backends
2213 	 *
2214 	 *  E [Executing]
2215 	 *    - the request has been transferred from the backend queue and
2216 	 *      submitted for execution on HW
2217 	 *
2218 	 *    - a completed request may still be regarded as executing, its
2219 	 *      status may not be updated until it is retired and removed
2220 	 *      from the lists
2221 	 */
2222 
2223 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2224 
2225 	rcu_read_lock();
2226 	timeline = dma_fence_timeline_name((struct dma_fence *)&rq->fence);
2227 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2228 		   prefix, indent, "                ",
2229 		   queue_status(rq),
2230 		   rq->fence.context, rq->fence.seqno,
2231 		   run_status(rq),
2232 		   fence_status(rq),
2233 		   buf,
2234 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2235 		   rcu_dereference(timeline));
2236 	rcu_read_unlock();
2237 }
2238 
2239 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2240 {
2241 	u32 ring = ENGINE_READ(engine, RING_START);
2242 
2243 	return ring == i915_ggtt_offset(rq->ring->vma);
2244 }
2245 
2246 static bool match_ring(struct i915_request *rq)
2247 {
2248 	struct intel_engine_cs *engine;
2249 	bool found;
2250 	int i;
2251 
2252 	if (!intel_engine_is_virtual(rq->engine))
2253 		return engine_match_ring(rq->engine, rq);
2254 
2255 	found = false;
2256 	i = 0;
2257 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2258 		found = engine_match_ring(engine, rq);
2259 		if (found)
2260 			break;
2261 	}
2262 
2263 	return found;
2264 }
2265 
2266 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2267 {
2268 	if (i915_request_completed(rq))
2269 		return I915_REQUEST_COMPLETE;
2270 
2271 	if (!i915_request_started(rq))
2272 		return I915_REQUEST_PENDING;
2273 
2274 	if (match_ring(rq))
2275 		return I915_REQUEST_ACTIVE;
2276 
2277 	return I915_REQUEST_QUEUED;
2278 }
2279 
2280 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2281 #include "selftests/mock_request.c"
2282 #include "selftests/i915_request.c"
2283 #endif
2284 
2285 void i915_request_module_exit(void)
2286 {
2287 	kmem_cache_destroy(slab_execute_cbs);
2288 	kmem_cache_destroy(slab_requests);
2289 }
2290 
2291 int __init i915_request_module_init(void)
2292 {
2293 	slab_requests =
2294 		kmem_cache_create("i915_request",
2295 				  sizeof(struct i915_request),
2296 				  __alignof__(struct i915_request),
2297 				  SLAB_HWCACHE_ALIGN |
2298 				  SLAB_RECLAIM_ACCOUNT |
2299 				  SLAB_TYPESAFE_BY_RCU,
2300 				  __i915_request_ctor);
2301 	if (!slab_requests)
2302 		return -ENOMEM;
2303 
2304 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2305 					     SLAB_HWCACHE_ALIGN |
2306 					     SLAB_RECLAIM_ACCOUNT |
2307 					     SLAB_TYPESAFE_BY_RCU);
2308 	if (!slab_execute_cbs)
2309 		goto err_requests;
2310 
2311 	return 0;
2312 
2313 err_requests:
2314 	kmem_cache_destroy(slab_requests);
2315 	return -ENOMEM;
2316 }
2317