xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 710bb68c2e3a24512e2d2bae470960d7488e97b1)
1  /*
2   * Copyright © 2008-2015 Intel Corporation
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice (including the next
12   * paragraph) shall be included in all copies or substantial portions of the
13   * Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21   * IN THE SOFTWARE.
22   *
23   */
24  
25  #include <linux/dma-fence-array.h>
26  #include <linux/dma-fence-chain.h>
27  #include <linux/irq_work.h>
28  #include <linux/prefetch.h>
29  #include <linux/sched.h>
30  #include <linux/sched/clock.h>
31  #include <linux/sched/signal.h>
32  #include <linux/sched/mm.h>
33  
34  #include "gem/i915_gem_context.h"
35  #include "gt/intel_breadcrumbs.h"
36  #include "gt/intel_context.h"
37  #include "gt/intel_engine.h"
38  #include "gt/intel_engine_heartbeat.h"
39  #include "gt/intel_engine_regs.h"
40  #include "gt/intel_gpu_commands.h"
41  #include "gt/intel_reset.h"
42  #include "gt/intel_ring.h"
43  #include "gt/intel_rps.h"
44  
45  #include "i915_active.h"
46  #include "i915_deps.h"
47  #include "i915_driver.h"
48  #include "i915_drv.h"
49  #include "i915_trace.h"
50  #include "intel_pm.h"
51  
52  struct execute_cb {
53  	struct irq_work work;
54  	struct i915_sw_fence *fence;
55  	struct i915_request *signal;
56  };
57  
58  static struct kmem_cache *slab_requests;
59  static struct kmem_cache *slab_execute_cbs;
60  
61  static const char *i915_fence_get_driver_name(struct dma_fence *fence)
62  {
63  	return dev_name(to_request(fence)->i915->drm.dev);
64  }
65  
66  static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
67  {
68  	const struct i915_gem_context *ctx;
69  
70  	/*
71  	 * The timeline struct (as part of the ppgtt underneath a context)
72  	 * may be freed when the request is no longer in use by the GPU.
73  	 * We could extend the life of a context to beyond that of all
74  	 * fences, possibly keeping the hw resource around indefinitely,
75  	 * or we just give them a false name. Since
76  	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
77  	 * lie seems justifiable.
78  	 */
79  	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
80  		return "signaled";
81  
82  	ctx = i915_request_gem_context(to_request(fence));
83  	if (!ctx)
84  		return "[" DRIVER_NAME "]";
85  
86  	return ctx->name;
87  }
88  
89  static bool i915_fence_signaled(struct dma_fence *fence)
90  {
91  	return i915_request_completed(to_request(fence));
92  }
93  
94  static bool i915_fence_enable_signaling(struct dma_fence *fence)
95  {
96  	return i915_request_enable_breadcrumb(to_request(fence));
97  }
98  
99  static signed long i915_fence_wait(struct dma_fence *fence,
100  				   bool interruptible,
101  				   signed long timeout)
102  {
103  	return i915_request_wait_timeout(to_request(fence),
104  					 interruptible | I915_WAIT_PRIORITY,
105  					 timeout);
106  }
107  
108  struct kmem_cache *i915_request_slab_cache(void)
109  {
110  	return slab_requests;
111  }
112  
113  static void i915_fence_release(struct dma_fence *fence)
114  {
115  	struct i915_request *rq = to_request(fence);
116  
117  	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
118  		   rq->guc_prio != GUC_PRIO_FINI);
119  
120  	i915_request_free_capture_list(fetch_and_zero(&rq->capture_list));
121  	if (rq->batch_res) {
122  		i915_vma_resource_put(rq->batch_res);
123  		rq->batch_res = NULL;
124  	}
125  
126  	/*
127  	 * The request is put onto a RCU freelist (i.e. the address
128  	 * is immediately reused), mark the fences as being freed now.
129  	 * Otherwise the debugobjects for the fences are only marked as
130  	 * freed when the slab cache itself is freed, and so we would get
131  	 * caught trying to reuse dead objects.
132  	 */
133  	i915_sw_fence_fini(&rq->submit);
134  	i915_sw_fence_fini(&rq->semaphore);
135  
136  	/*
137  	 * Keep one request on each engine for reserved use under mempressure
138  	 * do not use with virtual engines as this really is only needed for
139  	 * kernel contexts.
140  	 *
141  	 * We do not hold a reference to the engine here and so have to be
142  	 * very careful in what rq->engine we poke. The virtual engine is
143  	 * referenced via the rq->context and we released that ref during
144  	 * i915_request_retire(), ergo we must not dereference a virtual
145  	 * engine here. Not that we would want to, as the only consumer of
146  	 * the reserved engine->request_pool is the power management parking,
147  	 * which must-not-fail, and that is only run on the physical engines.
148  	 *
149  	 * Since the request must have been executed to be have completed,
150  	 * we know that it will have been processed by the HW and will
151  	 * not be unsubmitted again, so rq->engine and rq->execution_mask
152  	 * at this point is stable. rq->execution_mask will be a single
153  	 * bit if the last and _only_ engine it could execution on was a
154  	 * physical engine, if it's multiple bits then it started on and
155  	 * could still be on a virtual engine. Thus if the mask is not a
156  	 * power-of-two we assume that rq->engine may still be a virtual
157  	 * engine and so a dangling invalid pointer that we cannot dereference
158  	 *
159  	 * For example, consider the flow of a bonded request through a virtual
160  	 * engine. The request is created with a wide engine mask (all engines
161  	 * that we might execute on). On processing the bond, the request mask
162  	 * is reduced to one or more engines. If the request is subsequently
163  	 * bound to a single engine, it will then be constrained to only
164  	 * execute on that engine and never returned to the virtual engine
165  	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
166  	 * know that if the rq->execution_mask is a single bit, rq->engine
167  	 * can be a physical engine with the exact corresponding mask.
168  	 */
169  	if (!intel_engine_is_virtual(rq->engine) &&
170  	    is_power_of_2(rq->execution_mask) &&
171  	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
172  		return;
173  
174  	kmem_cache_free(slab_requests, rq);
175  }
176  
177  const struct dma_fence_ops i915_fence_ops = {
178  	.get_driver_name = i915_fence_get_driver_name,
179  	.get_timeline_name = i915_fence_get_timeline_name,
180  	.enable_signaling = i915_fence_enable_signaling,
181  	.signaled = i915_fence_signaled,
182  	.wait = i915_fence_wait,
183  	.release = i915_fence_release,
184  };
185  
186  static void irq_execute_cb(struct irq_work *wrk)
187  {
188  	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
189  
190  	i915_sw_fence_complete(cb->fence);
191  	kmem_cache_free(slab_execute_cbs, cb);
192  }
193  
194  static __always_inline void
195  __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
196  {
197  	struct execute_cb *cb, *cn;
198  
199  	if (llist_empty(&rq->execute_cb))
200  		return;
201  
202  	llist_for_each_entry_safe(cb, cn,
203  				  llist_del_all(&rq->execute_cb),
204  				  work.node.llist)
205  		fn(&cb->work);
206  }
207  
208  static void __notify_execute_cb_irq(struct i915_request *rq)
209  {
210  	__notify_execute_cb(rq, irq_work_queue);
211  }
212  
213  static bool irq_work_imm(struct irq_work *wrk)
214  {
215  	wrk->func(wrk);
216  	return false;
217  }
218  
219  void i915_request_notify_execute_cb_imm(struct i915_request *rq)
220  {
221  	__notify_execute_cb(rq, irq_work_imm);
222  }
223  
224  static void __i915_request_fill(struct i915_request *rq, u8 val)
225  {
226  	void *vaddr = rq->ring->vaddr;
227  	u32 head;
228  
229  	head = rq->infix;
230  	if (rq->postfix < head) {
231  		memset(vaddr + head, val, rq->ring->size - head);
232  		head = 0;
233  	}
234  	memset(vaddr + head, val, rq->postfix - head);
235  }
236  
237  /**
238   * i915_request_active_engine
239   * @rq: request to inspect
240   * @active: pointer in which to return the active engine
241   *
242   * Fills the currently active engine to the @active pointer if the request
243   * is active and still not completed.
244   *
245   * Returns true if request was active or false otherwise.
246   */
247  bool
248  i915_request_active_engine(struct i915_request *rq,
249  			   struct intel_engine_cs **active)
250  {
251  	struct intel_engine_cs *engine, *locked;
252  	bool ret = false;
253  
254  	/*
255  	 * Serialise with __i915_request_submit() so that it sees
256  	 * is-banned?, or we know the request is already inflight.
257  	 *
258  	 * Note that rq->engine is unstable, and so we double
259  	 * check that we have acquired the lock on the final engine.
260  	 */
261  	locked = READ_ONCE(rq->engine);
262  	spin_lock_irq(&locked->sched_engine->lock);
263  	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
264  		spin_unlock(&locked->sched_engine->lock);
265  		locked = engine;
266  		spin_lock(&locked->sched_engine->lock);
267  	}
268  
269  	if (i915_request_is_active(rq)) {
270  		if (!__i915_request_is_complete(rq))
271  			*active = locked;
272  		ret = true;
273  	}
274  
275  	spin_unlock_irq(&locked->sched_engine->lock);
276  
277  	return ret;
278  }
279  
280  static void __rq_init_watchdog(struct i915_request *rq)
281  {
282  	rq->watchdog.timer.function = NULL;
283  }
284  
285  static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
286  {
287  	struct i915_request *rq =
288  		container_of(hrtimer, struct i915_request, watchdog.timer);
289  	struct intel_gt *gt = rq->engine->gt;
290  
291  	if (!i915_request_completed(rq)) {
292  		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
293  			schedule_work(&gt->watchdog.work);
294  	} else {
295  		i915_request_put(rq);
296  	}
297  
298  	return HRTIMER_NORESTART;
299  }
300  
301  static void __rq_arm_watchdog(struct i915_request *rq)
302  {
303  	struct i915_request_watchdog *wdg = &rq->watchdog;
304  	struct intel_context *ce = rq->context;
305  
306  	if (!ce->watchdog.timeout_us)
307  		return;
308  
309  	i915_request_get(rq);
310  
311  	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
312  	wdg->timer.function = __rq_watchdog_expired;
313  	hrtimer_start_range_ns(&wdg->timer,
314  			       ns_to_ktime(ce->watchdog.timeout_us *
315  					   NSEC_PER_USEC),
316  			       NSEC_PER_MSEC,
317  			       HRTIMER_MODE_REL);
318  }
319  
320  static void __rq_cancel_watchdog(struct i915_request *rq)
321  {
322  	struct i915_request_watchdog *wdg = &rq->watchdog;
323  
324  	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
325  		i915_request_put(rq);
326  }
327  
328  #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
329  
330  /**
331   * i915_request_free_capture_list - Free a capture list
332   * @capture: Pointer to the first list item or NULL
333   *
334   */
335  void i915_request_free_capture_list(struct i915_capture_list *capture)
336  {
337  	while (capture) {
338  		struct i915_capture_list *next = capture->next;
339  
340  		i915_vma_resource_put(capture->vma_res);
341  		kfree(capture);
342  		capture = next;
343  	}
344  }
345  
346  #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list)
347  
348  #define clear_capture_list(_rq) ((_rq)->capture_list = NULL)
349  
350  #else
351  
352  #define i915_request_free_capture_list(_a) do {} while (0)
353  
354  #define assert_capture_list_is_null(_a) do {} while (0)
355  
356  #define clear_capture_list(_rq) do {} while (0)
357  
358  #endif
359  
360  bool i915_request_retire(struct i915_request *rq)
361  {
362  	if (!__i915_request_is_complete(rq))
363  		return false;
364  
365  	RQ_TRACE(rq, "\n");
366  
367  	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
368  	trace_i915_request_retire(rq);
369  	i915_request_mark_complete(rq);
370  
371  	__rq_cancel_watchdog(rq);
372  
373  	/*
374  	 * We know the GPU must have read the request to have
375  	 * sent us the seqno + interrupt, so use the position
376  	 * of tail of the request to update the last known position
377  	 * of the GPU head.
378  	 *
379  	 * Note this requires that we are always called in request
380  	 * completion order.
381  	 */
382  	GEM_BUG_ON(!list_is_first(&rq->link,
383  				  &i915_request_timeline(rq)->requests));
384  	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
385  		/* Poison before we release our space in the ring */
386  		__i915_request_fill(rq, POISON_FREE);
387  	rq->ring->head = rq->postfix;
388  
389  	if (!i915_request_signaled(rq)) {
390  		spin_lock_irq(&rq->lock);
391  		dma_fence_signal_locked(&rq->fence);
392  		spin_unlock_irq(&rq->lock);
393  	}
394  
395  	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
396  		intel_rps_dec_waiters(&rq->engine->gt->rps);
397  
398  	/*
399  	 * We only loosely track inflight requests across preemption,
400  	 * and so we may find ourselves attempting to retire a _completed_
401  	 * request that we have removed from the HW and put back on a run
402  	 * queue.
403  	 *
404  	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
405  	 * after removing the breadcrumb and signaling it, so that we do not
406  	 * inadvertently attach the breadcrumb to a completed request.
407  	 */
408  	rq->engine->remove_active_request(rq);
409  	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
410  
411  	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
412  
413  	intel_context_exit(rq->context);
414  	intel_context_unpin(rq->context);
415  
416  	i915_sched_node_fini(&rq->sched);
417  	i915_request_put(rq);
418  
419  	return true;
420  }
421  
422  void i915_request_retire_upto(struct i915_request *rq)
423  {
424  	struct intel_timeline * const tl = i915_request_timeline(rq);
425  	struct i915_request *tmp;
426  
427  	RQ_TRACE(rq, "\n");
428  	GEM_BUG_ON(!__i915_request_is_complete(rq));
429  
430  	do {
431  		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
432  		GEM_BUG_ON(!i915_request_completed(tmp));
433  	} while (i915_request_retire(tmp) && tmp != rq);
434  }
435  
436  static struct i915_request * const *
437  __engine_active(struct intel_engine_cs *engine)
438  {
439  	return READ_ONCE(engine->execlists.active);
440  }
441  
442  static bool __request_in_flight(const struct i915_request *signal)
443  {
444  	struct i915_request * const *port, *rq;
445  	bool inflight = false;
446  
447  	if (!i915_request_is_ready(signal))
448  		return false;
449  
450  	/*
451  	 * Even if we have unwound the request, it may still be on
452  	 * the GPU (preempt-to-busy). If that request is inside an
453  	 * unpreemptible critical section, it will not be removed. Some
454  	 * GPU functions may even be stuck waiting for the paired request
455  	 * (__await_execution) to be submitted and cannot be preempted
456  	 * until the bond is executing.
457  	 *
458  	 * As we know that there are always preemption points between
459  	 * requests, we know that only the currently executing request
460  	 * may be still active even though we have cleared the flag.
461  	 * However, we can't rely on our tracking of ELSP[0] to know
462  	 * which request is currently active and so maybe stuck, as
463  	 * the tracking maybe an event behind. Instead assume that
464  	 * if the context is still inflight, then it is still active
465  	 * even if the active flag has been cleared.
466  	 *
467  	 * To further complicate matters, if there a pending promotion, the HW
468  	 * may either perform a context switch to the second inflight execlists,
469  	 * or it may switch to the pending set of execlists. In the case of the
470  	 * latter, it may send the ACK and we process the event copying the
471  	 * pending[] over top of inflight[], _overwriting_ our *active. Since
472  	 * this implies the HW is arbitrating and not struck in *active, we do
473  	 * not worry about complete accuracy, but we do require no read/write
474  	 * tearing of the pointer [the read of the pointer must be valid, even
475  	 * as the array is being overwritten, for which we require the writes
476  	 * to avoid tearing.]
477  	 *
478  	 * Note that the read of *execlists->active may race with the promotion
479  	 * of execlists->pending[] to execlists->inflight[], overwritting
480  	 * the value at *execlists->active. This is fine. The promotion implies
481  	 * that we received an ACK from the HW, and so the context is not
482  	 * stuck -- if we do not see ourselves in *active, the inflight status
483  	 * is valid. If instead we see ourselves being copied into *active,
484  	 * we are inflight and may signal the callback.
485  	 */
486  	if (!intel_context_inflight(signal->context))
487  		return false;
488  
489  	rcu_read_lock();
490  	for (port = __engine_active(signal->engine);
491  	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
492  	     port++) {
493  		if (rq->context == signal->context) {
494  			inflight = i915_seqno_passed(rq->fence.seqno,
495  						     signal->fence.seqno);
496  			break;
497  		}
498  	}
499  	rcu_read_unlock();
500  
501  	return inflight;
502  }
503  
504  static int
505  __await_execution(struct i915_request *rq,
506  		  struct i915_request *signal,
507  		  gfp_t gfp)
508  {
509  	struct execute_cb *cb;
510  
511  	if (i915_request_is_active(signal))
512  		return 0;
513  
514  	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
515  	if (!cb)
516  		return -ENOMEM;
517  
518  	cb->fence = &rq->submit;
519  	i915_sw_fence_await(cb->fence);
520  	init_irq_work(&cb->work, irq_execute_cb);
521  
522  	/*
523  	 * Register the callback first, then see if the signaler is already
524  	 * active. This ensures that if we race with the
525  	 * __notify_execute_cb from i915_request_submit() and we are not
526  	 * included in that list, we get a second bite of the cherry and
527  	 * execute it ourselves. After this point, a future
528  	 * i915_request_submit() will notify us.
529  	 *
530  	 * In i915_request_retire() we set the ACTIVE bit on a completed
531  	 * request (then flush the execute_cb). So by registering the
532  	 * callback first, then checking the ACTIVE bit, we serialise with
533  	 * the completed/retired request.
534  	 */
535  	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
536  		if (i915_request_is_active(signal) ||
537  		    __request_in_flight(signal))
538  			i915_request_notify_execute_cb_imm(signal);
539  	}
540  
541  	return 0;
542  }
543  
544  static bool fatal_error(int error)
545  {
546  	switch (error) {
547  	case 0: /* not an error! */
548  	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
549  	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
550  		return false;
551  	default:
552  		return true;
553  	}
554  }
555  
556  void __i915_request_skip(struct i915_request *rq)
557  {
558  	GEM_BUG_ON(!fatal_error(rq->fence.error));
559  
560  	if (rq->infix == rq->postfix)
561  		return;
562  
563  	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
564  
565  	/*
566  	 * As this request likely depends on state from the lost
567  	 * context, clear out all the user operations leaving the
568  	 * breadcrumb at the end (so we get the fence notifications).
569  	 */
570  	__i915_request_fill(rq, 0);
571  	rq->infix = rq->postfix;
572  }
573  
574  bool i915_request_set_error_once(struct i915_request *rq, int error)
575  {
576  	int old;
577  
578  	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
579  
580  	if (i915_request_signaled(rq))
581  		return false;
582  
583  	old = READ_ONCE(rq->fence.error);
584  	do {
585  		if (fatal_error(old))
586  			return false;
587  	} while (!try_cmpxchg(&rq->fence.error, &old, error));
588  
589  	return true;
590  }
591  
592  struct i915_request *i915_request_mark_eio(struct i915_request *rq)
593  {
594  	if (__i915_request_is_complete(rq))
595  		return NULL;
596  
597  	GEM_BUG_ON(i915_request_signaled(rq));
598  
599  	/* As soon as the request is completed, it may be retired */
600  	rq = i915_request_get(rq);
601  
602  	i915_request_set_error_once(rq, -EIO);
603  	i915_request_mark_complete(rq);
604  
605  	return rq;
606  }
607  
608  bool __i915_request_submit(struct i915_request *request)
609  {
610  	struct intel_engine_cs *engine = request->engine;
611  	bool result = false;
612  
613  	RQ_TRACE(request, "\n");
614  
615  	GEM_BUG_ON(!irqs_disabled());
616  	lockdep_assert_held(&engine->sched_engine->lock);
617  
618  	/*
619  	 * With the advent of preempt-to-busy, we frequently encounter
620  	 * requests that we have unsubmitted from HW, but left running
621  	 * until the next ack and so have completed in the meantime. On
622  	 * resubmission of that completed request, we can skip
623  	 * updating the payload, and execlists can even skip submitting
624  	 * the request.
625  	 *
626  	 * We must remove the request from the caller's priority queue,
627  	 * and the caller must only call us when the request is in their
628  	 * priority queue, under the sched_engine->lock. This ensures that the
629  	 * request has *not* yet been retired and we can safely move
630  	 * the request into the engine->active.list where it will be
631  	 * dropped upon retiring. (Otherwise if resubmit a *retired*
632  	 * request, this would be a horrible use-after-free.)
633  	 */
634  	if (__i915_request_is_complete(request)) {
635  		list_del_init(&request->sched.link);
636  		goto active;
637  	}
638  
639  	if (unlikely(!intel_context_is_schedulable(request->context)))
640  		i915_request_set_error_once(request, -EIO);
641  
642  	if (unlikely(fatal_error(request->fence.error)))
643  		__i915_request_skip(request);
644  
645  	/*
646  	 * Are we using semaphores when the gpu is already saturated?
647  	 *
648  	 * Using semaphores incurs a cost in having the GPU poll a
649  	 * memory location, busywaiting for it to change. The continual
650  	 * memory reads can have a noticeable impact on the rest of the
651  	 * system with the extra bus traffic, stalling the cpu as it too
652  	 * tries to access memory across the bus (perf stat -e bus-cycles).
653  	 *
654  	 * If we installed a semaphore on this request and we only submit
655  	 * the request after the signaler completed, that indicates the
656  	 * system is overloaded and using semaphores at this time only
657  	 * increases the amount of work we are doing. If so, we disable
658  	 * further use of semaphores until we are idle again, whence we
659  	 * optimistically try again.
660  	 */
661  	if (request->sched.semaphores &&
662  	    i915_sw_fence_signaled(&request->semaphore))
663  		engine->saturated |= request->sched.semaphores;
664  
665  	engine->emit_fini_breadcrumb(request,
666  				     request->ring->vaddr + request->postfix);
667  
668  	trace_i915_request_execute(request);
669  	if (engine->bump_serial)
670  		engine->bump_serial(engine);
671  	else
672  		engine->serial++;
673  
674  	result = true;
675  
676  	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
677  	engine->add_active_request(request);
678  active:
679  	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
680  	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
681  
682  	/*
683  	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
684  	 *
685  	 * In the future, perhaps when we have an active time-slicing scheduler,
686  	 * it will be interesting to unsubmit parallel execution and remove
687  	 * busywaits from the GPU until their master is restarted. This is
688  	 * quite hairy, we have to carefully rollback the fence and do a
689  	 * preempt-to-idle cycle on the target engine, all the while the
690  	 * master execute_cb may refire.
691  	 */
692  	__notify_execute_cb_irq(request);
693  
694  	/* We may be recursing from the signal callback of another i915 fence */
695  	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
696  		i915_request_enable_breadcrumb(request);
697  
698  	return result;
699  }
700  
701  void i915_request_submit(struct i915_request *request)
702  {
703  	struct intel_engine_cs *engine = request->engine;
704  	unsigned long flags;
705  
706  	/* Will be called from irq-context when using foreign fences. */
707  	spin_lock_irqsave(&engine->sched_engine->lock, flags);
708  
709  	__i915_request_submit(request);
710  
711  	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
712  }
713  
714  void __i915_request_unsubmit(struct i915_request *request)
715  {
716  	struct intel_engine_cs *engine = request->engine;
717  
718  	/*
719  	 * Only unwind in reverse order, required so that the per-context list
720  	 * is kept in seqno/ring order.
721  	 */
722  	RQ_TRACE(request, "\n");
723  
724  	GEM_BUG_ON(!irqs_disabled());
725  	lockdep_assert_held(&engine->sched_engine->lock);
726  
727  	/*
728  	 * Before we remove this breadcrumb from the signal list, we have
729  	 * to ensure that a concurrent dma_fence_enable_signaling() does not
730  	 * attach itself. We first mark the request as no longer active and
731  	 * make sure that is visible to other cores, and then remove the
732  	 * breadcrumb if attached.
733  	 */
734  	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
735  	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
736  	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
737  		i915_request_cancel_breadcrumb(request);
738  
739  	/* We've already spun, don't charge on resubmitting. */
740  	if (request->sched.semaphores && __i915_request_has_started(request))
741  		request->sched.semaphores = 0;
742  
743  	/*
744  	 * We don't need to wake_up any waiters on request->execute, they
745  	 * will get woken by any other event or us re-adding this request
746  	 * to the engine timeline (__i915_request_submit()). The waiters
747  	 * should be quite adapt at finding that the request now has a new
748  	 * global_seqno to the one they went to sleep on.
749  	 */
750  }
751  
752  void i915_request_unsubmit(struct i915_request *request)
753  {
754  	struct intel_engine_cs *engine = request->engine;
755  	unsigned long flags;
756  
757  	/* Will be called from irq-context when using foreign fences. */
758  	spin_lock_irqsave(&engine->sched_engine->lock, flags);
759  
760  	__i915_request_unsubmit(request);
761  
762  	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
763  }
764  
765  void i915_request_cancel(struct i915_request *rq, int error)
766  {
767  	if (!i915_request_set_error_once(rq, error))
768  		return;
769  
770  	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
771  
772  	intel_context_cancel_request(rq->context, rq);
773  }
774  
775  static int
776  submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
777  {
778  	struct i915_request *request =
779  		container_of(fence, typeof(*request), submit);
780  
781  	switch (state) {
782  	case FENCE_COMPLETE:
783  		trace_i915_request_submit(request);
784  
785  		if (unlikely(fence->error))
786  			i915_request_set_error_once(request, fence->error);
787  		else
788  			__rq_arm_watchdog(request);
789  
790  		/*
791  		 * We need to serialize use of the submit_request() callback
792  		 * with its hotplugging performed during an emergency
793  		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
794  		 * critical section in order to force i915_gem_set_wedged() to
795  		 * wait until the submit_request() is completed before
796  		 * proceeding.
797  		 */
798  		rcu_read_lock();
799  		request->engine->submit_request(request);
800  		rcu_read_unlock();
801  		break;
802  
803  	case FENCE_FREE:
804  		i915_request_put(request);
805  		break;
806  	}
807  
808  	return NOTIFY_DONE;
809  }
810  
811  static int
812  semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
813  {
814  	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
815  
816  	switch (state) {
817  	case FENCE_COMPLETE:
818  		break;
819  
820  	case FENCE_FREE:
821  		i915_request_put(rq);
822  		break;
823  	}
824  
825  	return NOTIFY_DONE;
826  }
827  
828  static void retire_requests(struct intel_timeline *tl)
829  {
830  	struct i915_request *rq, *rn;
831  
832  	list_for_each_entry_safe(rq, rn, &tl->requests, link)
833  		if (!i915_request_retire(rq))
834  			break;
835  }
836  
837  static noinline struct i915_request *
838  request_alloc_slow(struct intel_timeline *tl,
839  		   struct i915_request **rsvd,
840  		   gfp_t gfp)
841  {
842  	struct i915_request *rq;
843  
844  	/* If we cannot wait, dip into our reserves */
845  	if (!gfpflags_allow_blocking(gfp)) {
846  		rq = xchg(rsvd, NULL);
847  		if (!rq) /* Use the normal failure path for one final WARN */
848  			goto out;
849  
850  		return rq;
851  	}
852  
853  	if (list_empty(&tl->requests))
854  		goto out;
855  
856  	/* Move our oldest request to the slab-cache (if not in use!) */
857  	rq = list_first_entry(&tl->requests, typeof(*rq), link);
858  	i915_request_retire(rq);
859  
860  	rq = kmem_cache_alloc(slab_requests,
861  			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
862  	if (rq)
863  		return rq;
864  
865  	/* Ratelimit ourselves to prevent oom from malicious clients */
866  	rq = list_last_entry(&tl->requests, typeof(*rq), link);
867  	cond_synchronize_rcu(rq->rcustate);
868  
869  	/* Retire our old requests in the hope that we free some */
870  	retire_requests(tl);
871  
872  out:
873  	return kmem_cache_alloc(slab_requests, gfp);
874  }
875  
876  static void __i915_request_ctor(void *arg)
877  {
878  	struct i915_request *rq = arg;
879  
880  	spin_lock_init(&rq->lock);
881  	i915_sched_node_init(&rq->sched);
882  	i915_sw_fence_init(&rq->submit, submit_notify);
883  	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
884  
885  	clear_capture_list(rq);
886  	rq->batch_res = NULL;
887  
888  	init_llist_head(&rq->execute_cb);
889  }
890  
891  #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
892  #define clear_batch_ptr(_rq) ((_rq)->batch = NULL)
893  #else
894  #define clear_batch_ptr(_a) do {} while (0)
895  #endif
896  
897  struct i915_request *
898  __i915_request_create(struct intel_context *ce, gfp_t gfp)
899  {
900  	struct intel_timeline *tl = ce->timeline;
901  	struct i915_request *rq;
902  	u32 seqno;
903  	int ret;
904  
905  	might_alloc(gfp);
906  
907  	/* Check that the caller provided an already pinned context */
908  	__intel_context_pin(ce);
909  
910  	/*
911  	 * Beware: Dragons be flying overhead.
912  	 *
913  	 * We use RCU to look up requests in flight. The lookups may
914  	 * race with the request being allocated from the slab freelist.
915  	 * That is the request we are writing to here, may be in the process
916  	 * of being read by __i915_active_request_get_rcu(). As such,
917  	 * we have to be very careful when overwriting the contents. During
918  	 * the RCU lookup, we change chase the request->engine pointer,
919  	 * read the request->global_seqno and increment the reference count.
920  	 *
921  	 * The reference count is incremented atomically. If it is zero,
922  	 * the lookup knows the request is unallocated and complete. Otherwise,
923  	 * it is either still in use, or has been reallocated and reset
924  	 * with dma_fence_init(). This increment is safe for release as we
925  	 * check that the request we have a reference to and matches the active
926  	 * request.
927  	 *
928  	 * Before we increment the refcount, we chase the request->engine
929  	 * pointer. We must not call kmem_cache_zalloc() or else we set
930  	 * that pointer to NULL and cause a crash during the lookup. If
931  	 * we see the request is completed (based on the value of the
932  	 * old engine and seqno), the lookup is complete and reports NULL.
933  	 * If we decide the request is not completed (new engine or seqno),
934  	 * then we grab a reference and double check that it is still the
935  	 * active request - which it won't be and restart the lookup.
936  	 *
937  	 * Do not use kmem_cache_zalloc() here!
938  	 */
939  	rq = kmem_cache_alloc(slab_requests,
940  			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
941  	if (unlikely(!rq)) {
942  		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
943  		if (!rq) {
944  			ret = -ENOMEM;
945  			goto err_unreserve;
946  		}
947  	}
948  
949  	rq->context = ce;
950  	rq->engine = ce->engine;
951  	rq->ring = ce->ring;
952  	rq->execution_mask = ce->engine->mask;
953  	rq->i915 = ce->engine->i915;
954  
955  	ret = intel_timeline_get_seqno(tl, rq, &seqno);
956  	if (ret)
957  		goto err_free;
958  
959  	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
960  		       tl->fence_context, seqno);
961  
962  	RCU_INIT_POINTER(rq->timeline, tl);
963  	rq->hwsp_seqno = tl->hwsp_seqno;
964  	GEM_BUG_ON(__i915_request_is_complete(rq));
965  
966  	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
967  
968  	rq->guc_prio = GUC_PRIO_INIT;
969  
970  	/* We bump the ref for the fence chain */
971  	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
972  	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
973  
974  	i915_sched_node_reinit(&rq->sched);
975  
976  	/* No zalloc, everything must be cleared after use */
977  	clear_batch_ptr(rq);
978  	__rq_init_watchdog(rq);
979  	assert_capture_list_is_null(rq);
980  	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
981  	GEM_BUG_ON(rq->batch_res);
982  
983  	/*
984  	 * Reserve space in the ring buffer for all the commands required to
985  	 * eventually emit this request. This is to guarantee that the
986  	 * i915_request_add() call can't fail. Note that the reserve may need
987  	 * to be redone if the request is not actually submitted straight
988  	 * away, e.g. because a GPU scheduler has deferred it.
989  	 *
990  	 * Note that due to how we add reserved_space to intel_ring_begin()
991  	 * we need to double our request to ensure that if we need to wrap
992  	 * around inside i915_request_add() there is sufficient space at
993  	 * the beginning of the ring as well.
994  	 */
995  	rq->reserved_space =
996  		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
997  
998  	/*
999  	 * Record the position of the start of the request so that
1000  	 * should we detect the updated seqno part-way through the
1001  	 * GPU processing the request, we never over-estimate the
1002  	 * position of the head.
1003  	 */
1004  	rq->head = rq->ring->emit;
1005  
1006  	ret = rq->engine->request_alloc(rq);
1007  	if (ret)
1008  		goto err_unwind;
1009  
1010  	rq->infix = rq->ring->emit; /* end of header; start of user payload */
1011  
1012  	intel_context_mark_active(ce);
1013  	list_add_tail_rcu(&rq->link, &tl->requests);
1014  
1015  	return rq;
1016  
1017  err_unwind:
1018  	ce->ring->emit = rq->head;
1019  
1020  	/* Make sure we didn't add ourselves to external state before freeing */
1021  	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
1022  	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
1023  
1024  err_free:
1025  	kmem_cache_free(slab_requests, rq);
1026  err_unreserve:
1027  	intel_context_unpin(ce);
1028  	return ERR_PTR(ret);
1029  }
1030  
1031  struct i915_request *
1032  i915_request_create(struct intel_context *ce)
1033  {
1034  	struct i915_request *rq;
1035  	struct intel_timeline *tl;
1036  
1037  	tl = intel_context_timeline_lock(ce);
1038  	if (IS_ERR(tl))
1039  		return ERR_CAST(tl);
1040  
1041  	/* Move our oldest request to the slab-cache (if not in use!) */
1042  	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1043  	if (!list_is_last(&rq->link, &tl->requests))
1044  		i915_request_retire(rq);
1045  
1046  	intel_context_enter(ce);
1047  	rq = __i915_request_create(ce, GFP_KERNEL);
1048  	intel_context_exit(ce); /* active reference transferred to request */
1049  	if (IS_ERR(rq))
1050  		goto err_unlock;
1051  
1052  	/* Check that we do not interrupt ourselves with a new request */
1053  	rq->cookie = lockdep_pin_lock(&tl->mutex);
1054  
1055  	return rq;
1056  
1057  err_unlock:
1058  	intel_context_timeline_unlock(tl);
1059  	return rq;
1060  }
1061  
1062  static int
1063  i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1064  {
1065  	struct dma_fence *fence;
1066  	int err;
1067  
1068  	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1069  		return 0;
1070  
1071  	if (i915_request_started(signal))
1072  		return 0;
1073  
1074  	/*
1075  	 * The caller holds a reference on @signal, but we do not serialise
1076  	 * against it being retired and removed from the lists.
1077  	 *
1078  	 * We do not hold a reference to the request before @signal, and
1079  	 * so must be very careful to ensure that it is not _recycled_ as
1080  	 * we follow the link backwards.
1081  	 */
1082  	fence = NULL;
1083  	rcu_read_lock();
1084  	do {
1085  		struct list_head *pos = READ_ONCE(signal->link.prev);
1086  		struct i915_request *prev;
1087  
1088  		/* Confirm signal has not been retired, the link is valid */
1089  		if (unlikely(__i915_request_has_started(signal)))
1090  			break;
1091  
1092  		/* Is signal the earliest request on its timeline? */
1093  		if (pos == &rcu_dereference(signal->timeline)->requests)
1094  			break;
1095  
1096  		/*
1097  		 * Peek at the request before us in the timeline. That
1098  		 * request will only be valid before it is retired, so
1099  		 * after acquiring a reference to it, confirm that it is
1100  		 * still part of the signaler's timeline.
1101  		 */
1102  		prev = list_entry(pos, typeof(*prev), link);
1103  		if (!i915_request_get_rcu(prev))
1104  			break;
1105  
1106  		/* After the strong barrier, confirm prev is still attached */
1107  		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1108  			i915_request_put(prev);
1109  			break;
1110  		}
1111  
1112  		fence = &prev->fence;
1113  	} while (0);
1114  	rcu_read_unlock();
1115  	if (!fence)
1116  		return 0;
1117  
1118  	err = 0;
1119  	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1120  		err = i915_sw_fence_await_dma_fence(&rq->submit,
1121  						    fence, 0,
1122  						    I915_FENCE_GFP);
1123  	dma_fence_put(fence);
1124  
1125  	return err;
1126  }
1127  
1128  static intel_engine_mask_t
1129  already_busywaiting(struct i915_request *rq)
1130  {
1131  	/*
1132  	 * Polling a semaphore causes bus traffic, delaying other users of
1133  	 * both the GPU and CPU. We want to limit the impact on others,
1134  	 * while taking advantage of early submission to reduce GPU
1135  	 * latency. Therefore we restrict ourselves to not using more
1136  	 * than one semaphore from each source, and not using a semaphore
1137  	 * if we have detected the engine is saturated (i.e. would not be
1138  	 * submitted early and cause bus traffic reading an already passed
1139  	 * semaphore).
1140  	 *
1141  	 * See the are-we-too-late? check in __i915_request_submit().
1142  	 */
1143  	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1144  }
1145  
1146  static int
1147  __emit_semaphore_wait(struct i915_request *to,
1148  		      struct i915_request *from,
1149  		      u32 seqno)
1150  {
1151  	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1152  	u32 hwsp_offset;
1153  	int len, err;
1154  	u32 *cs;
1155  
1156  	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1157  	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1158  
1159  	/* We need to pin the signaler's HWSP until we are finished reading. */
1160  	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1161  	if (err)
1162  		return err;
1163  
1164  	len = 4;
1165  	if (has_token)
1166  		len += 2;
1167  
1168  	cs = intel_ring_begin(to, len);
1169  	if (IS_ERR(cs))
1170  		return PTR_ERR(cs);
1171  
1172  	/*
1173  	 * Using greater-than-or-equal here means we have to worry
1174  	 * about seqno wraparound. To side step that issue, we swap
1175  	 * the timeline HWSP upon wrapping, so that everyone listening
1176  	 * for the old (pre-wrap) values do not see the much smaller
1177  	 * (post-wrap) values than they were expecting (and so wait
1178  	 * forever).
1179  	 */
1180  	*cs++ = (MI_SEMAPHORE_WAIT |
1181  		 MI_SEMAPHORE_GLOBAL_GTT |
1182  		 MI_SEMAPHORE_POLL |
1183  		 MI_SEMAPHORE_SAD_GTE_SDD) +
1184  		has_token;
1185  	*cs++ = seqno;
1186  	*cs++ = hwsp_offset;
1187  	*cs++ = 0;
1188  	if (has_token) {
1189  		*cs++ = 0;
1190  		*cs++ = MI_NOOP;
1191  	}
1192  
1193  	intel_ring_advance(to, cs);
1194  	return 0;
1195  }
1196  
1197  static bool
1198  can_use_semaphore_wait(struct i915_request *to, struct i915_request *from)
1199  {
1200  	return to->engine->gt->ggtt == from->engine->gt->ggtt;
1201  }
1202  
1203  static int
1204  emit_semaphore_wait(struct i915_request *to,
1205  		    struct i915_request *from,
1206  		    gfp_t gfp)
1207  {
1208  	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1209  	struct i915_sw_fence *wait = &to->submit;
1210  
1211  	if (!can_use_semaphore_wait(to, from))
1212  		goto await_fence;
1213  
1214  	if (!intel_context_use_semaphores(to->context))
1215  		goto await_fence;
1216  
1217  	if (i915_request_has_initial_breadcrumb(to))
1218  		goto await_fence;
1219  
1220  	/*
1221  	 * If this or its dependents are waiting on an external fence
1222  	 * that may fail catastrophically, then we want to avoid using
1223  	 * sempahores as they bypass the fence signaling metadata, and we
1224  	 * lose the fence->error propagation.
1225  	 */
1226  	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1227  		goto await_fence;
1228  
1229  	/* Just emit the first semaphore we see as request space is limited. */
1230  	if (already_busywaiting(to) & mask)
1231  		goto await_fence;
1232  
1233  	if (i915_request_await_start(to, from) < 0)
1234  		goto await_fence;
1235  
1236  	/* Only submit our spinner after the signaler is running! */
1237  	if (__await_execution(to, from, gfp))
1238  		goto await_fence;
1239  
1240  	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1241  		goto await_fence;
1242  
1243  	to->sched.semaphores |= mask;
1244  	wait = &to->semaphore;
1245  
1246  await_fence:
1247  	return i915_sw_fence_await_dma_fence(wait,
1248  					     &from->fence, 0,
1249  					     I915_FENCE_GFP);
1250  }
1251  
1252  static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1253  					  struct dma_fence *fence)
1254  {
1255  	return __intel_timeline_sync_is_later(tl,
1256  					      fence->context,
1257  					      fence->seqno - 1);
1258  }
1259  
1260  static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1261  					 const struct dma_fence *fence)
1262  {
1263  	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1264  }
1265  
1266  static int
1267  __i915_request_await_execution(struct i915_request *to,
1268  			       struct i915_request *from)
1269  {
1270  	int err;
1271  
1272  	GEM_BUG_ON(intel_context_is_barrier(from->context));
1273  
1274  	/* Submit both requests at the same time */
1275  	err = __await_execution(to, from, I915_FENCE_GFP);
1276  	if (err)
1277  		return err;
1278  
1279  	/* Squash repeated depenendices to the same timelines */
1280  	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1281  					  &from->fence))
1282  		return 0;
1283  
1284  	/*
1285  	 * Wait until the start of this request.
1286  	 *
1287  	 * The execution cb fires when we submit the request to HW. But in
1288  	 * many cases this may be long before the request itself is ready to
1289  	 * run (consider that we submit 2 requests for the same context, where
1290  	 * the request of interest is behind an indefinite spinner). So we hook
1291  	 * up to both to reduce our queues and keep the execution lag minimised
1292  	 * in the worst case, though we hope that the await_start is elided.
1293  	 */
1294  	err = i915_request_await_start(to, from);
1295  	if (err < 0)
1296  		return err;
1297  
1298  	/*
1299  	 * Ensure both start together [after all semaphores in signal]
1300  	 *
1301  	 * Now that we are queued to the HW at roughly the same time (thanks
1302  	 * to the execute cb) and are ready to run at roughly the same time
1303  	 * (thanks to the await start), our signaler may still be indefinitely
1304  	 * delayed by waiting on a semaphore from a remote engine. If our
1305  	 * signaler depends on a semaphore, so indirectly do we, and we do not
1306  	 * want to start our payload until our signaler also starts theirs.
1307  	 * So we wait.
1308  	 *
1309  	 * However, there is also a second condition for which we need to wait
1310  	 * for the precise start of the signaler. Consider that the signaler
1311  	 * was submitted in a chain of requests following another context
1312  	 * (with just an ordinary intra-engine fence dependency between the
1313  	 * two). In this case the signaler is queued to HW, but not for
1314  	 * immediate execution, and so we must wait until it reaches the
1315  	 * active slot.
1316  	 */
1317  	if (can_use_semaphore_wait(to, from) &&
1318  	    intel_engine_has_semaphores(to->engine) &&
1319  	    !i915_request_has_initial_breadcrumb(to)) {
1320  		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1321  		if (err < 0)
1322  			return err;
1323  	}
1324  
1325  	/* Couple the dependency tree for PI on this exposed to->fence */
1326  	if (to->engine->sched_engine->schedule) {
1327  		err = i915_sched_node_add_dependency(&to->sched,
1328  						     &from->sched,
1329  						     I915_DEPENDENCY_WEAK);
1330  		if (err < 0)
1331  			return err;
1332  	}
1333  
1334  	return intel_timeline_sync_set_start(i915_request_timeline(to),
1335  					     &from->fence);
1336  }
1337  
1338  static void mark_external(struct i915_request *rq)
1339  {
1340  	/*
1341  	 * The downside of using semaphores is that we lose metadata passing
1342  	 * along the signaling chain. This is particularly nasty when we
1343  	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1344  	 * fatal errors we want to scrub the request before it is executed,
1345  	 * which means that we cannot preload the request onto HW and have
1346  	 * it wait upon a semaphore.
1347  	 */
1348  	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1349  }
1350  
1351  static int
1352  __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1353  {
1354  	mark_external(rq);
1355  	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1356  					     i915_fence_context_timeout(rq->engine->i915,
1357  									fence->context),
1358  					     I915_FENCE_GFP);
1359  }
1360  
1361  static int
1362  i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1363  {
1364  	struct dma_fence *iter;
1365  	int err = 0;
1366  
1367  	if (!to_dma_fence_chain(fence))
1368  		return __i915_request_await_external(rq, fence);
1369  
1370  	dma_fence_chain_for_each(iter, fence) {
1371  		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1372  
1373  		if (!dma_fence_is_i915(chain->fence)) {
1374  			err = __i915_request_await_external(rq, iter);
1375  			break;
1376  		}
1377  
1378  		err = i915_request_await_dma_fence(rq, chain->fence);
1379  		if (err < 0)
1380  			break;
1381  	}
1382  
1383  	dma_fence_put(iter);
1384  	return err;
1385  }
1386  
1387  static inline bool is_parallel_rq(struct i915_request *rq)
1388  {
1389  	return intel_context_is_parallel(rq->context);
1390  }
1391  
1392  static inline struct intel_context *request_to_parent(struct i915_request *rq)
1393  {
1394  	return intel_context_to_parent(rq->context);
1395  }
1396  
1397  static bool is_same_parallel_context(struct i915_request *to,
1398  				     struct i915_request *from)
1399  {
1400  	if (is_parallel_rq(to))
1401  		return request_to_parent(to) == request_to_parent(from);
1402  
1403  	return false;
1404  }
1405  
1406  int
1407  i915_request_await_execution(struct i915_request *rq,
1408  			     struct dma_fence *fence)
1409  {
1410  	struct dma_fence **child = &fence;
1411  	unsigned int nchild = 1;
1412  	int ret;
1413  
1414  	if (dma_fence_is_array(fence)) {
1415  		struct dma_fence_array *array = to_dma_fence_array(fence);
1416  
1417  		/* XXX Error for signal-on-any fence arrays */
1418  
1419  		child = array->fences;
1420  		nchild = array->num_fences;
1421  		GEM_BUG_ON(!nchild);
1422  	}
1423  
1424  	do {
1425  		fence = *child++;
1426  		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1427  			continue;
1428  
1429  		if (fence->context == rq->fence.context)
1430  			continue;
1431  
1432  		/*
1433  		 * We don't squash repeated fence dependencies here as we
1434  		 * want to run our callback in all cases.
1435  		 */
1436  
1437  		if (dma_fence_is_i915(fence)) {
1438  			if (is_same_parallel_context(rq, to_request(fence)))
1439  				continue;
1440  			ret = __i915_request_await_execution(rq,
1441  							     to_request(fence));
1442  		} else {
1443  			ret = i915_request_await_external(rq, fence);
1444  		}
1445  		if (ret < 0)
1446  			return ret;
1447  	} while (--nchild);
1448  
1449  	return 0;
1450  }
1451  
1452  static int
1453  await_request_submit(struct i915_request *to, struct i915_request *from)
1454  {
1455  	/*
1456  	 * If we are waiting on a virtual engine, then it may be
1457  	 * constrained to execute on a single engine *prior* to submission.
1458  	 * When it is submitted, it will be first submitted to the virtual
1459  	 * engine and then passed to the physical engine. We cannot allow
1460  	 * the waiter to be submitted immediately to the physical engine
1461  	 * as it may then bypass the virtual request.
1462  	 */
1463  	if (to->engine == READ_ONCE(from->engine))
1464  		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1465  							&from->submit,
1466  							I915_FENCE_GFP);
1467  	else
1468  		return __i915_request_await_execution(to, from);
1469  }
1470  
1471  static int
1472  i915_request_await_request(struct i915_request *to, struct i915_request *from)
1473  {
1474  	int ret;
1475  
1476  	GEM_BUG_ON(to == from);
1477  	GEM_BUG_ON(to->timeline == from->timeline);
1478  
1479  	if (i915_request_completed(from)) {
1480  		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1481  		return 0;
1482  	}
1483  
1484  	if (to->engine->sched_engine->schedule) {
1485  		ret = i915_sched_node_add_dependency(&to->sched,
1486  						     &from->sched,
1487  						     I915_DEPENDENCY_EXTERNAL);
1488  		if (ret < 0)
1489  			return ret;
1490  	}
1491  
1492  	if (!intel_engine_uses_guc(to->engine) &&
1493  	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1494  		ret = await_request_submit(to, from);
1495  	else
1496  		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1497  	if (ret < 0)
1498  		return ret;
1499  
1500  	return 0;
1501  }
1502  
1503  int
1504  i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1505  {
1506  	struct dma_fence **child = &fence;
1507  	unsigned int nchild = 1;
1508  	int ret;
1509  
1510  	/*
1511  	 * Note that if the fence-array was created in signal-on-any mode,
1512  	 * we should *not* decompose it into its individual fences. However,
1513  	 * we don't currently store which mode the fence-array is operating
1514  	 * in. Fortunately, the only user of signal-on-any is private to
1515  	 * amdgpu and we should not see any incoming fence-array from
1516  	 * sync-file being in signal-on-any mode.
1517  	 */
1518  	if (dma_fence_is_array(fence)) {
1519  		struct dma_fence_array *array = to_dma_fence_array(fence);
1520  
1521  		child = array->fences;
1522  		nchild = array->num_fences;
1523  		GEM_BUG_ON(!nchild);
1524  	}
1525  
1526  	do {
1527  		fence = *child++;
1528  		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1529  			continue;
1530  
1531  		/*
1532  		 * Requests on the same timeline are explicitly ordered, along
1533  		 * with their dependencies, by i915_request_add() which ensures
1534  		 * that requests are submitted in-order through each ring.
1535  		 */
1536  		if (fence->context == rq->fence.context)
1537  			continue;
1538  
1539  		/* Squash repeated waits to the same timelines */
1540  		if (fence->context &&
1541  		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1542  						 fence))
1543  			continue;
1544  
1545  		if (dma_fence_is_i915(fence)) {
1546  			if (is_same_parallel_context(rq, to_request(fence)))
1547  				continue;
1548  			ret = i915_request_await_request(rq, to_request(fence));
1549  		} else {
1550  			ret = i915_request_await_external(rq, fence);
1551  		}
1552  		if (ret < 0)
1553  			return ret;
1554  
1555  		/* Record the latest fence used against each timeline */
1556  		if (fence->context)
1557  			intel_timeline_sync_set(i915_request_timeline(rq),
1558  						fence);
1559  	} while (--nchild);
1560  
1561  	return 0;
1562  }
1563  
1564  /**
1565   * i915_request_await_deps - set this request to (async) wait upon a struct
1566   * i915_deps dma_fence collection
1567   * @rq: request we are wishing to use
1568   * @deps: The struct i915_deps containing the dependencies.
1569   *
1570   * Returns 0 if successful, negative error code on error.
1571   */
1572  int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps)
1573  {
1574  	int i, err;
1575  
1576  	for (i = 0; i < deps->num_deps; ++i) {
1577  		err = i915_request_await_dma_fence(rq, deps->fences[i]);
1578  		if (err)
1579  			return err;
1580  	}
1581  
1582  	return 0;
1583  }
1584  
1585  /**
1586   * i915_request_await_object - set this request to (async) wait upon a bo
1587   * @to: request we are wishing to use
1588   * @obj: object which may be in use on another ring.
1589   * @write: whether the wait is on behalf of a writer
1590   *
1591   * This code is meant to abstract object synchronization with the GPU.
1592   * Conceptually we serialise writes between engines inside the GPU.
1593   * We only allow one engine to write into a buffer at any time, but
1594   * multiple readers. To ensure each has a coherent view of memory, we must:
1595   *
1596   * - If there is an outstanding write request to the object, the new
1597   *   request must wait for it to complete (either CPU or in hw, requests
1598   *   on the same ring will be naturally ordered).
1599   *
1600   * - If we are a write request (pending_write_domain is set), the new
1601   *   request must wait for outstanding read requests to complete.
1602   *
1603   * Returns 0 if successful, else propagates up the lower layer error.
1604   */
1605  int
1606  i915_request_await_object(struct i915_request *to,
1607  			  struct drm_i915_gem_object *obj,
1608  			  bool write)
1609  {
1610  	struct dma_resv_iter cursor;
1611  	struct dma_fence *fence;
1612  	int ret = 0;
1613  
1614  	dma_resv_for_each_fence(&cursor, obj->base.resv,
1615  				dma_resv_usage_rw(write), fence) {
1616  		ret = i915_request_await_dma_fence(to, fence);
1617  		if (ret)
1618  			break;
1619  	}
1620  
1621  	return ret;
1622  }
1623  
1624  static struct i915_request *
1625  __i915_request_ensure_parallel_ordering(struct i915_request *rq,
1626  					struct intel_timeline *timeline)
1627  {
1628  	struct i915_request *prev;
1629  
1630  	GEM_BUG_ON(!is_parallel_rq(rq));
1631  
1632  	prev = request_to_parent(rq)->parallel.last_rq;
1633  	if (prev) {
1634  		if (!__i915_request_is_complete(prev)) {
1635  			i915_sw_fence_await_sw_fence(&rq->submit,
1636  						     &prev->submit,
1637  						     &rq->submitq);
1638  
1639  			if (rq->engine->sched_engine->schedule)
1640  				__i915_sched_node_add_dependency(&rq->sched,
1641  								 &prev->sched,
1642  								 &rq->dep,
1643  								 0);
1644  		}
1645  		i915_request_put(prev);
1646  	}
1647  
1648  	request_to_parent(rq)->parallel.last_rq = i915_request_get(rq);
1649  
1650  	return to_request(__i915_active_fence_set(&timeline->last_request,
1651  						  &rq->fence));
1652  }
1653  
1654  static struct i915_request *
1655  __i915_request_ensure_ordering(struct i915_request *rq,
1656  			       struct intel_timeline *timeline)
1657  {
1658  	struct i915_request *prev;
1659  
1660  	GEM_BUG_ON(is_parallel_rq(rq));
1661  
1662  	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1663  						  &rq->fence));
1664  
1665  	if (prev && !__i915_request_is_complete(prev)) {
1666  		bool uses_guc = intel_engine_uses_guc(rq->engine);
1667  		bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask |
1668  					  rq->engine->mask);
1669  		bool same_context = prev->context == rq->context;
1670  
1671  		/*
1672  		 * The requests are supposed to be kept in order. However,
1673  		 * we need to be wary in case the timeline->last_request
1674  		 * is used as a barrier for external modification to this
1675  		 * context.
1676  		 */
1677  		GEM_BUG_ON(same_context &&
1678  			   i915_seqno_passed(prev->fence.seqno,
1679  					     rq->fence.seqno));
1680  
1681  		if ((same_context && uses_guc) || (!uses_guc && pow2))
1682  			i915_sw_fence_await_sw_fence(&rq->submit,
1683  						     &prev->submit,
1684  						     &rq->submitq);
1685  		else
1686  			__i915_sw_fence_await_dma_fence(&rq->submit,
1687  							&prev->fence,
1688  							&rq->dmaq);
1689  		if (rq->engine->sched_engine->schedule)
1690  			__i915_sched_node_add_dependency(&rq->sched,
1691  							 &prev->sched,
1692  							 &rq->dep,
1693  							 0);
1694  	}
1695  
1696  	return prev;
1697  }
1698  
1699  static struct i915_request *
1700  __i915_request_add_to_timeline(struct i915_request *rq)
1701  {
1702  	struct intel_timeline *timeline = i915_request_timeline(rq);
1703  	struct i915_request *prev;
1704  
1705  	/*
1706  	 * Dependency tracking and request ordering along the timeline
1707  	 * is special cased so that we can eliminate redundant ordering
1708  	 * operations while building the request (we know that the timeline
1709  	 * itself is ordered, and here we guarantee it).
1710  	 *
1711  	 * As we know we will need to emit tracking along the timeline,
1712  	 * we embed the hooks into our request struct -- at the cost of
1713  	 * having to have specialised no-allocation interfaces (which will
1714  	 * be beneficial elsewhere).
1715  	 *
1716  	 * A second benefit to open-coding i915_request_await_request is
1717  	 * that we can apply a slight variant of the rules specialised
1718  	 * for timelines that jump between engines (such as virtual engines).
1719  	 * If we consider the case of virtual engine, we must emit a dma-fence
1720  	 * to prevent scheduling of the second request until the first is
1721  	 * complete (to maximise our greedy late load balancing) and this
1722  	 * precludes optimising to use semaphores serialisation of a single
1723  	 * timeline across engines.
1724  	 *
1725  	 * We do not order parallel submission requests on the timeline as each
1726  	 * parallel submission context has its own timeline and the ordering
1727  	 * rules for parallel requests are that they must be submitted in the
1728  	 * order received from the execbuf IOCTL. So rather than using the
1729  	 * timeline we store a pointer to last request submitted in the
1730  	 * relationship in the gem context and insert a submission fence
1731  	 * between that request and request passed into this function or
1732  	 * alternatively we use completion fence if gem context has a single
1733  	 * timeline and this is the first submission of an execbuf IOCTL.
1734  	 */
1735  	if (likely(!is_parallel_rq(rq)))
1736  		prev = __i915_request_ensure_ordering(rq, timeline);
1737  	else
1738  		prev = __i915_request_ensure_parallel_ordering(rq, timeline);
1739  
1740  	/*
1741  	 * Make sure that no request gazumped us - if it was allocated after
1742  	 * our i915_request_alloc() and called __i915_request_add() before
1743  	 * us, the timeline will hold its seqno which is later than ours.
1744  	 */
1745  	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1746  
1747  	return prev;
1748  }
1749  
1750  /*
1751   * NB: This function is not allowed to fail. Doing so would mean the the
1752   * request is not being tracked for completion but the work itself is
1753   * going to happen on the hardware. This would be a Bad Thing(tm).
1754   */
1755  struct i915_request *__i915_request_commit(struct i915_request *rq)
1756  {
1757  	struct intel_engine_cs *engine = rq->engine;
1758  	struct intel_ring *ring = rq->ring;
1759  	u32 *cs;
1760  
1761  	RQ_TRACE(rq, "\n");
1762  
1763  	/*
1764  	 * To ensure that this call will not fail, space for its emissions
1765  	 * should already have been reserved in the ring buffer. Let the ring
1766  	 * know that it is time to use that space up.
1767  	 */
1768  	GEM_BUG_ON(rq->reserved_space > ring->space);
1769  	rq->reserved_space = 0;
1770  	rq->emitted_jiffies = jiffies;
1771  
1772  	/*
1773  	 * Record the position of the start of the breadcrumb so that
1774  	 * should we detect the updated seqno part-way through the
1775  	 * GPU processing the request, we never over-estimate the
1776  	 * position of the ring's HEAD.
1777  	 */
1778  	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1779  	GEM_BUG_ON(IS_ERR(cs));
1780  	rq->postfix = intel_ring_offset(rq, cs);
1781  
1782  	return __i915_request_add_to_timeline(rq);
1783  }
1784  
1785  void __i915_request_queue_bh(struct i915_request *rq)
1786  {
1787  	i915_sw_fence_commit(&rq->semaphore);
1788  	i915_sw_fence_commit(&rq->submit);
1789  }
1790  
1791  void __i915_request_queue(struct i915_request *rq,
1792  			  const struct i915_sched_attr *attr)
1793  {
1794  	/*
1795  	 * Let the backend know a new request has arrived that may need
1796  	 * to adjust the existing execution schedule due to a high priority
1797  	 * request - i.e. we may want to preempt the current request in order
1798  	 * to run a high priority dependency chain *before* we can execute this
1799  	 * request.
1800  	 *
1801  	 * This is called before the request is ready to run so that we can
1802  	 * decide whether to preempt the entire chain so that it is ready to
1803  	 * run at the earliest possible convenience.
1804  	 */
1805  	if (attr && rq->engine->sched_engine->schedule)
1806  		rq->engine->sched_engine->schedule(rq, attr);
1807  
1808  	local_bh_disable();
1809  	__i915_request_queue_bh(rq);
1810  	local_bh_enable(); /* kick tasklets */
1811  }
1812  
1813  void i915_request_add(struct i915_request *rq)
1814  {
1815  	struct intel_timeline * const tl = i915_request_timeline(rq);
1816  	struct i915_sched_attr attr = {};
1817  	struct i915_gem_context *ctx;
1818  
1819  	lockdep_assert_held(&tl->mutex);
1820  	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1821  
1822  	trace_i915_request_add(rq);
1823  	__i915_request_commit(rq);
1824  
1825  	/* XXX placeholder for selftests */
1826  	rcu_read_lock();
1827  	ctx = rcu_dereference(rq->context->gem_context);
1828  	if (ctx)
1829  		attr = ctx->sched;
1830  	rcu_read_unlock();
1831  
1832  	__i915_request_queue(rq, &attr);
1833  
1834  	mutex_unlock(&tl->mutex);
1835  }
1836  
1837  static unsigned long local_clock_ns(unsigned int *cpu)
1838  {
1839  	unsigned long t;
1840  
1841  	/*
1842  	 * Cheaply and approximately convert from nanoseconds to microseconds.
1843  	 * The result and subsequent calculations are also defined in the same
1844  	 * approximate microseconds units. The principal source of timing
1845  	 * error here is from the simple truncation.
1846  	 *
1847  	 * Note that local_clock() is only defined wrt to the current CPU;
1848  	 * the comparisons are no longer valid if we switch CPUs. Instead of
1849  	 * blocking preemption for the entire busywait, we can detect the CPU
1850  	 * switch and use that as indicator of system load and a reason to
1851  	 * stop busywaiting, see busywait_stop().
1852  	 */
1853  	*cpu = get_cpu();
1854  	t = local_clock();
1855  	put_cpu();
1856  
1857  	return t;
1858  }
1859  
1860  static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1861  {
1862  	unsigned int this_cpu;
1863  
1864  	if (time_after(local_clock_ns(&this_cpu), timeout))
1865  		return true;
1866  
1867  	return this_cpu != cpu;
1868  }
1869  
1870  static bool __i915_spin_request(struct i915_request * const rq, int state)
1871  {
1872  	unsigned long timeout_ns;
1873  	unsigned int cpu;
1874  
1875  	/*
1876  	 * Only wait for the request if we know it is likely to complete.
1877  	 *
1878  	 * We don't track the timestamps around requests, nor the average
1879  	 * request length, so we do not have a good indicator that this
1880  	 * request will complete within the timeout. What we do know is the
1881  	 * order in which requests are executed by the context and so we can
1882  	 * tell if the request has been started. If the request is not even
1883  	 * running yet, it is a fair assumption that it will not complete
1884  	 * within our relatively short timeout.
1885  	 */
1886  	if (!i915_request_is_running(rq))
1887  		return false;
1888  
1889  	/*
1890  	 * When waiting for high frequency requests, e.g. during synchronous
1891  	 * rendering split between the CPU and GPU, the finite amount of time
1892  	 * required to set up the irq and wait upon it limits the response
1893  	 * rate. By busywaiting on the request completion for a short while we
1894  	 * can service the high frequency waits as quick as possible. However,
1895  	 * if it is a slow request, we want to sleep as quickly as possible.
1896  	 * The tradeoff between waiting and sleeping is roughly the time it
1897  	 * takes to sleep on a request, on the order of a microsecond.
1898  	 */
1899  
1900  	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1901  	timeout_ns += local_clock_ns(&cpu);
1902  	do {
1903  		if (dma_fence_is_signaled(&rq->fence))
1904  			return true;
1905  
1906  		if (signal_pending_state(state, current))
1907  			break;
1908  
1909  		if (busywait_stop(timeout_ns, cpu))
1910  			break;
1911  
1912  		cpu_relax();
1913  	} while (!need_resched());
1914  
1915  	return false;
1916  }
1917  
1918  struct request_wait {
1919  	struct dma_fence_cb cb;
1920  	struct task_struct *tsk;
1921  };
1922  
1923  static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1924  {
1925  	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1926  
1927  	wake_up_process(fetch_and_zero(&wait->tsk));
1928  }
1929  
1930  /**
1931   * i915_request_wait_timeout - wait until execution of request has finished
1932   * @rq: the request to wait upon
1933   * @flags: how to wait
1934   * @timeout: how long to wait in jiffies
1935   *
1936   * i915_request_wait_timeout() waits for the request to be completed, for a
1937   * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1938   * unbounded wait).
1939   *
1940   * Returns the remaining time (in jiffies) if the request completed, which may
1941   * be zero if the request is unfinished after the timeout expires.
1942   * If the timeout is 0, it will return 1 if the fence is signaled.
1943   *
1944   * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1945   * pending before the request completes.
1946   *
1947   * NOTE: This function has the same wait semantics as dma-fence.
1948   */
1949  long i915_request_wait_timeout(struct i915_request *rq,
1950  			       unsigned int flags,
1951  			       long timeout)
1952  {
1953  	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1954  		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1955  	struct request_wait wait;
1956  
1957  	might_sleep();
1958  	GEM_BUG_ON(timeout < 0);
1959  
1960  	if (dma_fence_is_signaled(&rq->fence))
1961  		return timeout ?: 1;
1962  
1963  	if (!timeout)
1964  		return -ETIME;
1965  
1966  	trace_i915_request_wait_begin(rq, flags);
1967  
1968  	/*
1969  	 * We must never wait on the GPU while holding a lock as we
1970  	 * may need to perform a GPU reset. So while we don't need to
1971  	 * serialise wait/reset with an explicit lock, we do want
1972  	 * lockdep to detect potential dependency cycles.
1973  	 */
1974  	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1975  
1976  	/*
1977  	 * Optimistic spin before touching IRQs.
1978  	 *
1979  	 * We may use a rather large value here to offset the penalty of
1980  	 * switching away from the active task. Frequently, the client will
1981  	 * wait upon an old swapbuffer to throttle itself to remain within a
1982  	 * frame of the gpu. If the client is running in lockstep with the gpu,
1983  	 * then it should not be waiting long at all, and a sleep now will incur
1984  	 * extra scheduler latency in producing the next frame. To try to
1985  	 * avoid adding the cost of enabling/disabling the interrupt to the
1986  	 * short wait, we first spin to see if the request would have completed
1987  	 * in the time taken to setup the interrupt.
1988  	 *
1989  	 * We need upto 5us to enable the irq, and upto 20us to hide the
1990  	 * scheduler latency of a context switch, ignoring the secondary
1991  	 * impacts from a context switch such as cache eviction.
1992  	 *
1993  	 * The scheme used for low-latency IO is called "hybrid interrupt
1994  	 * polling". The suggestion there is to sleep until just before you
1995  	 * expect to be woken by the device interrupt and then poll for its
1996  	 * completion. That requires having a good predictor for the request
1997  	 * duration, which we currently lack.
1998  	 */
1999  	if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT &&
2000  	    __i915_spin_request(rq, state))
2001  		goto out;
2002  
2003  	/*
2004  	 * This client is about to stall waiting for the GPU. In many cases
2005  	 * this is undesirable and limits the throughput of the system, as
2006  	 * many clients cannot continue processing user input/output whilst
2007  	 * blocked. RPS autotuning may take tens of milliseconds to respond
2008  	 * to the GPU load and thus incurs additional latency for the client.
2009  	 * We can circumvent that by promoting the GPU frequency to maximum
2010  	 * before we sleep. This makes the GPU throttle up much more quickly
2011  	 * (good for benchmarks and user experience, e.g. window animations),
2012  	 * but at a cost of spending more power processing the workload
2013  	 * (bad for battery).
2014  	 */
2015  	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
2016  		intel_rps_boost(rq);
2017  
2018  	wait.tsk = current;
2019  	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
2020  		goto out;
2021  
2022  	/*
2023  	 * Flush the submission tasklet, but only if it may help this request.
2024  	 *
2025  	 * We sometimes experience some latency between the HW interrupts and
2026  	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
2027  	 * be due to lazy CS events), so lets run the tasklet manually if there
2028  	 * is a chance it may submit this request. If the request is not ready
2029  	 * to run, as it is waiting for other fences to be signaled, flushing
2030  	 * the tasklet is busy work without any advantage for this client.
2031  	 *
2032  	 * If the HW is being lazy, this is the last chance before we go to
2033  	 * sleep to catch any pending events. We will check periodically in
2034  	 * the heartbeat to flush the submission tasklets as a last resort
2035  	 * for unhappy HW.
2036  	 */
2037  	if (i915_request_is_ready(rq))
2038  		__intel_engine_flush_submission(rq->engine, false);
2039  
2040  	for (;;) {
2041  		set_current_state(state);
2042  
2043  		if (dma_fence_is_signaled(&rq->fence))
2044  			break;
2045  
2046  		if (signal_pending_state(state, current)) {
2047  			timeout = -ERESTARTSYS;
2048  			break;
2049  		}
2050  
2051  		if (!timeout) {
2052  			timeout = -ETIME;
2053  			break;
2054  		}
2055  
2056  		timeout = io_schedule_timeout(timeout);
2057  	}
2058  	__set_current_state(TASK_RUNNING);
2059  
2060  	if (READ_ONCE(wait.tsk))
2061  		dma_fence_remove_callback(&rq->fence, &wait.cb);
2062  	GEM_BUG_ON(!list_empty(&wait.cb.node));
2063  
2064  out:
2065  	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
2066  	trace_i915_request_wait_end(rq);
2067  	return timeout;
2068  }
2069  
2070  /**
2071   * i915_request_wait - wait until execution of request has finished
2072   * @rq: the request to wait upon
2073   * @flags: how to wait
2074   * @timeout: how long to wait in jiffies
2075   *
2076   * i915_request_wait() waits for the request to be completed, for a
2077   * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
2078   * unbounded wait).
2079   *
2080   * Returns the remaining time (in jiffies) if the request completed, which may
2081   * be zero or -ETIME if the request is unfinished after the timeout expires.
2082   * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
2083   * pending before the request completes.
2084   *
2085   * NOTE: This function behaves differently from dma-fence wait semantics for
2086   * timeout = 0. It returns 0 on success, and -ETIME if not signaled.
2087   */
2088  long i915_request_wait(struct i915_request *rq,
2089  		       unsigned int flags,
2090  		       long timeout)
2091  {
2092  	long ret = i915_request_wait_timeout(rq, flags, timeout);
2093  
2094  	if (!ret)
2095  		return -ETIME;
2096  
2097  	if (ret > 0 && !timeout)
2098  		return 0;
2099  
2100  	return ret;
2101  }
2102  
2103  static int print_sched_attr(const struct i915_sched_attr *attr,
2104  			    char *buf, int x, int len)
2105  {
2106  	if (attr->priority == I915_PRIORITY_INVALID)
2107  		return x;
2108  
2109  	x += snprintf(buf + x, len - x,
2110  		      " prio=%d", attr->priority);
2111  
2112  	return x;
2113  }
2114  
2115  static char queue_status(const struct i915_request *rq)
2116  {
2117  	if (i915_request_is_active(rq))
2118  		return 'E';
2119  
2120  	if (i915_request_is_ready(rq))
2121  		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
2122  
2123  	return 'U';
2124  }
2125  
2126  static const char *run_status(const struct i915_request *rq)
2127  {
2128  	if (__i915_request_is_complete(rq))
2129  		return "!";
2130  
2131  	if (__i915_request_has_started(rq))
2132  		return "*";
2133  
2134  	if (!i915_sw_fence_signaled(&rq->semaphore))
2135  		return "&";
2136  
2137  	return "";
2138  }
2139  
2140  static const char *fence_status(const struct i915_request *rq)
2141  {
2142  	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
2143  		return "+";
2144  
2145  	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
2146  		return "-";
2147  
2148  	return "";
2149  }
2150  
2151  void i915_request_show(struct drm_printer *m,
2152  		       const struct i915_request *rq,
2153  		       const char *prefix,
2154  		       int indent)
2155  {
2156  	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
2157  	char buf[80] = "";
2158  	int x = 0;
2159  
2160  	/*
2161  	 * The prefix is used to show the queue status, for which we use
2162  	 * the following flags:
2163  	 *
2164  	 *  U [Unready]
2165  	 *    - initial status upon being submitted by the user
2166  	 *
2167  	 *    - the request is not ready for execution as it is waiting
2168  	 *      for external fences
2169  	 *
2170  	 *  R [Ready]
2171  	 *    - all fences the request was waiting on have been signaled,
2172  	 *      and the request is now ready for execution and will be
2173  	 *      in a backend queue
2174  	 *
2175  	 *    - a ready request may still need to wait on semaphores
2176  	 *      [internal fences]
2177  	 *
2178  	 *  V [Ready/virtual]
2179  	 *    - same as ready, but queued over multiple backends
2180  	 *
2181  	 *  E [Executing]
2182  	 *    - the request has been transferred from the backend queue and
2183  	 *      submitted for execution on HW
2184  	 *
2185  	 *    - a completed request may still be regarded as executing, its
2186  	 *      status may not be updated until it is retired and removed
2187  	 *      from the lists
2188  	 */
2189  
2190  	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2191  
2192  	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2193  		   prefix, indent, "                ",
2194  		   queue_status(rq),
2195  		   rq->fence.context, rq->fence.seqno,
2196  		   run_status(rq),
2197  		   fence_status(rq),
2198  		   buf,
2199  		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2200  		   name);
2201  }
2202  
2203  static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2204  {
2205  	u32 ring = ENGINE_READ(engine, RING_START);
2206  
2207  	return ring == i915_ggtt_offset(rq->ring->vma);
2208  }
2209  
2210  static bool match_ring(struct i915_request *rq)
2211  {
2212  	struct intel_engine_cs *engine;
2213  	bool found;
2214  	int i;
2215  
2216  	if (!intel_engine_is_virtual(rq->engine))
2217  		return engine_match_ring(rq->engine, rq);
2218  
2219  	found = false;
2220  	i = 0;
2221  	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2222  		found = engine_match_ring(engine, rq);
2223  		if (found)
2224  			break;
2225  	}
2226  
2227  	return found;
2228  }
2229  
2230  enum i915_request_state i915_test_request_state(struct i915_request *rq)
2231  {
2232  	if (i915_request_completed(rq))
2233  		return I915_REQUEST_COMPLETE;
2234  
2235  	if (!i915_request_started(rq))
2236  		return I915_REQUEST_PENDING;
2237  
2238  	if (match_ring(rq))
2239  		return I915_REQUEST_ACTIVE;
2240  
2241  	return I915_REQUEST_QUEUED;
2242  }
2243  
2244  #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2245  #include "selftests/mock_request.c"
2246  #include "selftests/i915_request.c"
2247  #endif
2248  
2249  void i915_request_module_exit(void)
2250  {
2251  	kmem_cache_destroy(slab_execute_cbs);
2252  	kmem_cache_destroy(slab_requests);
2253  }
2254  
2255  int __init i915_request_module_init(void)
2256  {
2257  	slab_requests =
2258  		kmem_cache_create("i915_request",
2259  				  sizeof(struct i915_request),
2260  				  __alignof__(struct i915_request),
2261  				  SLAB_HWCACHE_ALIGN |
2262  				  SLAB_RECLAIM_ACCOUNT |
2263  				  SLAB_TYPESAFE_BY_RCU,
2264  				  __i915_request_ctor);
2265  	if (!slab_requests)
2266  		return -ENOMEM;
2267  
2268  	slab_execute_cbs = KMEM_CACHE(execute_cb,
2269  					     SLAB_HWCACHE_ALIGN |
2270  					     SLAB_RECLAIM_ACCOUNT |
2271  					     SLAB_TYPESAFE_BY_RCU);
2272  	if (!slab_execute_cbs)
2273  		goto err_requests;
2274  
2275  	return 0;
2276  
2277  err_requests:
2278  	kmem_cache_destroy(slab_requests);
2279  	return -ENOMEM;
2280  }
2281