xref: /linux/drivers/gpu/drm/i915/i915_request.c (revision 6beeaf48db6c548fcfc2ad32739d33af2fef3a5b)
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32 
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_breadcrumbs.h"
35 #include "gt/intel_context.h"
36 #include "gt/intel_engine.h"
37 #include "gt/intel_engine_heartbeat.h"
38 #include "gt/intel_gpu_commands.h"
39 #include "gt/intel_reset.h"
40 #include "gt/intel_ring.h"
41 #include "gt/intel_rps.h"
42 
43 #include "i915_active.h"
44 #include "i915_drv.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47 
48 struct execute_cb {
49 	struct irq_work work;
50 	struct i915_sw_fence *fence;
51 	struct i915_request *signal;
52 };
53 
54 static struct kmem_cache *slab_requests;
55 static struct kmem_cache *slab_execute_cbs;
56 
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59 	return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61 
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64 	const struct i915_gem_context *ctx;
65 
66 	/*
67 	 * The timeline struct (as part of the ppgtt underneath a context)
68 	 * may be freed when the request is no longer in use by the GPU.
69 	 * We could extend the life of a context to beyond that of all
70 	 * fences, possibly keeping the hw resource around indefinitely,
71 	 * or we just give them a false name. Since
72 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 	 * lie seems justifiable.
74 	 */
75 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 		return "signaled";
77 
78 	ctx = i915_request_gem_context(to_request(fence));
79 	if (!ctx)
80 		return "[" DRIVER_NAME "]";
81 
82 	return ctx->name;
83 }
84 
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87 	return i915_request_completed(to_request(fence));
88 }
89 
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92 	return i915_request_enable_breadcrumb(to_request(fence));
93 }
94 
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 				   bool interruptible,
97 				   signed long timeout)
98 {
99 	return i915_request_wait(to_request(fence),
100 				 interruptible | I915_WAIT_PRIORITY,
101 				 timeout);
102 }
103 
104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106 	return slab_requests;
107 }
108 
109 static void i915_fence_release(struct dma_fence *fence)
110 {
111 	struct i915_request *rq = to_request(fence);
112 
113 	GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT &&
114 		   rq->guc_prio != GUC_PRIO_FINI);
115 
116 	/*
117 	 * The request is put onto a RCU freelist (i.e. the address
118 	 * is immediately reused), mark the fences as being freed now.
119 	 * Otherwise the debugobjects for the fences are only marked as
120 	 * freed when the slab cache itself is freed, and so we would get
121 	 * caught trying to reuse dead objects.
122 	 */
123 	i915_sw_fence_fini(&rq->submit);
124 	i915_sw_fence_fini(&rq->semaphore);
125 
126 	/*
127 	 * Keep one request on each engine for reserved use under mempressure,
128 	 * do not use with virtual engines as this really is only needed for
129 	 * kernel contexts.
130 	 */
131 	if (!intel_engine_is_virtual(rq->engine) &&
132 	    !cmpxchg(&rq->engine->request_pool, NULL, rq)) {
133 		intel_context_put(rq->context);
134 		return;
135 	}
136 
137 	intel_context_put(rq->context);
138 
139 	kmem_cache_free(slab_requests, rq);
140 }
141 
142 const struct dma_fence_ops i915_fence_ops = {
143 	.get_driver_name = i915_fence_get_driver_name,
144 	.get_timeline_name = i915_fence_get_timeline_name,
145 	.enable_signaling = i915_fence_enable_signaling,
146 	.signaled = i915_fence_signaled,
147 	.wait = i915_fence_wait,
148 	.release = i915_fence_release,
149 };
150 
151 static void irq_execute_cb(struct irq_work *wrk)
152 {
153 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
154 
155 	i915_sw_fence_complete(cb->fence);
156 	kmem_cache_free(slab_execute_cbs, cb);
157 }
158 
159 static __always_inline void
160 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk))
161 {
162 	struct execute_cb *cb, *cn;
163 
164 	if (llist_empty(&rq->execute_cb))
165 		return;
166 
167 	llist_for_each_entry_safe(cb, cn,
168 				  llist_del_all(&rq->execute_cb),
169 				  work.node.llist)
170 		fn(&cb->work);
171 }
172 
173 static void __notify_execute_cb_irq(struct i915_request *rq)
174 {
175 	__notify_execute_cb(rq, irq_work_queue);
176 }
177 
178 static bool irq_work_imm(struct irq_work *wrk)
179 {
180 	wrk->func(wrk);
181 	return false;
182 }
183 
184 void i915_request_notify_execute_cb_imm(struct i915_request *rq)
185 {
186 	__notify_execute_cb(rq, irq_work_imm);
187 }
188 
189 static void free_capture_list(struct i915_request *request)
190 {
191 	struct i915_capture_list *capture;
192 
193 	capture = fetch_and_zero(&request->capture_list);
194 	while (capture) {
195 		struct i915_capture_list *next = capture->next;
196 
197 		kfree(capture);
198 		capture = next;
199 	}
200 }
201 
202 static void __i915_request_fill(struct i915_request *rq, u8 val)
203 {
204 	void *vaddr = rq->ring->vaddr;
205 	u32 head;
206 
207 	head = rq->infix;
208 	if (rq->postfix < head) {
209 		memset(vaddr + head, val, rq->ring->size - head);
210 		head = 0;
211 	}
212 	memset(vaddr + head, val, rq->postfix - head);
213 }
214 
215 /**
216  * i915_request_active_engine
217  * @rq: request to inspect
218  * @active: pointer in which to return the active engine
219  *
220  * Fills the currently active engine to the @active pointer if the request
221  * is active and still not completed.
222  *
223  * Returns true if request was active or false otherwise.
224  */
225 bool
226 i915_request_active_engine(struct i915_request *rq,
227 			   struct intel_engine_cs **active)
228 {
229 	struct intel_engine_cs *engine, *locked;
230 	bool ret = false;
231 
232 	/*
233 	 * Serialise with __i915_request_submit() so that it sees
234 	 * is-banned?, or we know the request is already inflight.
235 	 *
236 	 * Note that rq->engine is unstable, and so we double
237 	 * check that we have acquired the lock on the final engine.
238 	 */
239 	locked = READ_ONCE(rq->engine);
240 	spin_lock_irq(&locked->sched_engine->lock);
241 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
242 		spin_unlock(&locked->sched_engine->lock);
243 		locked = engine;
244 		spin_lock(&locked->sched_engine->lock);
245 	}
246 
247 	if (i915_request_is_active(rq)) {
248 		if (!__i915_request_is_complete(rq))
249 			*active = locked;
250 		ret = true;
251 	}
252 
253 	spin_unlock_irq(&locked->sched_engine->lock);
254 
255 	return ret;
256 }
257 
258 static void __rq_init_watchdog(struct i915_request *rq)
259 {
260 	rq->watchdog.timer.function = NULL;
261 }
262 
263 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer)
264 {
265 	struct i915_request *rq =
266 		container_of(hrtimer, struct i915_request, watchdog.timer);
267 	struct intel_gt *gt = rq->engine->gt;
268 
269 	if (!i915_request_completed(rq)) {
270 		if (llist_add(&rq->watchdog.link, &gt->watchdog.list))
271 			schedule_work(&gt->watchdog.work);
272 	} else {
273 		i915_request_put(rq);
274 	}
275 
276 	return HRTIMER_NORESTART;
277 }
278 
279 static void __rq_arm_watchdog(struct i915_request *rq)
280 {
281 	struct i915_request_watchdog *wdg = &rq->watchdog;
282 	struct intel_context *ce = rq->context;
283 
284 	if (!ce->watchdog.timeout_us)
285 		return;
286 
287 	i915_request_get(rq);
288 
289 	hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
290 	wdg->timer.function = __rq_watchdog_expired;
291 	hrtimer_start_range_ns(&wdg->timer,
292 			       ns_to_ktime(ce->watchdog.timeout_us *
293 					   NSEC_PER_USEC),
294 			       NSEC_PER_MSEC,
295 			       HRTIMER_MODE_REL);
296 }
297 
298 static void __rq_cancel_watchdog(struct i915_request *rq)
299 {
300 	struct i915_request_watchdog *wdg = &rq->watchdog;
301 
302 	if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0)
303 		i915_request_put(rq);
304 }
305 
306 bool i915_request_retire(struct i915_request *rq)
307 {
308 	if (!__i915_request_is_complete(rq))
309 		return false;
310 
311 	RQ_TRACE(rq, "\n");
312 
313 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
314 	trace_i915_request_retire(rq);
315 	i915_request_mark_complete(rq);
316 
317 	__rq_cancel_watchdog(rq);
318 
319 	/*
320 	 * We know the GPU must have read the request to have
321 	 * sent us the seqno + interrupt, so use the position
322 	 * of tail of the request to update the last known position
323 	 * of the GPU head.
324 	 *
325 	 * Note this requires that we are always called in request
326 	 * completion order.
327 	 */
328 	GEM_BUG_ON(!list_is_first(&rq->link,
329 				  &i915_request_timeline(rq)->requests));
330 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
331 		/* Poison before we release our space in the ring */
332 		__i915_request_fill(rq, POISON_FREE);
333 	rq->ring->head = rq->postfix;
334 
335 	if (!i915_request_signaled(rq)) {
336 		spin_lock_irq(&rq->lock);
337 		dma_fence_signal_locked(&rq->fence);
338 		spin_unlock_irq(&rq->lock);
339 	}
340 
341 	if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags))
342 		atomic_dec(&rq->engine->gt->rps.num_waiters);
343 
344 	/*
345 	 * We only loosely track inflight requests across preemption,
346 	 * and so we may find ourselves attempting to retire a _completed_
347 	 * request that we have removed from the HW and put back on a run
348 	 * queue.
349 	 *
350 	 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be
351 	 * after removing the breadcrumb and signaling it, so that we do not
352 	 * inadvertently attach the breadcrumb to a completed request.
353 	 */
354 	rq->engine->remove_active_request(rq);
355 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
356 
357 	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
358 
359 	intel_context_exit(rq->context);
360 	intel_context_unpin(rq->context);
361 
362 	free_capture_list(rq);
363 	i915_sched_node_fini(&rq->sched);
364 	i915_request_put(rq);
365 
366 	return true;
367 }
368 
369 void i915_request_retire_upto(struct i915_request *rq)
370 {
371 	struct intel_timeline * const tl = i915_request_timeline(rq);
372 	struct i915_request *tmp;
373 
374 	RQ_TRACE(rq, "\n");
375 	GEM_BUG_ON(!__i915_request_is_complete(rq));
376 
377 	do {
378 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
379 		GEM_BUG_ON(!i915_request_completed(tmp));
380 	} while (i915_request_retire(tmp) && tmp != rq);
381 }
382 
383 static struct i915_request * const *
384 __engine_active(struct intel_engine_cs *engine)
385 {
386 	return READ_ONCE(engine->execlists.active);
387 }
388 
389 static bool __request_in_flight(const struct i915_request *signal)
390 {
391 	struct i915_request * const *port, *rq;
392 	bool inflight = false;
393 
394 	if (!i915_request_is_ready(signal))
395 		return false;
396 
397 	/*
398 	 * Even if we have unwound the request, it may still be on
399 	 * the GPU (preempt-to-busy). If that request is inside an
400 	 * unpreemptible critical section, it will not be removed. Some
401 	 * GPU functions may even be stuck waiting for the paired request
402 	 * (__await_execution) to be submitted and cannot be preempted
403 	 * until the bond is executing.
404 	 *
405 	 * As we know that there are always preemption points between
406 	 * requests, we know that only the currently executing request
407 	 * may be still active even though we have cleared the flag.
408 	 * However, we can't rely on our tracking of ELSP[0] to know
409 	 * which request is currently active and so maybe stuck, as
410 	 * the tracking maybe an event behind. Instead assume that
411 	 * if the context is still inflight, then it is still active
412 	 * even if the active flag has been cleared.
413 	 *
414 	 * To further complicate matters, if there a pending promotion, the HW
415 	 * may either perform a context switch to the second inflight execlists,
416 	 * or it may switch to the pending set of execlists. In the case of the
417 	 * latter, it may send the ACK and we process the event copying the
418 	 * pending[] over top of inflight[], _overwriting_ our *active. Since
419 	 * this implies the HW is arbitrating and not struck in *active, we do
420 	 * not worry about complete accuracy, but we do require no read/write
421 	 * tearing of the pointer [the read of the pointer must be valid, even
422 	 * as the array is being overwritten, for which we require the writes
423 	 * to avoid tearing.]
424 	 *
425 	 * Note that the read of *execlists->active may race with the promotion
426 	 * of execlists->pending[] to execlists->inflight[], overwritting
427 	 * the value at *execlists->active. This is fine. The promotion implies
428 	 * that we received an ACK from the HW, and so the context is not
429 	 * stuck -- if we do not see ourselves in *active, the inflight status
430 	 * is valid. If instead we see ourselves being copied into *active,
431 	 * we are inflight and may signal the callback.
432 	 */
433 	if (!intel_context_inflight(signal->context))
434 		return false;
435 
436 	rcu_read_lock();
437 	for (port = __engine_active(signal->engine);
438 	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
439 	     port++) {
440 		if (rq->context == signal->context) {
441 			inflight = i915_seqno_passed(rq->fence.seqno,
442 						     signal->fence.seqno);
443 			break;
444 		}
445 	}
446 	rcu_read_unlock();
447 
448 	return inflight;
449 }
450 
451 static int
452 __await_execution(struct i915_request *rq,
453 		  struct i915_request *signal,
454 		  gfp_t gfp)
455 {
456 	struct execute_cb *cb;
457 
458 	if (i915_request_is_active(signal))
459 		return 0;
460 
461 	cb = kmem_cache_alloc(slab_execute_cbs, gfp);
462 	if (!cb)
463 		return -ENOMEM;
464 
465 	cb->fence = &rq->submit;
466 	i915_sw_fence_await(cb->fence);
467 	init_irq_work(&cb->work, irq_execute_cb);
468 
469 	/*
470 	 * Register the callback first, then see if the signaler is already
471 	 * active. This ensures that if we race with the
472 	 * __notify_execute_cb from i915_request_submit() and we are not
473 	 * included in that list, we get a second bite of the cherry and
474 	 * execute it ourselves. After this point, a future
475 	 * i915_request_submit() will notify us.
476 	 *
477 	 * In i915_request_retire() we set the ACTIVE bit on a completed
478 	 * request (then flush the execute_cb). So by registering the
479 	 * callback first, then checking the ACTIVE bit, we serialise with
480 	 * the completed/retired request.
481 	 */
482 	if (llist_add(&cb->work.node.llist, &signal->execute_cb)) {
483 		if (i915_request_is_active(signal) ||
484 		    __request_in_flight(signal))
485 			i915_request_notify_execute_cb_imm(signal);
486 	}
487 
488 	return 0;
489 }
490 
491 static bool fatal_error(int error)
492 {
493 	switch (error) {
494 	case 0: /* not an error! */
495 	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
496 	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
497 		return false;
498 	default:
499 		return true;
500 	}
501 }
502 
503 void __i915_request_skip(struct i915_request *rq)
504 {
505 	GEM_BUG_ON(!fatal_error(rq->fence.error));
506 
507 	if (rq->infix == rq->postfix)
508 		return;
509 
510 	RQ_TRACE(rq, "error: %d\n", rq->fence.error);
511 
512 	/*
513 	 * As this request likely depends on state from the lost
514 	 * context, clear out all the user operations leaving the
515 	 * breadcrumb at the end (so we get the fence notifications).
516 	 */
517 	__i915_request_fill(rq, 0);
518 	rq->infix = rq->postfix;
519 }
520 
521 bool i915_request_set_error_once(struct i915_request *rq, int error)
522 {
523 	int old;
524 
525 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
526 
527 	if (i915_request_signaled(rq))
528 		return false;
529 
530 	old = READ_ONCE(rq->fence.error);
531 	do {
532 		if (fatal_error(old))
533 			return false;
534 	} while (!try_cmpxchg(&rq->fence.error, &old, error));
535 
536 	return true;
537 }
538 
539 struct i915_request *i915_request_mark_eio(struct i915_request *rq)
540 {
541 	if (__i915_request_is_complete(rq))
542 		return NULL;
543 
544 	GEM_BUG_ON(i915_request_signaled(rq));
545 
546 	/* As soon as the request is completed, it may be retired */
547 	rq = i915_request_get(rq);
548 
549 	i915_request_set_error_once(rq, -EIO);
550 	i915_request_mark_complete(rq);
551 
552 	return rq;
553 }
554 
555 bool __i915_request_submit(struct i915_request *request)
556 {
557 	struct intel_engine_cs *engine = request->engine;
558 	bool result = false;
559 
560 	RQ_TRACE(request, "\n");
561 
562 	GEM_BUG_ON(!irqs_disabled());
563 	lockdep_assert_held(&engine->sched_engine->lock);
564 
565 	/*
566 	 * With the advent of preempt-to-busy, we frequently encounter
567 	 * requests that we have unsubmitted from HW, but left running
568 	 * until the next ack and so have completed in the meantime. On
569 	 * resubmission of that completed request, we can skip
570 	 * updating the payload, and execlists can even skip submitting
571 	 * the request.
572 	 *
573 	 * We must remove the request from the caller's priority queue,
574 	 * and the caller must only call us when the request is in their
575 	 * priority queue, under the sched_engine->lock. This ensures that the
576 	 * request has *not* yet been retired and we can safely move
577 	 * the request into the engine->active.list where it will be
578 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
579 	 * request, this would be a horrible use-after-free.)
580 	 */
581 	if (__i915_request_is_complete(request)) {
582 		list_del_init(&request->sched.link);
583 		goto active;
584 	}
585 
586 	if (unlikely(intel_context_is_banned(request->context)))
587 		i915_request_set_error_once(request, -EIO);
588 
589 	if (unlikely(fatal_error(request->fence.error)))
590 		__i915_request_skip(request);
591 
592 	/*
593 	 * Are we using semaphores when the gpu is already saturated?
594 	 *
595 	 * Using semaphores incurs a cost in having the GPU poll a
596 	 * memory location, busywaiting for it to change. The continual
597 	 * memory reads can have a noticeable impact on the rest of the
598 	 * system with the extra bus traffic, stalling the cpu as it too
599 	 * tries to access memory across the bus (perf stat -e bus-cycles).
600 	 *
601 	 * If we installed a semaphore on this request and we only submit
602 	 * the request after the signaler completed, that indicates the
603 	 * system is overloaded and using semaphores at this time only
604 	 * increases the amount of work we are doing. If so, we disable
605 	 * further use of semaphores until we are idle again, whence we
606 	 * optimistically try again.
607 	 */
608 	if (request->sched.semaphores &&
609 	    i915_sw_fence_signaled(&request->semaphore))
610 		engine->saturated |= request->sched.semaphores;
611 
612 	engine->emit_fini_breadcrumb(request,
613 				     request->ring->vaddr + request->postfix);
614 
615 	trace_i915_request_execute(request);
616 	if (engine->bump_serial)
617 		engine->bump_serial(engine);
618 	else
619 		engine->serial++;
620 
621 	result = true;
622 
623 	GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
624 	engine->add_active_request(request);
625 active:
626 	clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
627 	set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
628 
629 	/*
630 	 * XXX Rollback bonded-execution on __i915_request_unsubmit()?
631 	 *
632 	 * In the future, perhaps when we have an active time-slicing scheduler,
633 	 * it will be interesting to unsubmit parallel execution and remove
634 	 * busywaits from the GPU until their master is restarted. This is
635 	 * quite hairy, we have to carefully rollback the fence and do a
636 	 * preempt-to-idle cycle on the target engine, all the while the
637 	 * master execute_cb may refire.
638 	 */
639 	__notify_execute_cb_irq(request);
640 
641 	/* We may be recursing from the signal callback of another i915 fence */
642 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643 		i915_request_enable_breadcrumb(request);
644 
645 	return result;
646 }
647 
648 void i915_request_submit(struct i915_request *request)
649 {
650 	struct intel_engine_cs *engine = request->engine;
651 	unsigned long flags;
652 
653 	/* Will be called from irq-context when using foreign fences. */
654 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
655 
656 	__i915_request_submit(request);
657 
658 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
659 }
660 
661 void __i915_request_unsubmit(struct i915_request *request)
662 {
663 	struct intel_engine_cs *engine = request->engine;
664 
665 	/*
666 	 * Only unwind in reverse order, required so that the per-context list
667 	 * is kept in seqno/ring order.
668 	 */
669 	RQ_TRACE(request, "\n");
670 
671 	GEM_BUG_ON(!irqs_disabled());
672 	lockdep_assert_held(&engine->sched_engine->lock);
673 
674 	/*
675 	 * Before we remove this breadcrumb from the signal list, we have
676 	 * to ensure that a concurrent dma_fence_enable_signaling() does not
677 	 * attach itself. We first mark the request as no longer active and
678 	 * make sure that is visible to other cores, and then remove the
679 	 * breadcrumb if attached.
680 	 */
681 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
682 	clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
683 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
684 		i915_request_cancel_breadcrumb(request);
685 
686 	/* We've already spun, don't charge on resubmitting. */
687 	if (request->sched.semaphores && __i915_request_has_started(request))
688 		request->sched.semaphores = 0;
689 
690 	/*
691 	 * We don't need to wake_up any waiters on request->execute, they
692 	 * will get woken by any other event or us re-adding this request
693 	 * to the engine timeline (__i915_request_submit()). The waiters
694 	 * should be quite adapt at finding that the request now has a new
695 	 * global_seqno to the one they went to sleep on.
696 	 */
697 }
698 
699 void i915_request_unsubmit(struct i915_request *request)
700 {
701 	struct intel_engine_cs *engine = request->engine;
702 	unsigned long flags;
703 
704 	/* Will be called from irq-context when using foreign fences. */
705 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
706 
707 	__i915_request_unsubmit(request);
708 
709 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
710 }
711 
712 void i915_request_cancel(struct i915_request *rq, int error)
713 {
714 	if (!i915_request_set_error_once(rq, error))
715 		return;
716 
717 	set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags);
718 
719 	intel_context_cancel_request(rq->context, rq);
720 }
721 
722 static int __i915_sw_fence_call
723 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
724 {
725 	struct i915_request *request =
726 		container_of(fence, typeof(*request), submit);
727 
728 	switch (state) {
729 	case FENCE_COMPLETE:
730 		trace_i915_request_submit(request);
731 
732 		if (unlikely(fence->error))
733 			i915_request_set_error_once(request, fence->error);
734 		else
735 			__rq_arm_watchdog(request);
736 
737 		/*
738 		 * We need to serialize use of the submit_request() callback
739 		 * with its hotplugging performed during an emergency
740 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
741 		 * critical section in order to force i915_gem_set_wedged() to
742 		 * wait until the submit_request() is completed before
743 		 * proceeding.
744 		 */
745 		rcu_read_lock();
746 		request->engine->submit_request(request);
747 		rcu_read_unlock();
748 		break;
749 
750 	case FENCE_FREE:
751 		i915_request_put(request);
752 		break;
753 	}
754 
755 	return NOTIFY_DONE;
756 }
757 
758 static int __i915_sw_fence_call
759 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
760 {
761 	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
762 
763 	switch (state) {
764 	case FENCE_COMPLETE:
765 		break;
766 
767 	case FENCE_FREE:
768 		i915_request_put(rq);
769 		break;
770 	}
771 
772 	return NOTIFY_DONE;
773 }
774 
775 static void retire_requests(struct intel_timeline *tl)
776 {
777 	struct i915_request *rq, *rn;
778 
779 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
780 		if (!i915_request_retire(rq))
781 			break;
782 }
783 
784 static noinline struct i915_request *
785 request_alloc_slow(struct intel_timeline *tl,
786 		   struct i915_request **rsvd,
787 		   gfp_t gfp)
788 {
789 	struct i915_request *rq;
790 
791 	/* If we cannot wait, dip into our reserves */
792 	if (!gfpflags_allow_blocking(gfp)) {
793 		rq = xchg(rsvd, NULL);
794 		if (!rq) /* Use the normal failure path for one final WARN */
795 			goto out;
796 
797 		return rq;
798 	}
799 
800 	if (list_empty(&tl->requests))
801 		goto out;
802 
803 	/* Move our oldest request to the slab-cache (if not in use!) */
804 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
805 	i915_request_retire(rq);
806 
807 	rq = kmem_cache_alloc(slab_requests,
808 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
809 	if (rq)
810 		return rq;
811 
812 	/* Ratelimit ourselves to prevent oom from malicious clients */
813 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
814 	cond_synchronize_rcu(rq->rcustate);
815 
816 	/* Retire our old requests in the hope that we free some */
817 	retire_requests(tl);
818 
819 out:
820 	return kmem_cache_alloc(slab_requests, gfp);
821 }
822 
823 static void __i915_request_ctor(void *arg)
824 {
825 	struct i915_request *rq = arg;
826 
827 	spin_lock_init(&rq->lock);
828 	i915_sched_node_init(&rq->sched);
829 	i915_sw_fence_init(&rq->submit, submit_notify);
830 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
831 
832 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
833 
834 	rq->capture_list = NULL;
835 
836 	init_llist_head(&rq->execute_cb);
837 }
838 
839 struct i915_request *
840 __i915_request_create(struct intel_context *ce, gfp_t gfp)
841 {
842 	struct intel_timeline *tl = ce->timeline;
843 	struct i915_request *rq;
844 	u32 seqno;
845 	int ret;
846 
847 	might_alloc(gfp);
848 
849 	/* Check that the caller provided an already pinned context */
850 	__intel_context_pin(ce);
851 
852 	/*
853 	 * Beware: Dragons be flying overhead.
854 	 *
855 	 * We use RCU to look up requests in flight. The lookups may
856 	 * race with the request being allocated from the slab freelist.
857 	 * That is the request we are writing to here, may be in the process
858 	 * of being read by __i915_active_request_get_rcu(). As such,
859 	 * we have to be very careful when overwriting the contents. During
860 	 * the RCU lookup, we change chase the request->engine pointer,
861 	 * read the request->global_seqno and increment the reference count.
862 	 *
863 	 * The reference count is incremented atomically. If it is zero,
864 	 * the lookup knows the request is unallocated and complete. Otherwise,
865 	 * it is either still in use, or has been reallocated and reset
866 	 * with dma_fence_init(). This increment is safe for release as we
867 	 * check that the request we have a reference to and matches the active
868 	 * request.
869 	 *
870 	 * Before we increment the refcount, we chase the request->engine
871 	 * pointer. We must not call kmem_cache_zalloc() or else we set
872 	 * that pointer to NULL and cause a crash during the lookup. If
873 	 * we see the request is completed (based on the value of the
874 	 * old engine and seqno), the lookup is complete and reports NULL.
875 	 * If we decide the request is not completed (new engine or seqno),
876 	 * then we grab a reference and double check that it is still the
877 	 * active request - which it won't be and restart the lookup.
878 	 *
879 	 * Do not use kmem_cache_zalloc() here!
880 	 */
881 	rq = kmem_cache_alloc(slab_requests,
882 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
883 	if (unlikely(!rq)) {
884 		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
885 		if (!rq) {
886 			ret = -ENOMEM;
887 			goto err_unreserve;
888 		}
889 	}
890 
891 	/*
892 	 * Hold a reference to the intel_context over life of an i915_request.
893 	 * Without this an i915_request can exist after the context has been
894 	 * destroyed (e.g. request retired, context closed, but user space holds
895 	 * a reference to the request from an out fence). In the case of GuC
896 	 * submission + virtual engine, the engine that the request references
897 	 * is also destroyed which can trigger bad pointer dref in fence ops
898 	 * (e.g. i915_fence_get_driver_name). We could likely change these
899 	 * functions to avoid touching the engine but let's just be safe and
900 	 * hold the intel_context reference. In execlist mode the request always
901 	 * eventually points to a physical engine so this isn't an issue.
902 	 */
903 	rq->context = intel_context_get(ce);
904 	rq->engine = ce->engine;
905 	rq->ring = ce->ring;
906 	rq->execution_mask = ce->engine->mask;
907 
908 	kref_init(&rq->fence.refcount);
909 	rq->fence.flags = 0;
910 	rq->fence.error = 0;
911 	INIT_LIST_HEAD(&rq->fence.cb_list);
912 
913 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
914 	if (ret)
915 		goto err_free;
916 
917 	rq->fence.context = tl->fence_context;
918 	rq->fence.seqno = seqno;
919 
920 	RCU_INIT_POINTER(rq->timeline, tl);
921 	rq->hwsp_seqno = tl->hwsp_seqno;
922 	GEM_BUG_ON(__i915_request_is_complete(rq));
923 
924 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
925 
926 	rq->guc_prio = GUC_PRIO_INIT;
927 
928 	/* We bump the ref for the fence chain */
929 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
930 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
931 
932 	i915_sched_node_reinit(&rq->sched);
933 
934 	/* No zalloc, everything must be cleared after use */
935 	rq->batch = NULL;
936 	__rq_init_watchdog(rq);
937 	GEM_BUG_ON(rq->capture_list);
938 	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
939 
940 	/*
941 	 * Reserve space in the ring buffer for all the commands required to
942 	 * eventually emit this request. This is to guarantee that the
943 	 * i915_request_add() call can't fail. Note that the reserve may need
944 	 * to be redone if the request is not actually submitted straight
945 	 * away, e.g. because a GPU scheduler has deferred it.
946 	 *
947 	 * Note that due to how we add reserved_space to intel_ring_begin()
948 	 * we need to double our request to ensure that if we need to wrap
949 	 * around inside i915_request_add() there is sufficient space at
950 	 * the beginning of the ring as well.
951 	 */
952 	rq->reserved_space =
953 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
954 
955 	/*
956 	 * Record the position of the start of the request so that
957 	 * should we detect the updated seqno part-way through the
958 	 * GPU processing the request, we never over-estimate the
959 	 * position of the head.
960 	 */
961 	rq->head = rq->ring->emit;
962 
963 	ret = rq->engine->request_alloc(rq);
964 	if (ret)
965 		goto err_unwind;
966 
967 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
968 
969 	intel_context_mark_active(ce);
970 	list_add_tail_rcu(&rq->link, &tl->requests);
971 
972 	return rq;
973 
974 err_unwind:
975 	ce->ring->emit = rq->head;
976 
977 	/* Make sure we didn't add ourselves to external state before freeing */
978 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
979 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
980 
981 err_free:
982 	intel_context_put(ce);
983 	kmem_cache_free(slab_requests, rq);
984 err_unreserve:
985 	intel_context_unpin(ce);
986 	return ERR_PTR(ret);
987 }
988 
989 struct i915_request *
990 i915_request_create(struct intel_context *ce)
991 {
992 	struct i915_request *rq;
993 	struct intel_timeline *tl;
994 
995 	tl = intel_context_timeline_lock(ce);
996 	if (IS_ERR(tl))
997 		return ERR_CAST(tl);
998 
999 	/* Move our oldest request to the slab-cache (if not in use!) */
1000 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
1001 	if (!list_is_last(&rq->link, &tl->requests))
1002 		i915_request_retire(rq);
1003 
1004 	intel_context_enter(ce);
1005 	rq = __i915_request_create(ce, GFP_KERNEL);
1006 	intel_context_exit(ce); /* active reference transferred to request */
1007 	if (IS_ERR(rq))
1008 		goto err_unlock;
1009 
1010 	/* Check that we do not interrupt ourselves with a new request */
1011 	rq->cookie = lockdep_pin_lock(&tl->mutex);
1012 
1013 	return rq;
1014 
1015 err_unlock:
1016 	intel_context_timeline_unlock(tl);
1017 	return rq;
1018 }
1019 
1020 static int
1021 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
1022 {
1023 	struct dma_fence *fence;
1024 	int err;
1025 
1026 	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
1027 		return 0;
1028 
1029 	if (i915_request_started(signal))
1030 		return 0;
1031 
1032 	/*
1033 	 * The caller holds a reference on @signal, but we do not serialise
1034 	 * against it being retired and removed from the lists.
1035 	 *
1036 	 * We do not hold a reference to the request before @signal, and
1037 	 * so must be very careful to ensure that it is not _recycled_ as
1038 	 * we follow the link backwards.
1039 	 */
1040 	fence = NULL;
1041 	rcu_read_lock();
1042 	do {
1043 		struct list_head *pos = READ_ONCE(signal->link.prev);
1044 		struct i915_request *prev;
1045 
1046 		/* Confirm signal has not been retired, the link is valid */
1047 		if (unlikely(__i915_request_has_started(signal)))
1048 			break;
1049 
1050 		/* Is signal the earliest request on its timeline? */
1051 		if (pos == &rcu_dereference(signal->timeline)->requests)
1052 			break;
1053 
1054 		/*
1055 		 * Peek at the request before us in the timeline. That
1056 		 * request will only be valid before it is retired, so
1057 		 * after acquiring a reference to it, confirm that it is
1058 		 * still part of the signaler's timeline.
1059 		 */
1060 		prev = list_entry(pos, typeof(*prev), link);
1061 		if (!i915_request_get_rcu(prev))
1062 			break;
1063 
1064 		/* After the strong barrier, confirm prev is still attached */
1065 		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
1066 			i915_request_put(prev);
1067 			break;
1068 		}
1069 
1070 		fence = &prev->fence;
1071 	} while (0);
1072 	rcu_read_unlock();
1073 	if (!fence)
1074 		return 0;
1075 
1076 	err = 0;
1077 	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1078 		err = i915_sw_fence_await_dma_fence(&rq->submit,
1079 						    fence, 0,
1080 						    I915_FENCE_GFP);
1081 	dma_fence_put(fence);
1082 
1083 	return err;
1084 }
1085 
1086 static intel_engine_mask_t
1087 already_busywaiting(struct i915_request *rq)
1088 {
1089 	/*
1090 	 * Polling a semaphore causes bus traffic, delaying other users of
1091 	 * both the GPU and CPU. We want to limit the impact on others,
1092 	 * while taking advantage of early submission to reduce GPU
1093 	 * latency. Therefore we restrict ourselves to not using more
1094 	 * than one semaphore from each source, and not using a semaphore
1095 	 * if we have detected the engine is saturated (i.e. would not be
1096 	 * submitted early and cause bus traffic reading an already passed
1097 	 * semaphore).
1098 	 *
1099 	 * See the are-we-too-late? check in __i915_request_submit().
1100 	 */
1101 	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1102 }
1103 
1104 static int
1105 __emit_semaphore_wait(struct i915_request *to,
1106 		      struct i915_request *from,
1107 		      u32 seqno)
1108 {
1109 	const int has_token = GRAPHICS_VER(to->engine->i915) >= 12;
1110 	u32 hwsp_offset;
1111 	int len, err;
1112 	u32 *cs;
1113 
1114 	GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8);
1115 	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1116 
1117 	/* We need to pin the signaler's HWSP until we are finished reading. */
1118 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1119 	if (err)
1120 		return err;
1121 
1122 	len = 4;
1123 	if (has_token)
1124 		len += 2;
1125 
1126 	cs = intel_ring_begin(to, len);
1127 	if (IS_ERR(cs))
1128 		return PTR_ERR(cs);
1129 
1130 	/*
1131 	 * Using greater-than-or-equal here means we have to worry
1132 	 * about seqno wraparound. To side step that issue, we swap
1133 	 * the timeline HWSP upon wrapping, so that everyone listening
1134 	 * for the old (pre-wrap) values do not see the much smaller
1135 	 * (post-wrap) values than they were expecting (and so wait
1136 	 * forever).
1137 	 */
1138 	*cs++ = (MI_SEMAPHORE_WAIT |
1139 		 MI_SEMAPHORE_GLOBAL_GTT |
1140 		 MI_SEMAPHORE_POLL |
1141 		 MI_SEMAPHORE_SAD_GTE_SDD) +
1142 		has_token;
1143 	*cs++ = seqno;
1144 	*cs++ = hwsp_offset;
1145 	*cs++ = 0;
1146 	if (has_token) {
1147 		*cs++ = 0;
1148 		*cs++ = MI_NOOP;
1149 	}
1150 
1151 	intel_ring_advance(to, cs);
1152 	return 0;
1153 }
1154 
1155 static int
1156 emit_semaphore_wait(struct i915_request *to,
1157 		    struct i915_request *from,
1158 		    gfp_t gfp)
1159 {
1160 	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1161 	struct i915_sw_fence *wait = &to->submit;
1162 
1163 	if (!intel_context_use_semaphores(to->context))
1164 		goto await_fence;
1165 
1166 	if (i915_request_has_initial_breadcrumb(to))
1167 		goto await_fence;
1168 
1169 	/*
1170 	 * If this or its dependents are waiting on an external fence
1171 	 * that may fail catastrophically, then we want to avoid using
1172 	 * sempahores as they bypass the fence signaling metadata, and we
1173 	 * lose the fence->error propagation.
1174 	 */
1175 	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1176 		goto await_fence;
1177 
1178 	/* Just emit the first semaphore we see as request space is limited. */
1179 	if (already_busywaiting(to) & mask)
1180 		goto await_fence;
1181 
1182 	if (i915_request_await_start(to, from) < 0)
1183 		goto await_fence;
1184 
1185 	/* Only submit our spinner after the signaler is running! */
1186 	if (__await_execution(to, from, gfp))
1187 		goto await_fence;
1188 
1189 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1190 		goto await_fence;
1191 
1192 	to->sched.semaphores |= mask;
1193 	wait = &to->semaphore;
1194 
1195 await_fence:
1196 	return i915_sw_fence_await_dma_fence(wait,
1197 					     &from->fence, 0,
1198 					     I915_FENCE_GFP);
1199 }
1200 
1201 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1202 					  struct dma_fence *fence)
1203 {
1204 	return __intel_timeline_sync_is_later(tl,
1205 					      fence->context,
1206 					      fence->seqno - 1);
1207 }
1208 
1209 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1210 					 const struct dma_fence *fence)
1211 {
1212 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1213 }
1214 
1215 static int
1216 __i915_request_await_execution(struct i915_request *to,
1217 			       struct i915_request *from)
1218 {
1219 	int err;
1220 
1221 	GEM_BUG_ON(intel_context_is_barrier(from->context));
1222 
1223 	/* Submit both requests at the same time */
1224 	err = __await_execution(to, from, I915_FENCE_GFP);
1225 	if (err)
1226 		return err;
1227 
1228 	/* Squash repeated depenendices to the same timelines */
1229 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1230 					  &from->fence))
1231 		return 0;
1232 
1233 	/*
1234 	 * Wait until the start of this request.
1235 	 *
1236 	 * The execution cb fires when we submit the request to HW. But in
1237 	 * many cases this may be long before the request itself is ready to
1238 	 * run (consider that we submit 2 requests for the same context, where
1239 	 * the request of interest is behind an indefinite spinner). So we hook
1240 	 * up to both to reduce our queues and keep the execution lag minimised
1241 	 * in the worst case, though we hope that the await_start is elided.
1242 	 */
1243 	err = i915_request_await_start(to, from);
1244 	if (err < 0)
1245 		return err;
1246 
1247 	/*
1248 	 * Ensure both start together [after all semaphores in signal]
1249 	 *
1250 	 * Now that we are queued to the HW at roughly the same time (thanks
1251 	 * to the execute cb) and are ready to run at roughly the same time
1252 	 * (thanks to the await start), our signaler may still be indefinitely
1253 	 * delayed by waiting on a semaphore from a remote engine. If our
1254 	 * signaler depends on a semaphore, so indirectly do we, and we do not
1255 	 * want to start our payload until our signaler also starts theirs.
1256 	 * So we wait.
1257 	 *
1258 	 * However, there is also a second condition for which we need to wait
1259 	 * for the precise start of the signaler. Consider that the signaler
1260 	 * was submitted in a chain of requests following another context
1261 	 * (with just an ordinary intra-engine fence dependency between the
1262 	 * two). In this case the signaler is queued to HW, but not for
1263 	 * immediate execution, and so we must wait until it reaches the
1264 	 * active slot.
1265 	 */
1266 	if (intel_engine_has_semaphores(to->engine) &&
1267 	    !i915_request_has_initial_breadcrumb(to)) {
1268 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1269 		if (err < 0)
1270 			return err;
1271 	}
1272 
1273 	/* Couple the dependency tree for PI on this exposed to->fence */
1274 	if (to->engine->sched_engine->schedule) {
1275 		err = i915_sched_node_add_dependency(&to->sched,
1276 						     &from->sched,
1277 						     I915_DEPENDENCY_WEAK);
1278 		if (err < 0)
1279 			return err;
1280 	}
1281 
1282 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1283 					     &from->fence);
1284 }
1285 
1286 static void mark_external(struct i915_request *rq)
1287 {
1288 	/*
1289 	 * The downside of using semaphores is that we lose metadata passing
1290 	 * along the signaling chain. This is particularly nasty when we
1291 	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1292 	 * fatal errors we want to scrub the request before it is executed,
1293 	 * which means that we cannot preload the request onto HW and have
1294 	 * it wait upon a semaphore.
1295 	 */
1296 	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1297 }
1298 
1299 static int
1300 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1301 {
1302 	mark_external(rq);
1303 	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1304 					     i915_fence_context_timeout(rq->engine->i915,
1305 									fence->context),
1306 					     I915_FENCE_GFP);
1307 }
1308 
1309 static int
1310 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1311 {
1312 	struct dma_fence *iter;
1313 	int err = 0;
1314 
1315 	if (!to_dma_fence_chain(fence))
1316 		return __i915_request_await_external(rq, fence);
1317 
1318 	dma_fence_chain_for_each(iter, fence) {
1319 		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1320 
1321 		if (!dma_fence_is_i915(chain->fence)) {
1322 			err = __i915_request_await_external(rq, iter);
1323 			break;
1324 		}
1325 
1326 		err = i915_request_await_dma_fence(rq, chain->fence);
1327 		if (err < 0)
1328 			break;
1329 	}
1330 
1331 	dma_fence_put(iter);
1332 	return err;
1333 }
1334 
1335 int
1336 i915_request_await_execution(struct i915_request *rq,
1337 			     struct dma_fence *fence)
1338 {
1339 	struct dma_fence **child = &fence;
1340 	unsigned int nchild = 1;
1341 	int ret;
1342 
1343 	if (dma_fence_is_array(fence)) {
1344 		struct dma_fence_array *array = to_dma_fence_array(fence);
1345 
1346 		/* XXX Error for signal-on-any fence arrays */
1347 
1348 		child = array->fences;
1349 		nchild = array->num_fences;
1350 		GEM_BUG_ON(!nchild);
1351 	}
1352 
1353 	do {
1354 		fence = *child++;
1355 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1356 			continue;
1357 
1358 		if (fence->context == rq->fence.context)
1359 			continue;
1360 
1361 		/*
1362 		 * We don't squash repeated fence dependencies here as we
1363 		 * want to run our callback in all cases.
1364 		 */
1365 
1366 		if (dma_fence_is_i915(fence))
1367 			ret = __i915_request_await_execution(rq,
1368 							     to_request(fence));
1369 		else
1370 			ret = i915_request_await_external(rq, fence);
1371 		if (ret < 0)
1372 			return ret;
1373 	} while (--nchild);
1374 
1375 	return 0;
1376 }
1377 
1378 static int
1379 await_request_submit(struct i915_request *to, struct i915_request *from)
1380 {
1381 	/*
1382 	 * If we are waiting on a virtual engine, then it may be
1383 	 * constrained to execute on a single engine *prior* to submission.
1384 	 * When it is submitted, it will be first submitted to the virtual
1385 	 * engine and then passed to the physical engine. We cannot allow
1386 	 * the waiter to be submitted immediately to the physical engine
1387 	 * as it may then bypass the virtual request.
1388 	 */
1389 	if (to->engine == READ_ONCE(from->engine))
1390 		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1391 							&from->submit,
1392 							I915_FENCE_GFP);
1393 	else
1394 		return __i915_request_await_execution(to, from);
1395 }
1396 
1397 static int
1398 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1399 {
1400 	int ret;
1401 
1402 	GEM_BUG_ON(to == from);
1403 	GEM_BUG_ON(to->timeline == from->timeline);
1404 
1405 	if (i915_request_completed(from)) {
1406 		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1407 		return 0;
1408 	}
1409 
1410 	if (to->engine->sched_engine->schedule) {
1411 		ret = i915_sched_node_add_dependency(&to->sched,
1412 						     &from->sched,
1413 						     I915_DEPENDENCY_EXTERNAL);
1414 		if (ret < 0)
1415 			return ret;
1416 	}
1417 
1418 	if (!intel_engine_uses_guc(to->engine) &&
1419 	    is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1420 		ret = await_request_submit(to, from);
1421 	else
1422 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1423 	if (ret < 0)
1424 		return ret;
1425 
1426 	return 0;
1427 }
1428 
1429 int
1430 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1431 {
1432 	struct dma_fence **child = &fence;
1433 	unsigned int nchild = 1;
1434 	int ret;
1435 
1436 	/*
1437 	 * Note that if the fence-array was created in signal-on-any mode,
1438 	 * we should *not* decompose it into its individual fences. However,
1439 	 * we don't currently store which mode the fence-array is operating
1440 	 * in. Fortunately, the only user of signal-on-any is private to
1441 	 * amdgpu and we should not see any incoming fence-array from
1442 	 * sync-file being in signal-on-any mode.
1443 	 */
1444 	if (dma_fence_is_array(fence)) {
1445 		struct dma_fence_array *array = to_dma_fence_array(fence);
1446 
1447 		child = array->fences;
1448 		nchild = array->num_fences;
1449 		GEM_BUG_ON(!nchild);
1450 	}
1451 
1452 	do {
1453 		fence = *child++;
1454 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
1455 			continue;
1456 
1457 		/*
1458 		 * Requests on the same timeline are explicitly ordered, along
1459 		 * with their dependencies, by i915_request_add() which ensures
1460 		 * that requests are submitted in-order through each ring.
1461 		 */
1462 		if (fence->context == rq->fence.context)
1463 			continue;
1464 
1465 		/* Squash repeated waits to the same timelines */
1466 		if (fence->context &&
1467 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1468 						 fence))
1469 			continue;
1470 
1471 		if (dma_fence_is_i915(fence))
1472 			ret = i915_request_await_request(rq, to_request(fence));
1473 		else
1474 			ret = i915_request_await_external(rq, fence);
1475 		if (ret < 0)
1476 			return ret;
1477 
1478 		/* Record the latest fence used against each timeline */
1479 		if (fence->context)
1480 			intel_timeline_sync_set(i915_request_timeline(rq),
1481 						fence);
1482 	} while (--nchild);
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  * i915_request_await_object - set this request to (async) wait upon a bo
1489  * @to: request we are wishing to use
1490  * @obj: object which may be in use on another ring.
1491  * @write: whether the wait is on behalf of a writer
1492  *
1493  * This code is meant to abstract object synchronization with the GPU.
1494  * Conceptually we serialise writes between engines inside the GPU.
1495  * We only allow one engine to write into a buffer at any time, but
1496  * multiple readers. To ensure each has a coherent view of memory, we must:
1497  *
1498  * - If there is an outstanding write request to the object, the new
1499  *   request must wait for it to complete (either CPU or in hw, requests
1500  *   on the same ring will be naturally ordered).
1501  *
1502  * - If we are a write request (pending_write_domain is set), the new
1503  *   request must wait for outstanding read requests to complete.
1504  *
1505  * Returns 0 if successful, else propagates up the lower layer error.
1506  */
1507 int
1508 i915_request_await_object(struct i915_request *to,
1509 			  struct drm_i915_gem_object *obj,
1510 			  bool write)
1511 {
1512 	struct dma_fence *excl;
1513 	int ret = 0;
1514 
1515 	if (write) {
1516 		struct dma_fence **shared;
1517 		unsigned int count, i;
1518 
1519 		ret = dma_resv_get_fences(obj->base.resv, &excl, &count,
1520 					  &shared);
1521 		if (ret)
1522 			return ret;
1523 
1524 		for (i = 0; i < count; i++) {
1525 			ret = i915_request_await_dma_fence(to, shared[i]);
1526 			if (ret)
1527 				break;
1528 
1529 			dma_fence_put(shared[i]);
1530 		}
1531 
1532 		for (; i < count; i++)
1533 			dma_fence_put(shared[i]);
1534 		kfree(shared);
1535 	} else {
1536 		excl = dma_resv_get_excl_unlocked(obj->base.resv);
1537 	}
1538 
1539 	if (excl) {
1540 		if (ret == 0)
1541 			ret = i915_request_await_dma_fence(to, excl);
1542 
1543 		dma_fence_put(excl);
1544 	}
1545 
1546 	return ret;
1547 }
1548 
1549 static struct i915_request *
1550 __i915_request_add_to_timeline(struct i915_request *rq)
1551 {
1552 	struct intel_timeline *timeline = i915_request_timeline(rq);
1553 	struct i915_request *prev;
1554 
1555 	/*
1556 	 * Dependency tracking and request ordering along the timeline
1557 	 * is special cased so that we can eliminate redundant ordering
1558 	 * operations while building the request (we know that the timeline
1559 	 * itself is ordered, and here we guarantee it).
1560 	 *
1561 	 * As we know we will need to emit tracking along the timeline,
1562 	 * we embed the hooks into our request struct -- at the cost of
1563 	 * having to have specialised no-allocation interfaces (which will
1564 	 * be beneficial elsewhere).
1565 	 *
1566 	 * A second benefit to open-coding i915_request_await_request is
1567 	 * that we can apply a slight variant of the rules specialised
1568 	 * for timelines that jump between engines (such as virtual engines).
1569 	 * If we consider the case of virtual engine, we must emit a dma-fence
1570 	 * to prevent scheduling of the second request until the first is
1571 	 * complete (to maximise our greedy late load balancing) and this
1572 	 * precludes optimising to use semaphores serialisation of a single
1573 	 * timeline across engines.
1574 	 */
1575 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1576 						  &rq->fence));
1577 	if (prev && !__i915_request_is_complete(prev)) {
1578 		bool uses_guc = intel_engine_uses_guc(rq->engine);
1579 
1580 		/*
1581 		 * The requests are supposed to be kept in order. However,
1582 		 * we need to be wary in case the timeline->last_request
1583 		 * is used as a barrier for external modification to this
1584 		 * context.
1585 		 */
1586 		GEM_BUG_ON(prev->context == rq->context &&
1587 			   i915_seqno_passed(prev->fence.seqno,
1588 					     rq->fence.seqno));
1589 
1590 		if ((!uses_guc &&
1591 		     is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) ||
1592 		    (uses_guc && prev->context == rq->context))
1593 			i915_sw_fence_await_sw_fence(&rq->submit,
1594 						     &prev->submit,
1595 						     &rq->submitq);
1596 		else
1597 			__i915_sw_fence_await_dma_fence(&rq->submit,
1598 							&prev->fence,
1599 							&rq->dmaq);
1600 		if (rq->engine->sched_engine->schedule)
1601 			__i915_sched_node_add_dependency(&rq->sched,
1602 							 &prev->sched,
1603 							 &rq->dep,
1604 							 0);
1605 	}
1606 
1607 	/*
1608 	 * Make sure that no request gazumped us - if it was allocated after
1609 	 * our i915_request_alloc() and called __i915_request_add() before
1610 	 * us, the timeline will hold its seqno which is later than ours.
1611 	 */
1612 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1613 
1614 	return prev;
1615 }
1616 
1617 /*
1618  * NB: This function is not allowed to fail. Doing so would mean the the
1619  * request is not being tracked for completion but the work itself is
1620  * going to happen on the hardware. This would be a Bad Thing(tm).
1621  */
1622 struct i915_request *__i915_request_commit(struct i915_request *rq)
1623 {
1624 	struct intel_engine_cs *engine = rq->engine;
1625 	struct intel_ring *ring = rq->ring;
1626 	u32 *cs;
1627 
1628 	RQ_TRACE(rq, "\n");
1629 
1630 	/*
1631 	 * To ensure that this call will not fail, space for its emissions
1632 	 * should already have been reserved in the ring buffer. Let the ring
1633 	 * know that it is time to use that space up.
1634 	 */
1635 	GEM_BUG_ON(rq->reserved_space > ring->space);
1636 	rq->reserved_space = 0;
1637 	rq->emitted_jiffies = jiffies;
1638 
1639 	/*
1640 	 * Record the position of the start of the breadcrumb so that
1641 	 * should we detect the updated seqno part-way through the
1642 	 * GPU processing the request, we never over-estimate the
1643 	 * position of the ring's HEAD.
1644 	 */
1645 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1646 	GEM_BUG_ON(IS_ERR(cs));
1647 	rq->postfix = intel_ring_offset(rq, cs);
1648 
1649 	return __i915_request_add_to_timeline(rq);
1650 }
1651 
1652 void __i915_request_queue_bh(struct i915_request *rq)
1653 {
1654 	i915_sw_fence_commit(&rq->semaphore);
1655 	i915_sw_fence_commit(&rq->submit);
1656 }
1657 
1658 void __i915_request_queue(struct i915_request *rq,
1659 			  const struct i915_sched_attr *attr)
1660 {
1661 	/*
1662 	 * Let the backend know a new request has arrived that may need
1663 	 * to adjust the existing execution schedule due to a high priority
1664 	 * request - i.e. we may want to preempt the current request in order
1665 	 * to run a high priority dependency chain *before* we can execute this
1666 	 * request.
1667 	 *
1668 	 * This is called before the request is ready to run so that we can
1669 	 * decide whether to preempt the entire chain so that it is ready to
1670 	 * run at the earliest possible convenience.
1671 	 */
1672 	if (attr && rq->engine->sched_engine->schedule)
1673 		rq->engine->sched_engine->schedule(rq, attr);
1674 
1675 	local_bh_disable();
1676 	__i915_request_queue_bh(rq);
1677 	local_bh_enable(); /* kick tasklets */
1678 }
1679 
1680 void i915_request_add(struct i915_request *rq)
1681 {
1682 	struct intel_timeline * const tl = i915_request_timeline(rq);
1683 	struct i915_sched_attr attr = {};
1684 	struct i915_gem_context *ctx;
1685 
1686 	lockdep_assert_held(&tl->mutex);
1687 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1688 
1689 	trace_i915_request_add(rq);
1690 	__i915_request_commit(rq);
1691 
1692 	/* XXX placeholder for selftests */
1693 	rcu_read_lock();
1694 	ctx = rcu_dereference(rq->context->gem_context);
1695 	if (ctx)
1696 		attr = ctx->sched;
1697 	rcu_read_unlock();
1698 
1699 	__i915_request_queue(rq, &attr);
1700 
1701 	mutex_unlock(&tl->mutex);
1702 }
1703 
1704 static unsigned long local_clock_ns(unsigned int *cpu)
1705 {
1706 	unsigned long t;
1707 
1708 	/*
1709 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1710 	 * The result and subsequent calculations are also defined in the same
1711 	 * approximate microseconds units. The principal source of timing
1712 	 * error here is from the simple truncation.
1713 	 *
1714 	 * Note that local_clock() is only defined wrt to the current CPU;
1715 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1716 	 * blocking preemption for the entire busywait, we can detect the CPU
1717 	 * switch and use that as indicator of system load and a reason to
1718 	 * stop busywaiting, see busywait_stop().
1719 	 */
1720 	*cpu = get_cpu();
1721 	t = local_clock();
1722 	put_cpu();
1723 
1724 	return t;
1725 }
1726 
1727 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1728 {
1729 	unsigned int this_cpu;
1730 
1731 	if (time_after(local_clock_ns(&this_cpu), timeout))
1732 		return true;
1733 
1734 	return this_cpu != cpu;
1735 }
1736 
1737 static bool __i915_spin_request(struct i915_request * const rq, int state)
1738 {
1739 	unsigned long timeout_ns;
1740 	unsigned int cpu;
1741 
1742 	/*
1743 	 * Only wait for the request if we know it is likely to complete.
1744 	 *
1745 	 * We don't track the timestamps around requests, nor the average
1746 	 * request length, so we do not have a good indicator that this
1747 	 * request will complete within the timeout. What we do know is the
1748 	 * order in which requests are executed by the context and so we can
1749 	 * tell if the request has been started. If the request is not even
1750 	 * running yet, it is a fair assumption that it will not complete
1751 	 * within our relatively short timeout.
1752 	 */
1753 	if (!i915_request_is_running(rq))
1754 		return false;
1755 
1756 	/*
1757 	 * When waiting for high frequency requests, e.g. during synchronous
1758 	 * rendering split between the CPU and GPU, the finite amount of time
1759 	 * required to set up the irq and wait upon it limits the response
1760 	 * rate. By busywaiting on the request completion for a short while we
1761 	 * can service the high frequency waits as quick as possible. However,
1762 	 * if it is a slow request, we want to sleep as quickly as possible.
1763 	 * The tradeoff between waiting and sleeping is roughly the time it
1764 	 * takes to sleep on a request, on the order of a microsecond.
1765 	 */
1766 
1767 	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1768 	timeout_ns += local_clock_ns(&cpu);
1769 	do {
1770 		if (dma_fence_is_signaled(&rq->fence))
1771 			return true;
1772 
1773 		if (signal_pending_state(state, current))
1774 			break;
1775 
1776 		if (busywait_stop(timeout_ns, cpu))
1777 			break;
1778 
1779 		cpu_relax();
1780 	} while (!need_resched());
1781 
1782 	return false;
1783 }
1784 
1785 struct request_wait {
1786 	struct dma_fence_cb cb;
1787 	struct task_struct *tsk;
1788 };
1789 
1790 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1791 {
1792 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1793 
1794 	wake_up_process(fetch_and_zero(&wait->tsk));
1795 }
1796 
1797 /**
1798  * i915_request_wait - wait until execution of request has finished
1799  * @rq: the request to wait upon
1800  * @flags: how to wait
1801  * @timeout: how long to wait in jiffies
1802  *
1803  * i915_request_wait() waits for the request to be completed, for a
1804  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1805  * unbounded wait).
1806  *
1807  * Returns the remaining time (in jiffies) if the request completed, which may
1808  * be zero or -ETIME if the request is unfinished after the timeout expires.
1809  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1810  * pending before the request completes.
1811  */
1812 long i915_request_wait(struct i915_request *rq,
1813 		       unsigned int flags,
1814 		       long timeout)
1815 {
1816 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1817 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1818 	struct request_wait wait;
1819 
1820 	might_sleep();
1821 	GEM_BUG_ON(timeout < 0);
1822 
1823 	if (dma_fence_is_signaled(&rq->fence))
1824 		return timeout;
1825 
1826 	if (!timeout)
1827 		return -ETIME;
1828 
1829 	trace_i915_request_wait_begin(rq, flags);
1830 
1831 	/*
1832 	 * We must never wait on the GPU while holding a lock as we
1833 	 * may need to perform a GPU reset. So while we don't need to
1834 	 * serialise wait/reset with an explicit lock, we do want
1835 	 * lockdep to detect potential dependency cycles.
1836 	 */
1837 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1838 
1839 	/*
1840 	 * Optimistic spin before touching IRQs.
1841 	 *
1842 	 * We may use a rather large value here to offset the penalty of
1843 	 * switching away from the active task. Frequently, the client will
1844 	 * wait upon an old swapbuffer to throttle itself to remain within a
1845 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1846 	 * then it should not be waiting long at all, and a sleep now will incur
1847 	 * extra scheduler latency in producing the next frame. To try to
1848 	 * avoid adding the cost of enabling/disabling the interrupt to the
1849 	 * short wait, we first spin to see if the request would have completed
1850 	 * in the time taken to setup the interrupt.
1851 	 *
1852 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1853 	 * scheduler latency of a context switch, ignoring the secondary
1854 	 * impacts from a context switch such as cache eviction.
1855 	 *
1856 	 * The scheme used for low-latency IO is called "hybrid interrupt
1857 	 * polling". The suggestion there is to sleep until just before you
1858 	 * expect to be woken by the device interrupt and then poll for its
1859 	 * completion. That requires having a good predictor for the request
1860 	 * duration, which we currently lack.
1861 	 */
1862 	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1863 	    __i915_spin_request(rq, state))
1864 		goto out;
1865 
1866 	/*
1867 	 * This client is about to stall waiting for the GPU. In many cases
1868 	 * this is undesirable and limits the throughput of the system, as
1869 	 * many clients cannot continue processing user input/output whilst
1870 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1871 	 * to the GPU load and thus incurs additional latency for the client.
1872 	 * We can circumvent that by promoting the GPU frequency to maximum
1873 	 * before we sleep. This makes the GPU throttle up much more quickly
1874 	 * (good for benchmarks and user experience, e.g. window animations),
1875 	 * but at a cost of spending more power processing the workload
1876 	 * (bad for battery).
1877 	 */
1878 	if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq))
1879 		intel_rps_boost(rq);
1880 
1881 	wait.tsk = current;
1882 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1883 		goto out;
1884 
1885 	/*
1886 	 * Flush the submission tasklet, but only if it may help this request.
1887 	 *
1888 	 * We sometimes experience some latency between the HW interrupts and
1889 	 * tasklet execution (mostly due to ksoftirqd latency, but it can also
1890 	 * be due to lazy CS events), so lets run the tasklet manually if there
1891 	 * is a chance it may submit this request. If the request is not ready
1892 	 * to run, as it is waiting for other fences to be signaled, flushing
1893 	 * the tasklet is busy work without any advantage for this client.
1894 	 *
1895 	 * If the HW is being lazy, this is the last chance before we go to
1896 	 * sleep to catch any pending events. We will check periodically in
1897 	 * the heartbeat to flush the submission tasklets as a last resort
1898 	 * for unhappy HW.
1899 	 */
1900 	if (i915_request_is_ready(rq))
1901 		__intel_engine_flush_submission(rq->engine, false);
1902 
1903 	for (;;) {
1904 		set_current_state(state);
1905 
1906 		if (dma_fence_is_signaled(&rq->fence))
1907 			break;
1908 
1909 		if (signal_pending_state(state, current)) {
1910 			timeout = -ERESTARTSYS;
1911 			break;
1912 		}
1913 
1914 		if (!timeout) {
1915 			timeout = -ETIME;
1916 			break;
1917 		}
1918 
1919 		timeout = io_schedule_timeout(timeout);
1920 	}
1921 	__set_current_state(TASK_RUNNING);
1922 
1923 	if (READ_ONCE(wait.tsk))
1924 		dma_fence_remove_callback(&rq->fence, &wait.cb);
1925 	GEM_BUG_ON(!list_empty(&wait.cb.node));
1926 
1927 out:
1928 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1929 	trace_i915_request_wait_end(rq);
1930 	return timeout;
1931 }
1932 
1933 static int print_sched_attr(const struct i915_sched_attr *attr,
1934 			    char *buf, int x, int len)
1935 {
1936 	if (attr->priority == I915_PRIORITY_INVALID)
1937 		return x;
1938 
1939 	x += snprintf(buf + x, len - x,
1940 		      " prio=%d", attr->priority);
1941 
1942 	return x;
1943 }
1944 
1945 static char queue_status(const struct i915_request *rq)
1946 {
1947 	if (i915_request_is_active(rq))
1948 		return 'E';
1949 
1950 	if (i915_request_is_ready(rq))
1951 		return intel_engine_is_virtual(rq->engine) ? 'V' : 'R';
1952 
1953 	return 'U';
1954 }
1955 
1956 static const char *run_status(const struct i915_request *rq)
1957 {
1958 	if (__i915_request_is_complete(rq))
1959 		return "!";
1960 
1961 	if (__i915_request_has_started(rq))
1962 		return "*";
1963 
1964 	if (!i915_sw_fence_signaled(&rq->semaphore))
1965 		return "&";
1966 
1967 	return "";
1968 }
1969 
1970 static const char *fence_status(const struct i915_request *rq)
1971 {
1972 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
1973 		return "+";
1974 
1975 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
1976 		return "-";
1977 
1978 	return "";
1979 }
1980 
1981 void i915_request_show(struct drm_printer *m,
1982 		       const struct i915_request *rq,
1983 		       const char *prefix,
1984 		       int indent)
1985 {
1986 	const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence);
1987 	char buf[80] = "";
1988 	int x = 0;
1989 
1990 	/*
1991 	 * The prefix is used to show the queue status, for which we use
1992 	 * the following flags:
1993 	 *
1994 	 *  U [Unready]
1995 	 *    - initial status upon being submitted by the user
1996 	 *
1997 	 *    - the request is not ready for execution as it is waiting
1998 	 *      for external fences
1999 	 *
2000 	 *  R [Ready]
2001 	 *    - all fences the request was waiting on have been signaled,
2002 	 *      and the request is now ready for execution and will be
2003 	 *      in a backend queue
2004 	 *
2005 	 *    - a ready request may still need to wait on semaphores
2006 	 *      [internal fences]
2007 	 *
2008 	 *  V [Ready/virtual]
2009 	 *    - same as ready, but queued over multiple backends
2010 	 *
2011 	 *  E [Executing]
2012 	 *    - the request has been transferred from the backend queue and
2013 	 *      submitted for execution on HW
2014 	 *
2015 	 *    - a completed request may still be regarded as executing, its
2016 	 *      status may not be updated until it is retired and removed
2017 	 *      from the lists
2018 	 */
2019 
2020 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
2021 
2022 	drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n",
2023 		   prefix, indent, "                ",
2024 		   queue_status(rq),
2025 		   rq->fence.context, rq->fence.seqno,
2026 		   run_status(rq),
2027 		   fence_status(rq),
2028 		   buf,
2029 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
2030 		   name);
2031 }
2032 
2033 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq)
2034 {
2035 	u32 ring = ENGINE_READ(engine, RING_START);
2036 
2037 	return ring == i915_ggtt_offset(rq->ring->vma);
2038 }
2039 
2040 static bool match_ring(struct i915_request *rq)
2041 {
2042 	struct intel_engine_cs *engine;
2043 	bool found;
2044 	int i;
2045 
2046 	if (!intel_engine_is_virtual(rq->engine))
2047 		return engine_match_ring(rq->engine, rq);
2048 
2049 	found = false;
2050 	i = 0;
2051 	while ((engine = intel_engine_get_sibling(rq->engine, i++))) {
2052 		found = engine_match_ring(engine, rq);
2053 		if (found)
2054 			break;
2055 	}
2056 
2057 	return found;
2058 }
2059 
2060 enum i915_request_state i915_test_request_state(struct i915_request *rq)
2061 {
2062 	if (i915_request_completed(rq))
2063 		return I915_REQUEST_COMPLETE;
2064 
2065 	if (!i915_request_started(rq))
2066 		return I915_REQUEST_PENDING;
2067 
2068 	if (match_ring(rq))
2069 		return I915_REQUEST_ACTIVE;
2070 
2071 	return I915_REQUEST_QUEUED;
2072 }
2073 
2074 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2075 #include "selftests/mock_request.c"
2076 #include "selftests/i915_request.c"
2077 #endif
2078 
2079 void i915_request_module_exit(void)
2080 {
2081 	kmem_cache_destroy(slab_execute_cbs);
2082 	kmem_cache_destroy(slab_requests);
2083 }
2084 
2085 int __init i915_request_module_init(void)
2086 {
2087 	slab_requests =
2088 		kmem_cache_create("i915_request",
2089 				  sizeof(struct i915_request),
2090 				  __alignof__(struct i915_request),
2091 				  SLAB_HWCACHE_ALIGN |
2092 				  SLAB_RECLAIM_ACCOUNT |
2093 				  SLAB_TYPESAFE_BY_RCU,
2094 				  __i915_request_ctor);
2095 	if (!slab_requests)
2096 		return -ENOMEM;
2097 
2098 	slab_execute_cbs = KMEM_CACHE(execute_cb,
2099 					     SLAB_HWCACHE_ALIGN |
2100 					     SLAB_RECLAIM_ACCOUNT |
2101 					     SLAB_TYPESAFE_BY_RCU);
2102 	if (!slab_execute_cbs)
2103 		goto err_requests;
2104 
2105 	return 0;
2106 
2107 err_requests:
2108 	kmem_cache_destroy(slab_requests);
2109 	return -ENOMEM;
2110 }
2111