1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 #include <linux/sched/mm.h> 33 34 #include "gem/i915_gem_context.h" 35 #include "gt/intel_breadcrumbs.h" 36 #include "gt/intel_context.h" 37 #include "gt/intel_engine.h" 38 #include "gt/intel_engine_heartbeat.h" 39 #include "gt/intel_engine_regs.h" 40 #include "gt/intel_gpu_commands.h" 41 #include "gt/intel_reset.h" 42 #include "gt/intel_ring.h" 43 #include "gt/intel_rps.h" 44 45 #include "i915_active.h" 46 #include "i915_deps.h" 47 #include "i915_drv.h" 48 #include "i915_trace.h" 49 #include "intel_pm.h" 50 51 struct execute_cb { 52 struct irq_work work; 53 struct i915_sw_fence *fence; 54 struct i915_request *signal; 55 }; 56 57 static struct kmem_cache *slab_requests; 58 static struct kmem_cache *slab_execute_cbs; 59 60 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 61 { 62 return dev_name(to_request(fence)->engine->i915->drm.dev); 63 } 64 65 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 66 { 67 const struct i915_gem_context *ctx; 68 69 /* 70 * The timeline struct (as part of the ppgtt underneath a context) 71 * may be freed when the request is no longer in use by the GPU. 72 * We could extend the life of a context to beyond that of all 73 * fences, possibly keeping the hw resource around indefinitely, 74 * or we just give them a false name. Since 75 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 76 * lie seems justifiable. 77 */ 78 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 79 return "signaled"; 80 81 ctx = i915_request_gem_context(to_request(fence)); 82 if (!ctx) 83 return "[" DRIVER_NAME "]"; 84 85 return ctx->name; 86 } 87 88 static bool i915_fence_signaled(struct dma_fence *fence) 89 { 90 return i915_request_completed(to_request(fence)); 91 } 92 93 static bool i915_fence_enable_signaling(struct dma_fence *fence) 94 { 95 return i915_request_enable_breadcrumb(to_request(fence)); 96 } 97 98 static signed long i915_fence_wait(struct dma_fence *fence, 99 bool interruptible, 100 signed long timeout) 101 { 102 return i915_request_wait_timeout(to_request(fence), 103 interruptible | I915_WAIT_PRIORITY, 104 timeout); 105 } 106 107 struct kmem_cache *i915_request_slab_cache(void) 108 { 109 return slab_requests; 110 } 111 112 static void i915_fence_release(struct dma_fence *fence) 113 { 114 struct i915_request *rq = to_request(fence); 115 116 GEM_BUG_ON(rq->guc_prio != GUC_PRIO_INIT && 117 rq->guc_prio != GUC_PRIO_FINI); 118 119 i915_request_free_capture_list(fetch_and_zero(&rq->capture_list)); 120 if (i915_vma_snapshot_present(&rq->batch_snapshot)) 121 i915_vma_snapshot_put_onstack(&rq->batch_snapshot); 122 123 /* 124 * The request is put onto a RCU freelist (i.e. the address 125 * is immediately reused), mark the fences as being freed now. 126 * Otherwise the debugobjects for the fences are only marked as 127 * freed when the slab cache itself is freed, and so we would get 128 * caught trying to reuse dead objects. 129 */ 130 i915_sw_fence_fini(&rq->submit); 131 i915_sw_fence_fini(&rq->semaphore); 132 133 /* 134 * Keep one request on each engine for reserved use under mempressure, 135 * do not use with virtual engines as this really is only needed for 136 * kernel contexts. 137 */ 138 if (!intel_engine_is_virtual(rq->engine) && 139 !cmpxchg(&rq->engine->request_pool, NULL, rq)) { 140 intel_context_put(rq->context); 141 return; 142 } 143 144 intel_context_put(rq->context); 145 146 kmem_cache_free(slab_requests, rq); 147 } 148 149 const struct dma_fence_ops i915_fence_ops = { 150 .get_driver_name = i915_fence_get_driver_name, 151 .get_timeline_name = i915_fence_get_timeline_name, 152 .enable_signaling = i915_fence_enable_signaling, 153 .signaled = i915_fence_signaled, 154 .wait = i915_fence_wait, 155 .release = i915_fence_release, 156 }; 157 158 static void irq_execute_cb(struct irq_work *wrk) 159 { 160 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 161 162 i915_sw_fence_complete(cb->fence); 163 kmem_cache_free(slab_execute_cbs, cb); 164 } 165 166 static __always_inline void 167 __notify_execute_cb(struct i915_request *rq, bool (*fn)(struct irq_work *wrk)) 168 { 169 struct execute_cb *cb, *cn; 170 171 if (llist_empty(&rq->execute_cb)) 172 return; 173 174 llist_for_each_entry_safe(cb, cn, 175 llist_del_all(&rq->execute_cb), 176 work.node.llist) 177 fn(&cb->work); 178 } 179 180 static void __notify_execute_cb_irq(struct i915_request *rq) 181 { 182 __notify_execute_cb(rq, irq_work_queue); 183 } 184 185 static bool irq_work_imm(struct irq_work *wrk) 186 { 187 wrk->func(wrk); 188 return false; 189 } 190 191 void i915_request_notify_execute_cb_imm(struct i915_request *rq) 192 { 193 __notify_execute_cb(rq, irq_work_imm); 194 } 195 196 static void __i915_request_fill(struct i915_request *rq, u8 val) 197 { 198 void *vaddr = rq->ring->vaddr; 199 u32 head; 200 201 head = rq->infix; 202 if (rq->postfix < head) { 203 memset(vaddr + head, val, rq->ring->size - head); 204 head = 0; 205 } 206 memset(vaddr + head, val, rq->postfix - head); 207 } 208 209 /** 210 * i915_request_active_engine 211 * @rq: request to inspect 212 * @active: pointer in which to return the active engine 213 * 214 * Fills the currently active engine to the @active pointer if the request 215 * is active and still not completed. 216 * 217 * Returns true if request was active or false otherwise. 218 */ 219 bool 220 i915_request_active_engine(struct i915_request *rq, 221 struct intel_engine_cs **active) 222 { 223 struct intel_engine_cs *engine, *locked; 224 bool ret = false; 225 226 /* 227 * Serialise with __i915_request_submit() so that it sees 228 * is-banned?, or we know the request is already inflight. 229 * 230 * Note that rq->engine is unstable, and so we double 231 * check that we have acquired the lock on the final engine. 232 */ 233 locked = READ_ONCE(rq->engine); 234 spin_lock_irq(&locked->sched_engine->lock); 235 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 236 spin_unlock(&locked->sched_engine->lock); 237 locked = engine; 238 spin_lock(&locked->sched_engine->lock); 239 } 240 241 if (i915_request_is_active(rq)) { 242 if (!__i915_request_is_complete(rq)) 243 *active = locked; 244 ret = true; 245 } 246 247 spin_unlock_irq(&locked->sched_engine->lock); 248 249 return ret; 250 } 251 252 static void __rq_init_watchdog(struct i915_request *rq) 253 { 254 rq->watchdog.timer.function = NULL; 255 } 256 257 static enum hrtimer_restart __rq_watchdog_expired(struct hrtimer *hrtimer) 258 { 259 struct i915_request *rq = 260 container_of(hrtimer, struct i915_request, watchdog.timer); 261 struct intel_gt *gt = rq->engine->gt; 262 263 if (!i915_request_completed(rq)) { 264 if (llist_add(&rq->watchdog.link, >->watchdog.list)) 265 schedule_work(>->watchdog.work); 266 } else { 267 i915_request_put(rq); 268 } 269 270 return HRTIMER_NORESTART; 271 } 272 273 static void __rq_arm_watchdog(struct i915_request *rq) 274 { 275 struct i915_request_watchdog *wdg = &rq->watchdog; 276 struct intel_context *ce = rq->context; 277 278 if (!ce->watchdog.timeout_us) 279 return; 280 281 i915_request_get(rq); 282 283 hrtimer_init(&wdg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 284 wdg->timer.function = __rq_watchdog_expired; 285 hrtimer_start_range_ns(&wdg->timer, 286 ns_to_ktime(ce->watchdog.timeout_us * 287 NSEC_PER_USEC), 288 NSEC_PER_MSEC, 289 HRTIMER_MODE_REL); 290 } 291 292 static void __rq_cancel_watchdog(struct i915_request *rq) 293 { 294 struct i915_request_watchdog *wdg = &rq->watchdog; 295 296 if (wdg->timer.function && hrtimer_try_to_cancel(&wdg->timer) > 0) 297 i915_request_put(rq); 298 } 299 300 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 301 302 /** 303 * i915_request_free_capture_list - Free a capture list 304 * @capture: Pointer to the first list item or NULL 305 * 306 */ 307 void i915_request_free_capture_list(struct i915_capture_list *capture) 308 { 309 while (capture) { 310 struct i915_capture_list *next = capture->next; 311 312 i915_vma_snapshot_put(capture->vma_snapshot); 313 kfree(capture); 314 capture = next; 315 } 316 } 317 318 #define assert_capture_list_is_null(_rq) GEM_BUG_ON((_rq)->capture_list) 319 320 #define clear_capture_list(_rq) ((_rq)->capture_list = NULL) 321 322 #else 323 324 #define i915_request_free_capture_list(_a) do {} while (0) 325 326 #define assert_capture_list_is_null(_a) do {} while (0) 327 328 #define clear_capture_list(_rq) do {} while (0) 329 330 #endif 331 332 bool i915_request_retire(struct i915_request *rq) 333 { 334 if (!__i915_request_is_complete(rq)) 335 return false; 336 337 RQ_TRACE(rq, "\n"); 338 339 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 340 trace_i915_request_retire(rq); 341 i915_request_mark_complete(rq); 342 343 __rq_cancel_watchdog(rq); 344 345 /* 346 * We know the GPU must have read the request to have 347 * sent us the seqno + interrupt, so use the position 348 * of tail of the request to update the last known position 349 * of the GPU head. 350 * 351 * Note this requires that we are always called in request 352 * completion order. 353 */ 354 GEM_BUG_ON(!list_is_first(&rq->link, 355 &i915_request_timeline(rq)->requests)); 356 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 357 /* Poison before we release our space in the ring */ 358 __i915_request_fill(rq, POISON_FREE); 359 rq->ring->head = rq->postfix; 360 361 if (!i915_request_signaled(rq)) { 362 spin_lock_irq(&rq->lock); 363 dma_fence_signal_locked(&rq->fence); 364 spin_unlock_irq(&rq->lock); 365 } 366 367 if (test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) 368 intel_rps_dec_waiters(&rq->engine->gt->rps); 369 370 /* 371 * We only loosely track inflight requests across preemption, 372 * and so we may find ourselves attempting to retire a _completed_ 373 * request that we have removed from the HW and put back on a run 374 * queue. 375 * 376 * As we set I915_FENCE_FLAG_ACTIVE on the request, this should be 377 * after removing the breadcrumb and signaling it, so that we do not 378 * inadvertently attach the breadcrumb to a completed request. 379 */ 380 rq->engine->remove_active_request(rq); 381 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 382 383 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 384 385 intel_context_exit(rq->context); 386 intel_context_unpin(rq->context); 387 388 i915_sched_node_fini(&rq->sched); 389 i915_request_put(rq); 390 391 return true; 392 } 393 394 void i915_request_retire_upto(struct i915_request *rq) 395 { 396 struct intel_timeline * const tl = i915_request_timeline(rq); 397 struct i915_request *tmp; 398 399 RQ_TRACE(rq, "\n"); 400 GEM_BUG_ON(!__i915_request_is_complete(rq)); 401 402 do { 403 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 404 GEM_BUG_ON(!i915_request_completed(tmp)); 405 } while (i915_request_retire(tmp) && tmp != rq); 406 } 407 408 static struct i915_request * const * 409 __engine_active(struct intel_engine_cs *engine) 410 { 411 return READ_ONCE(engine->execlists.active); 412 } 413 414 static bool __request_in_flight(const struct i915_request *signal) 415 { 416 struct i915_request * const *port, *rq; 417 bool inflight = false; 418 419 if (!i915_request_is_ready(signal)) 420 return false; 421 422 /* 423 * Even if we have unwound the request, it may still be on 424 * the GPU (preempt-to-busy). If that request is inside an 425 * unpreemptible critical section, it will not be removed. Some 426 * GPU functions may even be stuck waiting for the paired request 427 * (__await_execution) to be submitted and cannot be preempted 428 * until the bond is executing. 429 * 430 * As we know that there are always preemption points between 431 * requests, we know that only the currently executing request 432 * may be still active even though we have cleared the flag. 433 * However, we can't rely on our tracking of ELSP[0] to know 434 * which request is currently active and so maybe stuck, as 435 * the tracking maybe an event behind. Instead assume that 436 * if the context is still inflight, then it is still active 437 * even if the active flag has been cleared. 438 * 439 * To further complicate matters, if there a pending promotion, the HW 440 * may either perform a context switch to the second inflight execlists, 441 * or it may switch to the pending set of execlists. In the case of the 442 * latter, it may send the ACK and we process the event copying the 443 * pending[] over top of inflight[], _overwriting_ our *active. Since 444 * this implies the HW is arbitrating and not struck in *active, we do 445 * not worry about complete accuracy, but we do require no read/write 446 * tearing of the pointer [the read of the pointer must be valid, even 447 * as the array is being overwritten, for which we require the writes 448 * to avoid tearing.] 449 * 450 * Note that the read of *execlists->active may race with the promotion 451 * of execlists->pending[] to execlists->inflight[], overwritting 452 * the value at *execlists->active. This is fine. The promotion implies 453 * that we received an ACK from the HW, and so the context is not 454 * stuck -- if we do not see ourselves in *active, the inflight status 455 * is valid. If instead we see ourselves being copied into *active, 456 * we are inflight and may signal the callback. 457 */ 458 if (!intel_context_inflight(signal->context)) 459 return false; 460 461 rcu_read_lock(); 462 for (port = __engine_active(signal->engine); 463 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */ 464 port++) { 465 if (rq->context == signal->context) { 466 inflight = i915_seqno_passed(rq->fence.seqno, 467 signal->fence.seqno); 468 break; 469 } 470 } 471 rcu_read_unlock(); 472 473 return inflight; 474 } 475 476 static int 477 __await_execution(struct i915_request *rq, 478 struct i915_request *signal, 479 gfp_t gfp) 480 { 481 struct execute_cb *cb; 482 483 if (i915_request_is_active(signal)) 484 return 0; 485 486 cb = kmem_cache_alloc(slab_execute_cbs, gfp); 487 if (!cb) 488 return -ENOMEM; 489 490 cb->fence = &rq->submit; 491 i915_sw_fence_await(cb->fence); 492 init_irq_work(&cb->work, irq_execute_cb); 493 494 /* 495 * Register the callback first, then see if the signaler is already 496 * active. This ensures that if we race with the 497 * __notify_execute_cb from i915_request_submit() and we are not 498 * included in that list, we get a second bite of the cherry and 499 * execute it ourselves. After this point, a future 500 * i915_request_submit() will notify us. 501 * 502 * In i915_request_retire() we set the ACTIVE bit on a completed 503 * request (then flush the execute_cb). So by registering the 504 * callback first, then checking the ACTIVE bit, we serialise with 505 * the completed/retired request. 506 */ 507 if (llist_add(&cb->work.node.llist, &signal->execute_cb)) { 508 if (i915_request_is_active(signal) || 509 __request_in_flight(signal)) 510 i915_request_notify_execute_cb_imm(signal); 511 } 512 513 return 0; 514 } 515 516 static bool fatal_error(int error) 517 { 518 switch (error) { 519 case 0: /* not an error! */ 520 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 521 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 522 return false; 523 default: 524 return true; 525 } 526 } 527 528 void __i915_request_skip(struct i915_request *rq) 529 { 530 GEM_BUG_ON(!fatal_error(rq->fence.error)); 531 532 if (rq->infix == rq->postfix) 533 return; 534 535 RQ_TRACE(rq, "error: %d\n", rq->fence.error); 536 537 /* 538 * As this request likely depends on state from the lost 539 * context, clear out all the user operations leaving the 540 * breadcrumb at the end (so we get the fence notifications). 541 */ 542 __i915_request_fill(rq, 0); 543 rq->infix = rq->postfix; 544 } 545 546 bool i915_request_set_error_once(struct i915_request *rq, int error) 547 { 548 int old; 549 550 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 551 552 if (i915_request_signaled(rq)) 553 return false; 554 555 old = READ_ONCE(rq->fence.error); 556 do { 557 if (fatal_error(old)) 558 return false; 559 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 560 561 return true; 562 } 563 564 struct i915_request *i915_request_mark_eio(struct i915_request *rq) 565 { 566 if (__i915_request_is_complete(rq)) 567 return NULL; 568 569 GEM_BUG_ON(i915_request_signaled(rq)); 570 571 /* As soon as the request is completed, it may be retired */ 572 rq = i915_request_get(rq); 573 574 i915_request_set_error_once(rq, -EIO); 575 i915_request_mark_complete(rq); 576 577 return rq; 578 } 579 580 bool __i915_request_submit(struct i915_request *request) 581 { 582 struct intel_engine_cs *engine = request->engine; 583 bool result = false; 584 585 RQ_TRACE(request, "\n"); 586 587 GEM_BUG_ON(!irqs_disabled()); 588 lockdep_assert_held(&engine->sched_engine->lock); 589 590 /* 591 * With the advent of preempt-to-busy, we frequently encounter 592 * requests that we have unsubmitted from HW, but left running 593 * until the next ack and so have completed in the meantime. On 594 * resubmission of that completed request, we can skip 595 * updating the payload, and execlists can even skip submitting 596 * the request. 597 * 598 * We must remove the request from the caller's priority queue, 599 * and the caller must only call us when the request is in their 600 * priority queue, under the sched_engine->lock. This ensures that the 601 * request has *not* yet been retired and we can safely move 602 * the request into the engine->active.list where it will be 603 * dropped upon retiring. (Otherwise if resubmit a *retired* 604 * request, this would be a horrible use-after-free.) 605 */ 606 if (__i915_request_is_complete(request)) { 607 list_del_init(&request->sched.link); 608 goto active; 609 } 610 611 if (unlikely(intel_context_is_banned(request->context))) 612 i915_request_set_error_once(request, -EIO); 613 614 if (unlikely(fatal_error(request->fence.error))) 615 __i915_request_skip(request); 616 617 /* 618 * Are we using semaphores when the gpu is already saturated? 619 * 620 * Using semaphores incurs a cost in having the GPU poll a 621 * memory location, busywaiting for it to change. The continual 622 * memory reads can have a noticeable impact on the rest of the 623 * system with the extra bus traffic, stalling the cpu as it too 624 * tries to access memory across the bus (perf stat -e bus-cycles). 625 * 626 * If we installed a semaphore on this request and we only submit 627 * the request after the signaler completed, that indicates the 628 * system is overloaded and using semaphores at this time only 629 * increases the amount of work we are doing. If so, we disable 630 * further use of semaphores until we are idle again, whence we 631 * optimistically try again. 632 */ 633 if (request->sched.semaphores && 634 i915_sw_fence_signaled(&request->semaphore)) 635 engine->saturated |= request->sched.semaphores; 636 637 engine->emit_fini_breadcrumb(request, 638 request->ring->vaddr + request->postfix); 639 640 trace_i915_request_execute(request); 641 if (engine->bump_serial) 642 engine->bump_serial(engine); 643 else 644 engine->serial++; 645 646 result = true; 647 648 GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 649 engine->add_active_request(request); 650 active: 651 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 652 set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 653 654 /* 655 * XXX Rollback bonded-execution on __i915_request_unsubmit()? 656 * 657 * In the future, perhaps when we have an active time-slicing scheduler, 658 * it will be interesting to unsubmit parallel execution and remove 659 * busywaits from the GPU until their master is restarted. This is 660 * quite hairy, we have to carefully rollback the fence and do a 661 * preempt-to-idle cycle on the target engine, all the while the 662 * master execute_cb may refire. 663 */ 664 __notify_execute_cb_irq(request); 665 666 /* We may be recursing from the signal callback of another i915 fence */ 667 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 668 i915_request_enable_breadcrumb(request); 669 670 return result; 671 } 672 673 void i915_request_submit(struct i915_request *request) 674 { 675 struct intel_engine_cs *engine = request->engine; 676 unsigned long flags; 677 678 /* Will be called from irq-context when using foreign fences. */ 679 spin_lock_irqsave(&engine->sched_engine->lock, flags); 680 681 __i915_request_submit(request); 682 683 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 684 } 685 686 void __i915_request_unsubmit(struct i915_request *request) 687 { 688 struct intel_engine_cs *engine = request->engine; 689 690 /* 691 * Only unwind in reverse order, required so that the per-context list 692 * is kept in seqno/ring order. 693 */ 694 RQ_TRACE(request, "\n"); 695 696 GEM_BUG_ON(!irqs_disabled()); 697 lockdep_assert_held(&engine->sched_engine->lock); 698 699 /* 700 * Before we remove this breadcrumb from the signal list, we have 701 * to ensure that a concurrent dma_fence_enable_signaling() does not 702 * attach itself. We first mark the request as no longer active and 703 * make sure that is visible to other cores, and then remove the 704 * breadcrumb if attached. 705 */ 706 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 707 clear_bit_unlock(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 708 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 709 i915_request_cancel_breadcrumb(request); 710 711 /* We've already spun, don't charge on resubmitting. */ 712 if (request->sched.semaphores && __i915_request_has_started(request)) 713 request->sched.semaphores = 0; 714 715 /* 716 * We don't need to wake_up any waiters on request->execute, they 717 * will get woken by any other event or us re-adding this request 718 * to the engine timeline (__i915_request_submit()). The waiters 719 * should be quite adapt at finding that the request now has a new 720 * global_seqno to the one they went to sleep on. 721 */ 722 } 723 724 void i915_request_unsubmit(struct i915_request *request) 725 { 726 struct intel_engine_cs *engine = request->engine; 727 unsigned long flags; 728 729 /* Will be called from irq-context when using foreign fences. */ 730 spin_lock_irqsave(&engine->sched_engine->lock, flags); 731 732 __i915_request_unsubmit(request); 733 734 spin_unlock_irqrestore(&engine->sched_engine->lock, flags); 735 } 736 737 void i915_request_cancel(struct i915_request *rq, int error) 738 { 739 if (!i915_request_set_error_once(rq, error)) 740 return; 741 742 set_bit(I915_FENCE_FLAG_SENTINEL, &rq->fence.flags); 743 744 intel_context_cancel_request(rq->context, rq); 745 } 746 747 static int 748 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 749 { 750 struct i915_request *request = 751 container_of(fence, typeof(*request), submit); 752 753 switch (state) { 754 case FENCE_COMPLETE: 755 trace_i915_request_submit(request); 756 757 if (unlikely(fence->error)) 758 i915_request_set_error_once(request, fence->error); 759 else 760 __rq_arm_watchdog(request); 761 762 /* 763 * We need to serialize use of the submit_request() callback 764 * with its hotplugging performed during an emergency 765 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 766 * critical section in order to force i915_gem_set_wedged() to 767 * wait until the submit_request() is completed before 768 * proceeding. 769 */ 770 rcu_read_lock(); 771 request->engine->submit_request(request); 772 rcu_read_unlock(); 773 break; 774 775 case FENCE_FREE: 776 i915_request_put(request); 777 break; 778 } 779 780 return NOTIFY_DONE; 781 } 782 783 static int 784 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 785 { 786 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 787 788 switch (state) { 789 case FENCE_COMPLETE: 790 break; 791 792 case FENCE_FREE: 793 i915_request_put(rq); 794 break; 795 } 796 797 return NOTIFY_DONE; 798 } 799 800 static void retire_requests(struct intel_timeline *tl) 801 { 802 struct i915_request *rq, *rn; 803 804 list_for_each_entry_safe(rq, rn, &tl->requests, link) 805 if (!i915_request_retire(rq)) 806 break; 807 } 808 809 static noinline struct i915_request * 810 request_alloc_slow(struct intel_timeline *tl, 811 struct i915_request **rsvd, 812 gfp_t gfp) 813 { 814 struct i915_request *rq; 815 816 /* If we cannot wait, dip into our reserves */ 817 if (!gfpflags_allow_blocking(gfp)) { 818 rq = xchg(rsvd, NULL); 819 if (!rq) /* Use the normal failure path for one final WARN */ 820 goto out; 821 822 return rq; 823 } 824 825 if (list_empty(&tl->requests)) 826 goto out; 827 828 /* Move our oldest request to the slab-cache (if not in use!) */ 829 rq = list_first_entry(&tl->requests, typeof(*rq), link); 830 i915_request_retire(rq); 831 832 rq = kmem_cache_alloc(slab_requests, 833 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 834 if (rq) 835 return rq; 836 837 /* Ratelimit ourselves to prevent oom from malicious clients */ 838 rq = list_last_entry(&tl->requests, typeof(*rq), link); 839 cond_synchronize_rcu(rq->rcustate); 840 841 /* Retire our old requests in the hope that we free some */ 842 retire_requests(tl); 843 844 out: 845 return kmem_cache_alloc(slab_requests, gfp); 846 } 847 848 static void __i915_request_ctor(void *arg) 849 { 850 struct i915_request *rq = arg; 851 852 spin_lock_init(&rq->lock); 853 i915_sched_node_init(&rq->sched); 854 i915_sw_fence_init(&rq->submit, submit_notify); 855 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 856 857 clear_capture_list(rq); 858 rq->batch_snapshot.present = false; 859 860 init_llist_head(&rq->execute_cb); 861 } 862 863 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 864 #define clear_batch_ptr(_rq) ((_rq)->batch = NULL) 865 #else 866 #define clear_batch_ptr(_a) do {} while (0) 867 #endif 868 869 struct i915_request * 870 __i915_request_create(struct intel_context *ce, gfp_t gfp) 871 { 872 struct intel_timeline *tl = ce->timeline; 873 struct i915_request *rq; 874 u32 seqno; 875 int ret; 876 877 might_alloc(gfp); 878 879 /* Check that the caller provided an already pinned context */ 880 __intel_context_pin(ce); 881 882 /* 883 * Beware: Dragons be flying overhead. 884 * 885 * We use RCU to look up requests in flight. The lookups may 886 * race with the request being allocated from the slab freelist. 887 * That is the request we are writing to here, may be in the process 888 * of being read by __i915_active_request_get_rcu(). As such, 889 * we have to be very careful when overwriting the contents. During 890 * the RCU lookup, we change chase the request->engine pointer, 891 * read the request->global_seqno and increment the reference count. 892 * 893 * The reference count is incremented atomically. If it is zero, 894 * the lookup knows the request is unallocated and complete. Otherwise, 895 * it is either still in use, or has been reallocated and reset 896 * with dma_fence_init(). This increment is safe for release as we 897 * check that the request we have a reference to and matches the active 898 * request. 899 * 900 * Before we increment the refcount, we chase the request->engine 901 * pointer. We must not call kmem_cache_zalloc() or else we set 902 * that pointer to NULL and cause a crash during the lookup. If 903 * we see the request is completed (based on the value of the 904 * old engine and seqno), the lookup is complete and reports NULL. 905 * If we decide the request is not completed (new engine or seqno), 906 * then we grab a reference and double check that it is still the 907 * active request - which it won't be and restart the lookup. 908 * 909 * Do not use kmem_cache_zalloc() here! 910 */ 911 rq = kmem_cache_alloc(slab_requests, 912 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 913 if (unlikely(!rq)) { 914 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 915 if (!rq) { 916 ret = -ENOMEM; 917 goto err_unreserve; 918 } 919 } 920 921 /* 922 * Hold a reference to the intel_context over life of an i915_request. 923 * Without this an i915_request can exist after the context has been 924 * destroyed (e.g. request retired, context closed, but user space holds 925 * a reference to the request from an out fence). In the case of GuC 926 * submission + virtual engine, the engine that the request references 927 * is also destroyed which can trigger bad pointer dref in fence ops 928 * (e.g. i915_fence_get_driver_name). We could likely change these 929 * functions to avoid touching the engine but let's just be safe and 930 * hold the intel_context reference. In execlist mode the request always 931 * eventually points to a physical engine so this isn't an issue. 932 */ 933 rq->context = intel_context_get(ce); 934 rq->engine = ce->engine; 935 rq->ring = ce->ring; 936 rq->execution_mask = ce->engine->mask; 937 938 ret = intel_timeline_get_seqno(tl, rq, &seqno); 939 if (ret) 940 goto err_free; 941 942 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 943 tl->fence_context, seqno); 944 945 RCU_INIT_POINTER(rq->timeline, tl); 946 rq->hwsp_seqno = tl->hwsp_seqno; 947 GEM_BUG_ON(__i915_request_is_complete(rq)); 948 949 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 950 951 rq->guc_prio = GUC_PRIO_INIT; 952 953 /* We bump the ref for the fence chain */ 954 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 955 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 956 957 i915_sched_node_reinit(&rq->sched); 958 959 /* No zalloc, everything must be cleared after use */ 960 clear_batch_ptr(rq); 961 __rq_init_watchdog(rq); 962 assert_capture_list_is_null(rq); 963 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 964 GEM_BUG_ON(i915_vma_snapshot_present(&rq->batch_snapshot)); 965 966 /* 967 * Reserve space in the ring buffer for all the commands required to 968 * eventually emit this request. This is to guarantee that the 969 * i915_request_add() call can't fail. Note that the reserve may need 970 * to be redone if the request is not actually submitted straight 971 * away, e.g. because a GPU scheduler has deferred it. 972 * 973 * Note that due to how we add reserved_space to intel_ring_begin() 974 * we need to double our request to ensure that if we need to wrap 975 * around inside i915_request_add() there is sufficient space at 976 * the beginning of the ring as well. 977 */ 978 rq->reserved_space = 979 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 980 981 /* 982 * Record the position of the start of the request so that 983 * should we detect the updated seqno part-way through the 984 * GPU processing the request, we never over-estimate the 985 * position of the head. 986 */ 987 rq->head = rq->ring->emit; 988 989 ret = rq->engine->request_alloc(rq); 990 if (ret) 991 goto err_unwind; 992 993 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 994 995 intel_context_mark_active(ce); 996 list_add_tail_rcu(&rq->link, &tl->requests); 997 998 return rq; 999 1000 err_unwind: 1001 ce->ring->emit = rq->head; 1002 1003 /* Make sure we didn't add ourselves to external state before freeing */ 1004 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 1005 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 1006 1007 err_free: 1008 intel_context_put(ce); 1009 kmem_cache_free(slab_requests, rq); 1010 err_unreserve: 1011 intel_context_unpin(ce); 1012 return ERR_PTR(ret); 1013 } 1014 1015 struct i915_request * 1016 i915_request_create(struct intel_context *ce) 1017 { 1018 struct i915_request *rq; 1019 struct intel_timeline *tl; 1020 1021 tl = intel_context_timeline_lock(ce); 1022 if (IS_ERR(tl)) 1023 return ERR_CAST(tl); 1024 1025 /* Move our oldest request to the slab-cache (if not in use!) */ 1026 rq = list_first_entry(&tl->requests, typeof(*rq), link); 1027 if (!list_is_last(&rq->link, &tl->requests)) 1028 i915_request_retire(rq); 1029 1030 intel_context_enter(ce); 1031 rq = __i915_request_create(ce, GFP_KERNEL); 1032 intel_context_exit(ce); /* active reference transferred to request */ 1033 if (IS_ERR(rq)) 1034 goto err_unlock; 1035 1036 /* Check that we do not interrupt ourselves with a new request */ 1037 rq->cookie = lockdep_pin_lock(&tl->mutex); 1038 1039 return rq; 1040 1041 err_unlock: 1042 intel_context_timeline_unlock(tl); 1043 return rq; 1044 } 1045 1046 static int 1047 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 1048 { 1049 struct dma_fence *fence; 1050 int err; 1051 1052 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 1053 return 0; 1054 1055 if (i915_request_started(signal)) 1056 return 0; 1057 1058 /* 1059 * The caller holds a reference on @signal, but we do not serialise 1060 * against it being retired and removed from the lists. 1061 * 1062 * We do not hold a reference to the request before @signal, and 1063 * so must be very careful to ensure that it is not _recycled_ as 1064 * we follow the link backwards. 1065 */ 1066 fence = NULL; 1067 rcu_read_lock(); 1068 do { 1069 struct list_head *pos = READ_ONCE(signal->link.prev); 1070 struct i915_request *prev; 1071 1072 /* Confirm signal has not been retired, the link is valid */ 1073 if (unlikely(__i915_request_has_started(signal))) 1074 break; 1075 1076 /* Is signal the earliest request on its timeline? */ 1077 if (pos == &rcu_dereference(signal->timeline)->requests) 1078 break; 1079 1080 /* 1081 * Peek at the request before us in the timeline. That 1082 * request will only be valid before it is retired, so 1083 * after acquiring a reference to it, confirm that it is 1084 * still part of the signaler's timeline. 1085 */ 1086 prev = list_entry(pos, typeof(*prev), link); 1087 if (!i915_request_get_rcu(prev)) 1088 break; 1089 1090 /* After the strong barrier, confirm prev is still attached */ 1091 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 1092 i915_request_put(prev); 1093 break; 1094 } 1095 1096 fence = &prev->fence; 1097 } while (0); 1098 rcu_read_unlock(); 1099 if (!fence) 1100 return 0; 1101 1102 err = 0; 1103 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 1104 err = i915_sw_fence_await_dma_fence(&rq->submit, 1105 fence, 0, 1106 I915_FENCE_GFP); 1107 dma_fence_put(fence); 1108 1109 return err; 1110 } 1111 1112 static intel_engine_mask_t 1113 already_busywaiting(struct i915_request *rq) 1114 { 1115 /* 1116 * Polling a semaphore causes bus traffic, delaying other users of 1117 * both the GPU and CPU. We want to limit the impact on others, 1118 * while taking advantage of early submission to reduce GPU 1119 * latency. Therefore we restrict ourselves to not using more 1120 * than one semaphore from each source, and not using a semaphore 1121 * if we have detected the engine is saturated (i.e. would not be 1122 * submitted early and cause bus traffic reading an already passed 1123 * semaphore). 1124 * 1125 * See the are-we-too-late? check in __i915_request_submit(). 1126 */ 1127 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1128 } 1129 1130 static int 1131 __emit_semaphore_wait(struct i915_request *to, 1132 struct i915_request *from, 1133 u32 seqno) 1134 { 1135 const int has_token = GRAPHICS_VER(to->engine->i915) >= 12; 1136 u32 hwsp_offset; 1137 int len, err; 1138 u32 *cs; 1139 1140 GEM_BUG_ON(GRAPHICS_VER(to->engine->i915) < 8); 1141 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1142 1143 /* We need to pin the signaler's HWSP until we are finished reading. */ 1144 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1145 if (err) 1146 return err; 1147 1148 len = 4; 1149 if (has_token) 1150 len += 2; 1151 1152 cs = intel_ring_begin(to, len); 1153 if (IS_ERR(cs)) 1154 return PTR_ERR(cs); 1155 1156 /* 1157 * Using greater-than-or-equal here means we have to worry 1158 * about seqno wraparound. To side step that issue, we swap 1159 * the timeline HWSP upon wrapping, so that everyone listening 1160 * for the old (pre-wrap) values do not see the much smaller 1161 * (post-wrap) values than they were expecting (and so wait 1162 * forever). 1163 */ 1164 *cs++ = (MI_SEMAPHORE_WAIT | 1165 MI_SEMAPHORE_GLOBAL_GTT | 1166 MI_SEMAPHORE_POLL | 1167 MI_SEMAPHORE_SAD_GTE_SDD) + 1168 has_token; 1169 *cs++ = seqno; 1170 *cs++ = hwsp_offset; 1171 *cs++ = 0; 1172 if (has_token) { 1173 *cs++ = 0; 1174 *cs++ = MI_NOOP; 1175 } 1176 1177 intel_ring_advance(to, cs); 1178 return 0; 1179 } 1180 1181 static bool 1182 can_use_semaphore_wait(struct i915_request *to, struct i915_request *from) 1183 { 1184 return to->engine->gt->ggtt == from->engine->gt->ggtt; 1185 } 1186 1187 static int 1188 emit_semaphore_wait(struct i915_request *to, 1189 struct i915_request *from, 1190 gfp_t gfp) 1191 { 1192 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1193 struct i915_sw_fence *wait = &to->submit; 1194 1195 if (!can_use_semaphore_wait(to, from)) 1196 goto await_fence; 1197 1198 if (!intel_context_use_semaphores(to->context)) 1199 goto await_fence; 1200 1201 if (i915_request_has_initial_breadcrumb(to)) 1202 goto await_fence; 1203 1204 /* 1205 * If this or its dependents are waiting on an external fence 1206 * that may fail catastrophically, then we want to avoid using 1207 * sempahores as they bypass the fence signaling metadata, and we 1208 * lose the fence->error propagation. 1209 */ 1210 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1211 goto await_fence; 1212 1213 /* Just emit the first semaphore we see as request space is limited. */ 1214 if (already_busywaiting(to) & mask) 1215 goto await_fence; 1216 1217 if (i915_request_await_start(to, from) < 0) 1218 goto await_fence; 1219 1220 /* Only submit our spinner after the signaler is running! */ 1221 if (__await_execution(to, from, gfp)) 1222 goto await_fence; 1223 1224 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1225 goto await_fence; 1226 1227 to->sched.semaphores |= mask; 1228 wait = &to->semaphore; 1229 1230 await_fence: 1231 return i915_sw_fence_await_dma_fence(wait, 1232 &from->fence, 0, 1233 I915_FENCE_GFP); 1234 } 1235 1236 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1237 struct dma_fence *fence) 1238 { 1239 return __intel_timeline_sync_is_later(tl, 1240 fence->context, 1241 fence->seqno - 1); 1242 } 1243 1244 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1245 const struct dma_fence *fence) 1246 { 1247 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1248 } 1249 1250 static int 1251 __i915_request_await_execution(struct i915_request *to, 1252 struct i915_request *from) 1253 { 1254 int err; 1255 1256 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1257 1258 /* Submit both requests at the same time */ 1259 err = __await_execution(to, from, I915_FENCE_GFP); 1260 if (err) 1261 return err; 1262 1263 /* Squash repeated depenendices to the same timelines */ 1264 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1265 &from->fence)) 1266 return 0; 1267 1268 /* 1269 * Wait until the start of this request. 1270 * 1271 * The execution cb fires when we submit the request to HW. But in 1272 * many cases this may be long before the request itself is ready to 1273 * run (consider that we submit 2 requests for the same context, where 1274 * the request of interest is behind an indefinite spinner). So we hook 1275 * up to both to reduce our queues and keep the execution lag minimised 1276 * in the worst case, though we hope that the await_start is elided. 1277 */ 1278 err = i915_request_await_start(to, from); 1279 if (err < 0) 1280 return err; 1281 1282 /* 1283 * Ensure both start together [after all semaphores in signal] 1284 * 1285 * Now that we are queued to the HW at roughly the same time (thanks 1286 * to the execute cb) and are ready to run at roughly the same time 1287 * (thanks to the await start), our signaler may still be indefinitely 1288 * delayed by waiting on a semaphore from a remote engine. If our 1289 * signaler depends on a semaphore, so indirectly do we, and we do not 1290 * want to start our payload until our signaler also starts theirs. 1291 * So we wait. 1292 * 1293 * However, there is also a second condition for which we need to wait 1294 * for the precise start of the signaler. Consider that the signaler 1295 * was submitted in a chain of requests following another context 1296 * (with just an ordinary intra-engine fence dependency between the 1297 * two). In this case the signaler is queued to HW, but not for 1298 * immediate execution, and so we must wait until it reaches the 1299 * active slot. 1300 */ 1301 if (can_use_semaphore_wait(to, from) && 1302 intel_engine_has_semaphores(to->engine) && 1303 !i915_request_has_initial_breadcrumb(to)) { 1304 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1305 if (err < 0) 1306 return err; 1307 } 1308 1309 /* Couple the dependency tree for PI on this exposed to->fence */ 1310 if (to->engine->sched_engine->schedule) { 1311 err = i915_sched_node_add_dependency(&to->sched, 1312 &from->sched, 1313 I915_DEPENDENCY_WEAK); 1314 if (err < 0) 1315 return err; 1316 } 1317 1318 return intel_timeline_sync_set_start(i915_request_timeline(to), 1319 &from->fence); 1320 } 1321 1322 static void mark_external(struct i915_request *rq) 1323 { 1324 /* 1325 * The downside of using semaphores is that we lose metadata passing 1326 * along the signaling chain. This is particularly nasty when we 1327 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1328 * fatal errors we want to scrub the request before it is executed, 1329 * which means that we cannot preload the request onto HW and have 1330 * it wait upon a semaphore. 1331 */ 1332 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1333 } 1334 1335 static int 1336 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1337 { 1338 mark_external(rq); 1339 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1340 i915_fence_context_timeout(rq->engine->i915, 1341 fence->context), 1342 I915_FENCE_GFP); 1343 } 1344 1345 static int 1346 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1347 { 1348 struct dma_fence *iter; 1349 int err = 0; 1350 1351 if (!to_dma_fence_chain(fence)) 1352 return __i915_request_await_external(rq, fence); 1353 1354 dma_fence_chain_for_each(iter, fence) { 1355 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1356 1357 if (!dma_fence_is_i915(chain->fence)) { 1358 err = __i915_request_await_external(rq, iter); 1359 break; 1360 } 1361 1362 err = i915_request_await_dma_fence(rq, chain->fence); 1363 if (err < 0) 1364 break; 1365 } 1366 1367 dma_fence_put(iter); 1368 return err; 1369 } 1370 1371 static inline bool is_parallel_rq(struct i915_request *rq) 1372 { 1373 return intel_context_is_parallel(rq->context); 1374 } 1375 1376 static inline struct intel_context *request_to_parent(struct i915_request *rq) 1377 { 1378 return intel_context_to_parent(rq->context); 1379 } 1380 1381 static bool is_same_parallel_context(struct i915_request *to, 1382 struct i915_request *from) 1383 { 1384 if (is_parallel_rq(to)) 1385 return request_to_parent(to) == request_to_parent(from); 1386 1387 return false; 1388 } 1389 1390 int 1391 i915_request_await_execution(struct i915_request *rq, 1392 struct dma_fence *fence) 1393 { 1394 struct dma_fence **child = &fence; 1395 unsigned int nchild = 1; 1396 int ret; 1397 1398 if (dma_fence_is_array(fence)) { 1399 struct dma_fence_array *array = to_dma_fence_array(fence); 1400 1401 /* XXX Error for signal-on-any fence arrays */ 1402 1403 child = array->fences; 1404 nchild = array->num_fences; 1405 GEM_BUG_ON(!nchild); 1406 } 1407 1408 do { 1409 fence = *child++; 1410 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1411 continue; 1412 1413 if (fence->context == rq->fence.context) 1414 continue; 1415 1416 /* 1417 * We don't squash repeated fence dependencies here as we 1418 * want to run our callback in all cases. 1419 */ 1420 1421 if (dma_fence_is_i915(fence)) { 1422 if (is_same_parallel_context(rq, to_request(fence))) 1423 continue; 1424 ret = __i915_request_await_execution(rq, 1425 to_request(fence)); 1426 } else { 1427 ret = i915_request_await_external(rq, fence); 1428 } 1429 if (ret < 0) 1430 return ret; 1431 } while (--nchild); 1432 1433 return 0; 1434 } 1435 1436 static int 1437 await_request_submit(struct i915_request *to, struct i915_request *from) 1438 { 1439 /* 1440 * If we are waiting on a virtual engine, then it may be 1441 * constrained to execute on a single engine *prior* to submission. 1442 * When it is submitted, it will be first submitted to the virtual 1443 * engine and then passed to the physical engine. We cannot allow 1444 * the waiter to be submitted immediately to the physical engine 1445 * as it may then bypass the virtual request. 1446 */ 1447 if (to->engine == READ_ONCE(from->engine)) 1448 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1449 &from->submit, 1450 I915_FENCE_GFP); 1451 else 1452 return __i915_request_await_execution(to, from); 1453 } 1454 1455 static int 1456 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1457 { 1458 int ret; 1459 1460 GEM_BUG_ON(to == from); 1461 GEM_BUG_ON(to->timeline == from->timeline); 1462 1463 if (i915_request_completed(from)) { 1464 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1465 return 0; 1466 } 1467 1468 if (to->engine->sched_engine->schedule) { 1469 ret = i915_sched_node_add_dependency(&to->sched, 1470 &from->sched, 1471 I915_DEPENDENCY_EXTERNAL); 1472 if (ret < 0) 1473 return ret; 1474 } 1475 1476 if (!intel_engine_uses_guc(to->engine) && 1477 is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1478 ret = await_request_submit(to, from); 1479 else 1480 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1481 if (ret < 0) 1482 return ret; 1483 1484 return 0; 1485 } 1486 1487 int 1488 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1489 { 1490 struct dma_fence **child = &fence; 1491 unsigned int nchild = 1; 1492 int ret; 1493 1494 /* 1495 * Note that if the fence-array was created in signal-on-any mode, 1496 * we should *not* decompose it into its individual fences. However, 1497 * we don't currently store which mode the fence-array is operating 1498 * in. Fortunately, the only user of signal-on-any is private to 1499 * amdgpu and we should not see any incoming fence-array from 1500 * sync-file being in signal-on-any mode. 1501 */ 1502 if (dma_fence_is_array(fence)) { 1503 struct dma_fence_array *array = to_dma_fence_array(fence); 1504 1505 child = array->fences; 1506 nchild = array->num_fences; 1507 GEM_BUG_ON(!nchild); 1508 } 1509 1510 do { 1511 fence = *child++; 1512 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1513 continue; 1514 1515 /* 1516 * Requests on the same timeline are explicitly ordered, along 1517 * with their dependencies, by i915_request_add() which ensures 1518 * that requests are submitted in-order through each ring. 1519 */ 1520 if (fence->context == rq->fence.context) 1521 continue; 1522 1523 /* Squash repeated waits to the same timelines */ 1524 if (fence->context && 1525 intel_timeline_sync_is_later(i915_request_timeline(rq), 1526 fence)) 1527 continue; 1528 1529 if (dma_fence_is_i915(fence)) { 1530 if (is_same_parallel_context(rq, to_request(fence))) 1531 continue; 1532 ret = i915_request_await_request(rq, to_request(fence)); 1533 } else { 1534 ret = i915_request_await_external(rq, fence); 1535 } 1536 if (ret < 0) 1537 return ret; 1538 1539 /* Record the latest fence used against each timeline */ 1540 if (fence->context) 1541 intel_timeline_sync_set(i915_request_timeline(rq), 1542 fence); 1543 } while (--nchild); 1544 1545 return 0; 1546 } 1547 1548 /** 1549 * i915_request_await_deps - set this request to (async) wait upon a struct 1550 * i915_deps dma_fence collection 1551 * @rq: request we are wishing to use 1552 * @deps: The struct i915_deps containing the dependencies. 1553 * 1554 * Returns 0 if successful, negative error code on error. 1555 */ 1556 int i915_request_await_deps(struct i915_request *rq, const struct i915_deps *deps) 1557 { 1558 int i, err; 1559 1560 for (i = 0; i < deps->num_deps; ++i) { 1561 err = i915_request_await_dma_fence(rq, deps->fences[i]); 1562 if (err) 1563 return err; 1564 } 1565 1566 return 0; 1567 } 1568 1569 /** 1570 * i915_request_await_object - set this request to (async) wait upon a bo 1571 * @to: request we are wishing to use 1572 * @obj: object which may be in use on another ring. 1573 * @write: whether the wait is on behalf of a writer 1574 * 1575 * This code is meant to abstract object synchronization with the GPU. 1576 * Conceptually we serialise writes between engines inside the GPU. 1577 * We only allow one engine to write into a buffer at any time, but 1578 * multiple readers. To ensure each has a coherent view of memory, we must: 1579 * 1580 * - If there is an outstanding write request to the object, the new 1581 * request must wait for it to complete (either CPU or in hw, requests 1582 * on the same ring will be naturally ordered). 1583 * 1584 * - If we are a write request (pending_write_domain is set), the new 1585 * request must wait for outstanding read requests to complete. 1586 * 1587 * Returns 0 if successful, else propagates up the lower layer error. 1588 */ 1589 int 1590 i915_request_await_object(struct i915_request *to, 1591 struct drm_i915_gem_object *obj, 1592 bool write) 1593 { 1594 struct dma_resv_iter cursor; 1595 struct dma_fence *fence; 1596 int ret = 0; 1597 1598 dma_resv_for_each_fence(&cursor, obj->base.resv, write, fence) { 1599 ret = i915_request_await_dma_fence(to, fence); 1600 if (ret) 1601 break; 1602 } 1603 1604 return ret; 1605 } 1606 1607 static struct i915_request * 1608 __i915_request_ensure_parallel_ordering(struct i915_request *rq, 1609 struct intel_timeline *timeline) 1610 { 1611 struct i915_request *prev; 1612 1613 GEM_BUG_ON(!is_parallel_rq(rq)); 1614 1615 prev = request_to_parent(rq)->parallel.last_rq; 1616 if (prev) { 1617 if (!__i915_request_is_complete(prev)) { 1618 i915_sw_fence_await_sw_fence(&rq->submit, 1619 &prev->submit, 1620 &rq->submitq); 1621 1622 if (rq->engine->sched_engine->schedule) 1623 __i915_sched_node_add_dependency(&rq->sched, 1624 &prev->sched, 1625 &rq->dep, 1626 0); 1627 } 1628 i915_request_put(prev); 1629 } 1630 1631 request_to_parent(rq)->parallel.last_rq = i915_request_get(rq); 1632 1633 return to_request(__i915_active_fence_set(&timeline->last_request, 1634 &rq->fence)); 1635 } 1636 1637 static struct i915_request * 1638 __i915_request_ensure_ordering(struct i915_request *rq, 1639 struct intel_timeline *timeline) 1640 { 1641 struct i915_request *prev; 1642 1643 GEM_BUG_ON(is_parallel_rq(rq)); 1644 1645 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1646 &rq->fence)); 1647 1648 if (prev && !__i915_request_is_complete(prev)) { 1649 bool uses_guc = intel_engine_uses_guc(rq->engine); 1650 bool pow2 = is_power_of_2(READ_ONCE(prev->engine)->mask | 1651 rq->engine->mask); 1652 bool same_context = prev->context == rq->context; 1653 1654 /* 1655 * The requests are supposed to be kept in order. However, 1656 * we need to be wary in case the timeline->last_request 1657 * is used as a barrier for external modification to this 1658 * context. 1659 */ 1660 GEM_BUG_ON(same_context && 1661 i915_seqno_passed(prev->fence.seqno, 1662 rq->fence.seqno)); 1663 1664 if ((same_context && uses_guc) || (!uses_guc && pow2)) 1665 i915_sw_fence_await_sw_fence(&rq->submit, 1666 &prev->submit, 1667 &rq->submitq); 1668 else 1669 __i915_sw_fence_await_dma_fence(&rq->submit, 1670 &prev->fence, 1671 &rq->dmaq); 1672 if (rq->engine->sched_engine->schedule) 1673 __i915_sched_node_add_dependency(&rq->sched, 1674 &prev->sched, 1675 &rq->dep, 1676 0); 1677 } 1678 1679 return prev; 1680 } 1681 1682 static struct i915_request * 1683 __i915_request_add_to_timeline(struct i915_request *rq) 1684 { 1685 struct intel_timeline *timeline = i915_request_timeline(rq); 1686 struct i915_request *prev; 1687 1688 /* 1689 * Dependency tracking and request ordering along the timeline 1690 * is special cased so that we can eliminate redundant ordering 1691 * operations while building the request (we know that the timeline 1692 * itself is ordered, and here we guarantee it). 1693 * 1694 * As we know we will need to emit tracking along the timeline, 1695 * we embed the hooks into our request struct -- at the cost of 1696 * having to have specialised no-allocation interfaces (which will 1697 * be beneficial elsewhere). 1698 * 1699 * A second benefit to open-coding i915_request_await_request is 1700 * that we can apply a slight variant of the rules specialised 1701 * for timelines that jump between engines (such as virtual engines). 1702 * If we consider the case of virtual engine, we must emit a dma-fence 1703 * to prevent scheduling of the second request until the first is 1704 * complete (to maximise our greedy late load balancing) and this 1705 * precludes optimising to use semaphores serialisation of a single 1706 * timeline across engines. 1707 * 1708 * We do not order parallel submission requests on the timeline as each 1709 * parallel submission context has its own timeline and the ordering 1710 * rules for parallel requests are that they must be submitted in the 1711 * order received from the execbuf IOCTL. So rather than using the 1712 * timeline we store a pointer to last request submitted in the 1713 * relationship in the gem context and insert a submission fence 1714 * between that request and request passed into this function or 1715 * alternatively we use completion fence if gem context has a single 1716 * timeline and this is the first submission of an execbuf IOCTL. 1717 */ 1718 if (likely(!is_parallel_rq(rq))) 1719 prev = __i915_request_ensure_ordering(rq, timeline); 1720 else 1721 prev = __i915_request_ensure_parallel_ordering(rq, timeline); 1722 1723 /* 1724 * Make sure that no request gazumped us - if it was allocated after 1725 * our i915_request_alloc() and called __i915_request_add() before 1726 * us, the timeline will hold its seqno which is later than ours. 1727 */ 1728 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1729 1730 return prev; 1731 } 1732 1733 /* 1734 * NB: This function is not allowed to fail. Doing so would mean the the 1735 * request is not being tracked for completion but the work itself is 1736 * going to happen on the hardware. This would be a Bad Thing(tm). 1737 */ 1738 struct i915_request *__i915_request_commit(struct i915_request *rq) 1739 { 1740 struct intel_engine_cs *engine = rq->engine; 1741 struct intel_ring *ring = rq->ring; 1742 u32 *cs; 1743 1744 RQ_TRACE(rq, "\n"); 1745 1746 /* 1747 * To ensure that this call will not fail, space for its emissions 1748 * should already have been reserved in the ring buffer. Let the ring 1749 * know that it is time to use that space up. 1750 */ 1751 GEM_BUG_ON(rq->reserved_space > ring->space); 1752 rq->reserved_space = 0; 1753 rq->emitted_jiffies = jiffies; 1754 1755 /* 1756 * Record the position of the start of the breadcrumb so that 1757 * should we detect the updated seqno part-way through the 1758 * GPU processing the request, we never over-estimate the 1759 * position of the ring's HEAD. 1760 */ 1761 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1762 GEM_BUG_ON(IS_ERR(cs)); 1763 rq->postfix = intel_ring_offset(rq, cs); 1764 1765 return __i915_request_add_to_timeline(rq); 1766 } 1767 1768 void __i915_request_queue_bh(struct i915_request *rq) 1769 { 1770 i915_sw_fence_commit(&rq->semaphore); 1771 i915_sw_fence_commit(&rq->submit); 1772 } 1773 1774 void __i915_request_queue(struct i915_request *rq, 1775 const struct i915_sched_attr *attr) 1776 { 1777 /* 1778 * Let the backend know a new request has arrived that may need 1779 * to adjust the existing execution schedule due to a high priority 1780 * request - i.e. we may want to preempt the current request in order 1781 * to run a high priority dependency chain *before* we can execute this 1782 * request. 1783 * 1784 * This is called before the request is ready to run so that we can 1785 * decide whether to preempt the entire chain so that it is ready to 1786 * run at the earliest possible convenience. 1787 */ 1788 if (attr && rq->engine->sched_engine->schedule) 1789 rq->engine->sched_engine->schedule(rq, attr); 1790 1791 local_bh_disable(); 1792 __i915_request_queue_bh(rq); 1793 local_bh_enable(); /* kick tasklets */ 1794 } 1795 1796 void i915_request_add(struct i915_request *rq) 1797 { 1798 struct intel_timeline * const tl = i915_request_timeline(rq); 1799 struct i915_sched_attr attr = {}; 1800 struct i915_gem_context *ctx; 1801 1802 lockdep_assert_held(&tl->mutex); 1803 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1804 1805 trace_i915_request_add(rq); 1806 __i915_request_commit(rq); 1807 1808 /* XXX placeholder for selftests */ 1809 rcu_read_lock(); 1810 ctx = rcu_dereference(rq->context->gem_context); 1811 if (ctx) 1812 attr = ctx->sched; 1813 rcu_read_unlock(); 1814 1815 __i915_request_queue(rq, &attr); 1816 1817 mutex_unlock(&tl->mutex); 1818 } 1819 1820 static unsigned long local_clock_ns(unsigned int *cpu) 1821 { 1822 unsigned long t; 1823 1824 /* 1825 * Cheaply and approximately convert from nanoseconds to microseconds. 1826 * The result and subsequent calculations are also defined in the same 1827 * approximate microseconds units. The principal source of timing 1828 * error here is from the simple truncation. 1829 * 1830 * Note that local_clock() is only defined wrt to the current CPU; 1831 * the comparisons are no longer valid if we switch CPUs. Instead of 1832 * blocking preemption for the entire busywait, we can detect the CPU 1833 * switch and use that as indicator of system load and a reason to 1834 * stop busywaiting, see busywait_stop(). 1835 */ 1836 *cpu = get_cpu(); 1837 t = local_clock(); 1838 put_cpu(); 1839 1840 return t; 1841 } 1842 1843 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1844 { 1845 unsigned int this_cpu; 1846 1847 if (time_after(local_clock_ns(&this_cpu), timeout)) 1848 return true; 1849 1850 return this_cpu != cpu; 1851 } 1852 1853 static bool __i915_spin_request(struct i915_request * const rq, int state) 1854 { 1855 unsigned long timeout_ns; 1856 unsigned int cpu; 1857 1858 /* 1859 * Only wait for the request if we know it is likely to complete. 1860 * 1861 * We don't track the timestamps around requests, nor the average 1862 * request length, so we do not have a good indicator that this 1863 * request will complete within the timeout. What we do know is the 1864 * order in which requests are executed by the context and so we can 1865 * tell if the request has been started. If the request is not even 1866 * running yet, it is a fair assumption that it will not complete 1867 * within our relatively short timeout. 1868 */ 1869 if (!i915_request_is_running(rq)) 1870 return false; 1871 1872 /* 1873 * When waiting for high frequency requests, e.g. during synchronous 1874 * rendering split between the CPU and GPU, the finite amount of time 1875 * required to set up the irq and wait upon it limits the response 1876 * rate. By busywaiting on the request completion for a short while we 1877 * can service the high frequency waits as quick as possible. However, 1878 * if it is a slow request, we want to sleep as quickly as possible. 1879 * The tradeoff between waiting and sleeping is roughly the time it 1880 * takes to sleep on a request, on the order of a microsecond. 1881 */ 1882 1883 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1884 timeout_ns += local_clock_ns(&cpu); 1885 do { 1886 if (dma_fence_is_signaled(&rq->fence)) 1887 return true; 1888 1889 if (signal_pending_state(state, current)) 1890 break; 1891 1892 if (busywait_stop(timeout_ns, cpu)) 1893 break; 1894 1895 cpu_relax(); 1896 } while (!need_resched()); 1897 1898 return false; 1899 } 1900 1901 struct request_wait { 1902 struct dma_fence_cb cb; 1903 struct task_struct *tsk; 1904 }; 1905 1906 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1907 { 1908 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1909 1910 wake_up_process(fetch_and_zero(&wait->tsk)); 1911 } 1912 1913 /** 1914 * i915_request_wait_timeout - wait until execution of request has finished 1915 * @rq: the request to wait upon 1916 * @flags: how to wait 1917 * @timeout: how long to wait in jiffies 1918 * 1919 * i915_request_wait_timeout() waits for the request to be completed, for a 1920 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1921 * unbounded wait). 1922 * 1923 * Returns the remaining time (in jiffies) if the request completed, which may 1924 * be zero if the request is unfinished after the timeout expires. 1925 * If the timeout is 0, it will return 1 if the fence is signaled. 1926 * 1927 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1928 * pending before the request completes. 1929 * 1930 * NOTE: This function has the same wait semantics as dma-fence. 1931 */ 1932 long i915_request_wait_timeout(struct i915_request *rq, 1933 unsigned int flags, 1934 long timeout) 1935 { 1936 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1937 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1938 struct request_wait wait; 1939 1940 might_sleep(); 1941 GEM_BUG_ON(timeout < 0); 1942 1943 if (dma_fence_is_signaled(&rq->fence)) 1944 return timeout ?: 1; 1945 1946 if (!timeout) 1947 return -ETIME; 1948 1949 trace_i915_request_wait_begin(rq, flags); 1950 1951 /* 1952 * We must never wait on the GPU while holding a lock as we 1953 * may need to perform a GPU reset. So while we don't need to 1954 * serialise wait/reset with an explicit lock, we do want 1955 * lockdep to detect potential dependency cycles. 1956 */ 1957 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1958 1959 /* 1960 * Optimistic spin before touching IRQs. 1961 * 1962 * We may use a rather large value here to offset the penalty of 1963 * switching away from the active task. Frequently, the client will 1964 * wait upon an old swapbuffer to throttle itself to remain within a 1965 * frame of the gpu. If the client is running in lockstep with the gpu, 1966 * then it should not be waiting long at all, and a sleep now will incur 1967 * extra scheduler latency in producing the next frame. To try to 1968 * avoid adding the cost of enabling/disabling the interrupt to the 1969 * short wait, we first spin to see if the request would have completed 1970 * in the time taken to setup the interrupt. 1971 * 1972 * We need upto 5us to enable the irq, and upto 20us to hide the 1973 * scheduler latency of a context switch, ignoring the secondary 1974 * impacts from a context switch such as cache eviction. 1975 * 1976 * The scheme used for low-latency IO is called "hybrid interrupt 1977 * polling". The suggestion there is to sleep until just before you 1978 * expect to be woken by the device interrupt and then poll for its 1979 * completion. That requires having a good predictor for the request 1980 * duration, which we currently lack. 1981 */ 1982 if (CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT && 1983 __i915_spin_request(rq, state)) 1984 goto out; 1985 1986 /* 1987 * This client is about to stall waiting for the GPU. In many cases 1988 * this is undesirable and limits the throughput of the system, as 1989 * many clients cannot continue processing user input/output whilst 1990 * blocked. RPS autotuning may take tens of milliseconds to respond 1991 * to the GPU load and thus incurs additional latency for the client. 1992 * We can circumvent that by promoting the GPU frequency to maximum 1993 * before we sleep. This makes the GPU throttle up much more quickly 1994 * (good for benchmarks and user experience, e.g. window animations), 1995 * but at a cost of spending more power processing the workload 1996 * (bad for battery). 1997 */ 1998 if (flags & I915_WAIT_PRIORITY && !i915_request_started(rq)) 1999 intel_rps_boost(rq); 2000 2001 wait.tsk = current; 2002 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 2003 goto out; 2004 2005 /* 2006 * Flush the submission tasklet, but only if it may help this request. 2007 * 2008 * We sometimes experience some latency between the HW interrupts and 2009 * tasklet execution (mostly due to ksoftirqd latency, but it can also 2010 * be due to lazy CS events), so lets run the tasklet manually if there 2011 * is a chance it may submit this request. If the request is not ready 2012 * to run, as it is waiting for other fences to be signaled, flushing 2013 * the tasklet is busy work without any advantage for this client. 2014 * 2015 * If the HW is being lazy, this is the last chance before we go to 2016 * sleep to catch any pending events. We will check periodically in 2017 * the heartbeat to flush the submission tasklets as a last resort 2018 * for unhappy HW. 2019 */ 2020 if (i915_request_is_ready(rq)) 2021 __intel_engine_flush_submission(rq->engine, false); 2022 2023 for (;;) { 2024 set_current_state(state); 2025 2026 if (dma_fence_is_signaled(&rq->fence)) 2027 break; 2028 2029 if (signal_pending_state(state, current)) { 2030 timeout = -ERESTARTSYS; 2031 break; 2032 } 2033 2034 if (!timeout) { 2035 timeout = -ETIME; 2036 break; 2037 } 2038 2039 timeout = io_schedule_timeout(timeout); 2040 } 2041 __set_current_state(TASK_RUNNING); 2042 2043 if (READ_ONCE(wait.tsk)) 2044 dma_fence_remove_callback(&rq->fence, &wait.cb); 2045 GEM_BUG_ON(!list_empty(&wait.cb.node)); 2046 2047 out: 2048 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 2049 trace_i915_request_wait_end(rq); 2050 return timeout; 2051 } 2052 2053 /** 2054 * i915_request_wait - wait until execution of request has finished 2055 * @rq: the request to wait upon 2056 * @flags: how to wait 2057 * @timeout: how long to wait in jiffies 2058 * 2059 * i915_request_wait() waits for the request to be completed, for a 2060 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 2061 * unbounded wait). 2062 * 2063 * Returns the remaining time (in jiffies) if the request completed, which may 2064 * be zero or -ETIME if the request is unfinished after the timeout expires. 2065 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 2066 * pending before the request completes. 2067 * 2068 * NOTE: This function behaves differently from dma-fence wait semantics for 2069 * timeout = 0. It returns 0 on success, and -ETIME if not signaled. 2070 */ 2071 long i915_request_wait(struct i915_request *rq, 2072 unsigned int flags, 2073 long timeout) 2074 { 2075 long ret = i915_request_wait_timeout(rq, flags, timeout); 2076 2077 if (!ret) 2078 return -ETIME; 2079 2080 if (ret > 0 && !timeout) 2081 return 0; 2082 2083 return ret; 2084 } 2085 2086 static int print_sched_attr(const struct i915_sched_attr *attr, 2087 char *buf, int x, int len) 2088 { 2089 if (attr->priority == I915_PRIORITY_INVALID) 2090 return x; 2091 2092 x += snprintf(buf + x, len - x, 2093 " prio=%d", attr->priority); 2094 2095 return x; 2096 } 2097 2098 static char queue_status(const struct i915_request *rq) 2099 { 2100 if (i915_request_is_active(rq)) 2101 return 'E'; 2102 2103 if (i915_request_is_ready(rq)) 2104 return intel_engine_is_virtual(rq->engine) ? 'V' : 'R'; 2105 2106 return 'U'; 2107 } 2108 2109 static const char *run_status(const struct i915_request *rq) 2110 { 2111 if (__i915_request_is_complete(rq)) 2112 return "!"; 2113 2114 if (__i915_request_has_started(rq)) 2115 return "*"; 2116 2117 if (!i915_sw_fence_signaled(&rq->semaphore)) 2118 return "&"; 2119 2120 return ""; 2121 } 2122 2123 static const char *fence_status(const struct i915_request *rq) 2124 { 2125 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags)) 2126 return "+"; 2127 2128 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 2129 return "-"; 2130 2131 return ""; 2132 } 2133 2134 void i915_request_show(struct drm_printer *m, 2135 const struct i915_request *rq, 2136 const char *prefix, 2137 int indent) 2138 { 2139 const char *name = rq->fence.ops->get_timeline_name((struct dma_fence *)&rq->fence); 2140 char buf[80] = ""; 2141 int x = 0; 2142 2143 /* 2144 * The prefix is used to show the queue status, for which we use 2145 * the following flags: 2146 * 2147 * U [Unready] 2148 * - initial status upon being submitted by the user 2149 * 2150 * - the request is not ready for execution as it is waiting 2151 * for external fences 2152 * 2153 * R [Ready] 2154 * - all fences the request was waiting on have been signaled, 2155 * and the request is now ready for execution and will be 2156 * in a backend queue 2157 * 2158 * - a ready request may still need to wait on semaphores 2159 * [internal fences] 2160 * 2161 * V [Ready/virtual] 2162 * - same as ready, but queued over multiple backends 2163 * 2164 * E [Executing] 2165 * - the request has been transferred from the backend queue and 2166 * submitted for execution on HW 2167 * 2168 * - a completed request may still be regarded as executing, its 2169 * status may not be updated until it is retired and removed 2170 * from the lists 2171 */ 2172 2173 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 2174 2175 drm_printf(m, "%s%.*s%c %llx:%lld%s%s %s @ %dms: %s\n", 2176 prefix, indent, " ", 2177 queue_status(rq), 2178 rq->fence.context, rq->fence.seqno, 2179 run_status(rq), 2180 fence_status(rq), 2181 buf, 2182 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 2183 name); 2184 } 2185 2186 static bool engine_match_ring(struct intel_engine_cs *engine, struct i915_request *rq) 2187 { 2188 u32 ring = ENGINE_READ(engine, RING_START); 2189 2190 return ring == i915_ggtt_offset(rq->ring->vma); 2191 } 2192 2193 static bool match_ring(struct i915_request *rq) 2194 { 2195 struct intel_engine_cs *engine; 2196 bool found; 2197 int i; 2198 2199 if (!intel_engine_is_virtual(rq->engine)) 2200 return engine_match_ring(rq->engine, rq); 2201 2202 found = false; 2203 i = 0; 2204 while ((engine = intel_engine_get_sibling(rq->engine, i++))) { 2205 found = engine_match_ring(engine, rq); 2206 if (found) 2207 break; 2208 } 2209 2210 return found; 2211 } 2212 2213 enum i915_request_state i915_test_request_state(struct i915_request *rq) 2214 { 2215 if (i915_request_completed(rq)) 2216 return I915_REQUEST_COMPLETE; 2217 2218 if (!i915_request_started(rq)) 2219 return I915_REQUEST_PENDING; 2220 2221 if (match_ring(rq)) 2222 return I915_REQUEST_ACTIVE; 2223 2224 return I915_REQUEST_QUEUED; 2225 } 2226 2227 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2228 #include "selftests/mock_request.c" 2229 #include "selftests/i915_request.c" 2230 #endif 2231 2232 void i915_request_module_exit(void) 2233 { 2234 kmem_cache_destroy(slab_execute_cbs); 2235 kmem_cache_destroy(slab_requests); 2236 } 2237 2238 int __init i915_request_module_init(void) 2239 { 2240 slab_requests = 2241 kmem_cache_create("i915_request", 2242 sizeof(struct i915_request), 2243 __alignof__(struct i915_request), 2244 SLAB_HWCACHE_ALIGN | 2245 SLAB_RECLAIM_ACCOUNT | 2246 SLAB_TYPESAFE_BY_RCU, 2247 __i915_request_ctor); 2248 if (!slab_requests) 2249 return -ENOMEM; 2250 2251 slab_execute_cbs = KMEM_CACHE(execute_cb, 2252 SLAB_HWCACHE_ALIGN | 2253 SLAB_RECLAIM_ACCOUNT | 2254 SLAB_TYPESAFE_BY_RCU); 2255 if (!slab_execute_cbs) 2256 goto err_requests; 2257 2258 return 0; 2259 2260 err_requests: 2261 kmem_cache_destroy(slab_requests); 2262 return -ENOMEM; 2263 } 2264