1 /* 2 * Copyright © 2008-2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/dma-fence-array.h> 26 #include <linux/dma-fence-chain.h> 27 #include <linux/irq_work.h> 28 #include <linux/prefetch.h> 29 #include <linux/sched.h> 30 #include <linux/sched/clock.h> 31 #include <linux/sched/signal.h> 32 33 #include "gem/i915_gem_context.h" 34 #include "gt/intel_context.h" 35 #include "gt/intel_ring.h" 36 #include "gt/intel_rps.h" 37 38 #include "i915_active.h" 39 #include "i915_drv.h" 40 #include "i915_globals.h" 41 #include "i915_trace.h" 42 #include "intel_pm.h" 43 44 struct execute_cb { 45 struct irq_work work; 46 struct i915_sw_fence *fence; 47 void (*hook)(struct i915_request *rq, struct dma_fence *signal); 48 struct i915_request *signal; 49 }; 50 51 static struct i915_global_request { 52 struct i915_global base; 53 struct kmem_cache *slab_requests; 54 struct kmem_cache *slab_execute_cbs; 55 } global; 56 57 static const char *i915_fence_get_driver_name(struct dma_fence *fence) 58 { 59 return dev_name(to_request(fence)->engine->i915->drm.dev); 60 } 61 62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence) 63 { 64 const struct i915_gem_context *ctx; 65 66 /* 67 * The timeline struct (as part of the ppgtt underneath a context) 68 * may be freed when the request is no longer in use by the GPU. 69 * We could extend the life of a context to beyond that of all 70 * fences, possibly keeping the hw resource around indefinitely, 71 * or we just give them a false name. Since 72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional 73 * lie seems justifiable. 74 */ 75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 76 return "signaled"; 77 78 ctx = i915_request_gem_context(to_request(fence)); 79 if (!ctx) 80 return "[" DRIVER_NAME "]"; 81 82 return ctx->name; 83 } 84 85 static bool i915_fence_signaled(struct dma_fence *fence) 86 { 87 return i915_request_completed(to_request(fence)); 88 } 89 90 static bool i915_fence_enable_signaling(struct dma_fence *fence) 91 { 92 return i915_request_enable_breadcrumb(to_request(fence)); 93 } 94 95 static signed long i915_fence_wait(struct dma_fence *fence, 96 bool interruptible, 97 signed long timeout) 98 { 99 return i915_request_wait(to_request(fence), 100 interruptible | I915_WAIT_PRIORITY, 101 timeout); 102 } 103 104 struct kmem_cache *i915_request_slab_cache(void) 105 { 106 return global.slab_requests; 107 } 108 109 static void i915_fence_release(struct dma_fence *fence) 110 { 111 struct i915_request *rq = to_request(fence); 112 113 /* 114 * The request is put onto a RCU freelist (i.e. the address 115 * is immediately reused), mark the fences as being freed now. 116 * Otherwise the debugobjects for the fences are only marked as 117 * freed when the slab cache itself is freed, and so we would get 118 * caught trying to reuse dead objects. 119 */ 120 i915_sw_fence_fini(&rq->submit); 121 i915_sw_fence_fini(&rq->semaphore); 122 123 /* 124 * Keep one request on each engine for reserved use under mempressure 125 * 126 * We do not hold a reference to the engine here and so have to be 127 * very careful in what rq->engine we poke. The virtual engine is 128 * referenced via the rq->context and we released that ref during 129 * i915_request_retire(), ergo we must not dereference a virtual 130 * engine here. Not that we would want to, as the only consumer of 131 * the reserved engine->request_pool is the power management parking, 132 * which must-not-fail, and that is only run on the physical engines. 133 * 134 * Since the request must have been executed to be have completed, 135 * we know that it will have been processed by the HW and will 136 * not be unsubmitted again, so rq->engine and rq->execution_mask 137 * at this point is stable. rq->execution_mask will be a single 138 * bit if the last and _only_ engine it could execution on was a 139 * physical engine, if it's multiple bits then it started on and 140 * could still be on a virtual engine. Thus if the mask is not a 141 * power-of-two we assume that rq->engine may still be a virtual 142 * engine and so a dangling invalid pointer that we cannot dereference 143 * 144 * For example, consider the flow of a bonded request through a virtual 145 * engine. The request is created with a wide engine mask (all engines 146 * that we might execute on). On processing the bond, the request mask 147 * is reduced to one or more engines. If the request is subsequently 148 * bound to a single engine, it will then be constrained to only 149 * execute on that engine and never returned to the virtual engine 150 * after timeslicing away, see __unwind_incomplete_requests(). Thus we 151 * know that if the rq->execution_mask is a single bit, rq->engine 152 * can be a physical engine with the exact corresponding mask. 153 */ 154 if (is_power_of_2(rq->execution_mask) && 155 !cmpxchg(&rq->engine->request_pool, NULL, rq)) 156 return; 157 158 kmem_cache_free(global.slab_requests, rq); 159 } 160 161 const struct dma_fence_ops i915_fence_ops = { 162 .get_driver_name = i915_fence_get_driver_name, 163 .get_timeline_name = i915_fence_get_timeline_name, 164 .enable_signaling = i915_fence_enable_signaling, 165 .signaled = i915_fence_signaled, 166 .wait = i915_fence_wait, 167 .release = i915_fence_release, 168 }; 169 170 static void irq_execute_cb(struct irq_work *wrk) 171 { 172 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 173 174 i915_sw_fence_complete(cb->fence); 175 kmem_cache_free(global.slab_execute_cbs, cb); 176 } 177 178 static void irq_execute_cb_hook(struct irq_work *wrk) 179 { 180 struct execute_cb *cb = container_of(wrk, typeof(*cb), work); 181 182 cb->hook(container_of(cb->fence, struct i915_request, submit), 183 &cb->signal->fence); 184 i915_request_put(cb->signal); 185 186 irq_execute_cb(wrk); 187 } 188 189 static void __notify_execute_cb(struct i915_request *rq) 190 { 191 struct execute_cb *cb, *cn; 192 193 lockdep_assert_held(&rq->lock); 194 195 GEM_BUG_ON(!i915_request_is_active(rq)); 196 if (llist_empty(&rq->execute_cb)) 197 return; 198 199 llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode) 200 irq_work_queue(&cb->work); 201 202 /* 203 * XXX Rollback on __i915_request_unsubmit() 204 * 205 * In the future, perhaps when we have an active time-slicing scheduler, 206 * it will be interesting to unsubmit parallel execution and remove 207 * busywaits from the GPU until their master is restarted. This is 208 * quite hairy, we have to carefully rollback the fence and do a 209 * preempt-to-idle cycle on the target engine, all the while the 210 * master execute_cb may refire. 211 */ 212 init_llist_head(&rq->execute_cb); 213 } 214 215 static inline void 216 remove_from_client(struct i915_request *request) 217 { 218 struct drm_i915_file_private *file_priv; 219 220 if (!READ_ONCE(request->file_priv)) 221 return; 222 223 rcu_read_lock(); 224 file_priv = xchg(&request->file_priv, NULL); 225 if (file_priv) { 226 spin_lock(&file_priv->mm.lock); 227 list_del(&request->client_link); 228 spin_unlock(&file_priv->mm.lock); 229 } 230 rcu_read_unlock(); 231 } 232 233 static void free_capture_list(struct i915_request *request) 234 { 235 struct i915_capture_list *capture; 236 237 capture = fetch_and_zero(&request->capture_list); 238 while (capture) { 239 struct i915_capture_list *next = capture->next; 240 241 kfree(capture); 242 capture = next; 243 } 244 } 245 246 static void __i915_request_fill(struct i915_request *rq, u8 val) 247 { 248 void *vaddr = rq->ring->vaddr; 249 u32 head; 250 251 head = rq->infix; 252 if (rq->postfix < head) { 253 memset(vaddr + head, val, rq->ring->size - head); 254 head = 0; 255 } 256 memset(vaddr + head, val, rq->postfix - head); 257 } 258 259 static void remove_from_engine(struct i915_request *rq) 260 { 261 struct intel_engine_cs *engine, *locked; 262 263 /* 264 * Virtual engines complicate acquiring the engine timeline lock, 265 * as their rq->engine pointer is not stable until under that 266 * engine lock. The simple ploy we use is to take the lock then 267 * check that the rq still belongs to the newly locked engine. 268 */ 269 locked = READ_ONCE(rq->engine); 270 spin_lock_irq(&locked->active.lock); 271 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 272 spin_unlock(&locked->active.lock); 273 spin_lock(&engine->active.lock); 274 locked = engine; 275 } 276 list_del_init(&rq->sched.link); 277 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 278 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); 279 spin_unlock_irq(&locked->active.lock); 280 } 281 282 bool i915_request_retire(struct i915_request *rq) 283 { 284 if (!i915_request_completed(rq)) 285 return false; 286 287 RQ_TRACE(rq, "\n"); 288 289 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); 290 trace_i915_request_retire(rq); 291 292 /* 293 * We know the GPU must have read the request to have 294 * sent us the seqno + interrupt, so use the position 295 * of tail of the request to update the last known position 296 * of the GPU head. 297 * 298 * Note this requires that we are always called in request 299 * completion order. 300 */ 301 GEM_BUG_ON(!list_is_first(&rq->link, 302 &i915_request_timeline(rq)->requests)); 303 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 304 /* Poison before we release our space in the ring */ 305 __i915_request_fill(rq, POISON_FREE); 306 rq->ring->head = rq->postfix; 307 308 /* 309 * We only loosely track inflight requests across preemption, 310 * and so we may find ourselves attempting to retire a _completed_ 311 * request that we have removed from the HW and put back on a run 312 * queue. 313 */ 314 remove_from_engine(rq); 315 316 spin_lock_irq(&rq->lock); 317 i915_request_mark_complete(rq); 318 if (!i915_request_signaled(rq)) 319 dma_fence_signal_locked(&rq->fence); 320 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags)) 321 i915_request_cancel_breadcrumb(rq); 322 if (i915_request_has_waitboost(rq)) { 323 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters)); 324 atomic_dec(&rq->engine->gt->rps.num_waiters); 325 } 326 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) { 327 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 328 __notify_execute_cb(rq); 329 } 330 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 331 spin_unlock_irq(&rq->lock); 332 333 remove_from_client(rq); 334 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */ 335 336 intel_context_exit(rq->context); 337 intel_context_unpin(rq->context); 338 339 free_capture_list(rq); 340 i915_sched_node_fini(&rq->sched); 341 i915_request_put(rq); 342 343 return true; 344 } 345 346 void i915_request_retire_upto(struct i915_request *rq) 347 { 348 struct intel_timeline * const tl = i915_request_timeline(rq); 349 struct i915_request *tmp; 350 351 RQ_TRACE(rq, "\n"); 352 353 GEM_BUG_ON(!i915_request_completed(rq)); 354 355 do { 356 tmp = list_first_entry(&tl->requests, typeof(*tmp), link); 357 } while (i915_request_retire(tmp) && tmp != rq); 358 } 359 360 static void __llist_add(struct llist_node *node, struct llist_head *head) 361 { 362 node->next = head->first; 363 head->first = node; 364 } 365 366 static struct i915_request * const * 367 __engine_active(struct intel_engine_cs *engine) 368 { 369 return READ_ONCE(engine->execlists.active); 370 } 371 372 static bool __request_in_flight(const struct i915_request *signal) 373 { 374 struct i915_request * const *port, *rq; 375 bool inflight = false; 376 377 if (!i915_request_is_ready(signal)) 378 return false; 379 380 /* 381 * Even if we have unwound the request, it may still be on 382 * the GPU (preempt-to-busy). If that request is inside an 383 * unpreemptible critical section, it will not be removed. Some 384 * GPU functions may even be stuck waiting for the paired request 385 * (__await_execution) to be submitted and cannot be preempted 386 * until the bond is executing. 387 * 388 * As we know that there are always preemption points between 389 * requests, we know that only the currently executing request 390 * may be still active even though we have cleared the flag. 391 * However, we can't rely on our tracking of ELSP[0] to known 392 * which request is currently active and so maybe stuck, as 393 * the tracking maybe an event behind. Instead assume that 394 * if the context is still inflight, then it is still active 395 * even if the active flag has been cleared. 396 */ 397 if (!intel_context_inflight(signal->context)) 398 return false; 399 400 rcu_read_lock(); 401 for (port = __engine_active(signal->engine); (rq = *port); port++) { 402 if (rq->context == signal->context) { 403 inflight = i915_seqno_passed(rq->fence.seqno, 404 signal->fence.seqno); 405 break; 406 } 407 } 408 rcu_read_unlock(); 409 410 return inflight; 411 } 412 413 static int 414 __await_execution(struct i915_request *rq, 415 struct i915_request *signal, 416 void (*hook)(struct i915_request *rq, 417 struct dma_fence *signal), 418 gfp_t gfp) 419 { 420 struct execute_cb *cb; 421 422 if (i915_request_is_active(signal)) { 423 if (hook) 424 hook(rq, &signal->fence); 425 return 0; 426 } 427 428 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp); 429 if (!cb) 430 return -ENOMEM; 431 432 cb->fence = &rq->submit; 433 i915_sw_fence_await(cb->fence); 434 init_irq_work(&cb->work, irq_execute_cb); 435 436 if (hook) { 437 cb->hook = hook; 438 cb->signal = i915_request_get(signal); 439 cb->work.func = irq_execute_cb_hook; 440 } 441 442 spin_lock_irq(&signal->lock); 443 if (i915_request_is_active(signal) || __request_in_flight(signal)) { 444 if (hook) { 445 hook(rq, &signal->fence); 446 i915_request_put(signal); 447 } 448 i915_sw_fence_complete(cb->fence); 449 kmem_cache_free(global.slab_execute_cbs, cb); 450 } else { 451 __llist_add(&cb->work.llnode, &signal->execute_cb); 452 } 453 spin_unlock_irq(&signal->lock); 454 455 return 0; 456 } 457 458 static bool fatal_error(int error) 459 { 460 switch (error) { 461 case 0: /* not an error! */ 462 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */ 463 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */ 464 return false; 465 default: 466 return true; 467 } 468 } 469 470 void __i915_request_skip(struct i915_request *rq) 471 { 472 GEM_BUG_ON(!fatal_error(rq->fence.error)); 473 474 if (rq->infix == rq->postfix) 475 return; 476 477 /* 478 * As this request likely depends on state from the lost 479 * context, clear out all the user operations leaving the 480 * breadcrumb at the end (so we get the fence notifications). 481 */ 482 __i915_request_fill(rq, 0); 483 rq->infix = rq->postfix; 484 } 485 486 void i915_request_set_error_once(struct i915_request *rq, int error) 487 { 488 int old; 489 490 GEM_BUG_ON(!IS_ERR_VALUE((long)error)); 491 492 if (i915_request_signaled(rq)) 493 return; 494 495 old = READ_ONCE(rq->fence.error); 496 do { 497 if (fatal_error(old)) 498 return; 499 } while (!try_cmpxchg(&rq->fence.error, &old, error)); 500 } 501 502 bool __i915_request_submit(struct i915_request *request) 503 { 504 struct intel_engine_cs *engine = request->engine; 505 bool result = false; 506 507 RQ_TRACE(request, "\n"); 508 509 GEM_BUG_ON(!irqs_disabled()); 510 lockdep_assert_held(&engine->active.lock); 511 512 /* 513 * With the advent of preempt-to-busy, we frequently encounter 514 * requests that we have unsubmitted from HW, but left running 515 * until the next ack and so have completed in the meantime. On 516 * resubmission of that completed request, we can skip 517 * updating the payload, and execlists can even skip submitting 518 * the request. 519 * 520 * We must remove the request from the caller's priority queue, 521 * and the caller must only call us when the request is in their 522 * priority queue, under the active.lock. This ensures that the 523 * request has *not* yet been retired and we can safely move 524 * the request into the engine->active.list where it will be 525 * dropped upon retiring. (Otherwise if resubmit a *retired* 526 * request, this would be a horrible use-after-free.) 527 */ 528 if (i915_request_completed(request)) 529 goto xfer; 530 531 if (unlikely(intel_context_is_banned(request->context))) 532 i915_request_set_error_once(request, -EIO); 533 if (unlikely(fatal_error(request->fence.error))) 534 __i915_request_skip(request); 535 536 /* 537 * Are we using semaphores when the gpu is already saturated? 538 * 539 * Using semaphores incurs a cost in having the GPU poll a 540 * memory location, busywaiting for it to change. The continual 541 * memory reads can have a noticeable impact on the rest of the 542 * system with the extra bus traffic, stalling the cpu as it too 543 * tries to access memory across the bus (perf stat -e bus-cycles). 544 * 545 * If we installed a semaphore on this request and we only submit 546 * the request after the signaler completed, that indicates the 547 * system is overloaded and using semaphores at this time only 548 * increases the amount of work we are doing. If so, we disable 549 * further use of semaphores until we are idle again, whence we 550 * optimistically try again. 551 */ 552 if (request->sched.semaphores && 553 i915_sw_fence_signaled(&request->semaphore)) 554 engine->saturated |= request->sched.semaphores; 555 556 engine->emit_fini_breadcrumb(request, 557 request->ring->vaddr + request->postfix); 558 559 trace_i915_request_execute(request); 560 engine->serial++; 561 result = true; 562 563 xfer: /* We may be recursing from the signal callback of another i915 fence */ 564 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 565 566 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) { 567 list_move_tail(&request->sched.link, &engine->active.requests); 568 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags); 569 __notify_execute_cb(request); 570 } 571 GEM_BUG_ON(!llist_empty(&request->execute_cb)); 572 573 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) && 574 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) && 575 !i915_request_enable_breadcrumb(request)) 576 intel_engine_signal_breadcrumbs(engine); 577 578 spin_unlock(&request->lock); 579 580 return result; 581 } 582 583 void i915_request_submit(struct i915_request *request) 584 { 585 struct intel_engine_cs *engine = request->engine; 586 unsigned long flags; 587 588 /* Will be called from irq-context when using foreign fences. */ 589 spin_lock_irqsave(&engine->active.lock, flags); 590 591 __i915_request_submit(request); 592 593 spin_unlock_irqrestore(&engine->active.lock, flags); 594 } 595 596 void __i915_request_unsubmit(struct i915_request *request) 597 { 598 struct intel_engine_cs *engine = request->engine; 599 600 RQ_TRACE(request, "\n"); 601 602 GEM_BUG_ON(!irqs_disabled()); 603 lockdep_assert_held(&engine->active.lock); 604 605 /* 606 * Only unwind in reverse order, required so that the per-context list 607 * is kept in seqno/ring order. 608 */ 609 610 /* We may be recursing from the signal callback of another i915 fence */ 611 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING); 612 613 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags)) 614 i915_request_cancel_breadcrumb(request); 615 616 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)); 617 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags); 618 619 spin_unlock(&request->lock); 620 621 /* We've already spun, don't charge on resubmitting. */ 622 if (request->sched.semaphores && i915_request_started(request)) 623 request->sched.semaphores = 0; 624 625 /* 626 * We don't need to wake_up any waiters on request->execute, they 627 * will get woken by any other event or us re-adding this request 628 * to the engine timeline (__i915_request_submit()). The waiters 629 * should be quite adapt at finding that the request now has a new 630 * global_seqno to the one they went to sleep on. 631 */ 632 } 633 634 void i915_request_unsubmit(struct i915_request *request) 635 { 636 struct intel_engine_cs *engine = request->engine; 637 unsigned long flags; 638 639 /* Will be called from irq-context when using foreign fences. */ 640 spin_lock_irqsave(&engine->active.lock, flags); 641 642 __i915_request_unsubmit(request); 643 644 spin_unlock_irqrestore(&engine->active.lock, flags); 645 } 646 647 static int __i915_sw_fence_call 648 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 649 { 650 struct i915_request *request = 651 container_of(fence, typeof(*request), submit); 652 653 switch (state) { 654 case FENCE_COMPLETE: 655 trace_i915_request_submit(request); 656 657 if (unlikely(fence->error)) 658 i915_request_set_error_once(request, fence->error); 659 660 /* 661 * We need to serialize use of the submit_request() callback 662 * with its hotplugging performed during an emergency 663 * i915_gem_set_wedged(). We use the RCU mechanism to mark the 664 * critical section in order to force i915_gem_set_wedged() to 665 * wait until the submit_request() is completed before 666 * proceeding. 667 */ 668 rcu_read_lock(); 669 request->engine->submit_request(request); 670 rcu_read_unlock(); 671 break; 672 673 case FENCE_FREE: 674 i915_request_put(request); 675 break; 676 } 677 678 return NOTIFY_DONE; 679 } 680 681 static int __i915_sw_fence_call 682 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 683 { 684 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore); 685 686 switch (state) { 687 case FENCE_COMPLETE: 688 break; 689 690 case FENCE_FREE: 691 i915_request_put(rq); 692 break; 693 } 694 695 return NOTIFY_DONE; 696 } 697 698 static void retire_requests(struct intel_timeline *tl) 699 { 700 struct i915_request *rq, *rn; 701 702 list_for_each_entry_safe(rq, rn, &tl->requests, link) 703 if (!i915_request_retire(rq)) 704 break; 705 } 706 707 static noinline struct i915_request * 708 request_alloc_slow(struct intel_timeline *tl, 709 struct i915_request **rsvd, 710 gfp_t gfp) 711 { 712 struct i915_request *rq; 713 714 /* If we cannot wait, dip into our reserves */ 715 if (!gfpflags_allow_blocking(gfp)) { 716 rq = xchg(rsvd, NULL); 717 if (!rq) /* Use the normal failure path for one final WARN */ 718 goto out; 719 720 return rq; 721 } 722 723 if (list_empty(&tl->requests)) 724 goto out; 725 726 /* Move our oldest request to the slab-cache (if not in use!) */ 727 rq = list_first_entry(&tl->requests, typeof(*rq), link); 728 i915_request_retire(rq); 729 730 rq = kmem_cache_alloc(global.slab_requests, 731 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 732 if (rq) 733 return rq; 734 735 /* Ratelimit ourselves to prevent oom from malicious clients */ 736 rq = list_last_entry(&tl->requests, typeof(*rq), link); 737 cond_synchronize_rcu(rq->rcustate); 738 739 /* Retire our old requests in the hope that we free some */ 740 retire_requests(tl); 741 742 out: 743 return kmem_cache_alloc(global.slab_requests, gfp); 744 } 745 746 static void __i915_request_ctor(void *arg) 747 { 748 struct i915_request *rq = arg; 749 750 spin_lock_init(&rq->lock); 751 i915_sched_node_init(&rq->sched); 752 i915_sw_fence_init(&rq->submit, submit_notify); 753 i915_sw_fence_init(&rq->semaphore, semaphore_notify); 754 755 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0); 756 757 rq->file_priv = NULL; 758 rq->capture_list = NULL; 759 760 init_llist_head(&rq->execute_cb); 761 } 762 763 struct i915_request * 764 __i915_request_create(struct intel_context *ce, gfp_t gfp) 765 { 766 struct intel_timeline *tl = ce->timeline; 767 struct i915_request *rq; 768 u32 seqno; 769 int ret; 770 771 might_sleep_if(gfpflags_allow_blocking(gfp)); 772 773 /* Check that the caller provided an already pinned context */ 774 __intel_context_pin(ce); 775 776 /* 777 * Beware: Dragons be flying overhead. 778 * 779 * We use RCU to look up requests in flight. The lookups may 780 * race with the request being allocated from the slab freelist. 781 * That is the request we are writing to here, may be in the process 782 * of being read by __i915_active_request_get_rcu(). As such, 783 * we have to be very careful when overwriting the contents. During 784 * the RCU lookup, we change chase the request->engine pointer, 785 * read the request->global_seqno and increment the reference count. 786 * 787 * The reference count is incremented atomically. If it is zero, 788 * the lookup knows the request is unallocated and complete. Otherwise, 789 * it is either still in use, or has been reallocated and reset 790 * with dma_fence_init(). This increment is safe for release as we 791 * check that the request we have a reference to and matches the active 792 * request. 793 * 794 * Before we increment the refcount, we chase the request->engine 795 * pointer. We must not call kmem_cache_zalloc() or else we set 796 * that pointer to NULL and cause a crash during the lookup. If 797 * we see the request is completed (based on the value of the 798 * old engine and seqno), the lookup is complete and reports NULL. 799 * If we decide the request is not completed (new engine or seqno), 800 * then we grab a reference and double check that it is still the 801 * active request - which it won't be and restart the lookup. 802 * 803 * Do not use kmem_cache_zalloc() here! 804 */ 805 rq = kmem_cache_alloc(global.slab_requests, 806 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 807 if (unlikely(!rq)) { 808 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp); 809 if (!rq) { 810 ret = -ENOMEM; 811 goto err_unreserve; 812 } 813 } 814 815 rq->context = ce; 816 rq->engine = ce->engine; 817 rq->ring = ce->ring; 818 rq->execution_mask = ce->engine->mask; 819 820 kref_init(&rq->fence.refcount); 821 rq->fence.flags = 0; 822 rq->fence.error = 0; 823 INIT_LIST_HEAD(&rq->fence.cb_list); 824 825 ret = intel_timeline_get_seqno(tl, rq, &seqno); 826 if (ret) 827 goto err_free; 828 829 rq->fence.context = tl->fence_context; 830 rq->fence.seqno = seqno; 831 832 RCU_INIT_POINTER(rq->timeline, tl); 833 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline); 834 rq->hwsp_seqno = tl->hwsp_seqno; 835 GEM_BUG_ON(i915_request_completed(rq)); 836 837 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */ 838 839 /* We bump the ref for the fence chain */ 840 i915_sw_fence_reinit(&i915_request_get(rq)->submit); 841 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore); 842 843 i915_sched_node_reinit(&rq->sched); 844 845 /* No zalloc, everything must be cleared after use */ 846 rq->batch = NULL; 847 GEM_BUG_ON(rq->file_priv); 848 GEM_BUG_ON(rq->capture_list); 849 GEM_BUG_ON(!llist_empty(&rq->execute_cb)); 850 851 /* 852 * Reserve space in the ring buffer for all the commands required to 853 * eventually emit this request. This is to guarantee that the 854 * i915_request_add() call can't fail. Note that the reserve may need 855 * to be redone if the request is not actually submitted straight 856 * away, e.g. because a GPU scheduler has deferred it. 857 * 858 * Note that due to how we add reserved_space to intel_ring_begin() 859 * we need to double our request to ensure that if we need to wrap 860 * around inside i915_request_add() there is sufficient space at 861 * the beginning of the ring as well. 862 */ 863 rq->reserved_space = 864 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32); 865 866 /* 867 * Record the position of the start of the request so that 868 * should we detect the updated seqno part-way through the 869 * GPU processing the request, we never over-estimate the 870 * position of the head. 871 */ 872 rq->head = rq->ring->emit; 873 874 ret = rq->engine->request_alloc(rq); 875 if (ret) 876 goto err_unwind; 877 878 rq->infix = rq->ring->emit; /* end of header; start of user payload */ 879 880 intel_context_mark_active(ce); 881 list_add_tail_rcu(&rq->link, &tl->requests); 882 883 return rq; 884 885 err_unwind: 886 ce->ring->emit = rq->head; 887 888 /* Make sure we didn't add ourselves to external state before freeing */ 889 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list)); 890 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list)); 891 892 err_free: 893 kmem_cache_free(global.slab_requests, rq); 894 err_unreserve: 895 intel_context_unpin(ce); 896 return ERR_PTR(ret); 897 } 898 899 struct i915_request * 900 i915_request_create(struct intel_context *ce) 901 { 902 struct i915_request *rq; 903 struct intel_timeline *tl; 904 905 tl = intel_context_timeline_lock(ce); 906 if (IS_ERR(tl)) 907 return ERR_CAST(tl); 908 909 /* Move our oldest request to the slab-cache (if not in use!) */ 910 rq = list_first_entry(&tl->requests, typeof(*rq), link); 911 if (!list_is_last(&rq->link, &tl->requests)) 912 i915_request_retire(rq); 913 914 intel_context_enter(ce); 915 rq = __i915_request_create(ce, GFP_KERNEL); 916 intel_context_exit(ce); /* active reference transferred to request */ 917 if (IS_ERR(rq)) 918 goto err_unlock; 919 920 /* Check that we do not interrupt ourselves with a new request */ 921 rq->cookie = lockdep_pin_lock(&tl->mutex); 922 923 return rq; 924 925 err_unlock: 926 intel_context_timeline_unlock(tl); 927 return rq; 928 } 929 930 static int 931 i915_request_await_start(struct i915_request *rq, struct i915_request *signal) 932 { 933 struct dma_fence *fence; 934 int err; 935 936 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline)) 937 return 0; 938 939 if (i915_request_started(signal)) 940 return 0; 941 942 fence = NULL; 943 rcu_read_lock(); 944 spin_lock_irq(&signal->lock); 945 do { 946 struct list_head *pos = READ_ONCE(signal->link.prev); 947 struct i915_request *prev; 948 949 /* Confirm signal has not been retired, the link is valid */ 950 if (unlikely(i915_request_started(signal))) 951 break; 952 953 /* Is signal the earliest request on its timeline? */ 954 if (pos == &rcu_dereference(signal->timeline)->requests) 955 break; 956 957 /* 958 * Peek at the request before us in the timeline. That 959 * request will only be valid before it is retired, so 960 * after acquiring a reference to it, confirm that it is 961 * still part of the signaler's timeline. 962 */ 963 prev = list_entry(pos, typeof(*prev), link); 964 if (!i915_request_get_rcu(prev)) 965 break; 966 967 /* After the strong barrier, confirm prev is still attached */ 968 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) { 969 i915_request_put(prev); 970 break; 971 } 972 973 fence = &prev->fence; 974 } while (0); 975 spin_unlock_irq(&signal->lock); 976 rcu_read_unlock(); 977 if (!fence) 978 return 0; 979 980 err = 0; 981 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence)) 982 err = i915_sw_fence_await_dma_fence(&rq->submit, 983 fence, 0, 984 I915_FENCE_GFP); 985 dma_fence_put(fence); 986 987 return err; 988 } 989 990 static intel_engine_mask_t 991 already_busywaiting(struct i915_request *rq) 992 { 993 /* 994 * Polling a semaphore causes bus traffic, delaying other users of 995 * both the GPU and CPU. We want to limit the impact on others, 996 * while taking advantage of early submission to reduce GPU 997 * latency. Therefore we restrict ourselves to not using more 998 * than one semaphore from each source, and not using a semaphore 999 * if we have detected the engine is saturated (i.e. would not be 1000 * submitted early and cause bus traffic reading an already passed 1001 * semaphore). 1002 * 1003 * See the are-we-too-late? check in __i915_request_submit(). 1004 */ 1005 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated); 1006 } 1007 1008 static int 1009 __emit_semaphore_wait(struct i915_request *to, 1010 struct i915_request *from, 1011 u32 seqno) 1012 { 1013 const int has_token = INTEL_GEN(to->engine->i915) >= 12; 1014 u32 hwsp_offset; 1015 int len, err; 1016 u32 *cs; 1017 1018 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8); 1019 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to)); 1020 1021 /* We need to pin the signaler's HWSP until we are finished reading. */ 1022 err = intel_timeline_read_hwsp(from, to, &hwsp_offset); 1023 if (err) 1024 return err; 1025 1026 len = 4; 1027 if (has_token) 1028 len += 2; 1029 1030 cs = intel_ring_begin(to, len); 1031 if (IS_ERR(cs)) 1032 return PTR_ERR(cs); 1033 1034 /* 1035 * Using greater-than-or-equal here means we have to worry 1036 * about seqno wraparound. To side step that issue, we swap 1037 * the timeline HWSP upon wrapping, so that everyone listening 1038 * for the old (pre-wrap) values do not see the much smaller 1039 * (post-wrap) values than they were expecting (and so wait 1040 * forever). 1041 */ 1042 *cs++ = (MI_SEMAPHORE_WAIT | 1043 MI_SEMAPHORE_GLOBAL_GTT | 1044 MI_SEMAPHORE_POLL | 1045 MI_SEMAPHORE_SAD_GTE_SDD) + 1046 has_token; 1047 *cs++ = seqno; 1048 *cs++ = hwsp_offset; 1049 *cs++ = 0; 1050 if (has_token) { 1051 *cs++ = 0; 1052 *cs++ = MI_NOOP; 1053 } 1054 1055 intel_ring_advance(to, cs); 1056 return 0; 1057 } 1058 1059 static int 1060 emit_semaphore_wait(struct i915_request *to, 1061 struct i915_request *from, 1062 gfp_t gfp) 1063 { 1064 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask; 1065 struct i915_sw_fence *wait = &to->submit; 1066 1067 if (!intel_context_use_semaphores(to->context)) 1068 goto await_fence; 1069 1070 if (i915_request_has_initial_breadcrumb(to)) 1071 goto await_fence; 1072 1073 if (!rcu_access_pointer(from->hwsp_cacheline)) 1074 goto await_fence; 1075 1076 /* 1077 * If this or its dependents are waiting on an external fence 1078 * that may fail catastrophically, then we want to avoid using 1079 * sempahores as they bypass the fence signaling metadata, and we 1080 * lose the fence->error propagation. 1081 */ 1082 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN) 1083 goto await_fence; 1084 1085 /* Just emit the first semaphore we see as request space is limited. */ 1086 if (already_busywaiting(to) & mask) 1087 goto await_fence; 1088 1089 if (i915_request_await_start(to, from) < 0) 1090 goto await_fence; 1091 1092 /* Only submit our spinner after the signaler is running! */ 1093 if (__await_execution(to, from, NULL, gfp)) 1094 goto await_fence; 1095 1096 if (__emit_semaphore_wait(to, from, from->fence.seqno)) 1097 goto await_fence; 1098 1099 to->sched.semaphores |= mask; 1100 wait = &to->semaphore; 1101 1102 await_fence: 1103 return i915_sw_fence_await_dma_fence(wait, 1104 &from->fence, 0, 1105 I915_FENCE_GFP); 1106 } 1107 1108 static bool intel_timeline_sync_has_start(struct intel_timeline *tl, 1109 struct dma_fence *fence) 1110 { 1111 return __intel_timeline_sync_is_later(tl, 1112 fence->context, 1113 fence->seqno - 1); 1114 } 1115 1116 static int intel_timeline_sync_set_start(struct intel_timeline *tl, 1117 const struct dma_fence *fence) 1118 { 1119 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1); 1120 } 1121 1122 static int 1123 __i915_request_await_execution(struct i915_request *to, 1124 struct i915_request *from, 1125 void (*hook)(struct i915_request *rq, 1126 struct dma_fence *signal)) 1127 { 1128 int err; 1129 1130 GEM_BUG_ON(intel_context_is_barrier(from->context)); 1131 1132 /* Submit both requests at the same time */ 1133 err = __await_execution(to, from, hook, I915_FENCE_GFP); 1134 if (err) 1135 return err; 1136 1137 /* Squash repeated depenendices to the same timelines */ 1138 if (intel_timeline_sync_has_start(i915_request_timeline(to), 1139 &from->fence)) 1140 return 0; 1141 1142 /* 1143 * Wait until the start of this request. 1144 * 1145 * The execution cb fires when we submit the request to HW. But in 1146 * many cases this may be long before the request itself is ready to 1147 * run (consider that we submit 2 requests for the same context, where 1148 * the request of interest is behind an indefinite spinner). So we hook 1149 * up to both to reduce our queues and keep the execution lag minimised 1150 * in the worst case, though we hope that the await_start is elided. 1151 */ 1152 err = i915_request_await_start(to, from); 1153 if (err < 0) 1154 return err; 1155 1156 /* 1157 * Ensure both start together [after all semaphores in signal] 1158 * 1159 * Now that we are queued to the HW at roughly the same time (thanks 1160 * to the execute cb) and are ready to run at roughly the same time 1161 * (thanks to the await start), our signaler may still be indefinitely 1162 * delayed by waiting on a semaphore from a remote engine. If our 1163 * signaler depends on a semaphore, so indirectly do we, and we do not 1164 * want to start our payload until our signaler also starts theirs. 1165 * So we wait. 1166 * 1167 * However, there is also a second condition for which we need to wait 1168 * for the precise start of the signaler. Consider that the signaler 1169 * was submitted in a chain of requests following another context 1170 * (with just an ordinary intra-engine fence dependency between the 1171 * two). In this case the signaler is queued to HW, but not for 1172 * immediate execution, and so we must wait until it reaches the 1173 * active slot. 1174 */ 1175 if (intel_engine_has_semaphores(to->engine) && 1176 !i915_request_has_initial_breadcrumb(to)) { 1177 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1); 1178 if (err < 0) 1179 return err; 1180 } 1181 1182 /* Couple the dependency tree for PI on this exposed to->fence */ 1183 if (to->engine->schedule) { 1184 err = i915_sched_node_add_dependency(&to->sched, 1185 &from->sched, 1186 I915_DEPENDENCY_WEAK); 1187 if (err < 0) 1188 return err; 1189 } 1190 1191 return intel_timeline_sync_set_start(i915_request_timeline(to), 1192 &from->fence); 1193 } 1194 1195 static void mark_external(struct i915_request *rq) 1196 { 1197 /* 1198 * The downside of using semaphores is that we lose metadata passing 1199 * along the signaling chain. This is particularly nasty when we 1200 * need to pass along a fatal error such as EFAULT or EDEADLK. For 1201 * fatal errors we want to scrub the request before it is executed, 1202 * which means that we cannot preload the request onto HW and have 1203 * it wait upon a semaphore. 1204 */ 1205 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN; 1206 } 1207 1208 static int 1209 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1210 { 1211 mark_external(rq); 1212 return i915_sw_fence_await_dma_fence(&rq->submit, fence, 1213 i915_fence_context_timeout(rq->engine->i915, 1214 fence->context), 1215 I915_FENCE_GFP); 1216 } 1217 1218 static int 1219 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence) 1220 { 1221 struct dma_fence *iter; 1222 int err = 0; 1223 1224 if (!to_dma_fence_chain(fence)) 1225 return __i915_request_await_external(rq, fence); 1226 1227 dma_fence_chain_for_each(iter, fence) { 1228 struct dma_fence_chain *chain = to_dma_fence_chain(iter); 1229 1230 if (!dma_fence_is_i915(chain->fence)) { 1231 err = __i915_request_await_external(rq, iter); 1232 break; 1233 } 1234 1235 err = i915_request_await_dma_fence(rq, chain->fence); 1236 if (err < 0) 1237 break; 1238 } 1239 1240 dma_fence_put(iter); 1241 return err; 1242 } 1243 1244 int 1245 i915_request_await_execution(struct i915_request *rq, 1246 struct dma_fence *fence, 1247 void (*hook)(struct i915_request *rq, 1248 struct dma_fence *signal)) 1249 { 1250 struct dma_fence **child = &fence; 1251 unsigned int nchild = 1; 1252 int ret; 1253 1254 if (dma_fence_is_array(fence)) { 1255 struct dma_fence_array *array = to_dma_fence_array(fence); 1256 1257 /* XXX Error for signal-on-any fence arrays */ 1258 1259 child = array->fences; 1260 nchild = array->num_fences; 1261 GEM_BUG_ON(!nchild); 1262 } 1263 1264 do { 1265 fence = *child++; 1266 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1267 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1268 continue; 1269 } 1270 1271 if (fence->context == rq->fence.context) 1272 continue; 1273 1274 /* 1275 * We don't squash repeated fence dependencies here as we 1276 * want to run our callback in all cases. 1277 */ 1278 1279 if (dma_fence_is_i915(fence)) 1280 ret = __i915_request_await_execution(rq, 1281 to_request(fence), 1282 hook); 1283 else 1284 ret = i915_request_await_external(rq, fence); 1285 if (ret < 0) 1286 return ret; 1287 } while (--nchild); 1288 1289 return 0; 1290 } 1291 1292 static int 1293 await_request_submit(struct i915_request *to, struct i915_request *from) 1294 { 1295 /* 1296 * If we are waiting on a virtual engine, then it may be 1297 * constrained to execute on a single engine *prior* to submission. 1298 * When it is submitted, it will be first submitted to the virtual 1299 * engine and then passed to the physical engine. We cannot allow 1300 * the waiter to be submitted immediately to the physical engine 1301 * as it may then bypass the virtual request. 1302 */ 1303 if (to->engine == READ_ONCE(from->engine)) 1304 return i915_sw_fence_await_sw_fence_gfp(&to->submit, 1305 &from->submit, 1306 I915_FENCE_GFP); 1307 else 1308 return __i915_request_await_execution(to, from, NULL); 1309 } 1310 1311 static int 1312 i915_request_await_request(struct i915_request *to, struct i915_request *from) 1313 { 1314 int ret; 1315 1316 GEM_BUG_ON(to == from); 1317 GEM_BUG_ON(to->timeline == from->timeline); 1318 1319 if (i915_request_completed(from)) { 1320 i915_sw_fence_set_error_once(&to->submit, from->fence.error); 1321 return 0; 1322 } 1323 1324 if (to->engine->schedule) { 1325 ret = i915_sched_node_add_dependency(&to->sched, 1326 &from->sched, 1327 I915_DEPENDENCY_EXTERNAL); 1328 if (ret < 0) 1329 return ret; 1330 } 1331 1332 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask))) 1333 ret = await_request_submit(to, from); 1334 else 1335 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP); 1336 if (ret < 0) 1337 return ret; 1338 1339 return 0; 1340 } 1341 1342 int 1343 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence) 1344 { 1345 struct dma_fence **child = &fence; 1346 unsigned int nchild = 1; 1347 int ret; 1348 1349 /* 1350 * Note that if the fence-array was created in signal-on-any mode, 1351 * we should *not* decompose it into its individual fences. However, 1352 * we don't currently store which mode the fence-array is operating 1353 * in. Fortunately, the only user of signal-on-any is private to 1354 * amdgpu and we should not see any incoming fence-array from 1355 * sync-file being in signal-on-any mode. 1356 */ 1357 if (dma_fence_is_array(fence)) { 1358 struct dma_fence_array *array = to_dma_fence_array(fence); 1359 1360 child = array->fences; 1361 nchild = array->num_fences; 1362 GEM_BUG_ON(!nchild); 1363 } 1364 1365 do { 1366 fence = *child++; 1367 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1368 i915_sw_fence_set_error_once(&rq->submit, fence->error); 1369 continue; 1370 } 1371 1372 /* 1373 * Requests on the same timeline are explicitly ordered, along 1374 * with their dependencies, by i915_request_add() which ensures 1375 * that requests are submitted in-order through each ring. 1376 */ 1377 if (fence->context == rq->fence.context) 1378 continue; 1379 1380 /* Squash repeated waits to the same timelines */ 1381 if (fence->context && 1382 intel_timeline_sync_is_later(i915_request_timeline(rq), 1383 fence)) 1384 continue; 1385 1386 if (dma_fence_is_i915(fence)) 1387 ret = i915_request_await_request(rq, to_request(fence)); 1388 else 1389 ret = i915_request_await_external(rq, fence); 1390 if (ret < 0) 1391 return ret; 1392 1393 /* Record the latest fence used against each timeline */ 1394 if (fence->context) 1395 intel_timeline_sync_set(i915_request_timeline(rq), 1396 fence); 1397 } while (--nchild); 1398 1399 return 0; 1400 } 1401 1402 /** 1403 * i915_request_await_object - set this request to (async) wait upon a bo 1404 * @to: request we are wishing to use 1405 * @obj: object which may be in use on another ring. 1406 * @write: whether the wait is on behalf of a writer 1407 * 1408 * This code is meant to abstract object synchronization with the GPU. 1409 * Conceptually we serialise writes between engines inside the GPU. 1410 * We only allow one engine to write into a buffer at any time, but 1411 * multiple readers. To ensure each has a coherent view of memory, we must: 1412 * 1413 * - If there is an outstanding write request to the object, the new 1414 * request must wait for it to complete (either CPU or in hw, requests 1415 * on the same ring will be naturally ordered). 1416 * 1417 * - If we are a write request (pending_write_domain is set), the new 1418 * request must wait for outstanding read requests to complete. 1419 * 1420 * Returns 0 if successful, else propagates up the lower layer error. 1421 */ 1422 int 1423 i915_request_await_object(struct i915_request *to, 1424 struct drm_i915_gem_object *obj, 1425 bool write) 1426 { 1427 struct dma_fence *excl; 1428 int ret = 0; 1429 1430 if (write) { 1431 struct dma_fence **shared; 1432 unsigned int count, i; 1433 1434 ret = dma_resv_get_fences_rcu(obj->base.resv, 1435 &excl, &count, &shared); 1436 if (ret) 1437 return ret; 1438 1439 for (i = 0; i < count; i++) { 1440 ret = i915_request_await_dma_fence(to, shared[i]); 1441 if (ret) 1442 break; 1443 1444 dma_fence_put(shared[i]); 1445 } 1446 1447 for (; i < count; i++) 1448 dma_fence_put(shared[i]); 1449 kfree(shared); 1450 } else { 1451 excl = dma_resv_get_excl_rcu(obj->base.resv); 1452 } 1453 1454 if (excl) { 1455 if (ret == 0) 1456 ret = i915_request_await_dma_fence(to, excl); 1457 1458 dma_fence_put(excl); 1459 } 1460 1461 return ret; 1462 } 1463 1464 static struct i915_request * 1465 __i915_request_add_to_timeline(struct i915_request *rq) 1466 { 1467 struct intel_timeline *timeline = i915_request_timeline(rq); 1468 struct i915_request *prev; 1469 1470 /* 1471 * Dependency tracking and request ordering along the timeline 1472 * is special cased so that we can eliminate redundant ordering 1473 * operations while building the request (we know that the timeline 1474 * itself is ordered, and here we guarantee it). 1475 * 1476 * As we know we will need to emit tracking along the timeline, 1477 * we embed the hooks into our request struct -- at the cost of 1478 * having to have specialised no-allocation interfaces (which will 1479 * be beneficial elsewhere). 1480 * 1481 * A second benefit to open-coding i915_request_await_request is 1482 * that we can apply a slight variant of the rules specialised 1483 * for timelines that jump between engines (such as virtual engines). 1484 * If we consider the case of virtual engine, we must emit a dma-fence 1485 * to prevent scheduling of the second request until the first is 1486 * complete (to maximise our greedy late load balancing) and this 1487 * precludes optimising to use semaphores serialisation of a single 1488 * timeline across engines. 1489 */ 1490 prev = to_request(__i915_active_fence_set(&timeline->last_request, 1491 &rq->fence)); 1492 if (prev && !i915_request_completed(prev)) { 1493 /* 1494 * The requests are supposed to be kept in order. However, 1495 * we need to be wary in case the timeline->last_request 1496 * is used as a barrier for external modification to this 1497 * context. 1498 */ 1499 GEM_BUG_ON(prev->context == rq->context && 1500 i915_seqno_passed(prev->fence.seqno, 1501 rq->fence.seqno)); 1502 1503 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask)) 1504 i915_sw_fence_await_sw_fence(&rq->submit, 1505 &prev->submit, 1506 &rq->submitq); 1507 else 1508 __i915_sw_fence_await_dma_fence(&rq->submit, 1509 &prev->fence, 1510 &rq->dmaq); 1511 if (rq->engine->schedule) 1512 __i915_sched_node_add_dependency(&rq->sched, 1513 &prev->sched, 1514 &rq->dep, 1515 0); 1516 } 1517 1518 /* 1519 * Make sure that no request gazumped us - if it was allocated after 1520 * our i915_request_alloc() and called __i915_request_add() before 1521 * us, the timeline will hold its seqno which is later than ours. 1522 */ 1523 GEM_BUG_ON(timeline->seqno != rq->fence.seqno); 1524 1525 return prev; 1526 } 1527 1528 /* 1529 * NB: This function is not allowed to fail. Doing so would mean the the 1530 * request is not being tracked for completion but the work itself is 1531 * going to happen on the hardware. This would be a Bad Thing(tm). 1532 */ 1533 struct i915_request *__i915_request_commit(struct i915_request *rq) 1534 { 1535 struct intel_engine_cs *engine = rq->engine; 1536 struct intel_ring *ring = rq->ring; 1537 u32 *cs; 1538 1539 RQ_TRACE(rq, "\n"); 1540 1541 /* 1542 * To ensure that this call will not fail, space for its emissions 1543 * should already have been reserved in the ring buffer. Let the ring 1544 * know that it is time to use that space up. 1545 */ 1546 GEM_BUG_ON(rq->reserved_space > ring->space); 1547 rq->reserved_space = 0; 1548 rq->emitted_jiffies = jiffies; 1549 1550 /* 1551 * Record the position of the start of the breadcrumb so that 1552 * should we detect the updated seqno part-way through the 1553 * GPU processing the request, we never over-estimate the 1554 * position of the ring's HEAD. 1555 */ 1556 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw); 1557 GEM_BUG_ON(IS_ERR(cs)); 1558 rq->postfix = intel_ring_offset(rq, cs); 1559 1560 return __i915_request_add_to_timeline(rq); 1561 } 1562 1563 void __i915_request_queue(struct i915_request *rq, 1564 const struct i915_sched_attr *attr) 1565 { 1566 /* 1567 * Let the backend know a new request has arrived that may need 1568 * to adjust the existing execution schedule due to a high priority 1569 * request - i.e. we may want to preempt the current request in order 1570 * to run a high priority dependency chain *before* we can execute this 1571 * request. 1572 * 1573 * This is called before the request is ready to run so that we can 1574 * decide whether to preempt the entire chain so that it is ready to 1575 * run at the earliest possible convenience. 1576 */ 1577 if (attr && rq->engine->schedule) 1578 rq->engine->schedule(rq, attr); 1579 i915_sw_fence_commit(&rq->semaphore); 1580 i915_sw_fence_commit(&rq->submit); 1581 } 1582 1583 void i915_request_add(struct i915_request *rq) 1584 { 1585 struct intel_timeline * const tl = i915_request_timeline(rq); 1586 struct i915_sched_attr attr = {}; 1587 struct i915_gem_context *ctx; 1588 1589 lockdep_assert_held(&tl->mutex); 1590 lockdep_unpin_lock(&tl->mutex, rq->cookie); 1591 1592 trace_i915_request_add(rq); 1593 __i915_request_commit(rq); 1594 1595 /* XXX placeholder for selftests */ 1596 rcu_read_lock(); 1597 ctx = rcu_dereference(rq->context->gem_context); 1598 if (ctx) 1599 attr = ctx->sched; 1600 rcu_read_unlock(); 1601 1602 __i915_request_queue(rq, &attr); 1603 1604 mutex_unlock(&tl->mutex); 1605 } 1606 1607 static unsigned long local_clock_ns(unsigned int *cpu) 1608 { 1609 unsigned long t; 1610 1611 /* 1612 * Cheaply and approximately convert from nanoseconds to microseconds. 1613 * The result and subsequent calculations are also defined in the same 1614 * approximate microseconds units. The principal source of timing 1615 * error here is from the simple truncation. 1616 * 1617 * Note that local_clock() is only defined wrt to the current CPU; 1618 * the comparisons are no longer valid if we switch CPUs. Instead of 1619 * blocking preemption for the entire busywait, we can detect the CPU 1620 * switch and use that as indicator of system load and a reason to 1621 * stop busywaiting, see busywait_stop(). 1622 */ 1623 *cpu = get_cpu(); 1624 t = local_clock(); 1625 put_cpu(); 1626 1627 return t; 1628 } 1629 1630 static bool busywait_stop(unsigned long timeout, unsigned int cpu) 1631 { 1632 unsigned int this_cpu; 1633 1634 if (time_after(local_clock_ns(&this_cpu), timeout)) 1635 return true; 1636 1637 return this_cpu != cpu; 1638 } 1639 1640 static bool __i915_spin_request(const struct i915_request * const rq, int state) 1641 { 1642 unsigned long timeout_ns; 1643 unsigned int cpu; 1644 1645 /* 1646 * Only wait for the request if we know it is likely to complete. 1647 * 1648 * We don't track the timestamps around requests, nor the average 1649 * request length, so we do not have a good indicator that this 1650 * request will complete within the timeout. What we do know is the 1651 * order in which requests are executed by the context and so we can 1652 * tell if the request has been started. If the request is not even 1653 * running yet, it is a fair assumption that it will not complete 1654 * within our relatively short timeout. 1655 */ 1656 if (!i915_request_is_running(rq)) 1657 return false; 1658 1659 /* 1660 * When waiting for high frequency requests, e.g. during synchronous 1661 * rendering split between the CPU and GPU, the finite amount of time 1662 * required to set up the irq and wait upon it limits the response 1663 * rate. By busywaiting on the request completion for a short while we 1664 * can service the high frequency waits as quick as possible. However, 1665 * if it is a slow request, we want to sleep as quickly as possible. 1666 * The tradeoff between waiting and sleeping is roughly the time it 1667 * takes to sleep on a request, on the order of a microsecond. 1668 */ 1669 1670 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns); 1671 timeout_ns += local_clock_ns(&cpu); 1672 do { 1673 if (i915_request_completed(rq)) 1674 return true; 1675 1676 if (signal_pending_state(state, current)) 1677 break; 1678 1679 if (busywait_stop(timeout_ns, cpu)) 1680 break; 1681 1682 cpu_relax(); 1683 } while (!need_resched()); 1684 1685 return false; 1686 } 1687 1688 struct request_wait { 1689 struct dma_fence_cb cb; 1690 struct task_struct *tsk; 1691 }; 1692 1693 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb) 1694 { 1695 struct request_wait *wait = container_of(cb, typeof(*wait), cb); 1696 1697 wake_up_process(wait->tsk); 1698 } 1699 1700 /** 1701 * i915_request_wait - wait until execution of request has finished 1702 * @rq: the request to wait upon 1703 * @flags: how to wait 1704 * @timeout: how long to wait in jiffies 1705 * 1706 * i915_request_wait() waits for the request to be completed, for a 1707 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an 1708 * unbounded wait). 1709 * 1710 * Returns the remaining time (in jiffies) if the request completed, which may 1711 * be zero or -ETIME if the request is unfinished after the timeout expires. 1712 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is 1713 * pending before the request completes. 1714 */ 1715 long i915_request_wait(struct i915_request *rq, 1716 unsigned int flags, 1717 long timeout) 1718 { 1719 const int state = flags & I915_WAIT_INTERRUPTIBLE ? 1720 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 1721 struct request_wait wait; 1722 1723 might_sleep(); 1724 GEM_BUG_ON(timeout < 0); 1725 1726 if (dma_fence_is_signaled(&rq->fence)) 1727 return timeout; 1728 1729 if (!timeout) 1730 return -ETIME; 1731 1732 trace_i915_request_wait_begin(rq, flags); 1733 1734 /* 1735 * We must never wait on the GPU while holding a lock as we 1736 * may need to perform a GPU reset. So while we don't need to 1737 * serialise wait/reset with an explicit lock, we do want 1738 * lockdep to detect potential dependency cycles. 1739 */ 1740 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_); 1741 1742 /* 1743 * Optimistic spin before touching IRQs. 1744 * 1745 * We may use a rather large value here to offset the penalty of 1746 * switching away from the active task. Frequently, the client will 1747 * wait upon an old swapbuffer to throttle itself to remain within a 1748 * frame of the gpu. If the client is running in lockstep with the gpu, 1749 * then it should not be waiting long at all, and a sleep now will incur 1750 * extra scheduler latency in producing the next frame. To try to 1751 * avoid adding the cost of enabling/disabling the interrupt to the 1752 * short wait, we first spin to see if the request would have completed 1753 * in the time taken to setup the interrupt. 1754 * 1755 * We need upto 5us to enable the irq, and upto 20us to hide the 1756 * scheduler latency of a context switch, ignoring the secondary 1757 * impacts from a context switch such as cache eviction. 1758 * 1759 * The scheme used for low-latency IO is called "hybrid interrupt 1760 * polling". The suggestion there is to sleep until just before you 1761 * expect to be woken by the device interrupt and then poll for its 1762 * completion. That requires having a good predictor for the request 1763 * duration, which we currently lack. 1764 */ 1765 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) && 1766 __i915_spin_request(rq, state)) { 1767 dma_fence_signal(&rq->fence); 1768 goto out; 1769 } 1770 1771 /* 1772 * This client is about to stall waiting for the GPU. In many cases 1773 * this is undesirable and limits the throughput of the system, as 1774 * many clients cannot continue processing user input/output whilst 1775 * blocked. RPS autotuning may take tens of milliseconds to respond 1776 * to the GPU load and thus incurs additional latency for the client. 1777 * We can circumvent that by promoting the GPU frequency to maximum 1778 * before we sleep. This makes the GPU throttle up much more quickly 1779 * (good for benchmarks and user experience, e.g. window animations), 1780 * but at a cost of spending more power processing the workload 1781 * (bad for battery). 1782 */ 1783 if (flags & I915_WAIT_PRIORITY) { 1784 if (!i915_request_started(rq) && 1785 INTEL_GEN(rq->engine->i915) >= 6) 1786 intel_rps_boost(rq); 1787 } 1788 1789 wait.tsk = current; 1790 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake)) 1791 goto out; 1792 1793 for (;;) { 1794 set_current_state(state); 1795 1796 if (i915_request_completed(rq)) { 1797 dma_fence_signal(&rq->fence); 1798 break; 1799 } 1800 1801 intel_engine_flush_submission(rq->engine); 1802 1803 if (signal_pending_state(state, current)) { 1804 timeout = -ERESTARTSYS; 1805 break; 1806 } 1807 1808 if (!timeout) { 1809 timeout = -ETIME; 1810 break; 1811 } 1812 1813 timeout = io_schedule_timeout(timeout); 1814 } 1815 __set_current_state(TASK_RUNNING); 1816 1817 dma_fence_remove_callback(&rq->fence, &wait.cb); 1818 1819 out: 1820 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_); 1821 trace_i915_request_wait_end(rq); 1822 return timeout; 1823 } 1824 1825 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1826 #include "selftests/mock_request.c" 1827 #include "selftests/i915_request.c" 1828 #endif 1829 1830 static void i915_global_request_shrink(void) 1831 { 1832 kmem_cache_shrink(global.slab_execute_cbs); 1833 kmem_cache_shrink(global.slab_requests); 1834 } 1835 1836 static void i915_global_request_exit(void) 1837 { 1838 kmem_cache_destroy(global.slab_execute_cbs); 1839 kmem_cache_destroy(global.slab_requests); 1840 } 1841 1842 static struct i915_global_request global = { { 1843 .shrink = i915_global_request_shrink, 1844 .exit = i915_global_request_exit, 1845 } }; 1846 1847 int __init i915_global_request_init(void) 1848 { 1849 global.slab_requests = 1850 kmem_cache_create("i915_request", 1851 sizeof(struct i915_request), 1852 __alignof__(struct i915_request), 1853 SLAB_HWCACHE_ALIGN | 1854 SLAB_RECLAIM_ACCOUNT | 1855 SLAB_TYPESAFE_BY_RCU, 1856 __i915_request_ctor); 1857 if (!global.slab_requests) 1858 return -ENOMEM; 1859 1860 global.slab_execute_cbs = KMEM_CACHE(execute_cb, 1861 SLAB_HWCACHE_ALIGN | 1862 SLAB_RECLAIM_ACCOUNT | 1863 SLAB_TYPESAFE_BY_RCU); 1864 if (!global.slab_execute_cbs) 1865 goto err_requests; 1866 1867 i915_global_register(&global.base); 1868 return 0; 1869 1870 err_requests: 1871 kmem_cache_destroy(global.slab_requests); 1872 return -ENOMEM; 1873 } 1874